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Abstract

An optimal investment problem is solved for an insider who has access to noisy informa-
tion related to a future stock price, but who does not know the stock price drift. The drift
is filtered from a combination of price observations and the privileged information, fusing a
partial information scenario with enlargement of filtration techniques. We apply a variant
of the Kalman-Bucy filter to infer a signal, given a combination of an observation process
and some additional information. This converts the combined partial and inside informa-
tion model to a full information model, and the associated investment problem for HARA
utility is explicitly solved via duality methods. We consider the cases in which the agent
has information on the terminal value of the Brownian motion driving the stock, and on
the terminal stock price itself. Comparisons are drawn with the classical partial information
case without insider knowledge. The parameter uncertainty results in stock price inside
information being more valuable than Brownian information, and perfect knowledge of the
future stock price leads to infinite additional utility. This is in contrast to the conventional
case in which the stock drift is assumed known, in which perfect information of any kind
leads to unbounded additional utility, since stock price information is then indistinguishable
from Brownian information.

1 Introduction

The goal of this paper is to examine the combined influence of inside information and drift param-
eter uncertainty on optimal investment rules. To this end, we explicitly solve a one-dimensional
Merton-style investment problem for an insider who possesses, at time zero, additional informa-
tion beyond that of regular traders, but who is not assumed to know the value of the stock’s
appreciation rate. Although the assumption of a one-dimensional model with unknown constant
drift is restrictive, it has the benefit of allowing us to derive fully explicit solutions, so that the
effect of the inside information on the parameter estimation and the optimal investment rule can
be fully gauged.

This work thus combines elements of partial information models such as those of Rogers [28]
or Björk, Davis and Landén [7], with enlargement of filtration techniques to incorporate the
insider’s additional information, as pioneered by Pikovsky and Karatzas [27].

The insider has knowledge of the value of a random variable L, corresponding to (usually,
noisy) knowledge of the terminal stock price or of the terminal value of the Brownian motion
driving the stock. But the insider does not have access to the Brownian filtration. Her trading
strategies are required to be adapted to the stock price filtration, but enlarged by the additional
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information. The stock’s risk premium is then an unobservable signal process which is estimated
via a Kalman-Bucy filter. The filtering algorithm, Proposition 3, computes the best estimate of
the stock’s risk premium given both stock price observations and the additional information. In
this case the usual Kalman-Bucy equations hold, but with modified initial conditions reflecting
the additional information.

We begin with lognormal stock price dynamics written under some background filtration
F, under which the stock drift is known. We enlarge F by σ(L), using classical techniques of
initial enlargement of filtration [18, 24, 30]. Denoting the enlarged filtration by FL, the effect
of the enlargement is to decompose an F-Brownian motion into an FL-Brownian motion plus an
information drift, νL, an FL-adapted process. The risk premium then becomes an FL-adapted
process λL. With the dynamics of the stock price and its risk premium written under the enlarged
filtration FL, the filtering algorithm infers the insider’s unknown risk premium based on stock
price observations as well as the additional information σ(L).

If we denote by F̂L the stock price filtration enlarged by σ(L), the effect of the filtering is
to convert the partial and inside information model to a standard full information model with
random drift that is adapted to F̂L. Having restored a full information scenario, we solve the
insider’s utility maximisation problem using duality methods, giving closed form expressions for
the maximum utility and optimal trading strategy.

We compare the results with the corresponding quantities for a regular agent who does not
have inside information, but who must still filter the stock price drift. We find that stock price
inside information is more valuable than information on the Brownian motion driving the stock.
This can be traced directly to the parameter uncertainty, which requires stock price observations
in order to be resolved. Hence, we find that exact terminal stock price information can lead
to unbounded additional utility for the insider, but exact knowledge of the terminal Brownian
motion does not. This is to be contrasted with the seminal insider trading model of Pikovsky
and Karatzas [27]. In [27] there was no parameter uncertainty, so exact information of any kind
led to unbounded logarithmic utility, as advance Brownian knowledge is equivalent to stock price
knowledge when the stock’s drift is known.

There are many papers on partial information investment models [7, 8, 22, 26, 28, 29], in
which trading strategies are required to be adapted to the stock price filtration. There is also
a rich literature on insider trading models, dating back to the classical equilibrium models of
Kyle [21] and Back [5], built upon by Cho [11], Campi and Çetin [10], Danilova [13], and Aase,
Bjuland and Øksendal [1]. In these models, the insider can use his additional information to
influence the stock price, a feature that also appears in Kohatsu-Higa and Sulem [20].

Insider trading models in which techniques of enlargement of filtration play a direct role
stem from Pikovsky and Karatzas [27]. Amendinger, Imkeller and Schweizer [3] gave an entropic
characterisation of the additional utility achievable by an insider, extended to a semimartingale
setting by Ankirchner, Dereich and Imkeller [4]. Amendinger, Becherer and Schweizer [2] used
indifference arguments to give a monetary value to inside information in portfolio optimisation.
Imkeller [16, 17] used the notion of progressive enlargement of filtration to model inside infor-
mation on a random time that is not a stopping time for regular traders, and used Malliavin
calculus to characterise the information drift. Corcuera et al [12] considered a dynamic flow of
inside information, Baudoin and Nguyen-Ngoc [6] considered so-called weak information, involv-
ing knowledge of the law of some random variable, Hillairet [15] compared optimal strategies
of insiders with different forms of side-information, and Campi [9] treated a quadratic hedging
problem. To the best of our knowledge this paper is the first to combine partial and inside
information scenarios.

The rest of the paper is organised as follows. In Section 2 we solve an investment problem
involving a stock with a Gaussian drift process. We need this result as the subsequent utility
maximisation problems can be rendered into this form. Section 3 details the model and the
investment problems, and outlines our methodology. Section 4 gives the solution to the partial
information investment problem with no inside information, which we use for comparison with
later results. The main results, the solutions of the investment problems with inside information
and parameter uncertainty, are given in Section 5. Section 6 gives the enlargement of filtration
and filtering results that are applied in Section 7, where the main theorems are proven. Section
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8 concludes.

2 Optimal investment with Gaussian drift process

In this section we solve a generic optimal investment problem for a stock with a Gaussian risk
premium. We shall see that all the utility maximisation problems of the paper are of this form.

On a probability space (Ω,F , P ) equipped with a filtration F = (Ft)0≤t≤T , suppose a stock
price S = (St)0≤t≤T follows

dSt = σSt(δtdt+ dBt), (1)

with σ > 0 constant, B an F-Brownian motion and δ = (δt)0≤t≤T an F-adapted process. Assume
that δ is given by

δt = δ0 +
∫ t

0

wsdBs, 0 ≤ t ≤ T, (2)

for some F0-measurable Gaussian random variable δ0 independent of B, and where w is a deter-
ministic function of time given by

wt =
w0

1 + w0t
, 0 ≤ t ≤ T,

for some constant w0. Note that w satisfies the ordinary differential equation (ODE)

dwt
dt

= −w2
t . (3)

Note that δ satisfies the integrability condition

E

[∫ T

0

δ2t dt

∣∣∣∣∣F0

]
<∞, a.s. (4)

Consider optimal investment in S to maximise expected utility of terminal wealth, over F-adapted
self-financing portfolios. Let θ = (θt)0≤t≤T denote an F-adapted trading strategy representing
the proportion of wealth invested in the stock. Assume the interest rate is zero, for simplicity.
Then the wealth process is X = (Xt)0≤t≤T , following

dXt = σθtXt(δtdt+ dBt), X0 = x > 0. (5)

An F-adapted portfolio process θ is admissible if we have∫ T

0

θ2t dt <∞, and Xt ≥ 0 almost surely, for all t ∈ [0, T ], (6)

and denote the set of admissible strategies over [0, T ] by A(T ; F).
The utility function Up : R+ → R is of the HARA class, defined by

Up(x) :=
{
xp/p, p < 1, p 6= 0,
log x, p = 0. (7)

The value function of an agent who uses F-adapted strategies will be defined as u : R+ → R,
given by

u(x;T,F) := sup
θ∈A(T ;F)

E[Up(XT )|F0], (8)

and we write u(x) ≡ u(x;T,F) when we do not need to emphasise the investment horizon and
filtration governing the investment strategies.
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Theorem 1. Assume that 1 + w0T > 0. For p 6= 0, define q by p−1 + q−1 = 1. For 0 < p < 1
assume also that 1 + qw0T > 0. Then the value function in (8) is given by

u(x, T ; F) =
{

(xp/p)C, p < 1, p 6= 0,
log x+K/2, p = 0, (9)

where C,K are F0-measurable random variables given by

C =
[
(1 + w0T )p(1 + qw0T )1−p

]−1/2
exp

(
− qδ20T

2(1 + qw0T )

)
, (10)

K = (δ20 + w0)T − log(1 + w0T ),

The optimal F-adapted trading strategy θ∗ achieving the supremum in (8) is given by

θ∗t =
{
δt[σ(1− p)(1 + qwt(T − t))]−1, p < 1, p 6= 0,
δt/σ, p = 0,

}
0 ≤ t ≤ T. (11)

Proof. For brevity, write u(x, T ; F) ≡ u(x) in this proof.
With the integrability condition (4) and the stock dynamics (1), we are within the classical

framework for portfolio optimisation via convex duality, as surveyed in Karatzas [19], for example.
Let Q denote the unique martingale measure for this market. The change of measure mar-

tingale Z := (Zt)0≤t≤T is defined by

Zt :=
dQ

dP

∣∣∣∣
Ft

= E(−δ ·B)t, 0 ≤ t ≤ T,

and satisfies the SDE
dZt = −δtZtdBt, Z0 = 1. (12)

Notice that

lim
w0→0

Zt = E(−δ0B)t = exp
(
−δ0Bt −

1
2
δ20t

)
. (13)

One can verify that Z is given explicitly in terms of δ by

Zt =
(

w0

wt

)1/2

exp
[
−1

2

(
δ2t
wt
− δ20

w0

)]
, 0 ≤ t ≤ T, (14)

since (14) gives a positive (P,F)-martingale satisfying (12).1 Note also that (14) is indeed well-
defined even for w0 → 0, and that (14) reduces to (13) in the limit w0 → 0.

Consider the utility maximisation problem (8) when p < 1, p 6= 0. The proof for p = 0 follows
identical arguments (with more straightforward computations).

Introduce the convex conjugate Ũp of the utility function, defined by

Ũp(y) := sup
x>0

[Up(x)− xy], y > 0.

For power utility, p < 1, p 6= 0, Ũp is given by

Ũp(y) = −y
q

q
,

1
p

+
1
q

= 1. (16)

1One way to derive (14) is to make the ansatz Zt = f(t, δt) for a smooth function f : [0, T ] × R → R+. The
Itô formula along with the SDE (2) for δ give

dZt =

»
ft(t, δt) +

1

2
w2

t fxx(t, δt)

–
dt+ wtfx(t, δt)dBt, (15)

with subscripts of f denoting partial derivatives. Equating (12) and (15) yields partial differential equations for
f :

wtfx(t, x) = −xf(t, x), ft(t, x) +
1

2
w2

t fxx(t, x) = 0,

with f(0, ·) = Z0 = 1. The solution to these equations gives Zt in the form (14).
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The dual value function is defined by

ũ(y) := E[Ũp(yZT )|F0], y > 0,

so using (16) is given by

ũ(y) = −y
q

q
E[ZqT |F0]. (17)

By classical results on portfolio optimisation via convex duality ([19], for instance) the primal
and dual value functions are conjugate:

ũ(y) = sup
x>0

[u(x)− xy], u(x) = inf
y>0

[ũ(y) + xy].

Using this and (17), then the primal value function u is indeed given by (9), with C given by

C = (E[ZqT |F0])1−p . (18)

It remains to show that C is equal to the expression in (10), and that the optimal strategy is
given by (11).

Once again by classical duality results [19], the optimal terminal wealth X∗T , attained by
adopting the strategy that achieves the supremum in (8), is given by

X∗T = −Ũ ′p(u′(x)ZT ).

Hence, using the form (9) for u, we obtain

X∗T =
x

E[ZqT |F0]
Z
−(1−q)
T .

The optimal wealth process X∗ is a (Q,F)-martingale (again, from classical duality results, see
Theorem 2.3.2 in [19]), so that

X∗t = EQ[X∗T |Ft] =
1
Zt
E[ZTX∗T |Ft] =

x

ZtE[ZqT |F0]
E[ZqT |Ft], 0 ≤ t ≤ T, (19)

where EQ denotes expectation under Q. So, to compute explicit formulae for C in (18) and the
optimal wealth process, we need to evaluate the last conditional expectation in (19).

From (2) and (3), for t ≤ T , and conditional on Ft, δT is Gaussian according to

Law(δT |Ft) = N(δt,wt − wT ), 0 ≤ t ≤ T.

For a Gaussian random variable Y ∼ N(m, s2), we have, for c ∈ R,

E exp(cY 2) =
1√

1− 2cs2
exp

(
cm2

1− 2cs2

)
.

Using this along with the explicit expression (14) for Z, we find that C is indeed given by (10).
Note that 1 + qw0T > 0 when 0 < p < 1 and 1 + w0T > 0 due to the conditions on w0 given in
the theorem, so the expression in (10) is well defined.

For the optimal wealth process we obtain the formula

X∗t = x

(
Ψt

Ψ0

)1/2

exp
(

1
2

(1− q)(Φt − Φ0)
)
, 0 ≤ t ≤ T, (20)

where

Ψt :=
wt

1 + qwt(T − t)
, Φt :=

δ2t
wt(1 + qwt(T − t))

, 0 ≤ t ≤ T.

To compute the optimal trading strategy θ∗, we apply the Itô formula to (20), use the SDE (2)
for δ and the ODE (3) for w, and compare the coefficient of dBt in dX∗t with that in (5) for the
case of the optimal wealth process. This gives (11).
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3 The model

On a complete probability space (Ω,F , P ) equipped with a filtration F := (Ft)0≤t≤T , our model
comprises a stock with price process S = (St)0≤t≤T following

dSt = σSt(λdt+ dBt), (21)

where B = (Bt)0≤t≤T is a one-dimensional F-Brownian motion. We shall assume the risk pre-
mium λ is an unknown constant, so we take it to be an F0-measurable Gaussian random variable,
independent of B. The volatility σ > 0 is assumed to be known. With continuous price monitor-
ing it could be inferred exactly from the quadratic variation of S, and we make this approximation
to focus on the more severe problem of drift uncertainty. See Rogers [28] for an account of the
relative severity of drift versus volatility uncertainty. For simplicity, we take the interest rate to
be zero.

Define the process ξ = (ξt)0≤t≤T by

ξt :=
1
σ

∫ t

0

dSs
Ss

= λt+Bt, 0 ≤ t ≤ T, (22)

which by the Itô formula can be expressed in terms of S:

ξt =
1
σ

log
(
St
S0

)
+

1
2
σt, 0 ≤ t ≤ T,

and denote by F̂ = (F̂t)0≤t≤T the filtration generated by ξ:

F̂t := σ(ξs; 0 ≤ s ≤ t), 0 ≤ t ≤ T.

Then F̂ coincides with the stock price filtration, and we have F̂t ⊆ Ft, for all t ∈ [0, T ]. We shall
sometimes refer to an agent whose information set is F̂ as a regular agent (or regular trader), to
distinguish such an agent from an insider, who will have additional information as well as that
provided by the data from ξ.

Let L denote an F-measurable random variable. We model an insider as an agent who has
knowledge at time zero of the value of L, where L will represent (typically, noisy) knowledge
of an FT -measurable random variable, either ξT (equivalently, ST ) or the terminal Brownian
motion BT . In addition, the insider will not know the value of the risk premium λ, and her
trading strategies will be adapted to the regular observation filtration F̂ augmented by the inside
information, represented by σ(L), the sigma-field generated by L.

The uncertainty in the random variable λ will be modelled by assuming that its prior distri-
bution conditional on F̂0 is Gaussian, according to the following standing assumption.

Assumption 1. The distribution of λ conditional on F̂0 is Gaussian, independent of B, with

E[λ|F̂0] = E[λ] = λ0, var[λ|F̂0] = var[λ] = v0,

for given constants λ0 and v0 ≥ 0.2

Given the filtration F = (Ft)0≤t≤T and the random variable L, denote the enlarged filtration
by FL = (FLt )0≤t≤T , given by

FLt := Ft ∨ σ(L), 0 ≤ t ≤ T. (23)

Similarly, the insider’s observation filtration will be denoted by F̂L := (F̂Lt )0≤t≤T , given by

F̂Lt := F̂t ∨ σ(L), 0 ≤ t ≤ T, (24)

that is the regular agent’s observation filtration enlarged by σ(L). We shall sometimes write
F̂0 ≡ F̂ to signify that the case without inside information may be considered as that with L ≡ 0.

2One way to choose λ0, v0 would be to use past data before time zero to obtain a point estimate of λ, and to
use the distribution of the estimator as the prior, as in Monoyios [25].
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3.1 The utility maximisation problems

The agents in this article will be restricted to using F̂L-adapted strategies (if there is inside
information) or F̂-adapted strategies if there is no inside information (equivalently, if L ≡ 0).
The utility function Up is given by (7).

With the convention that L ≡ 0 corresponds to the situation with no inside information,
denote by θL = (θLt )0≤t≤T the agent’s F̂L-adapted trading strategy, representing the proportion
of wealth invested in the stock. Denote the corresponding wealth process by XL = (XL

t )0≤t≤T .
The set A(T ; F̂L) of admissible trading strategies over the horizon [0, T ] is defined by the analogue
of (6), as

A(T ; F̂L) :=
{
θL : θL is F̂L-adapted,

∫ T
0

(θLt )2dt <∞ a.s., with XL
t ≥ 0 a.s. ∀t ∈ [0, T ]

}
.

Given initial capital x > 0, the insider’s maximal expected utility is given by the value function
uL, defined by

uL(x;T, F̂L) ≡ uL(x) := sup
θL∈A(T ;bFL)

E[Up(XL
T )|F̂L0 ], (25)

and we shall write uL(x) ≡ uL(x;T ; F̂L) when we do not need to emphasise the investment
horizon and filtration under consideration. Our goal is to compute the optimal strategy θL,∗

achieving the supremum in (25) as well as the value function uL, for three particular cases of L,
and hence three choices of filtration F̂L, as listed below.

Problem 0 (Optimal investment with partial information). Here, L ≡ 0, F̂L = F̂0 ≡ F̂, so there
is no inside information. This problem was considered by Rogers [28] among many others. We
describe it here (for a wider range of risk aversion parameter than in [28]) to establish some
notations and to facilitate subsequent comparisons between the maximal utilities and optimal
trading strategies of the insider and the regular trader.

Problem 1 (Investment with Brownian inside information and drift uncertainty). Here, L is
given by

L = LB := aBT + (1− a)ε, 0 < a ≤ 1, (26)

where BT is the terminal value of the Brownian motion in (22) and ε is a random variable on
(Ω,F) which is standard normal and independent of B, λ and ξ. The case a = 1 corresponds to
exact information on BT , while a ∈ (0, 1) implies noisy information.

The relevant filtration is therefore F̂LB . For brevity of notation we shall sometimes write
F̂LB ≡ F̂B , with a similar convention for other quantities, so the trading strategy will be denoted
by θB , the wealth process by XB , the value function by uB , and so on.

Problem 2 (Investment with stock price information and drift uncertainty). Here, L is given
by

L = LS := aξT + (1− a)ε, 0 < a ≤ 1, (27)

where ξ is defined in (22) and ε is again standard normal and independent of B, λ and ξ. The
relevant filtration is therefore F̂LS . For brevity of notation we shall sometimes write F̂LS ≡ F̂S ,
with a similar convention for other quantities.

3.2 Outline of methodology

The approach to solving the optimal investment problems is as follows. We start with the model
(21) written in the underlying filtration F. If inside information is available, we form the enlarged
filtration FL = (FLt )0≤t≤T given by (23). We write the stock price dynamics with respect to FL,
yielding an SDE of the form

dSt = σSt
(
λLt dt+ dBLt

)
, (28)

where BL is an FL-Brownian motion and λL is an FL-adapted process, with BL, λL given by

BLt = Bt −
∫ t

0

νLs ds, λLt := λ+ νLt , 0 ≤ t ≤ T.
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Here, νL = (νLt )0≤t≤T is an FL-adapted process called the information drift. This is specified
using classical enlargement of filtration results [18, 24, 30] and depends explicitly on the random
variable L. When there is no inside information, νL ≡ 0.

If the value of λ was known, then (28) would constitute the insider’s stock price SDE on the
stochastic basis (Ω,FLT ,FL, P ). The uncertainty in the value of λ means that the agent filters λL

(and hence λ) from the stock price observations, suitably augmented by the inside information,
that is, given F̂L. The agent thus infers the conditional expectation

λ̂Lt := E[λLt |F̂Lt ], 0 ≤ t ≤ T.

The initial (prior) distribution of λ given F̂0 is given by Assumption 1. We translate this into a
prior distribution for λL given F̂L0 , and this also turns out to be Gaussian:

Law(λL0 |F̂L0 ) = N(λ̂L0 , V
L
0 ), independent of BL, (29)

(where N(m,V ) denotes the normal probability law of mean m and variance V ), for some F̂L0 -
measurable quantities λ̂L0 and V L0 ≥ 0, given in terms of λ0, v0, the parameters of the prior for λ
given in Assumption 1.

To compute λ̂L = (λ̂Lt )0≤t≤T we use a Kalman-Bucy filter, with the SDEs for the signal
process λL and the observation process ξ both written with respect to the enlarged filtration
FL. These turn out to be linear SDEs, and the Kalman-Bucy algorithm then incorporates both
the stock price observations and the inside information into the best estimate of λL. We outline
in Proposition 3 how the usual Kalman-Bucy equations do indeed hold (with modified initial
conditions reflecting the insider information) and do indeed incorporate the inside information,
provided the original filtration F has first been enlarged by σ(L) and the signal-observation
system SDEs are written with respect to FL. By carrying out enlargement of filtration before
filtering, we incorporate the effect of the inside information on the estimation of the unknown
risk premium.

The result of the filtering procedure is to convert the partial information model (28) to a full
information model written with respect to the stochastic basis (Ω, F̂LT , F̂L, P ), of the form

dSt = σSt(λ̂Lt dt+ dB̂Lt ), (30)

where B̂L is an F̂L-Brownian motion and the filtered risk premium λ̂L turns out to be a Gaussian
process, specified explicitly by the filtering algorithm. Finally, once we have the completely
observable model (30), we are able to solve the utility maximisation problem (25) via a classical
dual approach.

4 Optimal investment with partial information

In this section we present the solution to Problem 0, in which the agent has no inside information
and uses F̂-adapted strategies to maximise expected utility of terminal wealth. We include this
well-known material here to establish some notation and provide results for comparison between
the problems with and without privileged information.

Prior to filtering, the stock price follows (21) on the stochastic basis (Ω,F ,F, P ). We ac-
knowledge the agent’s uncertainty concerning the value of the risk premium λ by treating it as
an unknown constant, hence a random variable, with prior distribution given in Assumption 1.
Adopting a filtering framework and considering λ as an unobservable signal process, it follows
the trivial SDE

dλ = 0,

and the observation process is ξ, given by (22).
Define the conditional mean and variance of λ given F̂ by

λ̂t := E[λ|F̂t], vt := E[(λ− λ̂t)2|F̂t] = E[(λ− λ̂t)2], 0 ≤ t ≤ T,

and v : [0, T ] → R+ will be a deterministic function of time (as usual with a Kalman filter)
independent of F̂. We then have the following solution to Problem 0.
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Proposition 1 (Solution to Problem 0). For 0 < p < 1, assume that 1 + qv0T > 0, where
p−1 + q−1 = 1. The value function in (25) when there is no inside information (so L ≡ 0) and
F̂L = F̂0 ≡ F̂ is given by

u0(x) =
{

(xp/p)C0, p < 1, p 6= 0,
log x+K0/2, p = 0, (31)

where C0,K0 are constants given by

C0 =
[
(1 + v0T )p(1 + qv0T )1−p

]−1/2
exp

[
− qλ2

0T

2(1 + qv0T )

]
,

1
p

+
1
q

= 1, (32)

K0 = (λ2
0 + v0)T − log(1 + v0T ).

The optimal F̂-adapted trading strategy achieving the supremum in (25) is θ0,∗, given by

θ0,∗t =

{
λ̂t[σ(1− p)(1 + qvt(T − t))]−1, p < 1, p 6= 0,
λ̂t/σ, p = 0,

}
0 ≤ t ≤ T, (33)

where λ̂, v are given by

λ̂t =
λ0 + v0ξt
1 + v0t

, vt =
v0

1 + v0t
, 0 ≤ t ≤ T, (34)

and ξ is defined in (22).

Proof. By the Kalman-Bucy filter (Theorem 10.3 in Lipster and Shiryaev [23] or Theorem V.9.2
in Fleming and Rishel [14]), λ̂ satisfies the SDE

dλ̂t = vt(dξt − λ̂tdt) = vtdB̂t, λ̂0 = λ0, (35)

where B̂ is the innovations process, an F̂-Brownian motion defined in terms of ξ, λ̂ by

B̂t := ξt −
∫ t

0

λ̂sds, 0 ≤ t ≤ T, (36)

and the conditional variance v satisfies the deterministic Riccati equation

dvt
dt

= −v2
t , (37)

with initial value v0 and solution as given in (34). The solution to (35) is the Gaussian process

λ̂t = λ0 +
∫ t

0

vsdB̂s, 0 ≤ t ≤ T, (38)

and in terms of ξ, the solution to (35) for λ̂ is as given in (34).
The stock price SDE is dSt = σStdξt. With respect to F̂, we use (36) to write this as

dSt = σSt(λ̂tdt+ dB̂t). (39)

From (38) it is easy to see that we have E[
∫ T
0
λ̂2
tdt|F̂0] < ∞, a.s. This places us, with the

dynamics in (39), firmly within a classical full information framework for portfolio optimisation
via convex duality, and the results in the theorem then follow from Theorem 1 with (F̂, B̂, λ̂, v)
in place of (F, B, δ,w).

Naturally, in the limit v0 → 0, the risk premium of the stock becomes the constant λ0

and Proposition 1 gives the solution to the classical full information Merton optimal investment
problem for a stock with constant risk premium λ0 and volatility σ.
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5 Optimal investment with inside information and drift
uncertainty

In this section we give the main results, the solutions to Problems 1 and 2 in which the agent is
an insider with knowledge at time zero of an F-measurable random variable L, and who does not
know the value of the risk premium λ. We then make some comparisons between the maximal
utilities and optimal trading strategies of the insider and the regular trader. The proofs are given
in Section 7, after establishing some enlargement of filtration and filtering results in the next
section.

Define the modulated terminal time Ta by

Ta := T +
(

1− a
a

)2

, 0 < a ≤ 1, (40)

which will appear frequently, and note that lima→1 Ta = T .

5.1 Brownian inside information

In Problem 1 the insider has access to information on the terminal Brownian motion BT . The
random variable L is LB given in (26). For brevity of notation we shall often write F̂LB ≡ F̂B ,
with a similar convention for the value function, uLB

≡ uB , and other relevant quantities.

Theorem 2 (Solution to Problem 1). For 0 < p < 1, assume that

v0T <
1− p
p

+
T

Ta
. (41)

The value function of the insider in (25) when the additional information is noisy knowledge of
BT , so F̂L = F̂LB ≡ F̂B, with

L = LB := aBT + (1− a)ε, 0 < a < 1,

is given by

uB(x) =
{

(xp/p)CB , p < 1, p 6= 0,
log x+KB/2, p = 0,

where CB ,KB are F̂B0 -measurable random variables given by

CB =
[
(1 + vB0 T )p(1 + qvB0 T )1−p

]−1/2
exp

(
− q(λ̂B0 )2T

2(1 + qvB0 T )

)
,

1
p

+
1
q

= 1,

KB =
(

(λ̂B0 )2 + vB0
)
T − log(1 + vB0 T ),

and where λ̂B0 , v
B
0 are given by

λ̂B0 = λ0 +
LB
aTa

, vB0 = v0 −
1
Ta
.

The optimal F̂B-adapted trading strategy achieving the supremum in (25) is θB,∗, given by

θB,∗t =

{
λ̂Bt [σ(1− p)(1 + qvBt (T − t))]−1, p < 1, p 6= 0,
λ̂Bt /σ, p = 0,

}
0 ≤ t ≤ T,

where λ̂B , vB are given by

λ̂Bt =
λ̂B0 + vB0 ξt

1 + vB0 t
, vBt =

vB0
1 + vB0 t

, 0 ≤ t ≤ T. (42)

For a = 1 and v0 > 0 the above results still hold, while for a = 1 and v0 = 0 the value function
is unbounded for p ∈ [0, 1) and equal to zero for p < 0.

10



The proof will be given in Section 7.
Naturally, the value function and optimal strategy depend on the random variable L ≡ LB .

There are clear similarities in the structure of the solution to this problem with that of Problem
0, with (λ̂, v) replaced by (λ̂B0 , v

B). It turns out that vB is related to (but not identical to) the
conditional variance of the insider’s unknown risk premium λB given F̂B , as we shall see later.

Note that, formally, the correct results for the limiting cases a = 1, v0 > 0 and a = 1, v0 = 0
can be obtained by taking these limits in the value function formula for a ∈ (0, 1), though this
does not constitute a proof, and we shall need some more involved arguments to rigorously
establish the results for these limiting cases.

For a = 1 and v0 > 0 the value function and optimal strategy are well defined, even though
the insider has exact knowledge of the value of terminal Brownian motion BT . This is to be
contrasted with the results of Pikovsky and Karatzas [27], in which there is no drift parameter
uncertainty (corresponding to v0 → 0 here). In [27], exact knowledge of any kind at time
zero leads to unbounded logarithmic utility. Here, in contrast, provided v0 > 0, the parameter
uncertainty means that exact Brownian inside information does not lead to an explosion in utility
(for 0 ≤ p < 1) or to zero value function (the maximum possible expected utility) for p < 0.

But for v0 → 0 we should, and do, recover results consistent with [27], with unbounded utility
for p ∈ [0, 1) and zero for p < 0. In this case, since ξT = BT + λT , then when the value of λ
is known with certainty, exact Brownian inside information is equivalent to exact terminal stock
price information, and hence Pikovsky and Karatzas [27] find that exact information of any kind
leads to unbounded logarithmic utility.

In contrast, we shall see shortly that, with v0 > 0, only exact terminal stock price knowledge
leads to unbounded logarithmic utility. The intuition here is that, with the initial and terminal
stock prices known at time zero, one immediately obtains the best possible estimate of λ at time
zero, and the parameter uncertainty is eliminated as much as is possible from the outset, leading
to a utility explosion, and to the filtering algorithm being rendered redundant, as we shall see in
the proof of Problem 2.

5.1.1 Additional utility of the insider

To quantify the additional utility of the insider with Brownian information relative to the regular
trader, let us define the value of the additional information as πB , given implicitly by

E[uB(x)|F̂0] = u0(x+ πB(x)).

In other words, πB is the additional wealth needed by the regular trader to achieve, on average,
the same expected utility as the insider who knows the value of LB . To compute πB , we need the
distribution of λ̂B0 given F̂0. But F̂0 is in fact the trivial sigma-field, so we have Law(λ̂B0 |F̂0) =
Law(λ̂B0 ), given by

λ̂B0 ∼ N(λ0, 1/Ta) = N(λ0, v0 − vB0 ).

When 0 < p < 1, we assume that 1 + qv0T > 0, so that u0 is well-defined. Under this condition
we also have 1 + qvB0 T > 0, so that uB is also well-defined. Hence πB is well-defined and given
by

πB(x)/x = [(1 + v0T )(1 + qvB0 T )]1/2[(1 + vB0 T )(1 + qv0T )]−1/2 − 1, p < 1.

It can be verified that πB(x) > 0, reflecting the insider’s additional expected utility, and that
(formally) πB(x)→∞ (uniformly in x) for a = 1, v0 = 0, for all values of p < 1.

5.2 Stock price inside information

When the insider has terminal stock price inside information at time zero, given by the random
variable L ≡ LS in (27), the solution to the optimal investment problem is as follows.

Theorem 3 (Solution to Problem 2). For 0 < p < 1, assume that[
1−

(
1 +

1
p

)
T

Ta

]
v0T <

1− p
p

+
T

Ta
. (43)
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The value function of the insider in (25) when the additional information is noisy knowledge of
ξT , so F̂L = F̂LS ≡ F̂S, with

L = LS := aξT + (1− a)ε, 0 < a < 1,

is given by

uS(x) =
{

(xp/p)CS , p < 1, p 6= 0,
log x+KS/2, p = 0,

where CS ,KS are F̂S0 -measurable random variables given by

CS =
[
(1 + vS0 T )p(1 + qvS0 T )1−p

]−1/2
exp

(
− q(λ̂S0 )2T

2(1 + qvS0 T )

)
,

1
p

+
1
q

= 1,

KS =
(

(λ̂S0 )2 + vS0
)
T − log(1 + vS0 T ),

and where λ̂S0 , v
S
0 are given by

λ̂S0 =
λ0(1− T/Ta) + (1 + v0T )(LS/(aTa))

1 + v0T (T/Ta)
, vS0 =

(1− T/Ta)2v0

1 + v0T (T/Ta)
− 1
Ta
.

The optimal F̂S-adapted trading strategy achieving the supremum in (25) is θS,∗, given by

θS,∗t =

{
λ̂St [σ(1− p)(1 + qvSt (T − t))]−1, p < 1, p 6= 0,
λ̂St /σ, p = 0,

}
0 ≤ t ≤ T,

where λ̂S , vS are given by

λ̂St =
λ̂S0 + vS0 ξt
1 + vS0 t

, vSt =
vS0

1 + vS0 t
, 0 ≤ t ≤ T. (44)

For a = 1 the value function is unbounded for p ∈ [0, 1) and equal to zero for p < 0.

The proof will be given in Section 7.
Again, we observe the similarity in the structure of the solution to this problem with that of

Problems 0 and 1, with (λ̂S , vS) in place of (λ̂, v) or (λ̂B , vB).
Formally letting a → 1 in the formula for the value function again leads to the correct

conclusion, namely infinite additional utility, though this is not a proof, and we will need careful
arguments to establish the result.

5.2.1 Additional utility of the insider

We can quantify the additional utility of the insider with terminal stock price information, as we
did for the insider with Brownian information. The distribution of λ̂S0 in this case is given by

λ̂S0 ∼ N
(
λ0,

(1 + v0T )2

Ta(1 + v0T (T/Ta))

)
= N(λ0, v0 − vS0 ).

When 0 < p < 1, we assume that 1 + qv0T > 0, so that u0 is well-defined. Under this condition
we also have 1 + qvS0 T > 0, so that uS is also well-defined. Hence the value of the additional
information, πS , is well-defined and given by

πS(x)/x = [(1 + v0T )(1 + qvS0 T )]1/2[(1 + vS0 T )(1 + qv0T )]−1/2 − 1, p < 1.

Once again, it can be verified that πS(x) > 0, reflecting the insider’s additional expected utility,
and that (formally) πS(x)→∞ (uniformly in x) for a→ 1, for all values of p < 1.

More pertinently, if we compare the values of stock price and Brownian information, we find
that for a 6= 1,

πS(x) > πB(x), for all x,

since we have vS0 < vB0 . In other words, stock price information is more valuable than Brownian
information when the drift of the stock is unknown. This makes sense, as we need stock price
observations to estimate the drift.
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5.3 Comparison of trading strategies of regular trader and insider

One can also carry out a comparison of how aggressive the insider is in taking a stock position
relative to the regular trader. One way to make a meaningful comparison of F̂L-adapted strategies
with F̂-adapted strategies, is to condition the insider’s optimal portfolio θLt on F̂t.

For 0 < p < 1 we always assume that 1 + qv0T >, and this guarantees that 1 + qvL0 T > 0, so
that RL, defined by

RLt :=
E[θL,∗t |F̂t]

θ0,∗t
, L ∈ {B,S}, 0 ≤ t ≤ T,

exists.
The effect of conditioning θL,∗ with respect to F̂ isolates the multiplier (1 + qvLt (T − t))−1.

This measures the extent to which the insider’s stock position is magnified or reduced in response
to her estimate λ̂L of the risk premium.

Proposition 2. For p = 0, RB = RS = 1, F̂-a.s., while for p 6= 0, we have

RBt =
1 + qvt(T − t)
1 + qvBt (T − t)

, RSt =
1 + qvt(T − t)
1 + qvSt (T − t)

, 0 ≤ t ≤ T.

Note that vSt < vBt < vt for t ∈ [0, T ]. So for p 6= 0 we have the ordering (recall q < 0 when
p ∈ (0, 1))

qRSt > qRBt > q, 0 ≤ t ≤ T. (45)

The insider takes a more aggressive holding in the stock than the regular trader when p < 0
(corresponding to relative risk aversion larger than 1). This effect is more marked when the
inside information is on the stock price rather than the Brownian motion, because in this case
the insider derives greater confidence in his estimate of the stock drift than with Brownian
knowledge. This result seems intuitively plausible.

When p = 0 this effect is nullified. Intriguingly, when p ∈ (0, 1), this effect is reversed. In other
words, when risk aversion becomes sufficiently small (and, as we have seen, rather complicated
conditions on the prior variance are needed for a well-posed problem) an agent with progressively
less uncertainty in her estimate of the stock’s risk premium, nevertheless takes a less aggressive
holding in the stock. This unexpected result, which stems from a partial information framework,
has (to the best of our knowledge) not been previously observed.

We need to prove some lemmas on the way to proving Proposition 2.

Lemma 1. Conditional on F̂t, 0 ≤ t ≤ T , the distribution of ξT is given by

Law(ξT |F̂t) = N
(
ξt + λ̂t(T − t), (1 + vt(T − t))(T − t)

)
, 0 ≤ t ≤ T.

Proof. Using (36) we have, for t ≤ T ,

ξT = ξt +
∫ T

t

λ̂sds+ B̂T − B̂t.

Note that ξ is Gaussian. Using the solution (38) for λ̂ we obtain∫ T

t

λ̂sds = λ̂t(T − t) +
∫ T

t

vs(T − s)dB̂s,

so that

ξT = ξt + λ̂t(T − t) +
∫ T

t

(1 + vs(T − s)) dB̂s.

The result for the mean is immediate, and the variance follows from the Itô isometry and the
formula in (34) for v.
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Corollary 1. The information drift νL ≡ νB ≡ νS for both Brownian and stock price inside
information satisfies

E[νLt |F̂t] = 0, 0 ≤ t ≤ T.

Proof. In both Examples 1 and 2, the information drift may be written as

νLt =
1

a(Ta − t)
(a (ξT − ξt − λ(T − t)) + (1− a)ε) .

Recall that ε ∼ N(0, 1), independent of F̂. So, conditioning on F̂t, recalling that λ̂t := E[λ|F̂t]
and using Lemma 1, the result follows.

Proof of Proposition 2. Using the definition of λ̂Bt , the tower property, and Corollary 1, we obtain

E[λ̂Bt |F̂t] = E
[
E[λBt |F̂Bt ]

∣∣∣ F̂t] = E[λBt |F̂t] = E[λ+ νBt |F̂t] = λ̂t. (46)

Similarly, using the tower property and Lemma 1, we find that

E[λ̂St |F̂t] = λ̂t, (47)

where we have again used Corollary 1. The proposition follows easily from (46) and (47).

6 Enlargement of filtration and filtering

6.1 Initial enlargements of filtrations

In this section we apply classical enlargement of filtration formula to augment a filtration F
(containing a Brownian filtration) with the information carried by an F-measurable random
variable L. The enlargement formula gives the semi-martingale decomposition of the F-Brownian
motion B with respect to the enlarged filtration FL, defined in (23). We give two applications
of the enlargement formula, for L = LB in (26) and L = LS in (27), that pertain to our two
optimal investment problems with privileged information.

We begin with the filtration F = (Ft)0≤t≤T that contains the filtration of the Brownian
motion B driving the stock price process in (21), and also σ(λ) ∈ F0. Let L be an F-measurable
random variable.

Given any bounded Borel function f : R → R, define µ(f) = (µt(f))0≤t≤T as the continu-
ous version of the martingale (E[f(L)|Ft])0≤t≤T . By the representation property of Brownian
martingales there exists an F-previsible process µ̇(f) = (µ̇t(f))0≤t≤T such that

µt(f) = E[f(L)] +
∫ t

0

µ̇s(f)dBs, 0 ≤ t ≤ T.

The enlargement decomposition formula is given by Theorem 12.1 in Yor [30] in the following
fashion.

Theorem 4 ([30], Theorem 12.1). Suppose there exists a predictable family of measures (µt(dx))0≤t≤T
such that

µt(f) =
∫

R
f(x)µt(dx), 0 ≤ t ≤ T.

Assume there exists a predictable family (µ̇t(dx))0≤t≤T of measures such that

dt a.s. µ̇t(f) =
∫

R
f(x)µ̇t(dx), 0 ≤ t ≤ T,

and such that dtdP a.s. µ̇t(dx) is absolutely continuous with respect to µt(dx). Define ρ(x, t) by

µ̇t(dx) = µt(dx)ρ(x, t).
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Then, provided that ∫ t

0

|ρ(x, s)|ds <∞, a.s., (48)

the F-Brownian motion B decomposes as

Bt = BLt +
∫ t

0

ρ(L, t)ds, 0 ≤ t ≤ T,

with BL and FL-Brownian motion, and the process

νLt := ρ(L, t), 0 ≤ t ≤ T,

is called the information drift.

Example 1. Take L = LB given in (26). Then Law[LB |Ft] = N(aBt, a2(Ta − t)), where Ta is
defined in (40). Therefore

µt(f) = E[f(L)|Ft] =
1

a
√

2π(Ta − t)

∫
R
f(x) exp

(
(x− aBt)2

2a2(Ta − t)

)
dx =:

∫
R
f(x)µt(dx).

Using the Itô formula inside the integral and reversing the order of integration yields

µ̇t(f) =
1

a
√

2π(Ta − t)

∫
R
f(x)

(
x− aBt
a(Ta − t)

)
exp

(
(x− aBt)2

2a2(Ta − t)

)
dx =:

∫
R
f(x)µ̇t(dx),

and note the measures µt(dx) and µ̇t(dx) do indeed satisfy the conditions given in Theorem 4.
In this case, ρ(x, t) is given by

ρ(x, t) =
x− aBt
a(Ta − t)

, 0 ≤ t ≤ T,

and satisfies (48). Therefore, the semimartingale decomposition of B with respect to FL = FLB ≡
FB is

Bt = BBt +
∫ t

0

LB − aBs
a(Ta − s)

ds, (49)

with LB as in (26), and where we have written FLB ≡ FB and BLB ≡ BB to ease notation.
The information drift in this case is therefore νLB ≡ νB given by

νBt =
LB − aBt
a(Ta − t)

=
a(BT −Bt) + (1− a)ε

a(Ta − t)
, 0 ≤ t ≤ T, (50)

where we have used the explicit form (26) for LB .
For a = 1 we have LB = BT and we obtain the well known Brownian bridge decomposition

of B under FBT :

Bt = BBT
t +

∫ t

0

BT −Bs
T − s

ds, 0 ≤ t ≤ T. (51)

Example 2. Take L = LS given in (27). Using ξT = BT + λT , we may write

LS = a(BT + λT ) + (1− a)ε, 0 < a ≤ 1, (52)

and since λ is assumed to be F0-measurable, we have Law[LS |Ft] = N(a(Bt + λT ), a2(Ta − t)).
Then the same method as in Example 1 yields that the semimartingale decomposition of B with
respect to FL = FLS ≡ FS is

Bt = BSt +
∫ t

0

LS − a(Bs + λT )
a(Ta − s)

ds, (53)

with LS as in (27), and where we have written BLS ≡ BS to ease notation.
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Using (52) in the decomposition (53) we may write the information drift in this case as
νLS ≡ νS given by

νSt =
LS − a(Bt + λT )

a(Ta − t)
=
a(BT −Bt) + (1− a)ε

a(Ta − t)
, 0 ≤ t ≤ T, (54)

which we see is identical to the information drift in (50) for the case with Brownian inside
information. The point is that, before filtering, with λ an F0-measurable random variable (and
hence a known parameter), then advance knowledge of ξT = BT + λT is indistinguishable from
advance knowledge of BT . We will see that the two cases become distinct as soon as we move to
a filtration under which λ is an unknown parameter, and we have to resort to filtering methods to
find the best estimate of the stock price drift given price observations and the inside information.

Further, for a = 1, in which case FL = FST , the decomposition (53) becomes

Bt = BST
t +

∫ t

0

(
ξT − ξs
T − s

− λ
)
ds.

Using this in the stock price SDE (21), we may write the dynamics of S with respect to FST as

dSt
σSt

=
(
dBST +

ξT − ξt
T − t

dt

)
. (55)

Recall the observation filtration of the insider for a = 1, F̂ST . The left hand side of (55) is
manifestly F̂ST -adapted, as is the finite variation term on the right-hand side. This suggests
(and we will prove this later) that the FST -Brownian motion BST is also an F̂ST -Brownian
motion, so we have BST = B̂ST . Then (55) immediately gives the stock price dynamics under
the insider’s observation filtration, and any filtering is rendered redundant. The salient point is
that by having knowledge at time zero of both the initial and final stock prices, the insider has
already obtained, at time zero, her best estimate of the risk premium λ. This will ultimately
lead to an explosion in expected utility when the insider has precise knowledge of the final stock
price.

6.2 Linear filtering with initial enlargement

Having enlarged the filtration F by σ(L) to obtain FL, we write the stock price dynamics with
respect to the enlarged filtration FL. The resulting risk premium λL is an FL-adapted process
which we treat as an unobservable signal process in a filtering framework. The filtering algorithm,
presented below, estimates λL based on stock price observations augmented with the information
provided at time zero by knowledge of the value of L. It turns out that the usual form of
the Kalman-Bucy filter equations hold in this case, with initial conditions reflecting the inside
information, provided we have first written the dynamics of the signal and observations processes
with respect to the enlarged filtration FL. Technical integrability conditions, needed for the
applicability of the Kalman filter, mean that this procedure is only valid over [0, T ] for a < 1
(corresponding to strictly noisy inside information), or if a = 1, then the algorithm is only valid
up to a time T ∗ < T , as will be seen shortly. The rather singular case corresponding to exact
information on BT or ST will require some separate reasoning to obtain the optimal investment
results.

In both cases of inside information, that is L = LB or L = LS , the information drift (as a
function of the Brownian motion B, though not as a function of L) is the same, given by (50)
and (54), so we write νL ≡ νB = νS below. The following argument then applies to both choices
for L (recall that with λ being F0-measurable, BT and ξT = BT + λT represent, at this stage,
the same inside information).

The semimartingale decomposition (49) or (53) may then be written in unified form as

Bt = BLt +
∫ t

0

νLs ds, 0 ≤ t ≤ T, (56)
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where BL is an FL-Brownian motion and with νL given by

νLt =
a(BT −Bt) + (1− a)ε

a(Ta − t)
, 0 ≤ t ≤ T.

Using the decomposition (56) along with the stock price dynamics (21) we find that, with respect
to FL, the stock price SDE is

dSt = σSt(λLt dt+ dBLt ), (57)

where λL is the FL-adapted process given by

λLt := λ+ νLt = λ+
a(BT −Bt) + (1− a)ε

a(Ta − t)
, 0 ≤ t ≤ T.

We apply the Itô formula to λL under FL, so λ and BT are treated as constants, and B is an
FL-semimartingale with decomposition (56). This gives, with respect to FL, the SDE

dλLt = − 1
Ta − t

dBLt , λL0 = λ+
aBT + (1− a)ε

aTa
. (58)

The returns process ξ in (22) has dynamics given by dξt = dSt/(σSt), so using (57), we have
dynamics with respect to FL given by

dξt = λLt dt+ dBLt , ξ0 = 0. (59)

We wish to consider an insider who trades the stock and who has access to the filtration F̂L
defined in (24). Since λ is an unknown constant, then λL is an unobservable signal process with
FL-dynamics (58), and ξ is an observation process with FL-dynamics (59). We wish to apply a
filter to compute the conditional expectation and variance

λ̂Lt := E[λLt |F̂Lt ], V Lt := E[(λLt − λ̂Lt )2|F̂Lt ], 0 ≤ t ≤ T. (60)

To apply the filter we also need the prior distribution of λL given F̂L0 . This will be deduced from
the prior distribution of λ given F̂0 in Assumption 1, and will turn out to be Gaussian, given
by (29). Then we have all the ingredients for a variant of the Kalman-Bucy filter to hold. The
difference between the usual Kalman-Bucy filter and the situation here is that the observation
process ξ does not, on its own, constitute the entire information on which we estimate the signal.
The observations are augmented with the information provided by knowledge of the value of
L. This is absorbed into the prior distribution (29), and into the dynamics of the signal and
observations by writing these with respect to FL. The result is that the following proposition
looks virtually identical to the Kalman-Bucy filter. The proof follows exactly the same lines as
the conventional innovations-based proof of the usual Kalman-Bucy filter, so we only give the
outline.

Proposition 3. On a probability space (Ω,F , P ) equipped with a filtration F = (Ft)0≤t≤T and
an F-measurable random variable L, define the enlarged filtration FL = (FLt )0≤t≤T by

FLt := Ft ∨ σ(L), 0 ≤ t ≤ T.

Let λL = (λLt )0≤t≤T be an FL-adapted signal process satisfying

dλLt = − 1
Ta − t

dBLt ,

where BL is an FL-Brownian motion and Ta > T . Let ξ = (ξt)0≤t≤T be an FL-adapted observa-
tion process satisfying

dξt = λLt dt+ dBLt , ξ0 = 0,

and let F̂ = (F̂t)0≤t≤t be the filtration generated by ξ. Define the filtration F̂L = (F̂Lt )0≤t≤T by

F̂Lt := F̂t ∨ σ(L).
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Suppose λL0 is an FL0 -measurable random variable with distribution given F̂L0 that is Gaussian
with mean mL and variance ΣL, independent of BL. Then the conditional expectation

λ̂Lt := E[λLt |F̂Lt ], 0 ≤ t ≤ T, (61)

satisfies

dλ̂Lt =
(
V Lt −

1
Ta − t

)
dB̂Lt , λ̂L0 = mL, (62)

where B̂L is an F̂L-Brownian motion, the innovations process, satisfying

dB̂Lt = dξt − λ̂Lt dt, (63)

and V L is the conditional variance of λL, defined by

V Lt := E[(λLt − λ̂Lt )2|F̂t], 0 ≤ t ≤ T, (64)

which is independent of F̂L and satisfies the ordinary differential equation

dV L

dt
=

2
Ta − t

V Lt −
(
V Lt
)2
, V L0 = ΣL. (65)

Proof. With the inequality Ta > T , we have the integrability condition∫ T

0

(
1

Ta − t

)2

dt <∞. (66)

This ensures that the conditions of Theorem 10.3 in Liptser and Shiryaev [23] are satisfied, with
the proviso that the initial observation filtration has been enlarged by σ(L). But this does not
alter the mechanics of the proof of the filtering equations provided we have written the dynamics
of the signal λL and the observations ξ with respect to the enlarged filtration FL. Then the
filtering algorithm does indeed estimate the signal based on the enlarged observation filtration
F̂L.

Direct application of Theorem 10.3 in [23] gives that with respect to F̂L the Gaussian process
(λ̂Lt , ξt) satisfies the SDEs (62) and (63) on [0, T ], where B̂L is F̂L-Brownian motion and the
conditional variance V L satisfies the ordinary differential equation (65).

Remark 1. In the proof of Proposition 3, the condition Ta > T is used to ensure that we have
the integrability condition (66), so that Theorem 10.3 of [23] is applicable.

If, instead, we have Ta ≥ T , corresponding to 0 < a ≤ 1 in (26) or (27), then (66) is replaced
by ∫ T∗

0

(
1

Ta − t

)2

dt <∞,

for any T ∗ < T , and then application of Theorem 10.3 in [23] would yield that, with respect to
F̂L, ξ satisfies the SDE (63) over [0, T ), and λ̂L, V L then satisfy (62) and (65) over [0, T ).

7 Proofs of the main theorems

Proof of Theorem 2. The inside information is knowledge at time zero of the random variable
L = LB given by (26). We enlarge the filtration F by σ(LB). With respect to the enlarged
filtration FL = FLB ≡ FB the semimartingale decomposition of the Brownian motion B is
obtained from Example 1 and given by

Bt = BBt +
∫ t

0

νBs ds, 0 ≤ t ≤ T, (67)
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where the information drift νLB ≡ νB is given by (50) and BLB ≡ BB is an FB-Brownian motion.
Using this decomposition and the stock price dynamics (21), we write the stock price SDE with
respect to FB as in (57), with L = LB , to give

dSt = σSt(λBt dt+ dBBt ), (68)

where the FB-adapted risk premium λB ≡ λLB is given by

λBt := λ+ νBt = λ+
LB − aBt
a(Ta − t)

= λ+
a(BT −Bt) + (1− a)ε

a(Ta − t)
, 0 ≤ t ≤ T.

We apply the Itô formula to λB under FB and use the semi-martingale decomposition (67) (so
that λ and BT are treated as known constants) to obtain (58) with L = LB , as

dλBt = − 1
Ta − t

dBBt , λB0 = λ+
LB
aTa

. (69)

The returns process ξ in (22) satisfies dξt = dSt/(σSt), so from (68) its dynamics with respect
to FB are given by

dξt = λBt dt+ dBBt . (70)

Now consider the system (69) and (70) as a linear signal and observation system in a filtering
framework. To this end, define the conditional expectation and variance in (60) with L = LB :

λ̂Bt := E[λBt |F̂Bt ], V Bt := E[(λBt − λ̂Bt )2|F̂Bt ], 0 ≤ t ≤ T, (71)

where F̂B = (F̂Bt )0≤t≤T is the enlarged observation filtration, defined by (24) with L = LB :

F̂Bt := F̂t ∨ σ(LB), 0 ≤ t ≤ T,

and we have written λ̂LB ≡ λ̂B , V LB ≡ V B for brevity of notation.
To apply our variant of the Kalman-Bucy filter, Proposition 3, we also need the prior dis-

tribution of λB0 given F̂B0 . The prior distribution distribution of λ is given in Assumption 1.
Since BT and ε in (26) are independent of each other and of λ, then LB is also independent of
λ. Hence the distribution of λ given F̂B0 is the same as its distribution given F̂0, and using the
initial condition in (69), the probability law for λB0 given F̂B0 is therefore

Law(λB0 |F̂B0 ) = Law
(
λ+

LB
aTa

∣∣∣∣ F̂B0 ) = N
(
λ0 +

LB
aTa

, v0

)
, independent of BB .

Of course, since LB is F̂B0 -measurable, it acts as a constant in the above computation, and since
λ is independent of B and LB , it is independent of BB , and so λB0 is also independent of BB .

Now assume a 6= 1. We apply the filtering algorithm in Proposition 3 with L = LB to obtain
that λ̂B satisfies the analogue of (62) with L = LB , over the timeframe [0, T ]:

dλ̂Bt =
(
V Bt −

1
Ta − t

)
dB̂Bt , λ̂B0 = λ0 +

LB
aTa

, (72)

where B̂B ≡ B̂LB is an F̂B-Brownian motion, the innovations process, satisfying

dB̂Bt = dξt − λ̂Bt dt, (73)

and the conditional variance V B ≡ V LB satisfies the analogue of (65) with L = LB :

dV B

dt
=

2
Ta − t

V Bt −
(
V Bt
)2
, V B0 = v0.

Now define vB ≡ vLB by

vBt := V Bt −
1

Ta − t
, 0 ≤ t ≤ T.
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Then vB satisfies a Riccati equation of the same form as (3):

dvBt
dt

= −
(
vBt
)2
, vB0 = v0 −

1
Ta
, (74)

which has solution as given in (42). We also have V B ≥ 0 for all t ∈ [0, T ], which follows from
direct calculation and v0 > 0.

The SDE (72) for λ̂B ≡ λ̂LB then becomes

dλ̂Bt = vBt dB̂
B
t = vBt (dξt − λ̂Bt dt), λ̂B0 = λ0 +

LB
aTa

,

where we have used (73). Then the solution for λ̂B is

λ̂Bt = λ̂B0 +
∫ t

0

vBs dB̂
B
s , 0 ≤ t ≤ T, (75)

or, in terms of ξ, as given in equation (42) of the theorem.
Using (73), the stock price SDE dSt = σStdξt with respect to F̂B becomes

dSt = σSt(λ̂Bt dt+ dB̂Bt ), (76)

and the insider is investing in a stock following these dynamics using an F̂B-adapted strategy
θB .

From (74) and (75) we have E[
∫ T
0

(λ̂Bt )2dt|F̂L0 ] < ∞, a.s. From (74)–(76) we see that we
have recovered a model of the same form as that of Section 2, and the solution to the optimal
investment problem for a < 1 then follows from Theorem 1 with (F̂B , B̂B , λ̂B , vB) in place of
(F, B, δ,w), and the condition (41) on v0 given in the theorem for 0 < p < 1 ensures that the
solution is well defined.

Now suppose a = 1 and v0 > 0. Then L = BT and Ta = T , and the initial value of the
effective variance vBT is given by

vBT
0 = v0 −

1
T
.

Moreover, the integrability condition (66) fails to hold and we can only apply the filtering al-
gorithm up to some terminal time T ∗ < T , in accordance with Remark 1. Then the arguments
leading to (74)–(76) are applicable over the time interval [0, T ).

To establish the results for t = T , define

λ̂BT

T := lim
t→T

E[λBT
t |F̂

BT
t ] = lim

t→T
λ̂BT
t = lim

t→T

λ̂BT
0 + vBT

0 ξt

1 + vBT
0 t

=
λ̂BT

0 + vBT
0 ξT

1 + vBT
0 T

, (77)

which is well defined since ξt is continuous on [0, T ], and 1 + vBT
0 T = v0T 6= 0. Since B̂BT

t is
defined only for t ∈ [0, T ) we need to define B̂BT

T . To this end, define

B̂BT

T := lim
t→T

B̂BT
t = lim

t→T

[
ξt −

∫ t

0

λ̂BT
s ds

]
,

which is well defined due to continuity of ξt and λ̂Bt on [0, T ] (the latter due to (77)). From this
it follows that the relation

ξt =
∫ t

0

λ̂BT
s ds+ B̂BT

t , 0 ≤ t ≤ T,

as well as (75), both hold over [0, T ]. This, along with the Itô formula yields that λ̂BT is given
by

λ̂BT
t = λ0 +

BT
T

+
∫ t

0

vBT
s dB̂BT

s =
λ̂BT + vBT

0 ξt

1 + vBT
0 t

, 0 ≤ t ≤ T,
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with vBT given by

vBT
t =

vBT
0

1 + vBT
0 t

, 0 ≤ t ≤ T,

for t ∈ [0, T ]. This establishes that (74)–(76) do in fact hold over the entire time interval [0, T ]
and the rest of the proof of the optimal investment result goes through unaltered.

Finally, for the case a = 1 and v0 = 0, we require a different argument, similar to the one
in Pikovsky and Karatzas [27], which considers the optimal investment problem over some sub-
interval [0, T ∗], for some T ∗ < T . Indeed, note that when v0 = 0 there is no uncertainty in the
risk premium λ and we are back in the scenario considered by [27]. The risk premium λ is equal
to the constant λ0 and the returns process ξ in (22) satisfies

ξt = λ0t+Bt, 0 ≤ t ≤ T.

This implies that F̂ = F and also F̂BT = FBT . The decomposition of the Brownian motion B
under FBT is given by the Brownian bridge relation (51). Then, with respect to FBT the stock
price dynamics (21) are therefore given by

dSt = σSt(λBT
t dt+ dBBT

t ),

where the FBT -adapted risk premium process λBT is given by

λBT
t = λ0 +

BT −Bt
T − t

, 0 ≤ t ≤ T,

and we have used the fact that λ = λ0 for v0 = 0. For any T ∗ < T we have

E

[∫ T∗

0

(λBT
t )2dt

∣∣∣∣∣FBT
0

]
<∞, a.s.

Note also that we have the dynamics (with respect to FBT ) for λBT :

dλBT
t = − 1

T − t
dBBT

t .

In this case define the effective variance vBT by

vBT
t := − 1

T − t
, 0 ≤ t ≤ T ∗ < T,

and we then have

vBT
t =

vBT
0

1 + vBT
0 t

, 0 ≤ t ≤ T ∗ < T,

as well as

λBT
t = λBT

0 +
∫ t

0

vBT
s dBBT

s , 0 ≤ t ≤ T ∗ < T.

In other words we still have an optimal investment model of the form in Section 2 over the
sub-interval [0, T ∗], for any T ∗ < T .

We introduce a sequence of auxiliary optimal investment problems over a sub-interval [0, Tn],
for Tn := T − 1/n and n ∈ N. Define the value function

uBT
(x;Tn,FBT ) := sup

θBT ∈A(Tn;FBT )

E[Up(XBT

Tn )|FBT
0 ]. (78)

which is the maximum expected utility over the class A(Tn; FBT ) of FBT -adapted portfolios on
the subinterval [0, Tn]. We are within the framework of the classical theory covered by Theorem
1, and the value of the maximum utility for the problem in (78) is therefore easily read off from
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Theorem 1 with (FBT , BBT , λBT , vBT ) in place of (F, B, δ,w), and with Tn in place of T . We
then have

uBT
(x;Tn,FBT ) =

{
(xp/p)CBT

, p < 1, p 6= 0,
log x+KBT

/2, p = 0, (79)

where CBT
,KBT

are FBT
0 -measurable random variables given by

CBT
=

[
(1− Tn/T )p(1− qTn/T )1−p

]−1/2
exp

(
− q(λBT

0 )2Tn

2(1− qTn/T )

)
,

1
p

+
1
q

= 1,

KBT
=

(
(λBT

0 )2 − 1/T
)
Tn − log(1− Tn/T ),

and where we have used the explicit form for vBT
0 . The optimal FBT -adapted trading strategy

achieving the supremum in (78) is θBT ,∗, given by

θBT ,∗
t =

{
λBT
t [σ(1− p)(1 + qvBT

t (Tn − t))]−1, p < 1, p 6= 0,
λBT
t /σ, p = 0,

}
0 ≤ t ≤ Tn.

To conclude that the value function of the insider is as claimed, consider the following strategy
in A(T ; FB). Define a portfolio θBT ,n, for any Tn < T , by

θBT ,n
t := θBT ,∗

t 1{t≤Tn}, 0 ≤ t ≤ T, (80)

which corresponds to the strategy of investing optimally up to Tn then moving all the investments
to the risk-free asset and keeping them there until time T . Since this strategy is admissible for
the original problem over the interval [0, T ], we have that

uBT
(x;Tn,FBT ) ≤ uBT

(x;T,FBT ).

Therefore, taking limits in (79) yields

uBT
(x;T,FBT ) ≥ lim

n→+∞
uBT

(x;Tn,FBT ) =
{
∞, p ∈ [0, 1),
0, p < 0,

Since uBT
(x) ≤ +∞ for p ∈ (0, 1) and uBT

(x) ≤ 0 for p ∈ (−∞, 0), the result follows.

Proof of Theorem 3. The inside information is knowledge at time zero of the random variable
L = LS given by (27). We enlarge the filtration F by σ(LS). With respect to the enlarged
filtration FL = FLS ≡ FS the semimartingale decomposition of the Brownian motion B is
obtained from Example 2 and given by

Bt = BSt +
∫ t

0

νSs ds, 0 ≤ t ≤ T, (81)

where the information drift νLS ≡ νS is given by (54) and BLS ≡ BS is an FS-Brownian motion.
Using this decomposition and the stock price dynamics (21), we write the stock price SDE with
respect to FS as in (57), with L = LS , to give

dSt = σSt(λSt dt+ dBSt ), (82)

where the FS-adapted risk premium λS ≡ λLS is given by

λSt := λ+ νSt = λ+
LS − a(Bt + λT )

a(Ta − t)
= λ+

a(BT −Bt) + (1− a)ε
a(Ta − t)

, 0 ≤ t ≤ T.

Using (22) we can also write the information drift in terms of ξ and λ:

νSt =
LS − aξt
a(Ta − t)

− λ
(
T − t
Ta − t

)
, (83)
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which is more natural when we are considering inside information based on knowledge of ξT .
We apply the Itô formula to λS under FS and use the semi-martingale decomposition (81) to

obtain (58) with L = LS , as

dλSt = − 1
Ta − t

dBSt , λS0 = λ

(
1− T

Ta

)
+
LS
aTa

. (84)

The returns process ξ in (22) satisfies dξt = dSt/(σSt), so from (82) its dynamics with respect
to FS are given by

dξt = λSt dt+ dBSt . (85)

Now consider the system (84) and (85) as a linear signal and observation system in a filtering
framework. To this end, define the conditional expectation and variance in (60) with L = LS :

λ̂St := E[λSt |F̂St ], V St := E[(λSt − λ̂St )2|F̂St ], 0 ≤ t ≤ T, (86)

where F̂S = (F̂St )0≤t≤T is the enlarged observation filtration, defined by (24) with L = LS :

F̂St := F̂t ∨ σ(LS), 0 ≤ t ≤ T,

and we have written λ̂LS ≡ λ̂S , V LS ≡ V S for brevity of notation.
To apply our variant of the Kalman-Bucy filter, Proposition 3, we also need the prior dis-

tribution of λS0 given F̂S0 . The prior distribution distribution of λ is given in Assumption 1.
However, the distribution of λ conditional on F̂S0 is altered from that in Assumption 1 because
the inside information (related as it is to ST ) contributes to the estimation of λ. We have the
following lemma.

Lemma 2. Conditional on F̂S0 , λ is Gaussian, with

E[λ|F̂S0 ] =
λ0 + v0T (LS/aTa)

1 + v0T (T/Ta)
, var[λ|F̂S0 ] =

v0

1 + v0T (T/Ta)
. (87)

Proof. For two independent Gaussian random variablesX and Y distributed according to N(µX , σ2
X)

and N(µY , σ2
Y ) respectively, we have

E[X|X + Y ] = µX +
σ2
X

σ2
X + σ2

Y

(X + Y − µX − µY ), (88)

and

var[X|X + Y ] =
σ2
Xσ

2
Y

σ2
X + σ2

Y

. (89)

We have, using ξT = BT + λT ,

E[λ|F̂S0 ] = E[λ|LS ]
= E[λ|a(BT + λT ) + (1− a)ε]

=
1
aT

E[aλT |aλT + aBT + (1− a)ε].

Applying (88) with X = aλT ∼ N(aλ0T, a
2v0T

2), Y = aBT + (1 − a)ε ∼ N(0, a2Ta), we obtain
the first equality in (87). Similarly, using (89) we obtain the second equality in (87).

Using this lemma we can write down the initial distribution of λS0 given F̂S0 . Using the formula
for λS0 in (84), we find that, conditional on F̂S0 , λS0 is Gaussian according to Law(λS0 |F̂S0 ) =
N(λ̂S0 , V

S
0 ), with

λ̂S0 =
λ0(1− T/Ta) + (1 + v0T )(LS/(aTa))

1 + v0T (T/Ta)
, V S0 =

(1− (T/Ta))2v0

1 + v0T (T/Ta)
, (90)
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which defines the prior distribution of the signal process λS .
Now assume a 6= 1. We apply the filtering algorithm in Proposition 3 with L = LS to obtain

that λ̂S satisfies the analogue of (62) with L = LS , over the timeframe [0, T ]:

dλ̂St =
(
V St −

1
Ta − t

)
dB̂St , λ̂S0 =

λ0(1− T/Ta) + (1 + v0T )(LS/(aTa))
1 + v0T (T/Ta)

, (91)

where B̂S ≡ B̂LS is an F̂S-Brownian motion, the innovations process, satisfying

dB̂St = dξt − λ̂St dt, (92)

and the conditional variance V S ≡ V LS satisfies the analogue of (65) with L = LS :

dV S

dt
=

2
Ta − t

V St −
(
V St
)2
, V S0 =

(1− (T/Ta))2v0

1 + v0T (T/Ta)
.

Now define vS ≡ vLS by

vSt := V St −
1

Ta − t
, 0 ≤ t ≤ T.

Then vS satisfies a Riccati equation of the same form as (3):

dvSt
dt

= −
(
vSt
)2
, vS0 =

(1− (T/Ta))2v0

1 + v0T (T/Ta)
− 1
Ta
, (93)

which has solution as given in (44). It is easy to see that we have V S ≥ 0 for all t ∈ [0, T ].
The SDE (91) for λ̂S ≡ λ̂LS then becomes

dλ̂St = vSt dB̂
S
t = vSt (dξt − λ̂St dt), λ̂S0 =

λ0(1− T/Ta) + (1 + v0T )(LS/(aTa))
1 + v0T (T/Ta)

,

where we have used (92). Then the solution for λ̂S is

λ̂St = λ̂S0 +
∫ t

0

vSs dB̂
S
s , 0 ≤ t ≤ T, (94)

or, in terms of ξ, as given in equation (44) of the theorem.
With respect to F̂S the stock price SDE dSt = σStdξt becomes, on using (92),

dSt = σSt(λ̂St dt+ dB̂St ), (95)

and the insider is investing in a stock following these dynamics using an F̂S-adapted strategy θS .
From (93) and (94) we have E[

∫ T
0

(λ̂St )2dt|F̂S0 ] < ∞ a.s. From (93)–(95) we see that we
have recovered a model of the same form as that of Section 2, and the solution to the optimal
investment problem for a < 1 then follows from Theorem 1 with (F̂S , B̂S , λ̂S , vS) in place of
(F, B, δ,w), and the condition (43) on v0 given in the theorem for 0 < p < 1 ensures that the
solution is well defined.

Now suppose a = 1. Then from Example 2, the stock price SDE with respect to the enlarged
filtration FST is

dSt = σSt(λST
t dt+ dBST

t ), (96)

where λST is the FST -adapted process given by

λST
t =

ξT − ξt
T − t

, 0 ≤ t ≤ T.

But this is also F̂ST -adapted, so it immediately follows that

λ̂ST
t = λST

t =
ξT − ξt
T − t

, 0 ≤ t ≤ T.
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This suggests that we do not need any filtering procedure to estimate the risk premium λST

conditional on F̂ST when a = 1. This is in fact the case, as we shall see shortly. Note also that,
on setting a = 1 in Lemma 2 we have

E[λ|F̂ST
0 ] =

λ0 + v0ξT
1 + v0T

= λ̂T , var[λ|F̂ST
0 ] =

v0

1 + v0T
= vT .

In other words, knowing the value of the terminal stock price at time zero immediately gives
the insider the best estimate of λ that would be obtained from observing the stock price over
[0, T ]. This corresponds to the notorious result that to estimate λ from the returns process
ξt = λt + Bt, using continuous observations over [0, T ], the only relevant observations are the
initial and final ones: the best estimate of λ from observations of (ξt)0≤t≤T is λ̄(T ) := ξT /T .
This is the underlying reason for the notorious difficulty of estimating the mean return of a
log-Brownian stock, as discussed in Rogers [28], for example.

The returns process ξ satisfies dξt = dSt/(σSt), so from (55) its dynamics with respect to
FST are

dξt = λST
t dt+ dBST

t , (97)

which implies that BST is F̂ST -adapted, given that λST = λ̂ST is F̂ST -adapted. We now show
that we have BST = B̂ST , where B̂ST is an F̂ST -Brownian motion.

From (84), for a = 1 we have dynamics for the signal process λST given by

dλST
t = − 1

T − t
dBST

t , (98)

so using Remark 1 we apply the filtering algorithm over [0, T ), to obtain that the SDE for ξ in
the observation filtration F̂ST is

dξt = λ̂ST
t dt+ dB̂ST

t , (99)

for all t ∈ [0, T ). Equating (97) and (99) gives P [BST
t = B̂ST

t , t ∈ [0, T )] = 1. Define B̂ST

T :=
lim supt→T B̂

ST
t . Then by continuity of Brownian motion we have P [BST

t = B̂ST
t , t ∈ [0, T ]] = 1

and therefore the stock price follows (96) in the observation filtration, as claimed. As filtering is
redundant, we drop the “hat” notation in the rest of the proof.

We are now in a similar scenario to that in the last part of the proof of Theorem 2, where
we show that there is a utility explosion by using a sequence of auxiliary optimal investment
problems over a sub-interval [0, Tn], for Tn := T − 1/n and n ∈ N. Define the value function

uST
(x;Tn,FST ) := sup

θST ∈A(Tn;FST )

E[Up(XST

Tn )|FST
0 ]. (100)

The agent is investing in a stock with dynamics given by (96), and from the dynamics (98) of
λST we may write

λST
t = λST

0 +
∫ t

0

vST
s dBST

t , 0 ≤ t ≤ Tn,

where we have written

vST
t = − 1

T − t
=

vST
0

1 + vST
0 t

, 0 ≤ t ≤ Tn,

with vST
0 = −1/T . The solution to the investment problem (100) then follows from Theorem 1

with (FST , BST , λST , vST ) in place of (F, B, δ,w), and with Tn in place of T . We then have

uST
(x;Tn,FST ) =

{
(xp/p)CST

, p < 1, p 6= 0,
log x+KST

/2, p = 0, (101)

where CST
,KST

are given by

CST
=

[
(1− Tn/T )p(1− qTn/T )1−p

]−1/2
exp

(
− q(λST

0 )2Tn

2(1− qTn/T )

)
,

KST
=

(
(λST

0 )2 − 1/T
)
Tn − log(1− Tn/T ),
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and where we have used the explicit form for vST
0 . The optimal trading strategy achieving the

supremum in (100) is θST ,∗, given by

θST ,∗
t =

{
λST
t [σ(1− p)(1 + qvST

t (Tn − t))]−1, p < 1, p 6= 0,
λST
t /σ, p = 0,

}
0 ≤ t ≤ Tn.

To conclude that the value function of the insider is as claimed, consider the following strategy
in A(T ; FS). Follow the optimal strategy of the auxiliary problem until time Tn, then transfer
all wealth from the risky asset to the risk-free one. Denote this strategy by θST ,n, given by

θST ,n
t := 1{t≤Tn}θ

ST ,∗, 0 ≤ t ≤ T.

Since this strategy is admissible for the original problem over the interval [0, T ], we have that

uST
(x;Tn,FST ) ≤ uST

(x;T,FST ).

Therefore, taking limits in (101) yields

uST
(x;T,FST ) ≥ lim

n→+∞
uST

(x;Tn,FST ) =
{
∞, p ∈ [0, 1),
0, p < 0,

Since uST
(x) ≤ +∞ for p ∈ (0, 1) and uST

(x) ≤ 0 for p ∈ (−∞, 0), the result follows.

8 Conclusion

We have studied the effect of insider information on the estimation of an unknown stock price
drift and on the optimal strategy to maximise expected utility of wealth, in a log-Brownian
setting. We showed that filtering with additional information leaves the Kalman-Bucy equations
intact, with the exception of modified initial conditions. Applying this filtering algorithm to
the scenario where an insider estimates the unknown drift parameter based on his anticipative
information (either Brownian or stock price-based) and stock return observations, we found
that the insider has an advantage over the regular trader in all cases. Anticipative stock price
information is superior to anticipative Brownian information in the sense that the variance of the
estimate of the unknown drift is lower. This ultimately leads to an optimal trading strategy that
is generally more aggressive in terms of stock holdings. In the case where the insider possesses
precise knowledge of the future stock price, the maximal expected utility blows up, This is to
be compared with the classical scenario considered in Pikovsky and Karatzas [27], in which the
stock price drift is known with certainty, and in which precise information of any kind leads to
unbounded utility.
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filtrations: exemples et applications, T. Jeulin and M. Yor, eds., vol. 1118 of Lecture Notes in
Mathematics, Springer-Verlag, Berlin, 1985, pp. 15–35.

[19] I. Karatzas, Lectures on the mathematics of finance, vol. 8 of CRM Monograph Series, American
Mathematical Society, Providence, RI, 1997.

[20] A. Kohatsu-Higa and A. Sulem, Utility maximization in an insider influenced market, Math.
Finance, 16 (2006), pp. 153–179.

[21] A. Kyle, Continuous auctions and insider trading, Econometrics, 53 (1985), pp. 1315–1336.

[22] P. Lakner, Optimal trading strategy for an investor: the case of partial information, Stochastic
Process. Appl., 76 (1998), pp. 77–97.

[23] R. S. Liptser and A. N. Shiryaev, Statistics of random processes. I: General theory, Springer-
Verlag, Berlin, second ed., 2001.

[24] R. Mansuy and M. Yor, Random times and enlargements of filtrations in a Brownian setting,
vol. 1873 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2006.

[25] M. Monoyios, Utility-based valuation and hedging of basis risk with partial information. Submitted,
2009.

[26] H. Pham and M.-C. Quenez, Optimal portfolio in partially observed stochastic volatility models,
Ann. Appl. Probab., 11 (2001), pp. 210–238.

[27] I. Pikovsky and I. Karatzas, Anticipative portfolio optimization, Adv. in Appl. Probab., 28
(1996), pp. 1095–1122.

[28] L. C. G. Rogers, The relaxed investor and parameter uncertainty, Finance Stoch., 5 (2001),
pp. 131–154.

[29] J. Xiong and X. Y. Zhou, Mean-variance portfolio selection under partial information, SIAM J.
Control Optim., 46 (2007), pp. 156–175.

[30] M. Yor, Some aspects of Brownian motion. Part II, Lectures in Mathematics ETH Zürich,
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