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Abstract 18 

Purpose Past metal mining has left a legacy of highly contaminated sediments representing a significant diffuse 19 

source of contamination to water bodies in the UK and worldwide. This paper presents the results of an 20 

integrated approach used to define the role of sediments in contributing to the dissolved lead (Pb) loading to 21 

surface water in a mining-impacted catchment.  22 

Materials and methods The Rookhope Burn catchment, northern England, UK, is affected by historical mining 23 

and processing of lead ore. Quantitative geochemical loading determinations, measurements of interstitial water 24 

chemistry from the stream hyporheic zone, and inundation tests of bank sediments were carried out. 25 

Results and discussion High concentrations of Pb in the sediments from the catchment, identified from the 26 

British Geological Survey (BGS) Geochemical Baseline Survey of the Environment (GBASE) data, demonstrate 27 

both the impact of mineralisation and widespread historical mining. The results from stream water show that the 28 

stream Pb load increased in the lower part of the catchment, without any apparent or significant contribution of 29 

point sources of Pb to the stream. Relative to surface water, the interstitial water of the hyporheic zone 30 

contained high concentrations of dissolved Pb in the lower reaches of the Rookhope Burn catchment, 31 

downstream of a former mine washing plant. Concentrations of 56 μg l-1 of dissolved Pb in the interstitial water 32 

of the hyporheic zone may be a major cause of the deterioration of fish habitats in the stream and be regarded as 33 

a serious risk to the target of good ecological status as defined in the European Water Framework Directive. 34 

Inundation tests provide an indication that bank sediments have the potential to contribute dissolved Pb to 35 

surface water.  36 

Conclusions The determination of Pb in the interstitial water and in the inundation water, taken with water Pb 37 

mass balance and sediment Pb distribution maps at the catchment scale, implicate the contaminated sediments as 38 

a  large Pb supply to surface water. Assessment of these diffuse contaminant sources is critical for the successful 39 

management of mining-impacted catchments. 40 
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1 Introduction 46 

The importance of diffuse pollution sources in abandoned mine-impacted river catchments and their potential to 47 

affect water quality and ecology has been fully recognised (Caruso and Ward 1998; Kimball et al. 2002; 48 

Balistrieri et al. 2007; Mayes et al. 2008; Mighanetara et al. 2009; Banks and Palumbo-Roe 2010; Gozzard et al. 49 

2011). These dispersed sources of acidity and dissolved metal load to surface water arise from seepage and 50 

runoff from mine waste, contaminated groundwater inputs through the hyporheic zone and remobilization of 51 

previously deposited metal-rich particles in stream channels and floodplains. As such, they pose considerable 52 

barriers to compliance with the demands of the EU Water Framework Directive (WFD) and represent a major 53 

management issue for the mining industry worldwide (Baresel et al. 2007; Coetser et al. 2007). Failing to 54 

account for these dispersed sources of pollutant loading in a catchment can severely reduce the effectiveness of 55 

point source remediation directed to the treatment of mine water discharges. 56 

Past mining operations in England and Wales (UK) have left a substantial legacy of highly contaminated 57 

sediments in rivers that extend many kilometres downstream of the mines (Macklin et al. 2006). The erosion, 58 

transport and deposition of historically contaminated alluvium are very important sources of sediment-borne 59 

metals in all mining-affected river systems in England and Wales (Hudson-Edwards et al. 2008). Re-suspension 60 

of these sediments during floods has the potential to cause additional harm to aquatic life, and to contaminate 61 

floodplain soils used for agriculture. Furthermore, the changes in water chemistry following the remediation of 62 

mine drainage sources could result in an enhanced release and remobilisation of metals from the sediments 63 

(Butler 2009). However, few attempts have been made to determine the fluxes of metals to surface water 64 

associated with contaminated sediments. This paper describes the role of sediments in contributing to the 65 

loading of dissolved Pb to surface water in the Rookhope catchment, northern England. The catchment has been 66 

affected by historical mining and processing of lead (Pb) and zinc (Zn) ore and is representative of several 67 

catchments affected by the environmental legacy related to mining in the Northern Pennine Orefield, northern 68 

England. The catchment has recently been highlighted in a national review as one of the most severely mine-69 

impacted (in terms of water quality) in England and Wales (Mayes et al. 2009). 70 

 71 

In order to estimate the sediment contribution to the diffuse dissolved Pb loading in the catchment waters, the 72 

investigation consisted of three parts: i) quantification of the diffuse dissolved metal load along the stream using 73 

a chemical mass balance approach; ii) collection of evidence of the sediment contribution to the diffuse load by 74 

sampling bed sediments and sediment interstitial water in the hyporheic zone of the stream; and iii) laboratory 75 

inundation tests of the river bank sediments.  76 

 77 

2 Study site 78 

The Rookhope Burn catchment in County Durham, Weardale, occupies an area in the order of 37 km2. The 79 

southerly flowing stream contributes a discharge ranging from 100 to 2300 l s-1 to the River Wear at Eastgate 80 



(Fig. 1). The annual effective rainfall is in the order of 1000 mm, with monthly contributions varying between 81 

53 and 116 mm. Flow conditions in the stream give rise to a flashy hydrograph and storm events are transmitted 82 

rapidly through the catchment.  83 

 84 

The upper part of the Rookhope Burn catchment has been incised in Namurian sandstones and mudstones of the 85 

Stainmore Formation (Yoredale Group). Its source is in grouse moorlands at an elevation of about 600 m 86 

Ordnance Datum (OD). The middle portion of the catchment comprises a relatively treeless landscape 87 

characteristic of the mining heritage of the area and is largely utilised for hill farming. The bedrock in this part 88 

of the catchment comprises the interbedded shales and sandstones of the lower part of the Stainmore Formation. 89 

Evidence of the former mining comes from: the scars of abandoned quarries, formerly exploited for iron ore and 90 

building stone; galena and fluorspar mines, that occur in the rakes and flats; piles of mine waste; abandoned 91 

mine buildings; and former tailings lagoons. The mine workings extend into the lower part of the catchment, but 92 

here they are interspersed with karst features including dolines and springs, which have developed in the 93 

limestones of the basal part of the Stainmore Formation. The more resistant Alston Formation bedrock (basal 94 

formation of the Yoredale Group) gives rise to a number of waterfalls towards the base of the catchment, which 95 

contrasts with the karstic nature of the till-covered limestones immediately to the north.  96 

 97 

Superficial deposits and mine-reworked sediments are distributed widely throughout the channel, with only 98 

local outcrops of bedrock in the bed of the stream. To date, no detailed geomorphological studies of the 99 

catchment have been undertaken. However, both field evidence and studies of historic maps of an adjacent 100 

catchment (Swinhope Burn; Warburton et al. 2003) would suggest that stretches of the stream channel with a 101 

low gradient may change in response to floods and changes in sediment supply. There is also evidence of bank 102 

instability alongside specific stretches of the stream. Another source of potential instability is mine outbursts, 103 

resulting from underground collapse. Sediment mobilisation can be important in exposing fresh minerals to 104 

weathering (Hudson-Edwards et al. 2008)  105 

 106 

3 Methods 107 

3.1 Surface water sampling and mass balance calculations  108 

The surface water data include flow monitoring and chemical data for inflows and instream waters throughout 109 

the catchment (Fig. 1). Full description of the water sampling can be found in Banks and Palumbo-Roe (2010). 110 

Results from Banks and Palumbo-Roe (2010) are supplemented by a further sampling event (April 2009) and re-111 

analysis of waters for Pb by Inductively Coupled Plasma Atomic Mass Spectrometry (ICP-MS). Re-analysis 112 

was undertaken as previous results by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) 113 

were reported at or around the ICP-AES method detection limit (0.010 mg l-1). Chemical data and major 114 

physico-chemical parameters were used to calculate saturation indices (SI) for relevant mineral phases using 115 

PHREEQC (Parkhurst and Appello 1999) and the WATEQ4f database (Ball and Nordstrom 1991). 116 

The surface water metal load distribution along the Rookhope Burn was calculated from the product of the flow 117 

and element concentration.  Sources and sinks of dissolved Pb along the Rookhope Burn were determined using 118 

a mass balance approach. A mass balance determines the element that is gained or lost in a stream stretch by 119 

comparing the amount of the element that enters a stream segment with the amount that leaves the same 120 



segment, based on the assumption that the load at the end of a stream segment includes the load from the point 121 

upstream plus the contribution from all surface and subsurface inflows along the stream segment.  122 

 123 

3.2 Sediments and sediment interstitial water sampling and analysis 124 

The sampling locations were selected from the findings of the first phase of investigation (Banks and Palumbo-125 

Roe 2010). Specific features associated with these locations are summarised in Table 1. Bed sediment samples 126 

were collected along the Rookhope Burn (see Fig. 1) during the week of May 11-15 2009, during low river flow 127 

conditions. Points HZ-0 and HZ-A0 represent two sampling sites not impacted by mining activities and each is 128 

characterised by a different underlying geology. Sediment chemical analysis on the <150μm fraction was carried 129 

out using mixed acid digestion (HF/HClO4/HNO3) and ICP-AES. The pH was analysed by a CaCl2/slurry 130 

method, organic matter content by loss-on-ignition (LOI) at 450°C, and mineralogical analysis using X-ray 131 

Diffraction (XRD).  132 

At each location, the interstitial water from the hyporheic zone of the stream was collected using a low-flow 133 

inertial pump from a 50 mm diameter stainless-steel piezometer inserted 30 cm into the streambed sediments. 134 

The overlying surface water was also sampled at each sampling point. 0.45 m filtered water samples, acidified 135 

to 1% HNO3, were analysed by ICP-MS. The water pH and Eh were measured in the field using hand-held 136 

Hannah combination HI 9125 meters with associated probes.  The Pt electrode Eh measured values were 137 

corrected to the Standard Hydrogen Electrode. 138 

Additionally, 41 sediment Pb analyses were retrieved from the British Geological Survey (BGS) Geochemical 139 

Baseline Survey of the Environment (GBASE) database. Sediments were collected from the active drainage 140 

channel of first or second order streams as part of a national geochemical survey at a sampling density of one 141 

sample every 1-2 km2 on average. G-BASE field procedures and sediment analysis are documented in Johnson 142 

et al. (2005). 143 

 144 

3.3 Bank sediment inundation test 145 

Duplicate samples of bank sediments were collected for sites HZ-11, HZ-16 and HZ-23. The Rookhope Burn 146 

stream water collected at the footbridge in the Rookhope village (co-ordinates 393750 542840) at the time of the 147 

sediment sampling was used to flood the sediments. The organic carbon concentration of the stream water 148 

sample, measured as non-purgeable organic carbon, was 2.57 mg l-1, the pH was 7.82 and the Pb concentration 149 

was 0.7 μg l
-1

.  150 

About 50 g of each sediment sample was submerged with 500 ml of Rookhope stream water and inundated for a 151 

3 month (88 day) period in a laboratory-scale inundation test.  Filtered (0.45 m) samples of the overlying water 152 

column were collected at 1, 7, 28 60 and 88 days of inundation after gently stirring the inundation water without 153 

disturbing the sediment at the interface. These were analysed for major and trace anions and cations by ICP-MS. 154 

The pH and Eh of the inundation water were measured at the same time. The porewater for each replicate was 155 

collected for analysis by centrifugation at 3000 G at the conclusion of the 88 day inundation period. 156 

 157 

4 Results and discussion 158 

4.1 Surface water lead load distribution  159 



Fig. 2 shows the Pb concentration profile along Rookhope Burn as dissolved Pb concentration in the surface 160 

water (µg l-1) and Pb load (mg s-1) for three sampling events. There were large differences in concentrations in 161 

the three sampling events, but similar patterns across the catchment. The greatest increase in the dissolved Pb 162 

concentration (see Fig. 2) occurred from the headwaters to point 3, downstream of Grove Rake Mine (the last 163 

lead and fluorspar workings to close in 1999; Johnson and Younger 2002). Farther down the catchment, 164 

dissolved Pb displayed lower concentrations.  165 

The Pb load profile displayed discrete peaks, for all three sampling events, partly in response to visible point 166 

contributions from mine waters and seepage from mine spoils (see Fig. 2). In contrast with a commonly 167 

observed attenuation of dissolved metals downstream from the pollution source – due to dilution, dispersion, 168 

precipitation and adsorption processes (Chapman et al. 1983) – the Pb load steadily increased, generally from 169 

point 16 towards the lower part of the catchment. From sampling points 23 to 25, mass balance calculations 170 

(Table 2) indicated a net load increase ranging from 27% to 97% in the three sampling events (the variability of 171 

the load increase is attributed to antecedent conditions prior to the sampling events, with greater load increases 172 

occurring in response to rainfall events). In this lower part of the catchment, the influence of tributaries or point 173 

sources was found negligible in terms of metal load contribution, strongly suggesting a dispersed input of Pb. 174 

 175 

4.2 Lead concentrations in bed sediments  176 

The sediment mineralogical composition was dominated by the presence of quartz (c. 58–76%), with additional 177 

contributions from mica (c. 9–14%), fluorite (c. 2–12%), kaolin (c. 2–5%) and chlorite (c. 2–3%). Bank and bed 178 

sediment samples at location HZ-21 and HZ-23 were noticeably different, because of the presence of a small 179 

percentage (<3%) of calcite, cerussite (PbCO3), dolomite, galena (PbS), and sphalerite (ZnS). The Pb carbonate 180 

mineral phase cerussite is a common weathering product of Pb-sulphides in high pH/pCO2 limestone-dominated 181 

source terrains, as evidenced by Hudson-Edwards et al. (1996). 182 

The pH of the sediment samples ranged between 5.90 and 7.34. The organic matter content, as measured by 183 

LOI, was low, with concentrations ranging between 3.0% and 4.2%. The two control sites – point HZ-0 and 184 

point HZ-A0, located, respectively, in the head of the Rookhope catchment and in the lower part of the 185 

catchment in a tributary not impacted by mining – had Pb concentrations of 97 and 825 mg kg-1, respectively 186 

(Table 3). Lead concentrations in the sediment samples along the burn increased from 1610 to 15,350 mg kg-1. 187 

Commonly, sediment contamination is noticeable immediately downstream from discrete point sources and 188 

decreases in a downstream direction, due to the effect of hydraulic sorting and dilution by uncontaminated 189 

sediment from tributaries (Pulford et al. 2009).  However, in the Rookhope catchment, as illustrated in the 190 

GBASE sediment Pb distribution map (see Fig. 1), many tributaries, some of which are unaffected by mining, 191 

had elevated Pb contents in the sediments. The observed increased concentrations in a downstream direction, 192 

therefore, reflected both the impact of the widespread historical mining and of mineralisation. The high Pb 193 

concentrations at the control site HZ-A0 can also be related to high background values of mineralised areas.  194 

 195 

4.3 Lead concentrations in the interstitial water of the hyporheic zone 196 

The pore water from the stream hyporheic zone had near neutral pH except for site HZ-0, where the low pH of 197 

4.83 reflected the peaty upland location and the more acidic bed sediments (Table 3). Full chemical analysis and 198 

selected physico-chemical parameters of the hyporheic zone pore water and overlying surface water are reported 199 



in Online Resource 1. Redox measurements indicated prevailing oxidising conditions in the hyporheic zone at 200 

the time of the sampling. This is common for bed sediments in upland reaches, where surface water–hyporheic 201 

zone exchanges are maximised due to sediment with larger particle sizes and hence higher permeability, 202 

compared to lowland rivers (Bencala 2011).   203 

Lower concentrations of Zn together with Mn and Fe were measured in the hyporheic zone compared to surface 204 

water (Online Resource 1). This has been attributed to natural attenuation of dissolved Zn through a mechanism 205 

of precipitation/adsorption onto newly-formed manganese (Mn) and iron (Fe) oxyhydroxides on the stream bed 206 

sediments of the Rookhope Burn (Palumbo-Roe et al. 2010). Vice versa, dissolved Pb concentrations were 207 

enriched in the hyporheic zone compared to surface water and mine water samples (Fig. 3), clearly showing a 208 

distinct pattern from dissolved Mn, Fe and Zn, and possibly reflecting different metal–sediment association 209 

and/or release models. Because both surface water and mine water Pb concentrations were lower than those in 210 

the hyporheic zone, only the contaminated sediments could act as a source of dissolved Pb and account for the 211 

observed metal enrichment in the interstitial water of the hyporheic zone.  212 

 213 

Many studies of mining-affected river sediments, both in UK and elsewhere in the world (Filipek et al. 1981; 214 

Macklin and Dowsett 1989; Byrne et al. 2010), highlight the association of Pb with Mn and Fe oxyhydroxides 215 

and indicate remobilisation of sediment-bound metals as governed by chemical sorption-desorption processes or 216 

reductive dissolution. The hyporheic zone, in particular, can be characterised by steep physico-chemical 217 

gradients highly favouring biogeochemical processes including oxidation-reduction (Benner et al. 1995). 218 

However, in this study the hyporheic zone redox conditions were shown to be too high for the Mn and Fe 219 

oxyhydroxides to become unstable (Online Resource 1) and reductive dissolution cannot be invoked to explain 220 

the high pore water Pb concentrations (up to 56 μg l-1) at point HZ-21 and HZ-23 in the lower reaches of the 221 

Rookhope catchment, in contrast to the control sites and upstream points HZ-11 and HZ-16 (<9 μg l-1). The lack 222 

of a similar enrichment in dissolved Mn and/or Fe in the pore water supports this conclusion.  223 

The pore water Pb concentration of HZ-21 and HZ-23 was found close to saturation with respect to cerussite 224 

(SIPbCO3= -0.56 and -0.77 for HZ-21 and HZ-23, respectively) and the mineral phase was identified by 225 

mineralogical analysis, suggesting that the Pb carbonate mineral may control the pore water concentration.  226 

Physical factors in affecting solute composition, such as the importance of particle size, need to be evaluated in 227 

future work.  228 

 229 

The hyporheic water composition can affect downstream water quality and be significant at the catchment scale 230 

providing that sufficient connectivity between surface water and the hyporheic zone exists to allow stream–231 

hyporheic solute exchanges (Harvey and Fuller 1998).  Stream water infiltrates the shallow channel bed and 232 

banks, flows following the general gradient, and then returns to the stream with flow patterns variable in time 233 

and scale depending on variation in stream and catchment geomorphic and geologic features, such as hydraulic 234 

conductivity, alluvial volume, and streambed slope (Bencala 1984). In the case of our study catchment, the 235 

poorly sorted sandy, gravelly stream sediment would favour hyporheic flows and solute exchanges. 236 

 237 

4.4 Lead behaviour during river bank sediment flooding 238 



Bank sediments from sites HZ-11, HZ-16 and HZ-23 had total Pb concentrations of 1350, 975 and 29,515 mg 239 

kg-1, respectively. The rate of release curve for Pb during the 88 days sediment flooding is shown in Fig. 4, with 240 

the Rookhope Burn Pb concentration used as inundation water at time zero as the starting point.  The overlying 241 

water column remained oxidised during the entire period of inundation. The Eh increased with time and ranged 242 

between c. 465-550, 410-560 and 425-535 mV, for samples HZ-11, HZ-16 and HZ-23, respectively.  The pH of 243 

the inundation water was immediately reduced, by c. 0.2 to 0.8 pH units, by the introduction of the Rookhope 244 

stream sediments over the first 24 hours of the study.  Over the first 28 days of the inundation test, the pH of the 245 

flood water became more acidic, in general reaching a plateau after a 28 day inundation period.  Sample HZ-11 246 

had the greatest impact on the pH of the Rookhope stream water, reducing the pH by the largest amount, c. 1 pH 247 

unit in total, and maintaining a solution pH below 7 after the 28 day inundation period. Samples HZ-16 and HZ-248 

23 maintained a pH above 7 throughout the inundation period.  249 

The laboratory simulated flooding of river bank sediment samples from sites HZ-11, HZ-16 and HZ-23 caused a 250 

substantial increase in dissolved Pb in the overlying water column during the first day of inundation. Sediment 251 

from site HZ-23 continued to release Pb throughout. The final Pb average concentration in the water column for 252 

this sampling point was 395±12.5 μg l-1. For the other sediment samples, after an initial solubilisation, a distinct 253 

dip in the amount of dissolved Pb was observed at around 28 to 60 days, after which point a further 254 

solubilisation of Pb was noted, reaching 1.1±0.1 μg l-1 for Point HZ-11 and 2.05±0.05 μg l-1 for Point HZ-16 at 255 

the end of the inundation period. The sediment pore water sampled at the end of the experiment contained Pb 256 

concentrations of 15±0.01 μg l-1 for Point HZ-11, 5.35±0.6 μg l-1 for Point HZ-16 and 491±0.1 μg l-1 for Point 257 

HZ-23. XRD evidence of the presence of cerussite in the sediment from sampling site HZ-23 coupled with the 258 

saturation index (close to saturation with respect to cerussite), suggested that this phase may control Pb 259 

solubility during the sediment flooding.  260 

It is worth noticing that temporal changes in surface water pH can be substantial in metal mining-impacted 261 

catchments, as shown in the case of the adjacent Allen catchment with a fall in instream pH of approximately 1 262 

unit between baseflow and highflow conditions (Gozzard et al. 2010), and of the Afon Twymyn in central 263 

Wales, UK, with a decreased river water pH during rain-fed flood events (Byrne et al. 2009). When estimating 264 

sediment bound-metal mobilisation during flooding, this potential decrease in surface water pH should be 265 

accounted for, due to the inverse pH-dependency of solubility of metal-bearing phases. The results of the 266 

inundation test using baseflow river water samples may underestimate the potential Pb remobilisation under 267 

field conditions. Nevertheless, these results demonstrate that the sediments can act as a significant source of 268 

dissolved Pb to the overlying water column through a diffusion mechanism, simulated in the experiment, driven 269 

by the element concentration gradients across the sediment–water interface.   270 

 271 

5 Conclusions 272 

In contaminated rivers and streams, reductions in surface water contamination due to metal dilution and 273 

dispersal are often observed downstream of point sources of contamination, particularly in circum-neutral and 274 

alkaline waters, such as the Rookhope Burn waters, where natural attenuation processes through chemical 275 

sorption or co-precipitation of metals like Pb are enhanced. Deviations from these decreasing trends downstream 276 

of point source pollution are due to inputs of contaminants from diffuse sources. This is the case in the 277 



Rookhope Burn where the Pb load increased steadily down the catchment, without any apparent contribution of 278 

point sources of Pb to the stream.  279 

The widespread contaminated bed sediments and hyporheic zone Pb-enriched pore water are considered 280 

important as a source of Pb to the water column. This study also shows the potential for diffuse flux of Pb out of 281 

the contaminated bank sediments during simulated flooding or stagnant conditions.  282 

Characterising these diffuse contaminant sources is important for managing basins to achieve good ecological 283 

status and to optimise remediation strategies. Despite the relatively low Pb concentrations in surface water, the 284 

measured concentrations in the sediment interstitial water introduce toxic levels into the habitat for aquatic 285 

invertebrates and may thereby be a major cause of the deterioration of fish habitats in the stream, representing a 286 

significant barrier to the target of good ecological status as defined in the European Water Framework Directive. 287 

 288 
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Table 1 Hydrological setting of the sampling locations, Rookhope Burn catchment, northern England, UK 372 

Locality 

Reference 

National Grid 

Reference 

Description 

HZ-0 387597-545057 Peat upland. Boulders in river bed. 

HZ-11 391661-542747 Alluvium. Broad stretch of river, meandering. Cobble and boulder grade gravel. 

HZ-16 392747-542957 Alluvium. Straight stretch of river; minor steps in channel cobbles and boulders. 

HZ-21 393809-542627 Alluvium over till. Downstream of Boltsburn Mine washing plant. Cobbles and 

boulders in bed. Anthropogenic influence evident. Broad. 

HZ-23 394203-542016 Alluvium over till. Channel more constrained. Tree cover. Boulders in bed. 

HZ-A0 394410-541554 Till over limestone. Tributary stream. Cobbles and boulders in bed of stream.  

 373 

374 



Table 2 Mass balance of dissolved lead (Pb) loads for Rookhope stream segments to the base of the 375 

catchment for the sampling events from years 2007-2009 inclusive 376 

Stream 

stretch 
Net change in Pb load 

 
Jun-07 

(mg s
-1

) 

Jan-08  

(mg s
-1

) 

Apr-09  

(mg s
-1

) 

1-3 10.3 1.6 0.2 

3-5 -2.9 0.6 0.3 

5-6 2.0 1.8 -0.4 

6-9 8.4 -0.5 0.2 

9-11 0.8 3.3 0.1 

11-13 2.9 -0.9 -0.1 

13-16 -8.1 -0.9 0.3 

16-19 10.5 2.9 -0.3 

19-21 4.8 4.1 0.5 

21-23 5.9 -3.9 0.6 

23-25 9.7 8.0 0.6 

 377 

 378 

379 



Table 3 Analysis of lead (Pb) and pH of surface water, hyporheic zone pore water and bed sediments 380 

along the Rookhope Burn catchment 381 

  Point  

HZ-0 

Point 

11/HZ-11 

Point 

16/HZ-16 

Point 

21/HZ-21 

Point 

23/HZ-23 

Point  

HZ-A0 

Surface water       

pH  6.22 7.02 6.87 7.33 7.25 6.88 

Pb g l-1  0.96 6.15 3.78 2.80 4.56 1.37 

        

Hyporheic zone water       

pH  4.83 7.07 6.77 7.16 6.84 6.87 

Pb g l-1  4.91 8.89 4.51 55.6 43.0 3.53 

        

Bed sediments       

pH  5.89 7.01 7.27 7.34 7.33 7.18 

Pb mg kg-1  96.5 1610 1978 2086 15346 825 

 382 

 383 

 384 

385 



Figure captions 386 

Fig. 1 Location map of sampling points and spatial distribution of lead (Pb) in sediments of the Rookhope Burn 387 

catchment, UK (data from British Geological Survey (BGS) Geochemical Baseline Survey of the Environment –388 

GBASE database). 389 

Fig. 2 Distribution of dissolved lead (Pb) concentration (µg l-1) and Pb loads (mg s-1) along the Rookhope Burn 390 

for three sampling events over years 2007-2009.  The x-axis shows the distance from the headwaters down the 391 

catchment. Sampling points along the catchment are identified by closed square symbols. Inputs from visible 392 

point sources of Pb from contributing tributaries and mine adits are identified by closed triangles (high Pb 393 

concentrations of tributary stream receiving mine spoil seepage for June 2007 and Jan 2008 sampling events are 394 

reported against secondary y-axis with open triangle symbol). 395 

Fig. 3  Lead (Pb) concentration distribution in the hyporheic zone (HZ) pore water (n=6), in surface water (SW) 396 

(n=6) and in mine waters (MW) (n=4) sampled in the Rookhope Burn catchment. Mine water data as reported in 397 

Banks and Palumbo-Roe (2010). 398 

Fig. 4 Lead (Pb) release rate curves and pore water concentrations for river bank sediments at sampling points 399 

HZ-11, HZ-16 and HZ-23, with data for sample at point HZ-23 plotted on the secondary y-axis. The error bars 400 

displayed were calculated as the absolute difference between the duplicates, where the data point is the mean 401 

duplicate value.  402 

403 
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Table ESM 1  Chemical analysis and physico-chemical parameters of hyporheic zone pore water (HZ) and overlying surface water (SW) along 

the Rookhope Burn on 11
th
 May 2009 

Point T Eh pH Cond HCO3
-

Ca
2+

Mg
2+

Na
+

K
+

Cl
-

SO4
2-

F
- NPOC Total P Si Ba Sr Mn Total Fe As Cd Cu Ni Pb Zn

°C mV µS cm
-1

HZ-0 SW 9.68 349 6.22 52.0 9.68 4.58 1.27 3.74 0.557 4.91 2.78 0.051 8.82 <0.003 1.27 0.013 0.020 0.067 0.558 0.396 0.024 1.69 2.37 0.956 10.7

HZ 10.4 406 4.83 48.0 <5.00 3.20 1.12 4.36 0.913 5.25 4.21 0.076 8.52 0.010 1.30 0.014 0.015 0.757 1.14 0.511 0.057 8.30 5.28 4.91 45.9

HZ-11 SW 9.13 268 7.02 333 65.4 43.0 7.79 7.17 3.60 9.97 75.4 2.19 3.14 <0.003 2.10 0.014 0.154 1.44 0.419 0.391 0.549 2.59 17.9 6.15 566

HZ 9.44 257 7.07 333 71.4 42.9 8.01 7.38 4.05 10.0 73.9 2.22 2.84 0.041 2.01 0.011 0.155 0.366 0.149 0.360 0.459 3.39 12.5 8.89 472

HZ-16 SW 14.6 560 6.87 331 80.2 41.1 7.22 7.53 3.23 10.9 62.8 1.78 2.59 <0.003 1.99 0.015 0.156 0.890 0.276 0.274 0.323 1.08 10.9 3.78 269

HZ 14.6 483 6.77 340 87.0 49.4 7.29 8.61 4.47 12.4 62.4 2.18 4.77 0.006 2.12 0.014 0.193 0.008 0.030 0.332 0.061 2.22 2.87 4.51 28.9

HZ-21 SW 9.53 456 7.33 341 96.5 45.1 7.38 9.53 3.39 11.2 60.3 1.62 2.24 <0.003 2.25 0.016 0.186 0.610 0.165 0.333 0.220 1.33 7.64 2.80 196

HZ 10.1 423 7.16 348 99.0 45.7 7.18 9.80 3.69 12.1 62.5 1.78 2.35 0.004 2.28 0.016 0.198 0.091 0.299 0.645 0.178 4.25 4.97 55.6 82.3

HZ-23 SW 14.1 440 7.25 365 107 47.0 8.24 8.99 3.20 10.8 61.9 1.43 2.30 <0.003 2.23 0.015 0.217 0.352 0.157 0.323 0.181 1.24 5.41 4.56 117

HZ 16.2 381 6.84 355 174 59.5 4.41 5.46 1.59 6.30 17.8 1.64 1.25 0.001 2.30 0.023 0.286 0.198 0.031 0.269 0.360 8.12 4.23 43.0 71.1

HZ-A0 SW 9.76 368 6.88 162 72.3 21.7 4.06 5.72 1.77 7.31 8.26 0.154 2.72 0.010 2.23 0.015 0.093 0.004 0.112 0.200 0.012 1.40 1.04 1.37 2.73

HZ 10.2 471 6.87 175 70.8 22.5 3.87 5.56 1.90 7.52 8.38 0.176 2.72 0.015 2.18 0.015 0.089 0.003 0.069 0.228 0.008 2.04 1.42 3.53 2.13

µg l
-1

mg l
-1

 

 

 


