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ABSTRACT 

     Obesity and its underlying insulin resistance are caused by environmental and genetic 

factors. DNA methylation provides a mechanism by which environmental factors can 

regulate transcriptional activity. The overall goal of the work herein was to (1) identify 

alterations in DNA methylation in human skeletal muscle with obesity and its underlying 

insulin resistance, (2) to determine if these changes in methylation can be altered through 

weight-loss induced by bariatric surgery, and (3) to identify DNA methylation 

biomarkers in whole blood that can be used as a surrogate for skeletal muscle.  

     Assessment of DNA methylation was performed on human skeletal muscle and blood 

using reduced representation bisulfite sequencing (RRBS) for high-throughput 

identification and pyrosequencing for site-specific confirmation. Sorbin and SH3 

homology domain 3 (SORBS3) was identified in skeletal muscle to be increased in 

methylation (+5.0 to +24.4 %) in the promoter and 5’untranslated region (UTR) in the 

obese participants (n= 10) compared to lean (n=12), and this finding corresponded with a 

decrease in gene expression (fold change: -1.9, P=0.0001). Furthermore, SORBS3 was 

demonstrated in a separate cohort of morbidly obese participants (n=7) undergoing 

weight-loss induced by surgery, to decrease in methylation (-5.6 to -24.2%) and increase 

in gene expression (fold change: +1.7; P=0.05) post-surgery. Moreover, SORBS3 

promoter methylation was demonstrated in vitro to inhibit transcriptional activity 

(P=0.000003). The methylation and transcriptional changes for SORBS3 were 

significantly (P≤0.05) correlated with obesity measures and fasting insulin levels. 

SORBS3 was not identified in the blood methylation analysis of lean (n=10) and obese 

(n=10) participants suggesting that it is a muscle specific marker. However, solute carrier 
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family 19 member 1 (SLC19A1) was identified in blood and skeletal muscle to have 

decreased 5’UTR methylation in obese participants, and this was significantly (P≤0.05) 

predicted by insulin sensitivity.  

     These findings suggest SLC19A1 as a potential blood-based biomarker for obese, 

insulin resistant states. The collective findings of SORBS3 DNA methylation and gene 

expression present an exciting novel target in skeletal muscle for further understanding 

obesity and its underlying insulin resistance. Moreover, the dynamic changes to SORBS3 

in response to metabolic improvements and weight-loss induced by surgery. 
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CHAPTER 1: GENERAL INTRODUCTION 

     Obesity is characterized by an excessive accumulation of body fat. The prevalence of 

obesity has drastically increased over the past few decades. In the United States, more 

than one-third of the adult population is considered obese (Flegal, Kruszon-Moran, 

Carroll, Fryar, & Ogden, 2016). One of the key underlying metabolic consequences of 

obesity is insulin resistance (Kahn, Hull, & Utzschneider, 2006). Insulin resistance is 

characterized by a reduced biological response of insulin on insulin-responsive tissues 

such as muscle, liver and adipose (Abdul-Ghani & DeFronzo, 2010). Under normal 

physiological conditions, skeletal muscle is the major site of insulin-stimulated total body 

glucose uptake (Abdul-Ghani & DeFronzo, 2010). As such, skeletal muscle is a primary 

tissue to study when deciphering the molecular basis of insulin resistance.  

     It has been proposed that the skeletal muscle insulin resistance observed in obesity is 

driven by an increased release of proinflammatory cytokines (i.e. interleukin 6, tumor 

necrosis factor-α) and plasma free fatty acids (FFA) from white adipose tissue (WAT) 

(Flatt, 1972; Maachi et al., 2004). The elevation of plasma FFA in the bloodstream from 

excess lipolysis of WAT has been shown to be deposited in tissues, such as skeletal 

muscle (Ferrannini, Barrett, Bevilacqua, & DeFronzo, 1983). This influx of FFA has 

been associated with mitochondrial dysfunction, by means of reduced mitochondrial 

biogenesis (Sparks et al., 2005) and impaired fatty acid oxidation (Pimenta et al., 2008). 

The accumulation of lipids stored in skeletal muscle inhibits insulin signaling, which 

decreases glucose uptake, thereby increasing blood glucose levels (Dresner et al., 1999; 

Goodyear et al., 1995). In addition, the action of proinflammatory cytokines on skeletal 

muscle receptors, such as Toll-like receptors (TLRs) can promote a cascade of 
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inflammatory kinase signaling (Reyna et al., 2008). These inflammatory kinases can 

reduce insulin signaling by insulin receptor substrate-1 (IRS-1) serine phosphorylation 

(Aguirre, Uchida, Yenush, Davis, & White, 2000). As such, a critical step for the 

prevention of obesity and insulin resistant skeletal muscle is understanding the genetic 

and environmental factors leading to the defective signaling cascade.  

     It is well known that genetic and environmental factors both contribute to the 

pathogenesis of obesity and its underlying insulin resistance (Qi & Cho, 2008). From an 

environmental perspective, obesity can be the result of increased fat storage from a 

combination of high caloric intake and physical inactivity (Johnson, Burke, & Mayer, 

1956; Stefanik, Heald, & Mayer, 1959). In addition to the environmental component, 

there have been many studies providing evidence that there is a strong genetic basis of 

obesity and insulin resistance. Twin studies (Stunkard, Foch, & Hrubec, 1986; Stunkard, 

Harris, Pedersen, & McClearn, 1990), family history (Adams et al., 1993; Heller, 

Garrison, Havlik, Feinleib, & Padgett, 1984), and gene knockout studies in mice 

(Hummel, Dickie, & Coleman, 1966; Ingalls, Dickie, & Snell, 1950) have provided 

evidence for a genetic predisposition of obesity and its underlying insulin resistance. 

More recently, we have observed an increase in high-throughput or ‘omic’ technology, 

which has allowed for the probing of thousands of variants in genetic studies. In 2007, 

following this increase in ‘omics’ technology, a single nucleotide polymorphism (SNP) 

associated with increased body mass index (BMI) was identified in the fat mass and 

obesity associated (FTO) gene (Frayling et al., 2007). Since that paper, genome-wide 

association studies (GWAS) have identified many obesity related polymorphisms 

identified in genes that are associated with appetite (Willer et al., 2009), fat distribution 
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(Lindgren et al., 2009), and insulin resistance (Meigs et al., 2007). Collectively, obesity 

and its underlying insulin resistance have been recognized as a complex interplay 

between genetic and environmental factors. In this respect, identifying the role of 

epigenetics, which is influenced by both the environmental and genetic factors, has 

become important for understanding obesity and insulin resistance. 

     Epigenetics was first introduced in 1942 by Conrad Waddington (Waddington, 2012). 

Epigenetic modifications can be described as a heritable change in gene function that 

occurs without changes in the nucleotide sequence (Berger, Kouzarides, Shiekhattar, & 

Shilatifard, 2009). The most studied epigenetic mark is deoxyribonucleic acid (DNA) 

methylation, which is the addition of a methyl group to the carbon-5 position of a 

cytosine residue preceding a guanine, termed CpG dinucleotide (Ronn & Ling, 2015). 

The enzymes, DNA methyltransferases (DNMTs), catalyze the methyl addition using S-

adenosylmethionine (SAM) as the methyl group donor (Z. X. Chen & Riggs, 2005). 

Specifically, de novo methylation is established by DNMT3A and DNMT3B (Yokochi & 

Robertson, 2002), and DNMT1 is for maintenance (Pradhan, Bacolla, Wells, & Roberts, 

1999). Identifying these methylation marks is crucial for furthering our understanding of 

diseases such as obesity and its underlying insulin resistance, because it can regulate gene 

transcription.  

     Two distinct mechanisms have been proposed for differential DNA methylation in 

transcript regulation. Promoter and untranslated region methylation has been associated 

with gene silencing, by inhibiting the binding of transcription factors or the 

transcriptional machinery (Ling & Groop, 2009; Merkenschlager & Odom, 2013). In 

contrast, methylation altered in the gene body has been proposed to contribute to 
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regulating alternative splicing (Lev Maor, Yearim, & Ast, 2015). In addition, the 

placement of methylation in the genome can be influenced by genetic variation, such as 

SNPs. Studies assessing SNP-CpG sites have shown that a single base pair mutation may 

introduce a CpG site for methylation, and increase the risk for disease (Volkov et al., 

2016). Another means of affecting the placement of DNA methylation can be through 

DNMT activity. DNA methylation is considered to be a stable covalent addition 

(Mikeska & Craig, 2014). However, these additions can be plastic in response to 

environmental cues, such as changes in nutrition (Dunn & Bale, 2009; Jacobsen et al., 

2012) or physical activity (Barres et al., 2012; Nitert et al., 2012). From the 

aforementioned studies, it could be postulated that DNMTs function may be repressed, or 

enzymes responsible for demethylation may be activated (Branco, Ficz, & Reik, 2011). 

Therefore, it has become important to focus on the effects of environmental change on 

DNA methylation in obesity and insulin resistance. The work herein has used weight loss 

to improve metabolic outcomes by bariatric surgery to investigate its impact on DNA 

methylation. 

     Bariatric surgery is a treatment option for individuals that are morbidly obese or obese 

with comorbidities, such as type 2 diabetes (T2D), hyperlipidemia, and heart disease 

(Buchwald et al., 2004). Bariatric surgery has become the most effective treatment for 

sustained weight loss (Genser, Casella Mariolo, Castagneto-Gissey, Panagiotopoulos, & 

Rubino, 2016). Roux-en-Y gastric bypass (RYGB) is one of the most common surgeries 

performed and combines restrictive and malabsorptive techniques (Catoi, Parvu, 

Muresan, & Busetto, 2015). The RYGB has been shown to be effective at restoring 

glycemic control (Mingrone et al., 2012; Rubino et al., 2004). This has been proposed by 
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an increased release of incretin hormones, which promotes insulin production (Rubino et 

al., 2004).  The overall health benefits associated with RYGB have been improvements in 

dyslipidemia, hypertension, glucose homeostasis, insulin sensitivity and secretion (Catoi 

et al., 2015; Genser et al., 2016). However, it is not fully understood how these surgical 

interventions improve health at the molecular level. To date, there have been a limited 

number of studies that have been trying to decipher the epigenetic changes in response to 

surgery (Barres et al., 2013; Nilsson et al., 2015). For example, Barres et al. found 

promoter methylation of peroxisome proliferator-activated receptor gamma, coactivator 1 

alpha (PGC-1α) and pyruvate dehydrogenase kinase, isozyme 4 (PDK4) was altered with 

obesity, and restored to non-obese levels after Roux-en-Y gastric bypass (Barres et al., 

2013). However, this work has only provided a foundation and warrants further 

investigation. Therefore, we have chosen to continue our understanding of key epigenetic 

components of obesity and it underlying insulin resistance in response to surgery. The 

work presented herein has used the latest sequencing technology to identify novel 

epigenetic targets with obesity and insulin resistance, and then pursued those findings in 

response to surgery. 

     Advancements in omic technologies have been made over the past 15 years. In 2003, 

there was a marked increase in ‘genomics’ research, which started with the International 

Human Genome Sequencing Consortium release of the human genome (Yan et al., 2015). 

The increase in ‘omics’ data has led to the utilization of high-throughput technology and 

bioinformatics for global analyses of biological states (Yan et al., 2015). Previous studies 

from our laboratory have used ‘omic’ approaches to understand the molecular basis of 

obesity and insulin resistance. Richardson et al. showed that a 48 hour lipid infusion in 
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healthy individuals revealed a decreased expression in nuclear encoded mitochondrial 

genes, and an increased expression of extracellular matrix genes using transcriptomics in 

skeletal muscle (Richardson et al., 2005). In the study by Tangen et al., transcriptomic 

analysis of whole blood identified gene expression changes in pathways including 

ribosome, oxidative phosphorylation and mitogen-activated protein kinases (MAPK) 

signaling in individuals with and without metabolic syndrome (Tangen et al., 2013). 

Proteomic analyses of skeletal muscle from lean, obese, and type 2 diabetics, revealed 

decreased abundance of mitochondrial proteins and altered abundance of cytoskeletal 

structure proteins (Hwang et al., 2010). By using these ‘omic’ technologies we have 

uncovered novel targets for deciphering the insulin resistance underlying obesity and type 

2 diabetes (T2D). To explore the environmental and genetic basis of obesity and insulin 

resistance, we have utilized an epigenomic approach to identify methylation changes and 

relate our present findings to our previously published transcriptomic and proteomic 

studies. 

     The overall goal of this dissertation was to (1) determine if previous ‘omic’ findings in 

insulin resistant states of obesity and T2D could be explained by changes in DNA 

methylation, and (2) to identify novel DNA methylation markers for obesity and its 

underlying insulin resistance, and for the improvements from weight-loss induced by 

surgery. The work included herein involves the assessment of DNA methylation from 

skeletal muscle of lean, insulin sensitive, obese, insulin resistant, and morbidly obese, 

bariatric surgery participants. In addition to skeletal muscle, the highly accessible tissue, 

whole blood has also been collected. Specific aims for this dissertation are outlined as 

follows: 
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Aim 1: To determine how obesity and its underlying insulin resistance alters DNA 

methylation globally in human skeletal muscle. We hypothesize that: 

(1)  DNA methylation will be altered in the promoter of genes involved in mitochondrial 

biogenesis, oxidative phosphorylation, extracellular matrix and cytoskeletal in the obese, 

insulin resistant participants compared to the lean, insulin sensitive; and 

(2)  The differences in methylation will negatively correspond to gene expression and 

protein abundance. 

Aim 2: To determine if the changes in DNA methylation identified in obesity and its 

underlying insulin resistance can be altered by the RYGB surgery. We hypothesize that: 

(1) DNA methylation post-surgery will reflect levels detected in lean, insulin sensitive 

participants; and 

(2) The changes in methylation post-surgery will negatively correspond to gene 

expression and protein abundance.  

Aim 3: To identify DNA methylation biomarkers in whole blood that reflect skeletal 

muscle.  We hypothesize that: 

(1)  DNA methylation biomarkers in blood will be associated with genes involved in 

inflammation and MAPK signaling; and 

(2)  Overall methylation levels will be altered between the lean and obese participants, 

and that this difference in methylation will be reflected in both tissues types.  
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CHAPTER 2: NEXT-GENERATION SEQUENCING METHYLATION PROFILING 

OF SUBJECTS WITH OBESITY IDENTIFIES NOVEL GENE CHANGES 
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Benjamin, Lori R. Roust, Elena A. De Filippis, Valentin Dinu, Gabriel Q. Shaibi, 

Lawrence J. Mandarino, Dawn K. Coletta 

 

Abstract 

     Obesity is a metabolic disease caused by environmental and genetic factors.  

However, the epigenetic mechanisms of obesity are incompletely understood. The aim of 

our study was to investigate the role of skeletal muscle DNA methylation in combination 

with transcriptomic changes in obesity. Muscle biopsies were obtained basally from lean 

(n=12; BMI= 23.4±0.7 kg/m2) and obese (n=10; BMI= 32.9±0.7 kg/m2) participants in 

combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We 

performed reduced representation bisulfite sequencing (RRBS) next generation 

methylation and microarray analyses on DNA and RNA isolated from vastus lateralis 

muscle biopsies. There were 13,130 differentially methylated cytosines (DMC; 

uncorrected P<0.05) that were altered in the promoter and untranslated (5’ and 3’UTR) 

regions in the obese versus lean analysis. Microarray analysis revealed 99 probes that 

were significantly (corrected P<0.05) altered. Of these, 12 genes (encompassing 22 

methylation sites) demonstrated a negative relationship between gene expression and 

DNA methylation. Specifically, sorbin and SH3 domain containing 3 (SORBS3) which 

codes for the adapter protein vinexin, was significantly decreased in gene expression 
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(fold change -1.9) and had 9 DMCs that were significantly increased in methylation in 

obesity (methylation differences ranged from 5.0 to 24.4%). Moreover, differentially 

methylated region (DMR) analysis identified a region in the 5’UTR (Chr.8:22,423,530-

22,423,569) of SORBS3 that was increased in methylation by 11.2% in the obese group. 

The negative relationship observed between DNA methylation and gene expression for 

SORBS3 was validated by a site specific sequencing approach, pyrosequencing, and qRT-

PCR. Additionally, we performed transcription factor binding analysis and identified a 

number of transcription factors whose binding to the differentially methylated sites or 

region may contribute to obesity. These results demonstrate that obesity alters the 

epigenome through DNA methylation, and highlights novel transcriptomic changes in 

SORBS3 in skeletal muscle. 

Introduction 

     Obesity is a condition that affects about one-third of the United States adult population 

(Ogden, Carroll, Kit, & Flegal, 2014).  It is a major disease associated with other co-

morbidities, including type 2 diabetes, metabolic syndrome and cardiovascular disease 

(Guh et al., 2009).  An underlying feature of obesity is insulin resistance. Insulin 

resistance is a reduced biological response of insulin on peripheral tissues including 

skeletal muscle, liver, and fat  (Kahn et al., 2006).  Under normal physiological 

conditions, skeletal muscle accounts for approximately 80% of insulin-stimulated total 

body glucose uptake (Abdul-Ghani & DeFronzo, 2010). Previous studies from our 

laboratory have investigated the molecular mechanisms of insulin resistance in skeletal 

muscle.  We have previously shown that insulin resistance in skeletal muscle is in part 

due to mitochondrial dysfunction (Patti et al., 2003). In experimentally induced insulin 



15 

resistance we have shown a low grade inflammatory response, with increases in 

extracellular matrix (ECM) turnover (Richardson et al., 2005). Furthermore, by using a 

proteomic approach on insulin resistant muscle, we identified alterations in the 

abundance of protein involved in cytoskeletal structure and assembly (Hwang et al., 

2010). Our findings, to date, demonstrate a cross talk relationship between inflammation, 

extracellular remodeling, cytoskeletal interactions, mitochondrial function, and insulin 

resistance in human skeletal muscle (Coletta & Mandarino, 2011).   

The pathogenesis of obesity associated insulin resistance is due to environmental 

and genetic factors (Fernandez, Pearson, Kell, & Bohan Brown, 2013; T. Wang, Jia, & 

Hu, 2014). However, the role of epigenetic factors, which may provide a potential link 

between the genetic and environmental factors observed in obesity, is poorly understood. 

Epigenetics can be described as heritable changes in gene function that occur without a 

change in nucleotide sequence (Egger, Liang, Aparicio, & Jones, 2004). DNA 

methylation is an epigenetic modification and is generally observed as a methyl addition 

to the carbon 5 position of cytosines and more commonly on cytosines preceding 

guanines, called CpG dinucleotides (Huidobro, Fernandez, & Fraga, 2013). DNA 

methylation patterns are established during early development and are maintained in 

differentiated tissue by DNA methyltransferases (Jeltsch & Jurkowska, 2014). Changes in 

DNA methylation are a potential mechanism by which the expression of a gene may be 

regulated (Huidobro et al., 2013).  For example, it is generally accepted that gene 

expression is often reduced when DNA methylation is present at a promoter or 

untranslated region of a gene (Ling & Groop, 2009; Maussion et al., 2014; Yu et al., 

2015). 
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There have been a number of studies that have focused on the epigenetic basis of 

obesity (Alibegovic et al., 2010; Barres et al., 2013).  However, the majority of the DNA 

methylation studies performed to date have either used a candidate gene approach or the 

array based technology that probes 450K methylation sites simultaneously. Therefore, 

our study is unique in that we performed reduced representation bisulfite sequencing 

(RBBS), which has the ability to capture millions of methylation sites in the human 

genome.  Moreover, we performed transcriptomic analyses, which allowed us to measure 

global mRNA expression levels in genes altered in people with obesity. Furthermore, we 

combined epigenetic and transcriptomic analyses to identify associations between the 

datasets. Based on our previous findings in skeletal muscle, we hypothesize that there 

will be alterations in the methylation of genes involved in mitochondrial function, 

inflammation and extracellular matrix remodeling.   

Methods 

Participants  

     Ten insulin resistant participants with obesity and twelve insulin sensitive participants 

without obesity were recruited. Insulin sensitivity was assessed by the euglycemic-

hyperinsulinemic clamp (DeFronzo, Tobin, & Andres, 1979). Demographic, medical 

history, anthropometric, metabolic, and screening blood tests were obtained on all 

participants. Percent body fat was assessed by body impedance analysis. Normal glucose 

tolerance was assessed by a 75-g oral glucose tolerance test following a 10-12 hour 

overnight fast.  No subject was taking any medication known to affect glucose 

metabolism. All subjects gave informed written consent to participate in the study, which 
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was approved by the Institutional Review Boards of the Mayo Clinic in Arizona and 

Arizona State University.  

Study design 

     Following an overnight fast, participants reported to the Clinical Studies Infusion Unit 

at the Mayo Clinic in Arizona. A two hour euglycemic-hyperinsulinemic clamp (80 

mU.m-2.min-1) was performed (DeFronzo et al., 1979). A primed infusion of 6,6 di-

deuterated glucose was begun at -120 minutes to determine the basal rate of glucose 

metabolism. Sixty minutes after the start of deuterated glucose infusion, a resting, basal 

vastus lateralis muscle biopsy was performed percutaneously, under local anesthesia, as 

previously described (Cusi et al., 2000; DeFronzo et al., 1979). After resting for one hour, 

a primed continuous infusion of insulin was started. The constant infusion of deuterated 

glucose was discontinued at time 15 minutes after the start of the insulin infusion, and a 

variable infusion of 20% dextrose that was enriched with 6,6 di-deuterated glucose was 

used to maintain euglycemia and a constant enrichment of the tracer. Enrichment of 

plasma glucose with 6,6 di-deuterated glucose was assayed using GC/MS in the Center 

for Clinical and Translational Science (CCaTS) Metabolomics Core at the Mayo Clinic in 

Rochester.  The rates of glucose appearance and disappearance were calculated using 

steady state equations to derive insulin sensitivity levels, termed the M value (Debodo, 

Steele, Altszuler, Dunn, & Bishop, 1963). 

Substrate and hormone determinations 

     Plasma glucose concentration was determined by the glucose oxidase method on an 

YSI 2300 STAT plus (YSI INC., Yellow Springs, OH, USA). Plasma insulin was 

measured by a two-site immunoenzymatic assay performed on the DxI 800 automated 
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immunoassay system (Beckman Instruments, Chaska, MN, USA). Inter-assay C.V.'s 

were 6.2% at 5.3 uU/mL, 6.5% at 46.1 uU/mL, and 7.7% at120.4 uU/mL. A 

comprehensive metabolic panel, lipid panel and hemogram panel were performed by the 

Biospecimens Accessioning and Processing (BAP) Core at the Mayo Clinic in Scottsdale. 

Muscle biopsy processing  

     For genomic DNA analyses, homogenization of the muscle biopsy (25 mg) was 

performed in 1X PBS with the Bullet Blender (Integrated Scientific Solutions, San Diego, 

CA). DNA was isolated using QIAamp DNA mini kit, as per the manufacturer’s 

instructions (Qiagen, Valencia, CA).  For mRNA analyses, muscle biopsy specimens (50 

mg) were homogenized in TRIzol solution (Invitrogen, Carlsbad, CA) using a Polytron 

(Brinkmann Instruments Westbury, NY). Total RNA was purified with RNeasy MinElute 

Cleanup Kit (Qiagen, Chatsworth, CA).  DNA and RNA quality and quantity were 

determined using gel electrophoresis and A260/A280 values. 

Reduced Representation Bisulfite Sequencing (RRBS) 

     RRBS was performed at the Mayo Clinic Genotyping Shared Resource facility as 

previously described (Gu et al., 2011). DNA (250ng) was digested with Msp1 (New 

England Biolabs, Ipswich, MA) and purified using QIAquick Nucleotide Removal Kit 

(Qiagen, Valencia, CA).  End-repair A tailing was performed (New England Biolabs, 

Ipswich, MA) and TruSeq methylated indexed adaptors (Illumina, San Diego, CA) were 

ligated with T4 DNA ligase (New England Biolabs, Ipswich, MA). Size selection was 

performed with Agencourt AMPure XP beads (Beckman Coulter, Indianapolis, IN). 

Bisulfite conversion was performed using EZ-DNA Methylation Kit (Zymo Research, 

Irvine, CA) as recommended by the manufacturer with the exception that an incubation 
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was performed using 55 cycles of 95 °C for 30 seconds and 50°C for 15 minutes.  

Following bisulfite treatment, the DNA was purified as directed and amplified using Pfu 

Turbo C Hotstart DNA Polymerase (Agilent Technologies, Santa Clara, CA). Library 

quantification was performed using Qubits dsDNA HS Assay Kit (Life Technologies, 

Grand Island, NY) and the Bioanalyzer DNA 1000 Kit (Agilent Technologies Santa 

Clara, CA). The final libraries from RRBS were placed onto seven lanes of a paired-end 

flow cell at concentrations of 7-8 pM and the control sample, PhiX, was placed in the 

eighth lane to allow the sequencer to account for the unbalanced representation of 

cytosine bases. The flow cell was then loaded into the Illumina cBot for generation of 

cluster densities. After cluster generation, the flow cells were sequenced as 51 x 2 paired 

end reads using Illumina HiSeq 2000 with TruSeq SBS sequencing kit version 3. Data 

was collected using HiSeq data collection version 1.5.15.1 software, and the bases were 

called using Illumina’s RTA version 1.13.48. 

RRBS data analysis 

     RRBS data was analyzed using a streamlined analysis and annotation pipeline for 

reduced representation bisulfite sequencing, SAAP-RRBS (Sun et al., 2012). FASTQ 

were trimmed to remove adaptor sequences, and any reads with less than 15 base pair 

(bp) were discarded. Trimmed Fastqs were then aligned against the reference genome 

Hg19 using BSMAP (Xi & Li, 2009); which converts the reference genome to align the 

bisulfite treated reads. Samtools was used to get mpileup and PERL scripts as described 

elsewhere (Sun et al., 2012), were used to determine CpG methylation and non-CpG 

methylation to estimate the bisulfite conversion efficiency (H. Li et al., 2009). 

Methylation ratios were reported along with custom CpG annotation. The methylation 
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dataset supporting the conclusions of this article are available in the Gene Expression 

Omnibus repository, GSE73304 (http://www.ncbi.nlm.nih.gov/geo/). Additionally, 

bigwig files were used to create a custom track on the UCSC genome browser 

(https://genome.ucsc.edu/cgi-

bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=rlcolett&hgS_otherUser

SessionName=testnoinitial). 

Differentially methylated cytosines (DMC) analysis 

     To determine differences in methylation between groups, the aligned data was 

imported into the free open source R package, methylSig. A minimum of five reads and 

the recovery of the site in at least eight participants from each group were required for the 

inclusion of a cytosine in downstream analyses. The mean methylation differences (%) 

between the groups with and without obesity were adjusted by a beta binomial approach 

to account for biological variation among the groups being compared (Park, Figueroa, 

Rozek, & Sartor, 2014). A comparison of the DNA methylation between groupings at 

each site was based on a likelihood ratio test (nominal P value), and a Benjamini-

Hochberg multiple testing correction was applied.  Benjamin-Hochberg correction 

yielded no significant sites, therefore for subsequent analyses, an uncorrected P<0.05 was 

used. The RefSeq Genes and CpG Island tracks from the University of California, Santa 

Cruz (UCSC) Genome Browser were imported for additional region annotations. When 

applying regional annotation to each DMC, priority was given to annotating the site as a 

promoter or untranslated region if that site was in another transcript of the gene or in a 

different gene. 
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Differentially methylated region (DMR) analysis 

     DMRs were identified using the open source R package dispersion shrinkage for 

sequencing data (DSS) (Wu et al., 2015). The BSmooth algorithm was applied to the 

entire data set to determine the level of methylation in a region for each sample and to 

account for biological variation. The following criteria were used for the analysis: each 

region contained two CpGs supported with a read coverage of 5X, the recovery of the site 

in at least eight participants from each group, and significance of P<0.05 from the DMC 

analysis. DMRs were created based on a t-statistic cutoff of 2.5 and a sliding-window of 

500 bp. The significance of a DMR was weighted by the Area Stat, which is the sum of t-

statistic values in each DMR. Additional region annotations were included by importing 

RefSeq Genes and CpG Island tracks from the UCSC Genome Browser into the R 

package, Genomic Ranges. When applying regional annotation to each region, priority 

was given to annotating the region as a promoter or untranslated region if the sites were 

in another transcript of the gene or in a different gene. 

Microarray processing 

     Total RNA (100 ng) was amplified and labeled using the Low Input Quick Amp 

Labeling Kit, One-Color, as per manufacturer’s instructions (Agilent Technologies, Santa 

Clara, CA). After labeling, complimentary RNA (cRNA) was fragmented using Agilent 

Gene Expression Hybridization Kit (Agilent Technologies, Santa Clara, CA), as per 

instructions. The fragmented cRNA was hybridized to the SurePrint G3 Human Gene 

Expression 8x60K v2 Microarray (Agilent Technologies, Santa Clara, CA) using a 

SureHyb DNA Microarray Hybridization Chamber at 65°C, for 17 hours in a rotating 

incubator. After hybridization, slides were washed in Gene Expression wash buffers 1, 2, 
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and acetonitrile as per instructions, and then scanned with an Agilent DNA microarray 

scanner (Agilent Technologies, Santa Clara, CA). 

Microarray analysis 

     Feature Extraction Software version 12.0.1.1 (Agilent Technologies, Santa Clara, 

CA), was used for the array image analysis.  The microarray dataset supporting the 

conclusions of this article are available in the Gene Expression Omnibus repository, 

GSE73078 (http://www.ncbi.nlm.nih.gov/geo/). The data files were imported into the free 

open source R package, Linear Models for Microarray Data (Limma) version 3.22.0 

(http://www.bioconductor.org/packages/release/bioc/html/limma.html). Data were 

background corrected using normal exponent, quantile normalized, and an unweighted 

linear model was performed to generate fold changes between groups. The fold changes 

were log transformed. Expression values obtained were evaluated by a moderated t-

statistic (nominal P value), and adjusted using the Benjamini-Hochberg multiple testing 

correction.  

SORBS3 DMC site specific validation 

     DNA methylation was assessed using a site specific sodium bisulfite sequencing 

method. DNA (500ng) was treated with sodium bisulfite using the EZ DNA Methylation-

Lightening kit (Zymo Research, Irvine, CA). Chromosome 8 (Chr.8) positions 

22,422,428-22,422,868 proximal to the transcription start site for SORBS3 was amplified 

by PCR using the following primers: forward 5’-

AGAGATATAATTTGGTAGAAATTGGTAGGATTG-3’, reverse 

5’AATTACCCGCAAATCCTTATCCAAC-3’ (342 bp). The cycling conditions were 

95°C for 10 min followed by 40 cycles of 95°C for 30s, 56°C for 40s, and 72°C for 1 min 
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with touchdown annealing temperatures for the first 10 cycles, and a final extension at 

72°C for 7 mins. The products were run on a 1% agarose gel with ethidium bromide and 

ultraviolet detection. The 342bp product bands were purified using Zymoclean Gel DNA 

Recovery Kit, per the manufacturer’s instructions (Zymo Research, Irvine, CA). Sanger 

Sequencing was performed on the bisulfite converted forward DNA strands at Arizona 

State University’s Sequencing Core. The proportion of methylation on each CpG site was 

detected using the Epigenetic Sequencing Methylation analysis software (ESME). 

SORBS3 DMR pyrosequencing validation 

     To confirm DNA methylation of the chromosome 8 region 22,423,530-22,423,569, 

pyrosequencing PCR and sequencing primers were designed using the PyroMark Assay 

design Software 2.0 (Qiagen, Valencia, CA). The forward and reverse primers were 

biotinylated at the 5′ end. Bisulfite conversion of 500 ng genomic DNA was performed 

using the EZ DNA Methylation-Lightening kit according to the manufacturer’s 

instructions (Zymo Research, Irvine, CA). To assess the forward strand, bisulfite-

converted DNA was amplified by PCR using the following primers: forward 5’-

AGTAGGGGGAGGAAGGAA-3’ and biotinylated reverse 5’- 

ACTCTCCACAAAATATCCTACTTC-3’. To assess the reverse strand, bisulfite-

converted DNA was amplified by PCR using the following primers: biotinylated forward 

5’-AGTAGGGGGAGGAAGGAA-3 and reverse 5’-

ACCCCCATCCTCTACTAAAAATTAACTACC-3’. Pyrosequencing was performed 

using the PyroMark Q96 MD system and the Gold Q96 kit with sequencing primers: 5’- 

GTGTTAGGGAGGGAT-3’ (forward strand assessment) and 5’-

CTACTAAAAATTAACTACCCTC-3’ (reverse strand assessment) according to the 
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manufacturer’s instructions (Qiagen, Valencia, CA). Data analysis was performed using 

the PyroMark CpG SW 1.0 software (Qiagen, Valencia, CA).  

SORBS3 qRT-PCR validation 

     Skeletal muscle gene expression for SORBS3 was detected using quantitative real-time 

PCR on the ABI PRISM 7900HT sequence detection system (Life Technologies, 

Carlsbad, CA). TaqMan Universal Fast PCR master mix reagents and the Assay-On-

Demand gene expression primer pair and probes (Life Technologies, Carlsbad, CA) were 

added to 20 ng cDNA, which was synthesized using the ABI High Capacity cDNA 

Reverse Transcription Kit, as per manufacturer’s instructions. The quantity of SORBS3 

(Hs00195059_m1) in each sample was normalized to 18S (Hs99999901_s1) using the 

comparative (2-∆∆CT) method (Livak & Schmittgen, 2001).  

SORBS3 Predicted Transcription Factor Binding Analysis 

     Transcription factor binding sites analysis was performed using PROMO version 3.0.2 

(Messeguer et al., 2002). The sequences were analyzed with a 5% maximum matrix 

dissimilarity rate using TRANSFAC version 8.3 database. Analysis of the nine SORBS3 

DMCs was assessed as three separate sequences: Chr.8: 22,409,277-22,409,317; Chr.8: 

22,422,628-22,423,112; and Chr.8: 22,423,280-22,423,363. Furthermore, the SORBS3 

DMR sequence Chr.8:22,423,530-22,423,569 was assessed for transcription factor 

binding sites. 

Statistical Analysis 

     Participant characteristic data was presented as a mean ± SEM, and comparisons 

between the groups with and without obesity were based on an independent sample t-test. 

Non-normally distributed data for the 2 hour insulin were log10 transformed; however, 
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untransformed data are presented for ease of interpretation. Analysis of covariance 

(ANCOVA) was used to adjust for the effects of age, sex, and the interaction between 

age and sex. PASW version 22.0 was used for the characteristic data analyses with the 

significance set at P≤0.05. Pearson correlation was used for all correlations presented. 

See above for the statistical analysis of the methylation and microarray data.  

Results 

Participants 

     Table 2-1 shows the phenotypic characteristics for participants with and without 

obesity. There was a significant age difference between groups whereby, individuals with 

obesity were older. By design, the lean participants had significantly lower body mass 

index (BMI), body fat, and waist circumference. The participants with obesity were 

significantly more insulin resistant compared to the lean group, determined by the M 

value. These differences remained significant after adjusting for potential covariates 

including age, sex, and the interaction between age and sex.   

Global methylation analysis in human skeletal muscle 

     Prior to the quality control of the sequence data, 5,421,504 sites were captured using 

the RRBS technology. For our RRBS analysis, we set a threshold of greater than 80% 

call rate and a minimum of 5X coverage for the sequencing data.  Of the 22 participants 

sequencing data, 20 (11 lean and 9 obese) met this threshold criteria and were used for 

subsequent downstream analyses. For the sequencing data, we only included methylation 

sites that were captured in at least 8 participants in each group.  In total, we captured 

2,586,085 methylation sites using these criteria.  The distribution of the methylation sites 

was defined by genic regions (Figure 2-1A) and CpG island features (Figure 2-1B). We 
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demonstrated that the majority of the methylation sites were in intronic regions (Figure 2-

1A). However, the sites in the promoter and 5’ untranslated regions (UTR) dominantly 

overlapped with CpG islands (Figure 2-1B).  

Table 2-1. Characteristics of study participants (n=22) classified by body mass index.  

Characteristics Lean Obese P value 

P value 

(Age, Sex, 

Age*Sex) 

Sex 7F/5M 4F/6M NS* - 

Age (years) 28.8 ± 2.0 40.3 ± 2.5 < 0.01 - 

Body mass index (kg/m2) 23.4 ± 0.7 32.9 ± 0.7 < 0.001 < 0.001 

Body fat (%)ǂ 25.2 ± 1.4 35.2 ± 2.2 < 0.001 < 0.001 

Waist circumference (cm) 82.0 ± 3.0 104.4 ± 2.5 < 0.001 < 0.01 

Systolic blood pressure (mmHg) 119.8 ± 2.4 123.9 ± 3.1 NS NS 

Diastolic blood pressure (mmHg) 72.6 ± 1.5 78.2 ± 1.3 < 0.05 NS 

Triglycerides (mg/dL) 96.5 ± 13.3 114.7 ± 15.2 NS NS 

Cholesterol (mg/dL) 176.2 ± 9.2 186.1 ± 11.4 NS NS 

High density lipoproteins (mg/dL) 57.1 ± 5.2 50.2 ± 3.4 NS NS 

Low density lipoproteins (mg/dL) 99.9 ± 7.3 113.0 ± 10.3 NS NS 

Hemoglobin A1c (%) 5.2 ± 0.04 5.4 ± 0.1 NS NS 

Fasting plasma glucose (mg/dL) 86.7 ± 1.8 89.5 ± 1.7 NS NS 

2 hour plasma glucose (mg/dL) 101.9 ± 5.2 111.2 ± 7.0 NS NS 

Fasting plasma insulin (µU/mL) 6.3 ± 1.1 11.1 ± 0.9 < 0.01 NS 

2 hour plasma insulin  (µU/mL) 43.2 ± 5.3 93.3 ± 16.4 < 0.01 ≤ 0.05 

M value (mg/kg·min) 7.3 ± 0.6 4.5 ± 0.7 < 0.01 < 0.01 

Data presented as mean ± SEM, based on independent sample t-tests and two-tailed P 

values. Adjustment for age, sex, and the interaction of age*sex using ANCOVA. 

Calculated by Chi-Square Test. ǂBody fat determined by biometric impedance analysis 

(BIA). 
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Figure 2-1. The methylation sites captured in our skeletal muscle samples using reduced 

representation bisulfite sequencing technology were mapped (A) in the context of both 

gene regions and (B) CpG island features. The regions were defined using UCSC browser 

refGene and CpG island tracks (see methods). The promoter region was defined as 1000 

bp (basepairs) upstream of the transcription start site (TSS); untranslated region (UTR); 

CpG island is 200-3000 bp stretch of DNA with a C+G content of 50% and observed 

CpG/expected CpG in excess of 0.6; North (N) and South (S) shores flank the CpG island 

by 0-2000 bp; the North (N) and South (S) shelf flank the shores by 2000 bp (2000-4000 

bp from the island). 

A 

B 
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Differentially methylated cytosine (DMC) analysis in promoter, 5’UTR, and 3’UTR 

regions  

     To investigate the sites that may generate the greatest changes in mRNA expression 

based on proximity, we sought sites in untranslated regions (5’ and 3’UTR) and assigned 

our promoter region as 1,000 base pairs from the transcription start site region (0 to -

1,000 base pairs). Of the 2,586,085 methylation sites captured, 710,981 sites were located 

in our defined proximal regions and 13,130 of those sites were significantly altered 

(Appendix A) between our groupings. Differentially methylated cytosines (DMCs) 

between the groupings were assessed for false discoveries. There were no sites that met 

the criteria of a false discovery rate P<0.05. As such, we used nominal P value cutoffs, 

which have been accepted in other studies (Hall et al., 2014; Yu et al., 2015).   

Overlying changes between DNA methylation and gene expression 

     Transcriptomic analysis identified 99 probes that were significantly (false discovery 

rate P<0.05) altered in the group with obesity (Appendix B). We compared the significant 

genes identified from our microarray analysis with the significant DMCs that were found 

in the promoter, 5’UTR, and 3’UTR (n=13,130; P<0.05; Figure 2-2). We identified 12 

genes (encompassing 22 methylation sites) that demonstrated a negative relationship 

between gene expression and DNA methylation. Of these, Sorbin and SH3 Domain 

Containing 3 (SORBS3) had increased methylation (9 DMCs) and was associated with a 

decrease in gene expression. The 11 remaining genes had an increase in gene expression 

that correlated with a decrease in methylation (Table 2-2).   
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Figure 2-2.  Diagram of the analysis for differentially methylated cytosines (DMCs) 

localized in a promoter, 5’ UTR, or 3’ UTR region overlapping with transcriptomic 

changes. 

 

Differentially methylated region (DMR) analysis in the promoter, 5’UTR, and 

3’UTR regions  

     To further interrogate changes in methylation, a regional analysis was performed and 

identified 700 DMRs. Of these, 170 were located in our defined proximal regions 

(Appendix C). The 170 DMRs were compared with the 99 probes identified from the 

microarray analysis. We identified one DMR (Chr.8:22,423,530-22,423,569) in the 

5’UTR of SORBS3 that demonstrated a negative relationship with gene expression. The 

DMR was increased by 11.2% in the obese group. 
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SORBS3 Validation 

     SORBS3 has two transcript variants (variant 1: NM_005775 and variant 2: 

NM_001018003) as shown in Figure 2-3. We used a site specific sequencing approach to 

validate a promoter site of variant 2 (Chr.8:22,422,648). The RRBS data had shown a 5% 

increase in methylation in the obese compared to the lean participants (Appendix A). 

Validation using site specific sequencing demonstrated an increase in methylation in the 

participants with obesity (lean 0.078±0.01 vs obese 0.14±0.03 methylation ratio; P=0.03; 

Figure 2-4). Pyrosequencing of the SORBS3 DMR (Chr.8:22,423,530-22,423,569) in the 

5’UTR of variant 2 resulted in an overall increase in methylation, as shown in Figure 2-5. 

Three sites on the forward strand and three on the reverse strand were significantly 

different (P<0.05) with obesity using the pyrosequencing analysis, which further 

validated the RRBS findings (Figure 2-5). The qRT-PCR confirmed the microarray 

results (Table 2-2) demonstrating a decrease in gene expression of SORBS3 in the 

participants with obesity (fold change -1.4; P=0.01).  

 

Figure 2-3. Sorbin and SH3 domain containing 3 (SORBS3) consists of two transcript 

variants that code for two protein isoforms, vinexin alpha and beta respectively. Variant 2 

(vinexin beta) exons 3-10 are consistent with variant 1 exons 14-21, containing all three 

SH3 domains. Variant 2 differs by lacking the coding regions for the N terminal end 

SoHo domain. 
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Figure 2-4. DNA methylation in the promoter of SORBS3 was validated with the site 

specific sequencing approach. 

 

 

Figure 2-5. DNA methylation detected using pyrosequencing in the differentially 

methylated region (DMR) of sorbin and SH3 domain containing 3 (SORBS3) on both the 

forward and reverse (-) strands. 
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Predicted Transcription Factor Binding Analysis 

     To further understand the regulatory role of SORBS3 methylation on transcription, we 

analyzed the sequences containing DMCs and the DMR using the program PROMO 

(Messeguer et al., 2002). Transcription factor binding motifs were identified for the 

following DMC positions: Chr.8:22,409,297- Sp1 (Figure 2-6A); Chr.8:22,422,648-p53, 

Chr.8:22,422,648-PAX5 and Chr.8:22,422,936-AP-2alpha (Figure 2-6B); 

Chr.8:22,423,300-RXRalpha, Chr.8:22,423,332-GCF and 22423343-GCF (Figure 2-6C). 

The transcription factor binding motifs identified within the DMR for SORBS3 on 

Chr.8:22,423,530-22,423,569 were: ENKTF-1, STAT4, E2F-1, and GCF (Figure 2-6D).  

Correlation analysis 

     To identify whether the methylation and transcriptomic findings for SORBS3 were 

driven by body mass index (BMI) or age, Pearson correlation analysis was performed. Of 

the nine DMCs, five were significantly correlated with BMI and one was significantly 

correlated with age (Table 2-3). When comparing the normalized gene expression data 

with BMI there was a significant correlation (R2=0.288; P=0.022); whereas with age, 

there was no correlation (R2=0.034; P=0.464). 
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Figure 2-6. Transcription factor binding analysis. (A) Differentially methylated cytosine 

(DMC) at chromosome 8 position 22,409,297 is in the 5’ untranslated region of sorbin 

and SH3 domain containing 3 (SORBS3) variant 1. This DMC is within two binding 

motifs for the transcription factor specificity protein 1 (Sp1). (B) DMCs at chromosome 8 

positions 22,422,648 and 22,422,936  are in the promoter region of SORBS3 variant 2. 

The DMC position 22,422,648 is within a two binding motifs for the transcription factors 

paired box 5 (PAX5) and tumor protein p53 (p53). The DMC position 22,422,936 is 

within a binding motif for the transcription factor activating enhancer-binding protein 2-

alpha (AP-2 Alpha). (C) DMCs at chromosome 8 positions 22,423,300, 22,423,332, and 

22,423,343 are in the 5’ untranslated region of SORBS3 variant 2. The DMC position 

22,423,300 is within the binding motif for the transcription factor retinoid X receptor, 

alpha (RXR-alpha). The DMC positions 22,423,332 and 22,423,343 are both within 

binding motifs for the transcription factor GC binding factor (GCF). (D) The SORBS3  

differentially methylated region (DMR) is located at chromosome 8 position 22,423,529-

22,423,569 is in the 5’ untranslated region of variant 2. On the forward strand, position 

22,423,554 is within a binding motif for signal transducer and activator of transcription 4 

(STAT4) and positon 22,423,560 is within the binding motif of enkephalin transcription 

factor 1 (ENKTF-1), E2F transcription factor 1 (E2F-1), and GC binding factor (GCF). 

On the reverse strand, position 22,423,555 is within the binding motif of E2F-1 and 

STAT4. 

  

A B 

C D 



35 

Table 2-3. Correlation analysis of differentially methylated cytosines (DMCs) sorbin and 

SH3 domain containing 3 (SORBS3) with body mass index (BMI) and age. 

  

BMI Age 

Chr. Position R2 P Value R2 P Value 

8 22,409,297 0.092 NS 0.009 NS 

8 22,422,648 0.329 0.013 0.209 NS 

8 22,422,927 0.243 0.038 0.169 NS 

8 22,422,936 0.264 0.029 0.238 0.040 

8 22,422,959 0.169 NS 0.078 NS 

8 22,423,092 0.254 0.033 0.017 NS 

8 22,423,300 0.199 NS 0.202 NS 

8 22,423,332 0.135 NS 0.144 NS 

8 22,423,343 0.261 0.036 0.043 NS 

R2 and P value generated using Pearson correlation. 

Discussion 

     The present study was undertaken to decipher the epigenetic basis of obesity and its 

associated insulin resistance. DNA methylation in the promoter and untranslated regions 

(5’ and 3’ UTR) have been noted to have regulatory effects on transcription (Ling & 

Groop, 2009; Maussion et al., 2014; Yu et al., 2015). This regulation can be mediated by 

a single CpG or by a group of CpGs in close proximity to each other (S. Li et al., 2013). 

Therefore, in our study we performed a comprehensive analysis of the sequencing data 

using both a DMC and DMR approach. To identify obesity-related alterations in gene 

expression that may be associated with DNA methylation, our study also utilized a 

transcriptomic approach. Merging across our omic datasets identified sorbin and SH3 

domain containing 3 (SORBS3) as a novel obesity gene. SORBS3 is decreased in 

expression in obesity, and this in part may be due to increased methylation. Moreover, we 

detected a number of transcription factors whose binding to the differentially methylated 

sites or regions may contribute to these findings (Attwood, Yung, & Richardson, 2002). 
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     SORBS3 has two transcript variants that code for the adapter protein vinexin α and β, 

respectively. Both isoforms have a common C-terminal sequence containing three SRC 

homology 3 (SH3) domains, but differ at the N-terminal where vinexin α contains a 

sorbin homology (SoHo) domain. Vinexin α and β play roles in cell signaling and the 

cytoskeletal structure (Kioka, Ueda, & Amachi, 2002). The first two SH3 domains (SH3 

1 and SH3 2) are important binding partners for vinculin, which is an actin-binding 

cytoskeletal protein localized at cell-extracellular matrix (ECM) and cell-cell adhesion 

sites (Kioka et al., 1999).  It has been shown elsewhere that the upregulation of vinexin α 

promotes actin stress fiber formation and vinexin β enhanced cell spreading (Kioka et al., 

1999). Our obesity associated decrease in gene expression may suggest a reduced 

plasticity of cytoskeleton organization.   The third SH3 domain (SH3 3) is an important 

binding partner for the son of sevenless (SOS), a guanine nucleotide exchange factor for 

Ras and Rac (Kioka et al., 2002). Vinexin’s interaction with SOS has been implicated to 

regulate growth-factor induced signal transduction (Kioka et al., 2002). For example, a 

knockdown model of vinexin has been shown to play a key role in the cell’s migratory 

response during wound healing (Kioka et al., 2010). The reduction in SORBS3 gene 

expression seen in our group with obesity may lead to a delayed response in growth-

factor signaling. 

     Additional studies have evaluated vinexin under diseased states. A study using 

immunohistochemical analyses of vinexin in Otsuka Long Evans Tokushima Fatty 

(OLETF) rats with hyperinsulinemia and hyperglycemia, demonstrated a disorganized 

pancreatic islet structure (Yamauchi et al., 2013). Although abundance of vinexin was not 

discussed in that study, these findings infer that an obese environment can disrupt typical 
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localization of vinexin within a cell. We have previously shown alterations in 

cytoskeletal proteins in insulin resistant states (Hwang et al., 2010). Therefore, we 

hypothesize that a change in expression of SORBS3 in obesity could be contributing to 

altered skeletal muscle structure. However, further investigation would be required. Chen 

et al. found that left ventricles of failing human hearts had a decrease in  mRNA for 

vinexin β, and the disruption of vinexin expression in C57BL/6 mice exaggerated 

pathological cardiac remodeling and fibrosis (K. Chen et al., 2013). Obesity can lead to 

cardiovascular changes such as left-ventricular hypertrophy (Cuspidi, Rescaldani, Sala, & 

Grassi, 2014; Vasan, 2003). Although our study found reduced expression of SORBS3 in 

the vastus lateralis of individuals with obesity, it is tempting to speculate that there may 

be a similar remodeling and fibrotic affect due to vinexin β.  

     The findings from our previous studies had led to a proposed model of a relationship 

between inflammation and insulin resistance in skeletal muscle (Coletta & Mandarino, 

2011). In this model, chronic inflammation from obesity may induce changes to the 

extracellular matrix that are reminiscent of fibrosis and alter mechanosignal transduction 

mediated by cytoskeletal elements (Coletta & Mandarino, 2011). The changes in obesity 

with SORBS3 expression coding for vinexin may be connected to our proposed model by 

regulating the plasticity of cytoskeletal elements. Interestingly, if vinexin is a key 

component to this model, we have identified possible regulation at the level of DNA by 

differentially methylated sites and regions. Moreover, the mechanism for this regulation 

could be due to the interaction of these methylation sites with the transcription factors 

identified in our analyses.   
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To our knowledge, this was the first study to examine obesity related differential 

DNA methylation in skeletal muscle using RRBS. The design of our epigenomic study 

not only allowed us to test our specific hypotheses, but also generated a novel 

methylation and transcriptional finding for further investigation. Furthermore our RRBS 

data can serve as a reference methylome for human skeletal muscle tissue. Despite these 

strengths, we acknowledged potential limitations that should be considered. There is a 

difference in age between our groupings that could be a confounding factor in the results 

presented. We did attempt to reduce this concern by running correlation analysis of age 

with SORBS3 gene expression and each associated methylation site. Future age matched 

studies could elucidate any findings that may have been influenced by this variable. In 

addition, the potential for false discoveries may be at higher risk since our methylation 

data remained uncorrected. However, our chances of detecting true biological effects may 

be increased by the use both DMC and DMR analyses.  

     Overall, our study identified possible epigenetic influence on differential gene 

expression in SORBS3 under obese conditions. We identified potential transcriptional 

regulators; however, follow up studies of their protein interactions with DNA methylation 

are necessary to refine the mechanism. Furthermore, the previously mentioned functional 

studies of vinexin under diseased states have been conducted in rodent models and should 

be further assessed in humans. 
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Benjamin, Lori R. Roust, Elena A. De Filippis, James A. Madura II, Lawrence J. 

Mandarino, Dawn K. Coletta 

 

Abstract 

     DNA methylation is known as a transcriptional regulator that can be influenced by 

environmental factors, and contribute to conditions such as obesity and insulin resistance. 

The aim of our study was to investigate the role of weight-loss induced by Roux-en-Y 

gastric bypass (RYGB) on skeletal muscle methylation associated with sorbin and SH3 

domain containing 3 (SORBS3). We previously had shown increased methylation 

(methylation differences ranged from: 5.0 to 24.4 %) and decreased gene expression (fold 

change: −1.9) of SORBS3 with obesity (n = 10; BMI = 32.9 ± 0.7 kg/m2) compared to lean 

controls (n = 12; BMI = 23.4 ± 0.7 kg/m2). In the present study, basal muscle biopsies 

were obtained from seven obese (BMI >40 kg/m2) female subjects (45.1 ± 3.6 years) 

before and 3 months after RYGB surgery, in combination with euglycemic-

hyperinsulinemic clamps to assess insulin sensitivity. Promoter and 5’ untranslated 

region (UTR) SORBS3 methylation detected with reduced representation bisulfite 

sequencing (RRBS) and pyrosequencing found a decrease (-5.6 to -24.2%) post-surgery. 

This decrease in DNA methylation was associated with an increase in SORBS3 gene 
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expression (fold change: +1.7; P=0.05) post-surgery. Moreover, the relationship between 

SORBS3 DNA methylation and decreased gene expression was achieved in vitro through 

the detection of luciferase activity (P=0.000003). The alterations in SORBS3 methylation 

and gene expression post-surgery were significantly (P≤0.05) associated with obesity 

measures (BMI: Pre 42.1 ± 2.2 kg/m2 vs Post 35.3 ± 1.8 kg/m2; percent body fat: Pre 46.4 

± 1.2 vs Post 40.6 ± 1.3) and fasting insulin levels (Pre 18.2 ± 2.7 µU/mL vs Post 7.5 ± 

1.0 µU/mL). These results demonstrate that SORBS3 methylation and gene expression are 

dynamic and can be influenced by obesity, and restored to normal levels through weight-

loss induced by RYGB surgery.  

Introduction 

     One-third of the United States adult population is obese (body mass index [BMI] >30 

kg/m2), and the number of individuals entering into morbid obesity (BMI > 40 kg/m2) is 

on the rise (Flegal, Carroll, Ogden, & Curtin, 2010; Sturm & Hattori, 2013). In 2010, it 

was estimated that 6.6 percent of the adult population in the United States were morbidly 

obese (Sturm & Hattori, 2013). In order to combat the obesity epidemic, various lifestyle 

interventions including diet and exercise have been utilized. However, difficulty with 

compliance to these lifestyle changes has been a substantial barrier to improving obesity 

and the co-morbidities associated with it (Mauro, Taylor, Wharton, & Sharma, 2008). 

The most effective treatment for providing sustained weight loss in morbid obesity or 

obesity with comorbidities is bariatric surgery (Genser et al., 2016). Roux-en-Y gastric 

bypass (RYGB) is one of the most common surgeries performed and combines restrictive 

and malabsorptive techniques (Catoi et al., 2015). Besides weight loss, other benefits of 

surgical intervention have included improved blood glucose levels, insulin sensitivity and 
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secretion (Catoi et al., 2015). These improvements to glycemia have been attributed to 

the increased incretin effect of glucagon-like peptide 1 (GLP-1) and glucose-dependent 

insulintropic peptide (GIP) on reducing glucagon and normalizing insulin secretion 

(Laferrere, 2009). However, these studies do not completely explain the molecular basis 

of these metabolic improvements. 

     A limited number of studies have shown gene expression changes in response to 

RYGB and gastric banding in blood (Edwards, Hindle, Fu, & Brody, 2011; Moran-Atkin, 

Brody, Fu, & Rojkind, 2013) or adipose tissue (Leyvraz et al., 2012). Three months post-

RYGB and gastric banding,  decreased expression in leptin and resistin (Edwards et al., 

2011) and increased GIP expression (Moran-Atkin et al., 2013) has been observed in 

blood. In adipose tissue, decreases in leptin and 11-hydroxysteroid dehydrogenase type 1 

and increases in peroxisome proliferator-activated receptor-1 expression were identified 

immediately after RYGB surgery (Leyvraz et al., 2012). Given that skeletal muscle is 

recognized as the primary tissue for insulin-stimulated glucose disposal (Abdul-Ghani & 

DeFronzo, 2010), investigation of skeletal muscle gene expression changes in response to 

surgical weight loss is important but lacking. We previously identified a novel decrease 

in cytosolic ribosomal genes and protein abundance with obesity that was normalized in 

skeletal muscle 3 months after RYGB surgery, using both transcriptomic and proteomic 

approaches (Campbell et al., 2016). These changes were accompanied with weight loss 

and metabolic improvements such as fasting insulin and glucose 3 months post-surgery 

(Campbell et al., 2016). The studies performed to date have assisted in understanding the 

metabolic improvements following surgery, but still remain incomplete. The metabolic 
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improvements observed in our participants post-surgery may be further explained by 

epigenetics, specifically DNA methylation. 

     One of the most studied epigenetic marks is DNA methylation, which is the addition 

of a methyl group to the fifth carbon of a cytosine, typically preceding a guanine, termed 

CpG dinucleotide (Ronn & Ling, 2015). The addition or removal of these marks has 

regulatory influence on gene expression (Huidobro et al., 2013). Barres et al. has shown 

epigenetic changes in response to surgery induced weight loss (Barres et al., 2013). 

Differential skeletal muscle promoter methylation was identified in peroxisome 

proliferator-activated receptor γ coactivator-1 α (PGC-1α) and pyruvate dehydrogenase 

kinase, isoenzyme 4 (PDK4) and restored to levels of healthy controls 6 months post-

RYGB (Barres et al., 2013). Our previously published study assessed DNA methylation 

differences between lean and obese participants, and identified a novel gene, Sorbin and 

SH3 Domain Containing 3 (SORBS3) that was differentially methylated with obesity 

(Day et al., 2016). Specifically, we had shown an increase in skeletal muscle promoter 

methylation and a decrease in mRNA expression of SORBS3 with obesity (Day et al., 

2016). The SORBS3 gene codes for the adapter protein vinexin, and has been shown to 

play roles in growth-factor-induced signal transduction and cytoskeleton structure (Kioka 

et al., 2002). Moreover, it has been shown by others that vinexin may play a role in 

cardiac hypertrophy (K. Chen et al., 2013). One frequent complication for obese 

individuals is cardiac hypertrophy (Cuspidi et al., 2014). Chen et al. found decreased 

expression of vinexin in failing human hearts and hypertrophic mouse hearts, and 

knockdown of vinexin exaggerated pathological cardiac remodeling and fibrosis (K. 

Chen et al., 2013). The decreased expression seems to be a consistent feature for both 
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obesity and cardiac hypertrophy disease states. However, it is unclear whether these 

changes can be rescued through surgical weight loss interventions such as RYGB. 

     Here we set out to determine if the changes in DNA methylation identified in obesity 

and its underlying insulin resistance can be altered by the RYGB surgery. Specifically, to 

identify alterations with the gene, SORBS3, in response to weight loss using our previous 

RYGB surgery cohort (Campbell et al., 2016). We hypothesized that 3 months post-

surgery, SORBS3 methylation will decrease and gene expression will increase and be 

normalized to levels of lean controls.  

Methods 

Study Design 

     Seven (one of which was diabetic, treated with metformin), morbidly obese (BMI > 40 

kg/m2) females (ages: 33-59 years) participated in this study before and 3 months post-

RYGB surgery (Campbell et al., 2016). Medical history, anthropometric, body 

impedance analysis, 75g oral glucose tolerance test (OGTT) were obtained on all 

participants. Metabolic and screening blood tests were performed by the Biospecimens 

Accessioning and Processing (BAP) Core at the Mayo Clinic in Scottsdale. Insulin 

sensitivity was determined by the euglycemic-hyperinsulinemic clamp (DeFronzo et al., 

1979), before and 3 months post-surgery. All plasma glucose and serum insulin were 

measured by the Center for Clinical and Translational Science Metabolomics Core at the 

Mayo Clinic in Rochester, as described in Chapter 2. All participants gave informed 

written consent for this study, which was approved by the institutional review boards at 

the Mayo Clinic in Arizona and Arizona State University.  
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     Each participant reported to the Bariatric Surgery Program at the Mayo Clinic in 

Arizona. The program provided 8 weeks of behavioral modification classes on nutrition, 

exercise, and behavioral aspects of lifestyle change. Each participant met twice with a 

dietitian and had three sessions with psychologist to work on behavior goals. The pre-

surgery diet focused on portion control for modest weight loss prior to surgery. The post-

surgery diet was a transition from liquids for 3 weeks, soft food for 3 weeks, and then 

progressed to normal textures. Daily multivitamin, calcium with vitamin D, B12 monthly 

injections, iron supplements, and protein supplementation were maintained for all 

participants. 

Muscle biopsy processing  

     Genomic DNA was extracted by homogenizing muscle biopsies (25 mg) in 1X PBS 

with the Bullet Blender (Integrated Scientific Solutions, San Diego, CA). The tissue was 

further processed using QIAamp DNA mini kit, as per the manufacturer’s instructions 

(Qiagen, Valencia, CA). To isolate RNA, muscle biopsies (50 mg) in TRIzol solution 

(Invitrogen, Carlsbad, CA) were homogenized using a Polytron (Brinkmann Instruments 

Westbury, NY). The RNA was isolated with RNeasy MinElute Cleanup Kit (Qiagen, 

Chatsworth, CA). DNA and RNA quality and quantity were determined using gel 

electrophoresis and spectrophotometric A260/A280 values.  

Reduced representation bisulfite sequencing (RRBS) 

     RRBS sample preparation was performed on skeletal muscle genomic DNA from 

before and 3 months post-surgery at the Mayo Clinic Genotyping Shared Resource 

facility, as described in Chapter 2. Sequence data was processed using the streamlined 

analysis and annotation pipeline for reduced representation bisulfite sequencing, SAAP-
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RRBS (Day et al., 2016; Sun et al., 2012). The pipeline includes removal of adapter 

sequences and genomic segments under 15 base pair (bp), and aligns the remaining 

sequence against the human reference genome Hg19.   

Differentially methylated cytosines (DMCs) analysis pre- and post-surgery 

     Differences in methylation sites were assessed in participants before and after surgery. 

The aligned (Hg19) sequencing data was imported into the free open source R package, 

methylSig (Park et al., 2014). A minimum of five reads and the recovery of the site in all 

seven participants from before and after surgery were required for the inclusion of a 

cytosine in subsequent analyses. The mean methylation differences (%) were determined 

and annotations were applied, as described in Chapter 2.  

SORBS3 pyrosequencing 

     DNA methylation sites detected in skeletal muscle from RRBS were confirmed using 

pyrosequencing. To assess SORBS3 DMCs at positions Chr.8:22,423,519 and 

Chr.8:22,423,529 on the sense strand, bisulfite-converted DNA was amplified by PCR 

using the following primers: forward 5’- AGTAGGGGGAGGAAGGAA-3’ and 

biotinylated reverse 5’- ACCCCCATCCTCTACTAAAAATTAAC-3’. For the DMCs at 

positions Chr.8:22,423,690 and Chr.8:22,423,702 on the antisense strand, bisulfite-

converted DNA was amplified by PCR using the following primers: forward 5’-

GGGTTTTGGGTTTTTTATAGGATG-3’ and biotinylated reverse 5’- 

CCACCCAAAACAACTAACTCCTAAC-3’. Pyrosequencing was performed using the 

PyroMark Q96 MD system and the Gold Q96 kit with sequencing primers for the sense 

5’-GGGGGAGGAAGGAAT-3’ and antisense 5’- TGGGTTTTTTATAGGATGT-3’ 

strands according to the manufacturer’s instructions (Qiagen, Valencia, CA). Sequence 
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analysis was performed using the PyroMark CpG SW 1.0 software (Qiagen, Valencia, 

CA). 

SORBS3 quantitative real-time PCR (qRT-PCR) 

     Skeletal muscle gene expression for SORBS3 pre- and post-surgery was detected using 

qRT-PCR on the ABI PRISM 7900HT sequence detection system (Life Technologies, 

Carlsbad, CA). Synthesis of cDNA was performed with ABI High Capacity cDNA 

Reverse Transcription Kit, as per manufacturer’s instructions. TaqMan Universal Fast 

PCR master mix reagents and the Assay-On-Demand gene expression primer pair and 

probes (Life Technologies, Carlsbad, CA) were added to 20 ng cDNA. The quantity of 

SORBS3 (Hs00195059_m1) in each sample was normalized to 18S (Hs99999901_s1) 

using the comparative (2-∆∆CT) method (Livak & Schmittgen, 2001). 

Luciferase Assay 

     An 811 bp fragment of the human SORBS3 promoter (Chr8:22,422,247-22,423,057) 

was cloned into a CpG-free luciferase reporter vector (pCpGL-Basic), kindly provided by 

Dr. Maja Klug and Dr. Michael Rheli (Department of Hematology and Oncology, 

University Hospital Regensberg, Regensburg, Germany). The SORBS3 construct was 

either mock methylated or methylated using 1600 µM S-adenosylmethionine (SAM) and 

two different DNA methyltransferases: SssI that methylates all cytosines of CG sites, and 

HhaI that methylates only the internal cytosine in the CGCG sequence (New England 

Biolabs, Frankfurt, Germany). Mouse muscle cell lines C2C12 were cultured in DMEM, 

supplemented with 10% serum and 1% of an antibiotic/antimycotic mixture. C2C12 cells 

were seeded onto a 96 well plate in 100 µl of medium (2·104 cells per well) and 

incubated for 24 hours. Cells were then co-transfected with 100 ng of pCpGL-basic with 



51 

the SORBS3 promoter insert or without (control) and 2 ng of pRL renilla luciferase 

control reporter vector using the Lipofectamine 3000 transfection reagent (Invitrogen, 

Carlsbad, CA). Forty-eight hours after transfection, firefly luciferase activity was 

measured and normalized against the measured renilla luciferase activity using the Dual 

Luciferase Reporter Assay System (Promega, Madison, WI). The results presented are a 

mean of 4 independent experiments, containing the mean of 5 replicates in each 

experiment. 

SORBS3 comparative DMC analysis 

     The skeletal muscle RRBS data from Chapter 2 was used for comparative analysis. 

The data comprised of 11 lean (ages: 21–43 years; 7 females/4 males; BMI 23.4 ± 0.7 

kg/m2) and 9 obese (ages: 32–52 years; 4 females/5 males; BMI 32.9 ± 0.7 kg/m2) 

participants. The DMC analysis from Chapter 2 and the DMC analysis for the RYGB 

surgery cohort were performed using the program MethylSig (Park et al., 2014). 

Predictive transcription factor binding analysis 

     PROMO version 3.0.2 was used to perform transcription factor binding site analysis 

(Messeguer et al., 2002). Sequences were analyzed with a 5% maximum matrix 

dissimilarity rate using TRANSFAC version 8.3 database. Analysis of the 30 SORBS3 

DMCs was assessed as 10 separate sequences: Chr.8: 22,411,723-22,411,734; Chr.8: 

22,422,932-22,422,973; Chr.8: 22,423,009-22,423,025; Chr.8: 22,423,086-22,423,116; 

Chr.8: 22,423,181-22,423,215; Chr.8: 22,423,219-22,423,256; Chr.8: 22,423,514-

22,423,573; Chr.8: 22,423,684-22,423,695; Chr.8: 22,423,697-22,423,741; and Chr.8: 

22,423,769-22,423,857. 
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Statistical analysis 

     Comparisons between data from pre- and post-surgery were based on a paired 

Student’s t-test. All characteristic data was normally distributed data, and are presented as 

a mean ± standard error of the mean (SEM).  Pearson correlation analysis was performed 

to determine the relationship between DNA methylation or gene expression and 

characteristic data. See above for the statistical analysis of the methylation and qRT-PCR 

data. 

Results 

Participants 

     Table 3-1 shows the phenotypic characteristics for participants pre- and post-surgery. 

At three months post-surgery, significant improvements were observed in BMI, body fat 

percentage, cholesterol, low density lipoprotein (LDL), fasting plasma glucose (FPG), 

fasting serum insulin (FSI) and homeostatic model assessment for insulin resistance 

(HOMA-IR). However, there were no significant improvements observed in blood 

pressure, triglycerides, high density lipoprotein (HDL), hemoglobin A1c (HbA1c), 

endogenous glucose production (EGP) and insulin-stimulated glucose disposal (M-

value). 

SORBS3 differentially methylated cytosines (DMCs) 

     Methylation sites within the promoter (0 to −1000 base pairs from transcription start 

site) and untranslated regions (5’ and 3’UTR) were used to detect sites that may lead to a 

change in SORBS3 mRNA expression. Using this criteria, there were 20 DMCs in the 

sense strand and 10 DMCs in the antisense strand identified (Table 3-2). Of the 30 

DMCs, 29 sites were decreased in methylation post-surgery compared to pre-surgery. 
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Table 3-1. Characteristics before and 3 months after Roux-en-Y gastric bypass surgery. 

 
Pre-surgery 

Obese 

Post-surgery 

Obese 

P value 

Pre vs. Post 

Sex 7 Female 7 Female - 

Age (years) 45.1 ± 3.6 45.3 ± 3.5 NS 

Body mass index (kg/m2) 42.1 ± 2.2 35.3 ± 1.8 <0.001 

Body fat (%) 46.4 ± 1.2 40.6 ± 1.3 <0.01 

Systolic blood pressure (mmHg) 125.1 ± 3.9 119.1 ± 4.6 NS 

Diastolic blood pressure (mmHg) 71.7 ± 2.0 75.1 ± 1.7 NS 

Triglycerides (mg/dL) 121.9 ± 17.5 107.7 ± 11.2 NS 

Cholesterol (mg/dL) 181.4 ± 13.2 151.5 ± 11.2 <0.01 

High density lipoprotein (mg/dL) 45.0 ± 2.7 45.0 ± 2.5 NS 

Low density lipoprotein (mg/dL) 112.1 ± 11.9 84.8 ± 10.5 <0.01 

Hemoglobin A1c (%) 6.0 ± 0.2 5.7 ± 0.1 NS 

Fasting plasma glucose (mg/dL) 104.2 ± 7.8 86.7 ± 3.1 <0.05 

Fasting plasma insulin (µU/mL) 18.2 ± 2.7 7.5 ± 1.0 <0.01 

EGP (mg/kg/min) 1.5 ± 0.1 1.5 ± 0.1 NS 

M-value (mg/kg/min) 2.4 ± 0.3 2.9 ± 0.4 NS 

M-value (mg/kgFFM/min) 4.4 ± 0.6 4.9 ± 0.6 NS 

HOMA IR 4.4 ± 0.8 1.6 ± 0.3 <0.05 

Data presented as mean ± SEM, significance based on independent sample t-tests. 

Endogenous glucose production (EGP). Homeostatic model assessment for insulin 

resistance (HOMA-IR). 

 

SORBS3 Validation 

     From the 30 SORBS3 DMCs identified using RRBS, pyrosequencing was used for 

confirmation of sites where primers could be designed. Sequencing captured the DMCs at 

positions Chr.8:22,423,519 and Chr.8:22,423,529 on the sense strand, as well as four 

additional CpG sites. All six sites were decreased in methylation post-surgery; however, 

none were significantly changing (Figure3-1a). The sequence that encompassed the 

DMCs at positions Chr.8:22,423,690 and Chr.8:22,423,702 on the antisense strand 

included two additional CpG sites. All four sites were decreased in methylation post-
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surgery, and changes in three of these sites were statistically significant (P<0.05; Figure3-

1b).  

Table 3-2. Differentially methylated cytosines (DMCs; P < 0.05) post-surgery associated 

with SORBS3. 

Position 
Methyl 

Difference (%) 
P value Strand 

Gene 

Region 

CpG Island 

Region 

Chr8.22411728 -8.8 0.03 Sense 5'UTR South Shelf 

Chr8.22423014 -13.7 0.003 Sense Promoter CpG Island 

Chr8.22423020 -9.6 0.04 Sense Promoter CpG Island 

Chr8.22423091 -12.7 0.006 Sense Promoter CpG Island 

Chr8.22423100 -9.3 0.03 Sense Promoter CpG Island 

Chr8.22423111 -8.9 0.02 Sense Promoter CpG Island 

Chr8.22423186 +14.1 0.04 Sense 5'UTR CpG Island 

Chr8.22423198 -7.4 0.03 Sense 5'UTR CpG Island 

Chr8.22423202 -10.4 0.01 Sense 5'UTR CpG Island 

Chr8.22423204 -7.7 0.0001 Sense 5'UTR CpG Island 

Chr8.22423206 -7.7 0.03 Sense 5'UTR CpG Island 

Chr8.22423210 -9.9 0.03 Sense 5'UTR CpG Island 

Chr8.22423224 -9.9 0.001 Sense 5'UTR CpG Island 

Chr8.22423235 -6.4 0.04 Sense 5'UTR CpG Island 

Chr8.22423251 -8.2 0.04 Sense 5'UTR CpG Island 

Chr8.22423519 -12.6 0.002 Sense 5'UTR CpG Island 

Chr8.22423529 -12.0 0.005 Sense 5'UTR CpG Island 

Chr8.22423568 -11.1 0.02 Sense 5'UTR CpG Island 

Chr8.22423689 -16.0 0.01 Sense 5'UTR CpG Island 

Chr8.22423736 -7.1 0.007 Sense 5'UTR South Shore 

Chr8.22411729 -5.6 0.005 Antisense 5'UTR South Shelf 

Chr8.22422937 -12.4 0.04 Antisense Promoter CpG Island 

Chr8.22422940 -17.8 0.02 Antisense Promoter CpG Island 

Chr8.22422953 -24.2 0.003 Antisense Promoter CpG Island 

Chr8.22422968 -13.3 0.007 Antisense Promoter CpG Island 

Chr8.22423205 -6.4 0.001 Antisense 5'UTR CpG Island 

Chr8.22423690 -13.2 0.04 Antisense 5'UTR CpG Island 

Chr8.22423702 -19.8 0.007 Antisense 5'UTR CpG Island 

Chr8.22423774 -20.6 0.03 Antisense 5'UTR South Shore 

Chr8.22423852 -14.8 0.03 Antisense 5'UTR South Shore 
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Figure 3-1. Differentially methylated cytosines (DMCs) associated with SORBS3 

detected using pyrosequencing on the sense strand (a) and antisense strand (b) pre- and 

post-surgery. 

 

SORBS3 gene expression 

     The qRT-PCR results demonstrated an increase in gene expression of SORBS3 three 

months post-surgery compared to pre-surgery (fold change +1.7; P=0.05).  

SORBS3 correlation analysis 

     Pearson correlation analysis was performed to determine the relationship between 

characteristic data and SORBS3 DNA methylation and gene expression changes observed 

post-surgery. Of the 30 DMCs, 20 were significantly (P≤0.05) associated with at least 

one characteristic (Table 3-3). SORBS3 methylation level was positively correlated with 

BMI, percent body fat, triglycerides, cholesterol, LDL, FPG, FSI, and HOMA-IR. 

Negative correlations were observed between methylation levels and HDL. The only 

DMC opposing the observed associations was Chr.8: 22,423,186, which was the one site 

to be increased in methylation post-surgery. Association of SORBS3 gene expression with 

characteristic data was performed using the Ct values from qRT-PCR. Pearson’s 

A B 
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correlation analysis identified a significant relationship between gene expression and 

BMI (r=0.8, P=0.00040), percent body fat (r=0.6, P=0.02), and FSI (r=0.5, P=0.04). 

Furthermore, an association between SORBS3 gene expression and methylation was 

identified at DMCs Chr.8:22,423,519 (r=0.7, P=0.004), Chr.8:22,423,689 (r=0.5, 

P=0.05), and Chr.8:22,423,702 (r=0.6, P=0.03). 

SORBS3 promoter methylation in vitro alters reporter gene expression 

     An 811 bp human SORBS3 promoter was inserted into a luciferase expression plasmid 

that was free of CpG dinucleotides. The SORBS3 construct was created to test the effect 

of DNA methylation on the transcriptional activity. Suppression of transcriptional 

activity, as measured by luciferase activity, was determined in comparison to the mock 

methylated control (Figure 3-2). As shown in Figure 3-2, when the SORBS3 construct 

was methylated in vitro using the HhaI enzyme (GCGC, total of 8 CpG sites) 

transcriptional activity was not suppressed, but was significantly suppressed with the SssI 

enzyme methylation (CG, total of 59 CpG sites).   

Predicted transcription factor binding analysis 

     To identify potential transcription factor binding that may be inhibited by SORBS3 

methylation, we analyzed sequences containing DMCs using PROMO (Messeguer et al., 

2002). Transcription factor binding motifs were identified to overlap 13 of the 30 DMCs 

for SORBS3. The following are DMC positions with the disrupted binding of potential 

transcript factors: Chr.8:22,422,937: AP-2alphaA; Chr.8:22,422,953: Sp1; 

Chr.8:22,423,014 and 22,423,020: GCF; Chr.8:22,423,100: CREB; Chr.8:22,423,204, 

22,423,205, 22,423,206, and 22,423,210: GCF; Chr.8:22,423,235: Sp1, Pax-5, and p53; 

Chr.8:22,423,689 and 22,423,690: GCF; and Chr.8:22,423,736: RXR-alpha. 
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Figure 3-2. In vitro DNA methylation of the SORBS3 human promoter is associated with 

decreased gene expression. The data is presented as mean ± SEM. The mean represents 4 

independent experiments with 5 replicates per experiment. *Significance based on 

independent sample t-tests, P < 0.0001. 

 

SORBS3 alterations with obesity and RYGB surgery 

     Increased DNA methylation in the promoter and 5’UTR of SORBS3 with obesity were 

originally identified in our previous study (Day et al., 2016). In the RYGB cohort, 

methylation levels of SORBS3 were found to decrease post-surgery. Upon comparing the 

10 DMCs (9 increased and 1 decreased) from our previous, and the 30 DMCs (29 

decreased and 1 increased) identified with RYGB surgery, we found sites to cluster in the 

same region, but no sites were identical between studies (Figure 3-3). We further 

assessed the average methylation levels of all DMCs (Figure 3-4a) and only DMCs 

consistent in the direction of methylation (3-4b). Both assessments presented similar 

average methylation levels between the lean and post-surgery, and the obese and pre-

surgery (Figure 3-4). 
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Figure 3-3. Differentially methylated cytosine (DMC) distribution among the promoter 

and 5’untranslated regions of sorbin and SH3 domain containing 3 (SORBS3) variant 1 

and 2. The DMCs are derived from a previous study in obesity (LnvsOb) and the present 

study (Bariatric). 

 

 

Figure 3-4. Average methylation levels of SORBS3 DMCs from lean and obese 

participants in a previous study, and the present study pre- and post-surgery levels. The 

average methylation was assessed with all DMCs, regardless of methylation direction (A) 

and of only the DMCs that were consistent in the direction of methylation (B). 

 

A B 
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Discussion 

     Our previous study had identified SORBS3 as an obesity-associated gene, whose 

expression may be epigenetically regulated (Day et al., 2016). We set out to further 

establish the relationship between SORBS3 methylation and gene expression changes 

with obesity through a surgical weight-loss intervention. Three months following the 

RYGB surgery, there were significant reductions in weight and improvement of 

metabolic measures such as BMI, percent body fat and fasting plasma insulin levels. 

However, we did not observe an improvement in insulin-stimulated glucose disposal as 

determined by the euglycemic-hyperinsulinemic clamp. Our observations are consistent 

with another study, where insulin sensitivity was not markedly improved at 3 months, but 

was improved at 12 months with major weight loss (Albers et al., 2015). Therefore, we 

may have identified this improvement if measurements were assessed after the 3 months 

post-surgery. In addition, we did not identify a significant change in EGP at 3 months 

post-surgery. However, these results are also consistent with another study which had 

taken measures 1 week, 3 months, and 1 year after surgery (Bojsen-Moller et al., 2014). 

A significant decrease in EGP was identified 1 week after surgery, but then returned to 

pre-surgery measures at 3 months as fasting glucose and insulin concentrations were 

lowered (Bojsen-Moller et al., 2014). Moreover, HOMA-IR is primarily an indication of 

hepatic insulin resistance, in which our study was consistent with Bojsen-Møller et al. in 

showing hepatic sensitivity improvements at 3 months (Bojsen-Moller et al., 2014). 

Collectively, our data suggests improvements post-surgery are reflective of improved 

hepatic sensitivity. 
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     Using both RRBS and pyrosequencing approaches, we identified significant decreases 

in DNA methylation located in promoter and untranslated regions of SORBS3 post-

surgery. Moreover, we found skeletal muscle expression of SORBS3 significantly 

increased post-surgery compared to pre-surgery. The changes observed in DNA 

methylation and gene expression complement our previous findings (Day et al., 2016), 

where measurements post-surgery were relatively proportional to levels found in our lean 

individuals. The negative relationship between DNA methylation and gene expression 

were further established by the reduced transcriptional activity presented in the luciferase 

assay in response to DNA methylation in the SORBS3 human promoter. The luciferase 

assay has been used in this study and in others (Barres et al., 2013; Ronn et al., 2013) as a 

reliable means of providing evidence that methylation in a particular promoter region can 

alter gene expression. We observed decreased gene expression for the methylation 

captured with SssI, but not with HhaI, suggesting the positioning of the sites in that 

promoter to be important. Another study has shown that the methylation of specific sites 

within a promoter region of a luciferase assay can result in varied outcomes, such as an 

increase or decrease in transcriptional activity (Petkova, Seigel, & Otteson, 2011). 

However, the exact mechanism in which our DNA methylation sites regulate the 

transcription of SORBS3 has not been elucidated in this study. We have identified 

potential transcription factor binding motifs that may be affected by the presence of 

methylation, but require further investigation. 

     Environmental factors can influence transcriptional regulation through DNA 

methylation. Associations were found between SORBS3 DMCs and a variety of 

participant characteristic measures, but most significantly with obesity measures, 
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triglycerides, and fasting glucose and insulin levels. Further assessment with gene 

expression only identified significant associations with BMI, percent body fat, and 

fasting insulin levels. Barres et al. had identified a significant positive correlation 

between PGC1α methylation levels and characteristics, such as BMI and triglycerides 6 

months post-surgery (Barres et al., 2013). This study suggested that the correlation 

observed with multiple characteristics may suggest that methylation changes occur from 

our system as a whole (Barres et al., 2013). Collectively, our findings highlight the 

relationship between increased SORBS3 DNA methylation in the presence of obesity and 

its underlying insulin resistance. 

     The findings post-surgery present an exciting new addition to further the 

understanding of DNA methylation associated with SORBS3 expression. Not only have 

we detected differences associated with SORBS3 in individuals with obesity and insulin 

resistance, but now have evidence of alterations in response to weight-loss by surgical 

intervention. However, we acknowledge the limitation of our sample size. Future studies 

will need to confirm our findings in a larger cohort. Moreover, we observed in vitro the 

suppression of SORBS3 promoter DNA methylation on transcriptional activity. The 

specific placement of these sites can play an important role on the binding ability of 

transcription factors. We identified potential transcriptional regulators overlapping our 

methylation sites; however, follow-up studies will be necessary to refine the specific 

interaction.  
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CHAPTER 4: POTENTIAL EPIGENETIC BIOMARKERS OF OBESITY RELATED 

INSULIN RESISTANCE IN HUMAN WHOLE BLOOD 

 

Samantha E. Day, Richard L. Coletta, Joon Young Kim, Luis A. Garcia, Latoya E. 

Campbell, Tonya R. Benjamin, Lori R. Roust, Elena A. De Filippis, Lawrence J. 

Mandarino, Dawn K. Coletta 

 

Abstract 

     Obesity can increase the risk of complex metabolic diseases including insulin 

resistance.  Moreover, obesity can be caused by environmental and genetic factors.  

However the epigenetic mechanisms of obesity are not well defined.  Therefore, 

identifying novel epigenetic biomarkers of obesity allows for a more complete 

understanding of the disease and its underlying insulin resistance. The aim of our study 

was to identify DNA methylation changes in whole blood that was strongly associated 

with obesity and insulin resistance. Whole blood was obtained from lean (n=10; BMI= 

23.6±0.7 kg/m2) and obese (n=10; BMI= 34.4±1.3 kg/m2) participants in combination 

with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed 

reduced representation bisulfite sequencing (RRBS) on genomic DNA isolated from the 

blood. We identified 49 differentially methylated cytosines (DMCs; q<0.05) that were 

altered in the obese participants compared to the lean. We identified two sites 

(Chr.21:46,957,981 and Chr.21:46,957,915) in the 5’ untranslated region of solute carrier 

family 19 member 1 (SLC19A1) that were both decreased in methylation in the obese 

participants (lean 0.73 ± 0.11 vs obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs obese 0.09 ± 0.05 
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respectively).  These two DMCs identified by obesity were also found to be significantly 

predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we 

performed a differentially methylated region (DMR) analysis and demonstrated a 

decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 by -34.9% (70.4% 

lean vs 35.5% obese).  The decrease in SLC19A1 methylation in our obese participants in 

the whole blood was similar to the change observed in skeletal muscle 

(Chr.21:46,957,981; lean 0.70 ± 0.09 vs obese 0.31 ± 0.11 and Chr.21:46,957,915; lean 

0.72 ± 0.11 vs obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a 

decrease in methylation at Chr.21:46,957,915 in both the whole blood (lean 0.71 ± 0.10 

vs obese 0.18 ± 0.06) and skeletal muscle (lean 0.71 ± 0.10 vs obese 0.30 ± 0.11). Our 

findings demonstrate a new potential epigenetic biomarker, SLC19A1, for obesity and its 

underlying insulin resistance. 

Introduction 

Obesity is an epidemic, and has become the fifth leading risk for global deaths 

(Kyrou, Randeva, & Weickert, 2000). Individuals with obesity have chronic low-grade 

inflammation (Coletta & Mandarino, 2011; Tateya, Kim, & Tamori, 2013). The 

expansion of white adipose tissue in obesity has been associated with increased 

proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interleukin 6 

(IL-6) (Tateya et al., 2013). These inflammatory cytokines circulate in the blood and can 

have negative effects on peripheral inulin responsive tissues, such as skeletal muscle and 

liver (Verdile et al., 2015). The activation of Toll-like and interleukin receptors have been 

proposed to reduce insulin signaling by promoting the signaling cascade of inflammatory 

kinases (Coletta & Mandarino, 2011). The reduction in insulin signaling, in part, is due to 
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phosphorylation of serine residues on the insulin receptor substrate 1 (IRS-1) in skeletal 

muscle, thus inhibiting its activity (Coletta & Mandarino, 2011; Olefsky & Glass, 2010). 

As such, the majority of individuals with obesity have an underlying insulin resistance 

(Tateya et al., 2013; Tilg & Moschen, 2006). This state of chronic inflammation 

associated with obesity can also exacerbate co-morbidities, including type 2 diabetes 

(T2D), hypertension, dyslipidemia, and cardiovascular disease (Kyrou et al., 2000; 

Shoelson, Herrero, & Naaz, 2007). 

In order to better understand how to hinder disease progression, it has become 

important to find reliable biomarkers for early intervention (Dayeh et al., 2016). 

Biomarkers can be any biological characteristic that can be identified and/or monitored 

during the progression of a disease (Mikeska & Craig, 2014). This includes non-invasive 

measurements such as those currently used for identifying risk for the progression to type 

2 diabetes and cardiovascular disease, such as high body mass index (BMI) and blood 

pressure (Singh et al., 2010). Other traditional biomarkers have included clinical 

measurements of glucose, hemoglobin A1c (HbA1c), and cholesterol levels from blood 

(Niswender, 2010). However, the progression of obesity and insulin resistance is a 

consequence of both environmental and genetic factors, and the above mentioned non-

invasive traditional measurements do not provide insight into the molecular basis of the 

disease (O'Connell & Markunas, 2016). 

Our previous work in whole blood assessed transcriptional changes in a Latino 

population from the Arizona Insulin Resistance (AIR) Registry (Kim, Campbell, Shaibi, 

& Coletta, 2015; Tangen et al., 2013). In one study, we demonstrated transcriptomic 

changes in genes involved in ribosome, oxidative phosphorylation and MAPK signaling 
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when analyzing the adults with and without metabolic syndrome (Tangen et al., 2013). In 

another study, we identified altered expression of genes involved in inflammatory 

pathways in adolescents with and without obesity (Kim et al., 2015). Our findings 

indicate potential biomarkers in whole blood for inflammation, insulin signaling, and 

mitochondrial function in obese and metabolic syndrome conditions. We believe that the 

transcriptomic changes observed in our cohorts are in part due to epigenetic regulation. 

 Epigenetics is a regulatory process that controls gene expression without altering 

the nucleotide sequence (Egger et al., 2004). DNA methylation is the epigenetic process 

of a methyl addition primarily to a cytosine residue preceding a guanine, termed CpG 

dinucleotide (Egger et al., 2004). DNA methylation marks residing in promoter and 

untranslated regions have been associated with gene silencing (Ling & Groop, 2009; 

Maussion et al., 2014; Yu et al., 2015). However, large-scale studies such as the Human 

Epigenome Project have found low correlations between gene expression and differential 

methylation (Eckhardt et al., 2006). Specifically, one-third of the differential methylation 

they identified in 5’ untranslated regions were inversely correlated with transcription 

(Eckhardt et al., 2006). Epigenetic mechanisms have become important for determining 

the molecular basis of diseases, because they are due to both genetic and environmental 

factors (Ling & Groop, 2009). The influence of these factors on DNA methylation has 

also made it a promising biomarker for disease. The use of DNA methylation as an 

epigenetic biomarker has become attractive for clinical use due to its covalent bond, 

making it a robust mark for analysis (Mikeska & Craig, 2014). 

A number of studies have focused on identifying epigenetic biomarkers in blood 

that were associated with obesity and insulin resistance (Aslibekyan et al., 2015; Dick et 
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al., 2014; Nilsson et al., 2015; Toperoff et al., 2012). In our study, we performed reduced 

representation bisulfite sequencing (RRBS) to assess DNA methylation at a whole 

genome level. Here we set out to identify changes in DNA methylation from obesity 

using the most readily available tissue, whole blood. Based on our previous 

transcriptomic findings in whole blood, we hypothesize that there will be alterations in 

DNA methylation of genes involved in inflammation, insulin signaling, and 

mitochondrial function. There is a potential we may have a low overall correspondence 

between our methylation data and our previous transcriptomic data based on the Human 

Epigenome Project findings (Eckhardt et al., 2006). Regardless, this study will allow us 

to identify novel epigenetic biomarkers that are associated with the obesity and insulin 

resistance in blood. 

Material and methods 

Participants  

     Ten participants with obesity (BMI ≥ 30 kg/m2; 5M/5F; Age 23-52 years) and ten 

participants without obesity (BMI < 25 kg/m2; 5M/5F; Age 21-43 years) took part in this 

study. The metabolic data for some of these participants were included in a previous 

publication (Day et al., 2016). Demographics, anthropometric measurements, and 

screening blood tests were obtained on all participants. Body impedance analysis (BIA) 

was used to assess percent body fat. A 75-g oral glucose tolerance test following a 10-12 

hour overnight fast was used to assess normal glucose tolerance.  No subject was taking 

any medication known to affect glucose metabolism. Written consent was obtained from 

all study participants. The study was approved by the Institutional Review Boards at 

Mayo Clinic in Arizona and Arizona State University. 



71 

Study Design 

     Fasted participants reported to the Clinical Studies Infusion Unit at the Mayo Clinic in 

Arizona. Blood was collected into PAXgene Blood DNA and RNA tubes (BD 

Diagnostics, Franklin Lakes, NJ) and stored at -80°C until processed. Following blood 

collection, a two hour euglycemic-hyperinsulinemic clamp (80 mU.m-2.min-1) to measure 

insulin sensitivity was performed as previously described (Day et al., 2016).  

Substrate and Hormone Determinations  

     Fasted blood samples for comprehensive metabolic, lipid, and hemogram panels were 

performed by the Biospecimens Accessioning and Processing (BAP) Core at Mayo Clinic 

in Scottsdale. Plasma glucose concentration was determined by the glucose oxidase 

method on an YSI 2300 STAT plus (YSI INC., Yellow Springs, OH, USA). Plasma 

insulin was measured by a two-site immunoenzymatic assay performed on the DxI 800 

automated immunoassay system (Beckman Instruments, Chaska, MN, USA).  

Whole Blood Processing for DNA Isolation 

     Genomic DNA was isolated using the PAXgene Blood DNA Kit, as per the 

manufacturer’s instructions (Qiagen, Valencia, CA). DNA quantity and quality was 

assessed using agarose gel electrophoresis and spectrophotometer A260/A280 values 

were determined using the NanoVue (GE Healthcare, United Kingdom).  

Reduced Representation Bisulfite Sequencing (RRBS) 

     RRBS was performed on whole blood genomic DNA at the Mayo Clinic Genotyping 

Shared Resource facility, and library preparation was performed as previously described 

(Day et al., 2016). Sequencing data was analyzed using a streamlined analysis and 

annotation pipeline for reduced representation bisulfite sequencing, SAAP-RRBS (Day et 



72 

al., 2016; Sun et al., 2012). The methylation dataset supporting the conclusions of this 

article are available in the Gene Expression Omnibus repository, GSE85928 

(http://www.ncbi.nlm.nih.gov/geo/).  Furthermore, bigwig files were used to create a 

custom track on the UCSC genome browser ( 

https://genome.ucsc.edu/cgi-

bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=rlcolett&hgS_otherUser

SessionName=blood%20Methylatio). 

Whole Blood differentially methylated cytosines (DMC) analysis 

     To determine differences in methylation sites between groups, the aligned (Hg19) data 

was imported into the free open source R package, MethylSig (Park et al., 2014). A 

minimum of five reads and the recovery of the site in all ten participants from each group 

were required for the inclusion of a cytosine in subsequent analyses.  The mean 

methylation values were adjusted by a beta binomial approach to account for biological 

variation among the groups being compared (Park et al., 2014). A comparison of the 

DNA methylation between groups with and without obesity at each site was based on a 

likelihood ratio test (nominal P value), and a Benjamini-Hochberg multiple testing 

correction was applied. Regional annotations for each DMC were imported from the 

University of California, Santa Cruz (UCSC) Genome Browser’s RefSeq Genes and CpG 

Island tracks. Priority was given to annotating the site as a promoter or untranslated 

region if available in another transcript of the gene or in a different gene. 

Whole blood differentially methylated region (DMR) analysis 

     Differences in methylated regions between groups were identified using the open 

source R package, dispersion shrinkage for sequencing data (DSS) (Wu et al., 2015). The 
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analysis included the BSmooth algorithm, which determined the level of methylation in a 

region for each sample and accounted for biological variation. The criteria for inclusion 

was: each region contained three CpGs supported with a read coverage of 5X, the 

recovery of the site in all ten participants from each group, and significance of P<0.05 

(uncorrected) from the DMC analysis. DMRs were created by a sliding-window of 500 

bp and a t-statistic cutoff of 2.5. The significance of a DMR was determined by the 

weight of the Area Stat, which is the sum of t-statistic values in each DMR. Regional 

annotations for the DMRs were imported from the UCSC Genome Browser’s RefSeq 

Genes and CpG Island tracks. Priority was given to annotating the region as a promoter 

or untranslated region if available in another transcript of the gene or in a different gene. 

Blood-based biomarkers of skeletal muscle DMC analysis 

     Skeletal muscle RRBS data from 11 lean (7F/4M; Age 21-43 years) and 9 obese (BMI 

> 30 kg/m2; 4F/5M; Age 32-52 years) in our previous study (Day et al., 2016) was used 

for comparative analysis. Both the whole blood and skeletal muscle were analyzed using 

the program, MethylSig (Park et al., 2014). There were 9 lean and 6 obese that were the 

same as the individuals included in the whole-blood analyses. Promoter and untranslated 

region DMCs from both whole blood and skeletal muscle were merged based on 

matching chromosomal positions. The merged DMCs were then filtered for analogous 

direction and level of methylation in each tissue by grouping. 

SLC19A1 predictive transcription factor binding analysis 

     Prediction of transcription factor binding was performed using the program PROMO 

version 3.0.2 (Messeguer et al., 2002). Analyses were performed with a 5 % maximum 

matrix dissimilarity rate using TRANSFAC version 8.3 database. The sequence from 
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Chr.21:46957905-46957991 was used to assess binding at the two SLC19A1 DMCs. 

Furthermore, transcription factor binding was assessed for the SLC19A1 DMR using the 

sequence from Chr.21:46957905-46958011.  

Pyrosequencing  

     Confirmation of DNA methylation detected in both whole blood and skeletal muscle 

was performed using pyrosequencing, as previously described (Day et al., 2016). To 

assess the SLC19A1 DMC (Chr.21:46,957,915), bisulfite-converted DNA was amplified 

by PCR using the following primers: forward 5’-GTTGGGTTGGAGGGTATTAT-3’ and 

biotinylated reverse 5’-CCATCTTCCAAAATACCCTAACT-3’. Pyrosequencing was 

performed using the PyroMark Q96 MD system and the Gold Q96 kit with sequencing 

primers 5’-GGTTGGAGGGTATTATT-3’ according to the manufacturer’s instructions 

(Qiagen, Valencia, CA). Sequence analysis was performed using the PyroMark CpG SW 

1.0 software (Qiagen, Valencia, CA). 

Statistical analysis 

     Independent sample t-tests and chi-square were used to compare physical and 

metabolic characteristics between lean and obese groups. Non-normally distributed data 

were log10 or square root transformed. However, untransformed data are presented as a 

mean ± standard error of the mean (SEM) for ease of interpretation. Multiple regression 

analyses were performed with the purpose of adjustments for age, sex and/or BMI to 

estimate bivariate relationships between insulin sensitivity (i.e. M value) and significantly 

altered methylation. Pearson correlation analysis was performed to determine the 

relationship between whole blood and skeletal muscle methylation data. The SPSS 23.0 
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statistical software package was used. See above for the statistical analysis of the 

methylation data.  

Results 

Participants 

     Table 4-1 shows the phenotypic characteristics for participants with (n=10; BMI > 30 

kg/m2) and without (n=10) obesity. By design, the lean participants had a significantly 

lower body mass index (BMI). In addition, the lean participants had significantly lower 

measures of body fat percentage and waist circumference compared to the obese. As 

expected, the obese participants had higher fasting plasma insulin levels and lower M 

values compared to the lean. 

Table 4-1. Characteristics of study participants (n=20) classified by body mass index. 

Characteristics Lean Obese Pvalue 
Pvalue 

(age & sex) 

Sex 5M/5F 5M/5F 1.0* - 

Age (years) 29.9 ± 2.2 35.9 ± 3.2 0.14 - 

Body mass index (kg/m²) 23.6 ± 0.7 34.4 ± 1.3 <0.001 <0.001 

Body fat (%)ǂ 25.0 ± 1.6 36.8 ± 2.2 <0.001 <0.001 

Waist circumference (cm) 83.8 ± 2.9 103.6 ± 3.4 <0.001 0.0032 

Systolic blood pressure (mmHg) 117.7 ± 2.2 119.4 ± 2.5 0.62 0.57 

Diastolic blood pressure (mmHg) 72.0 ± 1.5 75.0 ± 2.0 0.24 0.52 

Triglycerides (mg/dL) 101.1 ± 15.4 105.2 ± 15.0 0.85 0.77 

Cholesterol (mg/dL) 174.3 ± 10.4 182.9 ± 10.7 0.57 0.61 

High density lipoproteins (mg/dL) 52.5 ± 4.4 48.3 ± 3.3 0.45 0.45 

Low density lipoproteins (mg/dL) 101.7 ± 8.7 113.5 ± 9.0 0.36 0.95 

Hemoglobin A1c (%) 5.2 ± 0.04 5.3 ± 0.1 0.24 0.47 

Fasting plasma glucose (mg/dL) 87.5 ± 2.0 90.2 ± 1.7 0.31 0.34 

Fasting plasma insulin (µU/mL) 6.5 ± 1.3 13.4 ± 2.0 0.64 0.0054 

M value (mg/kg.min) 7.7 ± 0.5 3.8 ± 0.5 <0.001 <0.001 

M value (mg/kg.min·FFM) 10.2 ± 0.7 6.0 ± 0.8 <0.001 <0.001 

Data presented as mean ± SEM, based on independent sample t-tests. Adjusted for age 

and sex by ANCOVA.*Calculated by Chi-Square Test. ǂBody fat determined by 

biometric impedance analysis (BIA). Fat-free mass (FFM). 
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Genome-wide methylation analysis in human whole blood 

     Using the next generation technique RRBS, there were 5,227,488 methylation sites 

captured in the blood methylation analysis from the lean and obese participants. The 

distribution of methylation sites were categorized by genic regions (Figure 4-1a) and 

CpG island features (Figure 4-1b). A large proportion of these sites fell within regulatory 

regions, with 22% in the promoter and 18% in the 3’ and 5’ untranslated regions (Figure 

4-1a). When applying the proportion of CpG island features located within each genic 

region, we found CpG islands to be most concentrated in the promoter and 5’untranslated 

region (Figure 4-1b).   

Whole blood differentially methylated cytosines (DMCs)  

     To identify potential blood biomarkers for obese insulin resistant states, sites within 

all genomic regions were considered for analysis. Of the 5,227,488 methylation sites 

captured, 52,995 sites were significantly altered (uncorrected P<0.05; Appendix D) 

between our groupings. The differentially methylated cytosines (DMC) were corrected by 

a false discovery rate (FDR; q<0.05), which identified 49 unique methylation sites (15 

decreased; 34 increased; Appendix E). 

Insulin sensitivity regression analysis of DMCs 

     We identified 49 DMCs that were altered with obesity. There is a strong association 

between obesity and insulin resistance (Shoelson et al., 2007). In this study, we observed 

that the M value, as measured by the euglycemic hyperinsulinemic clamp, and BMI 

measurements were significantly correlated (r = -0.778; P = 0.00004). Therefore, we 

further aimed to identify which DMCs were significantly associated with insulin 

sensitivity (i.e. M value). In multiple regression analyses with age, sex and M value as 
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the independent variables and methylation ratio of DMCs as the dependent variables, we 

found that M value independently explained a range of 25-54% of variance in 36 of the 

49 DMCs (all P<0.05; Appendix F). 

 

Figure 4-1. All methylation sites detected in our whole blood samples using reduced 

representation bisulfite sequencing technology were mapped (A) in the context of both 

gene regions and (B) CpG island features. Regions were defined using UCSC browser 

RefGene and CpG island tracks (see methods). The promoter region was defined as 1000 

bp (basepairs) upstream of the transcription start site (TSS); untranslated region (UTR); 

CpG island is a 200-3000 bp stretch of DNA with a C+G content of 50% and observed 

CpG/expected CpG exceeding 0.6; North (N) and South (S) shores flank the CpG island 

by 0-2000 bp; the North (N) and South (S) shelf flank the shores by 2000 bp (2000-4000 

bp from the island). 

A 

B 
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Whole blood differentially methylated regions (DMRs)  

     DNA methylation regulation can be mediated by a single CpG or by a group of CpGs 

in close proximity to each other. Therefore, a regional analysis was performed on the 

52,995 blood DMCs that were significantly altered (uncorrected P<0.05).  This analysis 

identified 74 DMRs (Appendix G). When the 74 blood DMRs were compared with the 

49 blood DMCs (q<0.05), two genes (solute carrier family 19 member 1 (SLC19A1) and 

ephrin-A2 (EFNA2)) were in common between the analyses. The DMR 

(Chr.21:46,957,915-46,958,001) for SLC19A1 was decreased in methylation by -34.9% 

(70.4% methylation in lean vs 35.5% methylation in obese) and the DMR for EFNA2 

(Chr.19:1,287,750-1,287,781) was increased by +14.3% (28.4% methylation in lean vs 

42.7% methylation in obese) with obesity. 

Potential blood-based biomarkers of skeletal muscle  

     Skeletal muscle is the major site for insulin-stimulated glucose disposal, making it an 

important target tissue for understanding insulin resistance (Abdul-Ghani & DeFronzo, 

2010). However, accessibility of this tissue is more difficult compared with blood. 

Therefore, we set out to identify blood-based biomarkers of methylation sites in genes 

that were also identified in skeletal muscle using our previously published data (Day et 

al., 2016). The skeletal muscle results are based on 11 lean and 9 obese (BMI > 30 kg/m2; 

Appendix H). Of these individuals, 9 lean and 6 obese were in common to the individuals 

included in the whole-blood analyses. When we compared the significantly changing 

whole blood DMCs (FDR; q<0.05) with our previously published skeletal muscle data 

(Day et al., 2016) we identified three sites that were in common.  One site 

(Chr.21:46,927,138) was in collagen, type XVIII, alpha 1 (COL18A1) and the other two 
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sites (Chr.21:46,957,915 and Chr.21:46,957,981) were in the 5’UTR of SLC19A1 (Figure 

4-2). 

 

Figure 4-2. Average methylation detected by reduced representation bisulfite sequencing 

(RRBS) for SLC19A1 sites Chr.21:46,957,981 and Chr.21:46,957,915 and COL18A1 site 

Chr.21:46,927,138 for lean and obese in both blood and skeletal muscle. Significance 

based on independent sample t-tests. 

 

SLC19A1 correlation analysis  

     The two significant (q<0.05) SLC19A1 methylation sites, Chr.21:46,957,981 and 

Chr.21:46,957,915, are located downstream of two transcription start sites (TSSs) 

Chr.21:46,964,325 and Chr.21:46,962,385, based on the UCSC genome browser. The 

distances from the TSS are 6410bp and 4470bp for Chr.21:46957915, and 6344bp and 

4404bp for Chr.21:46957981, respectively. These methylation sites were found in both 

whole blood and skeletal muscle methylation. In order to determine the relationship of 

methylation at those sites between tissues, Pearson correlation analysis was performed. 
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We found the methylation between the blood and skeletal muscle were significantly and 

positively correlated at both SLC19A1 sites (Figure 4-3). 

 

Figure 4-3. Pearson correlation analysis of the participants (8 lean; 6 obese) present in 

both whole blood and skeletal muscle methylation for SLC19A1 (A) Chr.21:46,957,915 

and (B) Chr.21:46,957,981.  

 

SLC19A1 predicted transcription factor binding  

     We analyzed the sequences containing DMCs and the DMR associated with SLC19A1 

using the program PROMO (Messeguer et al., 2002). Transcription factor binding motifs 

were not identified to overlap our most significant DMCs, Chr.21:46,957,981 and 

Chr.21:46,957,915. However, using the DMR sequence (containing 4 CpGs: 

Chr.21:46957915, Chr.21:46957981, Chr.21:46957988, and Chr.21:46958001), we found 

two predicted transcription factors, forkhead box P3 (FOXP3) and glucocorticoid 

receptor (GR), to overlap a CpG site at position Chr.21:46957988. 

SLC19A1 validation 

     The SLC19A1 DMCs were demonstrated to be significantly altered in both whole 

blood and skeletal muscle. This may indicate that SLC19A1 is tightly associated with 

A B 
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obesity. We confirmed the methylation changes between the lean and obese groups at 

Chr.21:46,957,915 using pyrosequencing. DNA methylation was significantly decreased 

in the obese participants compared to the lean in both whole blood and skeletal muscle 

(Figure 4-4). The changes observed in both tissues were comparable to the decreased 

methylation detected using RRBS.  

 

Figure 4-4. Average methylation of SLC19A1 site Chr.21: 46,957,915 detected by 

pyrosequencing validation for lean and obese samples in both blood and skeletal muscle. 

Significance based on independent sample t-tests. 

 

Discussion 

     The present study was undertaken with the purpose of identifying whole blood 

biomarkers of DNA methylation that were altered in obesity and insulin resistance. Our 

genome-wide RRBS analysis demonstrated that the promoter region was most 

concentrated with CpG islands, which is well established in the field (Deaton & Bird, 

2011). Interestingly, the distribution pattern of all detected CpG sites were similar to the 

patterns observed in our previous study in skeletal muscle (Day et al., 2016). The 
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consistent coverage of the genome regardless of tissue type presents RRBS as a viable 

technique for cross-tissue analysis. 

     Other recent studies have provided useful findings of DNA methylation differences in 

blood from obese compared to lean individuals (Ronn et al., 2015; X. Wang et al., 2010). 

Wang et al. identified methylation changes with obesity associated with UBASH3A and 

TRIM3 from blood leukocytes in participants ranging 14-30 years of age (X. Wang et al., 

2010). A study by Ronn et al. identified changes in methylation impacted by age, BMI 

and HbA1c levels in blood and adipose tissue using multiple cohorts whose ages 

collectively spanned 23-83 years (Ronn et al., 2015). We did not observe an overlap 

between our 49 corrected DMCs and the most significant sites identified from the 

aforementioned studies. The lack of overlap may be attributed to blood tissue type, age of 

cohorts and methylation detection technology used.  

     We determined that the most reliable biomarker of obesity and its underlying insulin 

resistance would be identified by using a number of analyses. Firstly, SLC19A1 was 

identified as significantly decreased in obesity in both the whole blood DMC and DMR 

analyses. Furthermore, we set out to identify similarities between whole blood and the 

insulin responsive tissue, skeletal muscle. By using the skeletal muscle methylation 

changes assessed in our previous study (Day et al., 2016), we found SLC19A1 to be a 

blood-based DNA methylation biomarker for that tissue. Not only were these DMCs 

decreased in methylation in both blood and skeletal muscle, but the level of change was 

to a similar extent. The confirmation of this finding through pyrosequencing leads us to 

believe that the altered SLC19A1 methylation is strongly associated with obesity and its 

underlying insulin resistance, regardless of tissue. Others have also identified methylation 
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marks that are similar across different tissue types in association with a trait (Gillberg & 

Ling, 2015; Mikeska & Craig, 2014). Moreover, regression analyses of the SLC19A1 

sites demonstrated a significant relationship with insulin sensitivity. The utility of the 

euglycemic hyperinsulinemic clamp is considered a gold standard for measuring insulin 

sensitivity (DeFronzo et al., 1979). This was a key measurement to correlate with DNA 

methylation in order to identify epigenetic biomarkers for obese insulin resistance in 

whole blood. 

     SLC19A1codes for the protein reduced folate carrier (RFC), which contributes to 

methionine and de novo purine synthesis (Desmoulin, Hou, Gangjee, & Matherly, 2012). 

Folate is a methyl donor, and is suggested to have an important role in fetal programming 

by providing a substrate for DNA methylation (Yajnik & Deshmukh, 2008). Imbalances 

in folate levels, specifically high levels, have been predictive of adiposity and insulin 

resistance (Yajnik & Deshmukh, 2008). This observation has provided evidence for 

potential epigenetic influences on the risk of disease development. Rupasree et al. 

(Rupasree, Naushad, Rajasekhar, & Kutala, 2014), conducted a study in systemic lupus 

erythematosus (SLE) cases and identified differential methylation in blood lymphocytes 

of genes involved in one-carbon metabolism. They found a decrease in SLC19A1 

promoter methylation in SLE cases that were positive for anti-ribonucleoprotein (RNP) 

antibodies. The detection of anti-RNP in SLE patients is used for further classification of 

connective tissue disease such as Raynaud’s phenomenon (Migliorini, Baldini, Rocchi, & 

Bombardieri, 2005). The chronic inflammation in SLE may contribute to the similarities 

in decreased SLC19A1 methylation found in both obese, insulin resistant states from our 

study and the anti-RNP positive SLE cases (Coletta & Mandarino, 2011; Podolska, 
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Biermann, Maueroder, Hahn, & Herrmann, 2015). Increased levels of TNFα and IL-6 

have been associated with both obesity and SLE (Agha-Hosseini, Moosavi, & Hajifaraj 

Tabrizi, 2015; Tateya et al., 2013). However, these measurements were not taken in this 

study, so inflammation cannot be confirmed in our participants. He et al. (He et al., 

2016), found a significant decrease in methylation in the promoter of SLC19A1 in the 

placenta of intrauterine growth restricted (IUGR) samples. This study speculated that the 

change in methylation may play a role in in utero development. IUGR has been 

associated with increased risk for type 2 diabetes, metabolic syndrome, cardiovascular 

and heart disease (Chernausek, 2012). It is interesting to speculate that the decreased 

SLC19A1 methylation with obesity from our study may stem from a developmental 

origin. Although our study identified different chromosomal positions from the above 

mentioned studies, we believe the methylation status of both Chr.21:46,957,915 and 

Chr.21:46,957,981 provide new potential epigenetic biomarkers for better understanding 

obesity related insulin resistance. 

     Our study focused on the identification of novel epigenetic biomarkers. Based on 

previous transcriptomic findings from our lab, we hypothesized that we would identify 

altered methylation of genes involved in inflammation, insulin signaling, and 

mitochondrial function (Kim et al., 2015; Tangen et al., 2013). We identified three genes, 

integrin alpha E (ITGAE), RNA binding motif protein 5 (RBM5), and SLC19A1, that were 

in common with our previous findings (Tangen et al., 2013). We expected to find more 

genes that were in common between the transcriptomic and epigenomic datasets. The 

lack of concordance across the datasets could be explained by differences in ethnicity and 

lower number of subjects study (Cossrow & Falkner, 2004). However, the occurrence of 
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SLC19A1 in the transcriptomic dataset (Tangen et al., 2013) with the present study 

solidifies its connection to obesity. 

      In this study we have focused primarily on SLC19A1, however there are other genes 

from the list of 49 DMCs (q<0.05) that could potentially be relevant to obesity. One such 

gene is EFNA2, which codes for the glycosylphosphatidylinositol (GPI)-linked ephrin-A 

ligand. EFNA2 interacts with Eph receptor tyrosine kinases thereby affecting the 

activities of actin cytoskeleton, cell motility, proliferation, and secretion (Pasquale, 

2008).  We (Coletta & Mandarino, 2011; Hwang et al., 2010) have previously found a 

reduction in actin cytoskeleton proteins with insulin resistance. Another gene was 

COL18A1, which was found to have similar methylation changes in both whole blood 

and skeletal muscle. COL18A1 codes for a multiplexin localized at the basal lamina 

(Halfter, Dong, Schurer, & Cole, 1998). We (Berria et al., 2006; Coletta & Mandarino, 

2011; Richardson et al., 2005) and others (Kang et al., 2011) have shown increased 

collagen content in insulin resistant skeletal muscle. Taken together, the changes in 

methylation for EFNA2 and COL18A1 suggest that these genes may be relevant 

epigenetic biomarkers of blood in obesity. 

     Although we have described novel epigenetic biomarkers of blood with obesity and its 

underlying insulin resistance, we acknowledge the shortcomings of our study. Whole 

blood has a heterogeneous cell composition, and potential differences in inflammation 

between our groups could confound the DNA methylation results (Houseman, Kim, 

Kelsey, & Wiencke, 2015). Furthermore, we identified new potential biomarkers for 

obesity related insulin resistance, but within a limited sample size. Future studies could 

fractionate blood cell types to avoid confounding composition effects, and will need to 
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replicate our findings in larger cohorts in order to be considered candidate biomarkers. 

Our study was novel in that we identified epigenetic changes in whole blood using 

RRBS. Specifically, we identified SLC19A1 from participants with obesity as a potential 

epigenetic biomarker that is significantly predicted by insulin sensitivity (i.e. M value). 

Moreover, the blood methylation for SLC19A1 was positively correlated with skeletal 

muscle methylation. Our transcription factor binding analysis found potential binding 

within the SLC19A1 DMR, but not at the most significant DMC sites. However, we 

speculate that methylation at those sites may have a regulatory affect through the 

recruitment of methylcytosine-binding proteins (Attwood et al., 2002). These proteins 

can associate with protein complexes that contain corepressors and histone deacetylases, 

and could influence the chromatin structure (Attwood et al., 2002). Our findings 

demonstrate the DNA methylation status associated with SLC19A1 as a promising 

biomarker for obesity and its underlying insulin resistance, as it is present in both skeletal 

muscle and blood.  
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CHAPTER 5: CONCLUSION 

     In this dissertation, we set out to decipher the epigenetic basis of obesity and its 

underlying insulin resistance. Using next generation sequencing and transcriptomic 

approaches, we were able to test our specific hypotheses, as well as generate novel 

findings in obesity. In addition, we were able to further investigate our novel obesity 

epigenetic finding in a cohort that underwent weight-loss induced by RYGB surgery. 

Lastly, we were able to evaluate our findings in human skeletal muscle from obese 

participants with whole blood to identify if this tissue could be a surrogate for muscle. 

     The aim of our first study was to investigate the role of skeletal muscle DNA 

methylation in combination with transcriptomic changes with obesity and insulin 

resistance. We identified an increased methylation mainly concentrated in promoter and 

5’UTR of SORBS3 variant 2, and decreased gene expression with obese, insulin resistant 

individuals. To date, the only other studies to have identified differential methylation for 

SORBS3 have focused on Alzheimer’s disease (Sanchez-Mut et al., 2013; Siegmund et 

al., 2007). In human brain tissue with Alzheimer’s disease, there was increased SORBS3 

methylation coordinated with decreased expression (Sanchez-Mut et al., 2013). Beyond 

epigenetic studies, SORBS3 gene expression has been demonstrated to be diminished 

with liver cancer (Roessler et al., 2012). Coincidentally, among all disease states, 

SORBS3 expression has been reduced. As described in Chapter 2, there were multiple 

characteristics that were significantly different between our lean and obese groupings. 

These characteristics included BMI, body fat, waist circumference, fasting plasma 

insulin, M value, and age. Although we provided statistical evidence that age was not 
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driving the significant changes in methylation for SORBS3, we decided to further 

evaluate our SORBS3 methylation findings in a RYGB surgery cohort. 

     In order to examine the influential characteristics on DNA methylation and gene 

expression changes in SORBS3, we investigated the skeletal muscle from morbidly obese 

(BMI >40 kg/m2) women before and 3 months after RYGB surgery. Post-surgery, we 

identified decreased methylation in promoter and 5’UTR, and an increase in the 

expression of SORBS3. Again, the methylation was concentrated in the SORBS3 variant 2 

as observed in our previous study (Day et al., 2016), described in Chapter 2. In Chapter 3, 

we had further demonstrated a negative relationship between DNA methylation in the 

human promoter of SORBS3 variant 2 with decreased gene expression measured by 

luciferase activity. Furthermore, we identified obesity measures and insulin levels as 

environmental factors potentially influencing epigenetic and transcript changes post-

surgery. Altogether, the findings from Chapter 2 and 3 provide evidence for obesity and 

insulin resistant associated transcriptional regulation of SORBS3 through increased DNA 

methylation, which can be restored to normal levels through weight-loss induced by 

RYGB surgery. Identifying alterations in skeletal muscle, such as this novel epigenetic 

change associated with SORBS3 is important, as muscle is a primary tissue for studying 

obesity induced insulin resistance. However, this tissue is not easily accessible. 

Therefore, set out to identify if whole blood presented similar changes in DNA 

methylation as skeletal muscle.  

     Whole blood is an easily accessible tissue for studying a disease state. In Chapter 4, 

we assessed if whole blood could be used as a surrogate for our epigenetic finding in 

skeletal muscle. We observed no methylation change with SORBS3 in whole blood, 
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which suggests that SORBS3 is a marker for obesity in skeletal muscle. This discordance 

between epigenetic findings in whole blood and skeletal muscle were not completely 

unexpected, based on transcriptomic results from our previous whole blood study 

(Tangen et al., 2013). Genes from pathways such as oxidative phosphorylation and 

MAPK signaling were shown to have reversed expression outcomes in whole blood than 

seen in skeletal muscle (Tangen et al., 2013). In another study, blood and brain gene 

expression were not observed to be highly correlated overall, but some correlations were 

identified with genes involved in basic processes, such as infection mechanisms and post-

translational modification (Cai et al., 2010). Therefore, blood may be useful for 

identifying biomarkers, but not as a complete surrogate for tissue-specific processes. Our 

study identified a potential epigenetic biomarker of blood in our obese, insulin resistant 

participants. We found significantly decreased methylation in the 5’UTR of SLC19A1 in 

whole blood.  Interestingly, SLC19A1 was also identified to be decreased in methylation 

in skeletal muscle of obese, insulin resistant participants. SLC19A1 codes for the protein 

reduced folate carrier (RFC), which can contribute to methionine synthesis and ultimately 

S-adenosylmethionine (SAM) required for DNA methylation (Desmoulin et al., 2012). 

Upon initial speculation, a potential increased availability of SAM in obese, insulin 

resistant participants could have contributed to the increased methylation found in 

skeletal muscle for SORBS3. However, gene expression measurements of SLC19A1 in 

both blood (FC: -3.0, P=0.06) and skeletal muscle (FC: -1.4, P=0.08) were not 

significantly altered, and trended towards decreased expression with obesity and insulin 

resistance (unpublished data). Therefore, the SLC19A1 methylation identified does not 

seem to contribute to transcriptional regulation and may not alter biological function. 



95 

Findings from the Human Epigenome Project had shown that differential 5’UTR 

methylation may not always lead to inhibition of gene expression, where one-third of 

their 5’UTR methylation sites were inversely correlated with transcription (Eckhardt et 

al., 2006). Differential DNA methylation sites alone are useful biomarkers, as they are 

stable marks that can be influenced by environmental factors (Mikeska & Craig, 2014). 

Therefore, the reduction in methylation for SLC19A1 seems to be tightly associated with 

obesity and insulin sensitivity measures and can be used as a potential biomarker. Further 

studies are warranted to assess these methylation sites in a larger cohort.  

     In this dissertation, we highlight the collective data for SORBS3, as it may play a role 

in our proposed model for obesity and its underlying insulin resistance in skeletal muscle. 

In previous work, we had identified increased collagen (extracellular matrix) (Berria et 

al., 2006; Richardson et al., 2005) and decreased cytoskeletal proteins (Hwang et al., 

2010) in response to obese, insulin resistant states. We have proposed that changes in the 

extracellular matrix can affect the cytoskeletal sensing of contractile activity, which alters 

the mechanosignaling for gene expression changes in mitochondrial biogenesis (Coletta 

& Mandarino, 2011). This can potentially lead to a reduction and abnormal function of 

mitochondria, and ultimately lead to the cellular abnormalities (lipid accumulation, 

reduced fat oxidation and insulin signaling) related to insulin resistance (Coletta & 

Mandarino, 2011). We had set out to determine if these changes were a result of 

epigenetic regulation by differential DNA methylation.  

     As described in Chapter 2 and 3, we identified alterations in promoter and 5’UTR 

methylation concentrated near SORBS3 variant 2. SORBS3 codes for two isoforms of the 

adapter protein vinexin α and β, by use of two distinct alternative promoters (Kioka et al., 
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1999). Vinexin α contains a sorbin homology (SoHo) domain at the N-terminus and three 

SRC homology 3 (SH3) domains at the C-terminus, whereas vinexin β is a shorter 

isoform only containing the same C-terminal end (Kioka et al., 1999). Our data indicates 

that obese, insulin resistant states may be influencing the epigenetic down-regulation of 

variant 2, coding for vinexin β. An important binding partner for vinexin β is vinculin 

through the first two SH3 domains, localized at actin-binding cytoskeletal protein cell-

extracellular matrix (ECM) and cell-cell adhesion sites (Kioka et al., 1999).  The 

cooperative function between vinculin and vinexin β enhances cell spreading (Kioka et 

al., 1999). Moreover, cell spreading can be regulated by the interaction of vinexin β with 

extracellular signal-regulated kinase 1/2 (ERK1/2) (Mitsushima, Suwa, Amachi, Ueda, & 

Kioka, 2004; Mizutani et al., 2007). Upon growth-factor stimulation, ERK1/2 can 

phosphorylate vinexin β and attenuate cell spreading and migration (Mitsushima et al., 

2004; Mizutani et al., 2007). It is tempting to speculate that a reduction in vinexin β 

abundance may play a role in the altered cytoskeletal organization for mechanosignal 

transduction proposed with insulin resistance. However, we currently do not have 

evidence of vinexin β protein changes in skeletal muscle from our cohorts. Initial 

attempts of western blotting for vinexin β are inconclusive (unpublished data, Appendix 

I), and require further investigation. 

     Our work is summarized in Figure 5-1, where epigenetic changes associated with 

SORBS3 can be identified in skeletal muscle of individuals with obesity and insulin 

resistance, and after weight-loss induced by surgery. This may correspond to protein 

changes in vinexin β, and provide an additional piece to our working model of obesity 

and its underlying insulin resistance. 
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Figure 5-1. Working model of SORBS3. Increased DNA methylation in the promoter and 

5’untranslated region was observed in obese, insulin resistant participants. This increased 

methylation corresponded to a decrease in SORBS3 gene expression. Weight-loss induced 

3 months after surgery had shown decreased SORBS3 methylation and increased gene 

expression. The future direction for this model is to identify whether there are protein 

abundance changes in the SORBS3 gene coding for vinexin. If protein changes follow our 

working model, vinexin would be decreased (indicated by ↓) in abundance with obesity 

and insulin resistance. However, the outcome is currently unknown (indicated by ?), and 

requires further investigation. 
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APPENDIX A  

THE 13,130 DIFFERENTIALLY METHYLATED CYTOSINES (DMCS; P<0.05) 

THAT WERE LOCATED WITHIN A PROMOTER OR UNTRANSLATED REGIONS 

(3’ AND 5’) 

[CONSULT ATTACHED FILES] 
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APPENDIX B 

THE PROBES (N=99) REMAINING FROM THE MICROARRAY DATA THAT MET 

THE FALSE DISCOVERY RATE (FDR) CORRECTION CRITERIA OF P<0.05 

[CONSULT ATTACHED FILES] 
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APPENDIX C 

THE 170 DIFFERENTIALLY METHYLATED REGIONS (DMRS; P<0.05) THAT 

WERE LOCATED WITHIN A PROMOTER OR UNTRANSLATED REGIONS (3’ 

AND 5’) 

[CONSULT ATTACHED FILES] 
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APPENDIX D 

THE 52,995 DIFFERENTIALLY METHYLATED CYTOSINES (DMCS; P<0.05) 

[CONSULT ATTACHED FILES] 
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APPENDIX E 

WHOLE BLOOD DIFFERENTIALLY METHYLATED CYTOSINES (DMCS; 

Q<0.05) BETWEEN LEAN AND OBESE GROUPINGS 



118 

  
DNA Methylation (%) 

    

Chr. Position Gene Lean Obese 
P 

value 

q 

value 

Genic 

Region 

CpG 

Island 

Region 

chr21.46957981 SLC19A1 0.73 ± 0.11 0.09 ± 0.05 ˂0.01 0.01 5'UTR 
South 

Shore 

chr21.46957915 SLC19A1 0.68 ± 0.10 0.09 ± 0.05 ˂0.01 0.01 5'UTR 
CpG 

Island 

chr6.3771940 - 0.76 ± 0.03 0.38 ± 0.07 ˂0.01 0.05 Intergenic InterCpG 

chr5.80690459 ACOT12 0.43 ± 0.04 0.15 ± 0.02 ˂0.01 ˂0.001 Promoter 
South 

Shore 

chr11.2883716 - 0.52 ± 0.06 0.22 ± 0.04 ˂0.01 0.05 Promoter 
CpG 

Island 

chr21.46927138 COL18A1 0.51 ± 0.04 0.26 ± 0.03 ˂0.01 0.04 Intron 
North 

Shelf 

chr8.145702503 FOXH1 0.93 ± 0.02 0.71 ± 0.02 ˂0.01 ˂0.001 Promoter 
South 

Shore 

chr2.121283801 - 0.93 ± 0.02 0.79 ± 0.03 ˂0.01 0.05 Intergenic 
South 

Shelf 

chr19.46456403 NOVA2 0.12 ± 0.03 0.02 ± 0.01 ˂0.01 0.02 Intron 
CpG 

Island 

chr6.146348971 GRM1 0.16 ± 0.02 0.06 ± 0.01 ˂0.01 0.04 Promoter 
North 

Shore 

chr4.2648590 FAM193A 0.99 ± 0.01 0.90 ± 0.02 ˂0.01 0.04 Intron InterCpG 

chr1.214504377 SMYD2 0.92 ± 0.01 0.85 ± 0.01 ˂0.01 0.02 Exon InterCpG 

chr20.32856825 ASIP 0.06 ± 0.02 0.0 ± 0.0 ˂0.01 0.05 Exon 
CpG 

Island 

chr9.139085246 - 0.03 ± 0.01 0.0 ± 0.0 ˂0.01 ˂0.001 Intergenic 
CpG 

Island 

chr19.55898053 RPL28 0.05 ± 0.02 0.0 ± 0.0 ˂0.01 0.01 Promoter 
CpG 

Island 

chr5.72742630 FOXD1 0.01 ± 0.0 0.05 ± 0.01 ˂0.01 0.05 3'UTR 
South 

Shore 

chr8.132917158 EFR3A 0.0 ± 0.0 0.06 ± 0.02 ˂0.01 0.04 Intron 
South 

Shore 

chr16.28993311 LAT 0.94 ± 0.02 1.0 ± 0.0 ˂0.01 0.05 Exon InterCpG 

chr17.1184167 TUSC5 0.92 ± 0.02 1.0 ± 0.0 ˂0.01 0.01 Intron InterCpG 

chr7.157655513 PTPRN2 0.94 ± 0.02 1.0 ± 0.0 ˂0.01 ˂0.001 Exon 
North 

Shelf 

chr4.843782 GAK 0.92 ± 0.01 0.99 ± 0.01 ˂0.01 0.04 Exon 
CpG 

Island 

chr11.31827022 PAX6 0.01 ± 0.0 0.07 ± 0.01 ˂0.01 ˂0.001 Intron 
South 

Shore 

chr6.158072851 ZDHHC14 0.95 ± 0.02 1.0 ± 0.0 ˂0.01 0.02 Intron InterCpG 

chr12.81444314 - 0.93 ± 0.02 1.0 ± 0.0 ˂0.01 ˂0.001 Intergenic InterCpG 

chr7.23646672 CCDC126 0.92 ± 0.01 0.99 ± 0.01 ˂0.01 0.03 5'UTR InterCpG 
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chr6.74371204 - 0.93 ± 0.02 1.0 ± 0.0 ˂0.01 0.05 Intergenic InterCpG 

chr2.158272554 CYTIP 0.92 ± 0.02 1.0 ± 0.0 ˂0.01 0.01 Exon InterCpG 

chr17.21219144 - 0.87 ± 0.01 0.96 ± 0.01 ˂0.01 0.05 Intergenic 
North 

Shore 

chr1.87429560 HS2ST1 0.90 ± 0.02 0.99 ± 0.01 ˂0.01 0.03 Intron InterCpG 

chr8.111697045 - 0.91 ± 0.02 1.0 ± 0.0 ˂0.01 ˂0.001 Intergenic InterCpG 

chr17.19743530 ULK2 0.90 ± 0.03 1.0 ± 0.0 ˂0.01 ˂0.01 Intron InterCpG 

chr5.61058332 - 0.91 ± 0.02 1.0 ± 0.0 ˂0.01 0.04 Intergenic InterCpG 

chr3.50131816 RBM5 0.90 ± 0.02 1.0 ± 0.0 ˂0.01 0.04 Intron InterCpG 

chr9.139093743 LHX3 0.0 ± 0.0 0.09 ± 0.02 ˂0.01 ˂0.01 Intron 
CpG 

Island 

chr7.87256217 ABCB1 0.88 ± 0.02 0.99 ± 0.01 ˂0.01 ˂0.01 Promoter 
North 

Shore 

chr17.3701518 ITGAE 0.92 ± 0.02 1.0 ± 0.0 ˂0.01 0.04 Intron InterCpG 

chr9.99791494 - 0.90 ± 0.03 1.0 ± 0.0 ˂0.01 ˂0.01 Intergenic InterCpG 

chrX.933751 - 0.86 ± 0.02 0.97 ± 0.02 ˂0.01 0.02 Intergenic InterCpG 

chr15.62511245 - 0.89 ± 0.03 1.0 ± 0.0 ˂0.01 ˂0.01 Intergenic InterCpG 

chr20.43948457 - 0.02 ± 0.01 0.13 ± 0.02 ˂0.01 ˂0.01 Intergenic 
South 

Shelf 

chr5.172090073 NEURL1B 0.89 ± 0.02 1.0 ± 0.0 ˂0.01 0.04 Intron InterCpG 

chr20.1276940 SNPH 0.86 ± 0.02 0.99 ± 0.01 ˂0.01 ˂0.01 5'UTR 
CpG 

Island 

chr12.132871826 GALNT9 0.86 ± 0.02 0.98 ± 0.01 ˂0.01 ˂0.001 Intron 
North 

Shore 

chr7.140180051 MKRN1 0.81 ± 0.03 0.98 ± 0.01 ˂0.01 0.05 Promoter 
South 

Shore 

chr19.1289934 EFNA2 0.73 ± 0.03 0.90 ± 0.02 ˂0.01 0.03 Intron 
North 

Shore 

chr9.129088683 FAM125B 0.19 ± 0.02 0.36 ± 0.03 ˂0.01 ˂0.01 Promoter 
CpG 

Island 

chr1.103319604 - 0.62 ± 0.07 0.86 ± 0.03 ˂0.01 0.04 Intergenic InterCpG 

chr8.22560981 - 0.18 ± 0.02 0.39 ± 0.05 ˂0.01 0.02 Intergenic 
CpG 

Island 

chr7.1659260 - 0.74 ± 0.06 0.98 ± 0.01 ˂0.01 0.02 Intergenic 
CpG 

Island 

Methylation data presented as mean ± SEM. q value generated by Benjamini-Hochberg 

multiple testing correction. CpG island is a 200-3000 bp stretch of DNA with a C+G 

content of 50% and observed CpG/expected CpG exceeding 0.6; North (N) and South (S) 

shores flank the CpG island by 0-2000 bp; the North (N) and South (S) shelf flank the 

shores by 2000 bp (2000-4000 bp from the island). InterCpG are locations between CpG 

islands. 
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APPENDIX F 

REGRESSION ANALYSIS OF THE DIFFERENTIALLY METHYLATED 

CYTOSINES (DMCS; Q<0.05) PREDICTED BY M VALUE AFTER ADJUSTING 

FOR AGE AND SEX 
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Chromosome 

Position 
Gene 

Genic 

Region 

CpG Island 

Region 
partial r P value 

chr21.46957981 SLC19A1 5'UTR South Shore 0.68 0.003 

chr21.46957915 SLC19A1 5'UTR CpG Island 0.66 0.004 

chr6.3771940 - Intergenic InterCpG 0.615 0.009 

chr5.80690459 ACOT12 Promoter South Shore 0.563 0.019 

chr11.2883716 - Promoter CpG Island 0.657 0.004 

chr21.46927138 COL18A1 Intron North Shelf 0.705 0.002 

chr8.145702503 FOXH1 Promoter South Shore 0.683 0.002 

chr2.121283801 - Intergenic South Shelf 0.711 0.001 

chr19.46456403 NOVA2 Intron CpG Island 0.51 0.037 

chr6.146348971 GRM1 Promoter North Shore 0.616 0.009 

chr4.2648590 FAM193A Intron InterCpG 0.59 0.013 

chr1.214504377 SMYD2 Exon InterCpG 0.558 0.02 

chr20.32856825 ASIP Exon CpG Island 0.569 0.017 

chr5.72742630 FOXD1 3'UTR South Shore -0.565 0.018 

chr16.28993311 LAT Exon InterCpG -0.497 0.043 

chr17.1184167 TUSC5 Intron InterCpG -0.577 0.015 

chr4.843782 GAK Exon CpG Island -0.556 0.021 

chr11.31827022 PAX6 Intron South Shore -0.581 0.014 

chr12.81444314 - Intergenic InterCpG -0.498 0.042 

chr7.23646672 CCDC126 5'UTR InterCpG -0.546 0.023 

chr17.21219144 - Intergenic North Shore -0.589 0.013 

chr1.87429560 HS2ST1 Intron InterCpG -0.674 0.003 

chr5.61058332 - Intergenic InterCpG -0.644 0.005 

chr3.50131816 RBM5 Intron InterCpG -0.689 0.002 

chr9.139093743 LHX3 Intron CpG Island -0.589 0.013 

chr7.87256217 ABCB1 Promoter North Shore -0.67 0.003 

chr9.99791494 - Intergenic InterCpG -0.506 0.038 

chrX.933751 - Intergenic InterCpG -0.692 0.002 

chr15.62511245 - Intergenic InterCpG -0.568 0.017 

chr5.172090073 NEURL1B Intron InterCpG -0.637 0.006 

chr7.140180051 MKRN1 Promoter South Shore -0.498 0.042 

chr19.1289934 EFNA2 Intron North Shore -0.737 0.001 

chr9.129088683 FAM125B Promoter CpG Island -0.721 0.001 

chr1.103319604 - Intergenic InterCpG -0.568 0.017 

chr8.22560981 - Intergenic CpG Island -0.58 0.015 

chr7.1659260 - Intergenic CpG Island -0.637 0.006 
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APPENDIX G 

THE 74 DIFFERENTIALLY METHYLATED REGIONS (DMRS; P<0.05) 

[CONSULT ATTACHED FILES] 
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APPENDIX H 

CHARACTERISTICS OF SKELETAL MUSCLE STUDY PARTICIPANTS (N=20) 

CLASSIFIED BY BODY MASS INDEX 
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Characteristics Lean Obese P value 

P value 

(age and 

sex) 

Sex 7F/4M 4F/5M 0.4 - 

Age (yrs) 29.3 ± 2.2 41.8 ± 2.2 0.0008 - 

Body mass index (kg/m²) 23.1 ± 0.7 32.7 ± 0.8 0.00000004 0.00003 

Body fat (%) 25.8 ± 1.4 34.1 ± 2.1 0.003 0.001 

Waist circumference (cm) 81.1 ± 3.2 102.6 ± 2.1 0.0003 0.2 

Systolic blood pressure 

(mmHg) 
119.2 ± 2.6 124.7 ± 3.4 0.2 0.06 

Diastolic blood pressure 

(mmHg) 
72.2 ± 1.6 78.4 ± 1.4 0.010 0.05 

Triglycerides (mg/dL) 92.5 ± 13.9 121.9 ± 14.9 0.2 0.8 

Cholesterol (mg/dL) 178.5 ± 9.7 192.8 ± 10.3 0.3 0.9 

High density lipoproteins 

(mg/dL) 
59.1 ± 5.2 50.4 ± 3.8 0.2 0.8 

Low density lipoproteins 

(mg/dL) 
101.0 ± 7.9 118.0 ± 10.0 0.2 0.7 

Hemoglobin A1c (%) 5.2 ± 0.04 5.4 ± 0.1 0.1 0.4 

Fasting plasma glucose 

(mg/dL) 
85.7 ± 1.7 88.3 ± 1.4 0.3 0.7 

Fasting plasma insulin 

(µU/mL) 
6.3 ± 1.2 11.2 ± 1.1 0.007 0.1 

Clamp Rd (mg/kg.min) 7.2 ± 0.6 4.8 ± 0.7 0.02 0.03 

Data presented as mean ± SEM, based on independent sample t-tests. Adjusted for age 

and sex by ANCOVA.*Calculated by Chi-Square Test. ǂBody fat determined by 

biometric impedance analysis (BIA). 
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APPENDIX I 

WESTERN BLOT IMAGES 
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(A) Beta actin antibody (1/1000 dilution) expected detection around 

45kDa was exposed for 30 sec, (B) Vinexin antibody (1/100 dilution) 

expected detection around 41kDa was exposed for 30 sec, (C) 

Glyceraldehyde 3-phosphate dehydrogenase antibody (0.47µg/mL 

dilution) expected detection around 37kDa was exposed for 5 secs, and 

(D) Vinexin antibody (1/100 dilution) expected detection around 41kDa 

was exposed for 1 min. Abbreviations were used for ladder (Ld), lean 

(Ln), obese (Ob), pre-surgery (Pre), post-surgery (Pt), HeLa whole cell 

lysate (H), and C2C12 whole cell lysate (C). The lean, obese, pre- and 

post-surgery samples were all human skeletal muscle lysate. 
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