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Short Communication

Microbubble–liposome conjugate:
Payload evaluation of potential
theranostic vehicle

Ritu Malik1, Ketan Pancholi2, and Andreas Melzer1

Abstract
Liposome–microbubble conjugates are considered as better targeted drug delivery vehicles compared to microbubbles
alone. The microbubble in the integrated drug delivery system delivers the drug intracellularly on the target, whereas the
liposome component allows loading of high drug dose and extravasation through leaky vasculature. In this work, a new
high yielding microbubble production method was used to prepare microbubbles for formulation of the liposome-
conjugated drug delivery system. In formulation process, the prepared liposome of 200 nm diameter was attached to
the microbubble surface using the avidin–biotin interaction. The analysis of the confocal scanning laser microscope images
showed that approximately 8 � 108 microbubbles per millilitre (range: 2–7 mm, mean size 5 + 0.5 mm) can be efficiently
conjugated to the liposomes. The method of conjugation was found to be effective in attaching liposome to microbubbles.
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Introduction

Currently, commercially available site-specific drug deliv-

ery techniques are not efficient in delivering the drug at the

target causing adverse reaction to the surrounding healthy

tissue.1 Certain drug delivery carriers like liposomes are

known to reduce non-selective exposure of drug to the

healthy tissue after systemic administration, and thereby

reducing the side effects. However, the slow release of drug

from these vehicles limits the drug bioavailability in

tumours.2 One of the strategies of increasing bioavailability

of the drug at the target is to attach the tumour-targeting

ligands to liposome. Adopting this strategy increases the

local concentration of the liposomes in the tumour tissue,

but its targeting efficiency is limited by the saturation of

targetable receptors.1 Additionally, the non-specific pres-

ence of these tumour receptors in heathy tissue can also

result in toxicity due to accumulation of the tumour-

targeted particles. Some of the shortcomings of the bio-

chemical method have been overcome by an ultrasound

drug delivery system, where the drug is delivered to the

target by focussing ultrasound on the pressure-sensitive

carriers accumulated at the target site.1,2 The lipid- or

albumin-shelled microbubbles and liposomes are generally

used as a pressure-sensitive drug carriers because they are

established contrast agents for ultrasound imaging and

echogenic at safe exposure levels.3 When these pressure-

sensitive carriers are exposed to acoustic radiation force,

they cavitate vigorously to eject the microstream of fluid,

which generates transient pore in the membrane of the cells

and delivers the drug into the cell. Because of the differ-

ence in ultrasound impedance of water and high molecular
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weight gas core in the microbubble, the acoustic radiation

force causes nonlinear compression and decompression,

which is responsible for microstreaming and high backscat-

ter useful in ultrasound imaging. These properties of micro-

bubbles allow combination of molecular ultrasound

imaging and therapeutics on the same platform.4 Even

though microbubbles are versatile platform for the drug

delivery, they have low retention of hydrophobic drug in

the large lipid fragments and very short circulation times in

vivo.4

Liposomes are clinically established efficient drug car-

riers as opposed to microbubbles. They are composed of a

lipid bilayer shell that can trap hydrophobic and amphi-

pathic drugs in it and can encapsulate hydrophilic drugs

in the aqueous core. Liposomes concentrate drug at the

tumour site by 50- to 100-fold as compared to free drug

injections.4 Liposomes can be tailored to an optimized

diameter for maximum extravasation into tumour vascula-

ture and fusion with cell membranes. As opposed to micro-

bubbles, the liposomes are weakly echogenic and not

readily manipulated with ultrasound radiation force.1 If any

drug delivery carriers are spatially concentrated at the tar-

get using ultrasound radiation force, they can achieve better

delivery rates in comparison to blood flow–assisted deliv-

ery technique alone.5 Separate targeting of drug-loaded

liposomes and microbubbles to the same tissue is unlikely

to achieve sufficient proximity and concentration in the

tissue for the cavitation shockwave to effectively disrupt

the membranes and deliver therapeutic dose.2 Therefore,

the liposome–microbubble conjugates would provide

advantages of liposomes such as a superior drug payload

capacity, functionalization with targeting moieties, com-

bined delivery of therapeutic/diagnostic molecules and an

ability to confine spatially in response to ultrasound radia-

tion force.5 The microbubble–liposome conjugates having

compressible gas core can also serve as ultrasound contrast

agents,5 making it complete theranostic vehicle that com-

bines drug delivery, targeting and molecular imaging on a

single platform.

Various techniques are used to prepare the liposome–

microbubble conjugates. First, the polyethylene glycol

(PEG) chain derivatives are incorporated into the shell of

microbubbles to pose steric hindrance against coalescence

and adsorption of macromolecules to the microbubble sur-

face and improve in vivo circulation persistence through

reduction in opsonization.6 Microbubbles, in the past, have

been conjugated to liposomes by post-labelling and incor-

porating functionalized lipids into the microbubble shell,

which allowed conjugation of the liposomes to the micro-

bubble monolayer surface through a bioconjugate. Post-

labelling increased loading efficiency by increasing the

conjugation of multiple liposomes to a microbubble. The

use of the covalent conjugation of liposomes to the micro-

bubble surface can raise the critical issue of liposomes

release from the bioconjugate. However, the ultrasound

cavitation caused via focussing of the acoustic radiation

on the microbubbles opens the cell membranes transiently

and releases bound liposomes from the conjugates, permit-

ting them to absorbed within the cells.7

In this work, the Biotinylated liposomes and microbub-

bles each were prepared using 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[biotinyl(polyethylene gly-

col)2000] (DSPE-PEG2kBiotin) as a linker to bind avidin

by a previously described method,5 and Cholesterol is

attached to fluorescent dye 7-nitrobenzofurazan (NBD-

cholesterol) was used as a fluorophore to investigate the

binding efficiency of liposomes to the microbubbles in the

hybrid vehicle. Detailed optimization of liposomal formu-

lation and design, for example, addition of negatively

charged lipids, targeting ligand, etc., is beyond the scope

of this study.

In order to demonstrate the efficiency of microbubble–

liposome conjugation and construction of the vehicle, the

NBD-cholesterol–labelled lipid was used in the bilayer of

the liposomes as a flourophore.8 The emission intensity

from the fluorophore NBD-cholesterol in liposomes was

evaluated using the confocal scanning laser microscopy

(CSLM), which allowed determining the conjugation effi-

ciency. Furthermore, the formation of the microbubble–

liposome construct was studied by labelling lipid on the

surface of the microbubbles with the lipid-soluble Sudan

IV (red) dye. Using the CSLM, the red coloured microbub-

bles decorated with numerous green coloured NBD-

labelled liposomes on the microbubble surface are evalu-

ated and simultaneously observed.

Materials and methods

Materials

1,2 Distearoyl-sn-glycero-3-phosphatidylcholine (DSPC),

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2

distearoyl-sn-glycero-3-phosphoethanolamine-N-[methox-

y(polyethylene glycol)-2000] (DSPE-PEG2k), DSPE-

PEG2kBiotin and 25-[N-[(7-nitro-2 -1,3-benzoxadiazol-4-

yl)methyl]amino]-27-norcholesterol (25-NBD-cholesterol)

are purchased from Avanti Polar Lipids Inc. (Alabaster,

Alabama, USA). Neutravidin is obtained from Pierce Bio-

technology (Rockford, Illinois, USA). All other reagents

are of analytical grade and are used as received.

Methods

Microbubble–liposome construct preparation
Biotinylated microbubbles. Many successful methods of

preparing microbubbles are now established in research

domain. Mainly electrospraying,9 microfluidics10 and flow

focusing11 are used frequently for research purpose. The

bespoke device used for preparing microbubbles for this

work is described elsewhere.12 The device consisted of a

pair of concentric capillaries exiting downwards into a

cylindrical Perspex tube chamber that was pressurized using

2 Nanobiomedicine



compressed air. The outer steel capillary carrying liquid

phase and the inner capillary supplying the core gas were

forced out of the orifice of 100 mm. The resulting spray

contained microbubbles of required diameter. Resulting size

dispersion of the microbubbles is shown in Figure 3.

To prepare microbubbles, the lipids DSPC, DSPE-PEG2

k, DSPE-PEG2kBiotin and Sudan IV (red) dye

(89.95:5:5:0.05, molar ratio) were dissolved in a round

bottom flask using chloroform. After complete dissolution

of the lipid, the chloroform was removed under constant

flow of nitrogen, which was then followed by evaporation

under vacuum in a rotary evaporator (Buchi, Flawil, Swit-

zerland) for 2 h to yield a thin lipid film at the bottom of the

round flask. Distilled water:glycerol:propyleneglycol in the

volume ratio of 80:10:10 was added to the dried thin lipid

film to prepare a suspension with a lipid concentration of 1

mM (1 mg/mL). The resulting lipid suspension was mixed

thoroughly using a bath sonicator maintained just above the

lipid phase transition temperature of 60�C. Resulting clear

lipid suspension was used to prepare microbubbles.

First, the lipid suspension was fed to the device using a

syringe pump (Harvard PHD-4400, Hilston, MA, USA),

while the air (BOC Chemicals, UK) and core gas – per-

fluorobutane (F2 Chemicals, Preston, UK) connected to the

device via flexible High performance liquid chromatogra-

phy (HPLC) tubing were also supplied simultaneously. The

lipid suspension flow was maintained at 2.4 � 10�5 m3/s,

while the air pressure of 200 kPa and the core gas pressure

of 150 kPa were maintained for microbubble preparation.

Flow of the core gas and formation of the liquid-gas cone

was confirmed and monitored by a real-time high-speed

camera (pco. 1600; PCO AG, Kelheim, Germany) ima-

ging.12 The high-speed camera was focused on the Perspex

wall of the chamber. The multiphase gas in liquid cone

forms in the gap formed between the end of capillaries and

orifice in the plate.

Bubbles were collected as they emerged from the aper-

ture for immediate examination by microscope or in a vial

stored in ice for future use. The mean size of the micro-

bubbles was determined from sizing 500 microbubbles in

the optical microscope (inverted microscope (IX71, Olym-

pus, Tokyo)) images using Infinity Analyze Program

Figure 3. A representative micrograph showing phospholipid
shelled microbubbles with an average diameter of 5 mm (scale bar:
100 mm). A size distribution histogram of the representative
microbubble population (bottom).

Figure 1. Size distribution of extruded liposomes (average
diameter 204 + 1.559 nm).

Figure 2. Confocal fluorescence images of (a) liposomes encap-
sulating 5% NBD with an average diameter of 200 nm (�100 oil;
scale bar: 1 mm). (b) NBD-stained free liposomes and microbub-
bles (average diameter 5 mm) with NBD-labelled liposomes con-
centrated on their surface (�100 oil; scale bar: 5 mm).

Malik et al. 3



(Hatfield, PA, USA [Version 6.0.0]). Quantification of

microbubble concentration was accomplished using hae-

mocytometer and the average of triplicate measurements

was taken into account for further calculations.

Biotinylated liposomes. Liposomes have been prepared

using the thin film hydration procedure and NBD dye–

labelled cholesterol. A multilamellar lipid solution consist-

ing of DPPC:DSPE-PEG2kBiotin:25-NBD-cholesterol

(90:5:5) was prepared, as described in section ‘Biotinylated

microbubbles’. However, the final concentration of the

lipid in distilled water was maintained at 12 mM (10 mg/

mL). Obtained solution was then extruded through two

stacked polycarbonate membranes in a mini extruder

(Avanti Polar Lipids Inc., Vancouver, BC) having a pore

diameter of 200 nm. During the entire extrusion process,

the temperature of the lipid mixture was maintained above

its phase transition temperature. The physical stability of

the liposomes in solution was checked at 4�C, room tem-

perature and at 50�C by determining the changes in vesicle

size over a period of 2 months by dynamic light scattering

(DLS) and average of triplicate measurements is taken.

Conjugation of biotinylated liposomes to biotinylated
microbubbles via avidin. Approximately 8 � 108 microbub-

bles per millilitre were washed with 3 mL of air-saturated

distilled water and stored in a 5-mL inverted syringe. The

syringe was then transferred to a bucket centrifuge to allow

centrifugation of the suspension at 300 � g for 3 min to

remove the free lipids and dye from the suspension. The

centrifugation process forced the bubbles to float at the top

of the syringe and allowed the removal of the unincorpo-

rated lipids from the bottom of the syringe. Afterwards, the

avidin solution with a concentration of 0.022 mg/mL was

added to the washed microbubbles before mixing well and

incubating for 15 min at a room temperature. During the

incubation, the mixture was shaken gently. The avidin-

bound biotinylated microbubbles were then separated from

the free avidin by washing them four times using air-

saturated distilled water. To conjugate the liposome to the

microbubble surface, 1 mM of the extruded liposomes (200

nm size) was added to this suspension and incubated for 10

min at room temperature with gentle shaking. Microbub-

bles carrying liposomes were washed three to four addi-

tional times to remove any free liposomes.

Binding quantification. The relative level of liposomes

bound to microbubbles can be determined by using image

correlation spectroscopy (ICS). This method has been

applied to cell quantification and drug release quantifica-

tion via high-speed or Raman imaging.13–15 For ICS, the

images of liposomes and liposome-bound microbubbles

were obtained using confocal microscope (LSM-5; Zeiss,

Thornwood, New York, USA) interfaced with an argon–

krypton laser (with lines of 405, 488, 555 and 633 nm). For

confocal microscopy, an aliquot of 200 mL of liposome-

bearing microbubbles at a concentration of 8 � 108 per

millilitre was placed on the slide and covered with a cover-

slip. The coverslip was fixed at the four corners using nail

paint to retain the solution of the microbubble-conjugated

liposome. Subsequently, the laser beam emitting from a

60� oil immersion objective (NA ¼ 1.3) was focussed

on to the microbubble–liposome conjugate via a double

dichroic mirror. This focussed laser beam passing though

the 488-nm bandpass filter excited the NBD and Sudan Red

III simultaneously, which allowed capturing six Z-stacks of

images through dual channel. Each Z-stack contained six

images with a step size of 4 mm. The relative fluorescence

intensity of Sudan Red III was detected at an excitation

wavelength of 490 nm and emission wavelength of 512

nm. However, the fluorescent intensity of the liposome

carrying NBD-cholesterol was measured at 460 nm excita-

tion and 534 nm emission wavelength, respectively.

Image preprocessing. A correlation function for the

obtained series of images was calculated using the Fourier

method. As seen in Figure 4(b, c0), to remove streaks from

image as seen Figure 4(b, a0), the image was de-convolved to

remove the out of focus features. It was important to keep

only those features in each image of Z stack, which does not

belong to other slice of the volume image. This ensured that

each image was related to correct quantity of the liposome.

Before de-convolve operation, the PSF was generated using

POINT spread function (PSF) generator and image acquisi-

tion data. The deconvolution was carried out by imagej plug-

in. The non-homogenous features in the background were

removed by subtracting mean of all images. Furthermore, all

images were cropped using region of interest (ROI) manage

in Imagej (Figure 5(b)) to keep important quantifiable micro-

bubble features and watershed segmentation performed to

separate overlapping circular features.

In microbubble images, the liposomes were surrounding

the bubbles. Thus, the fluorescent intensity peaks are seen in

the circular fashion (Figure 5(a)). These peaks will provide

uniform background and intensity, and therefore, each image

area corresponding to individual microbubble was cropped

to make 64 � 64 or 128 � 128 pixels image for further

correlation peaks. Such images provided high resolution to

resolve image for features useful for quantification.

The raw correlation data (Figure 5(c)) displays the raw

normalized intensity fluctuations correlation function from

the image. The correlation of the background image in rela-

tion to first background image determined the source of

noise. The decaying profile shows the intensity profile from

laser beam profile along with image features. The solitary

peak in Figure 5(d) proved the presence of noise in the

image. After preprocessing of each image, the correlation

peak function was then fit to the 3D Gaussian function using

the nonlinear least square method. The Gaussian 2D correla-

tion fit function for nth number of image is given as

rðx; Z; 0Þ ¼ gð0; 0; 0Þexp � x2 þ Z2

o2

� �
þ g1
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where g(0,0,0), o and g1 are the amplitude of the inten-

sity at the zero lag, the correlation radius and the off-

set.16 The correlation radius, proportional to the laser-

beam horizontal radius, was measured by focussing the

laser beam on to the sharp edges. A microbubble–lipo-

some conjugate system can be considered as a non-

interacting system. In such case, the mean number of

independent liposomes (np) present in the correlation

area under the laser focus can be found by its inverse

relationship with zero-lag amplitude g(0,0,0). This can

be described as

gð0; 0; 0Þ ¼ 1

hnpi

The peak as shown in Figure 5(e) shows the best fit

Gaussian function to raw correlation data. The Gaussian

function is not visible in Figure 5(a). The correct fit also

confirms the removal of noise from the original image.

(b')
(a)

(b)
(b')

(a')

(a') (c')

(d') (e') (f ')

Figure 4. Confocal fluorescence image (a, a0 AQ: Per style, part labels ‘‘I’’ and ‘‘II’’ have been changed to ‘‘a’’ and ‘‘b’’ and the subparts
‘‘A–F’’ as ‘‘a0–f0.’’ Please check and approve the edits.) is a representative image of microbubbles (red) containing Sudan III dye and
carrying liposomes loaded with 5% NBD-cholesterol on their surface. The image is taken using filters for both dyes (average diameter
of liposome is 200 nm; scale bar: 5 mm). The image (a, b0) obtained using filter for NBD shows the microbubbles decorated with
liposomes with 5% NBD-cholesterol (scale bar: 5 mm). (b) All confocal images display four horizontal planes with either simultaneous
or individual monitoring of NBD and Sudan Red III (scale bar: 5 mm). The free liposomes attached to microbubbles and the
microbubbles stained with Sudan III dye are seen in (a0) and (d0), respectively. The figure (b0) shows an optical micrograph of
microbubbles and liposomes. The figure (e0) shows an optical micrograph of microbubbles with gas core (dark coloured) and tiny-
sized liposomes with fluid filled core (light coloured). The image is the simultaneous visualization of both channels for NBD
(liposomes) and Sudan red III labels (microbubbles). The (c0) image represents the de-convolved (a0) image, whereas image (f0) shows
the de-convolved and filtered (d0) image. These images demonstrate the effect of image preprocessing on artefact removal from the
original image.
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Results and discussion

Liposome size and fluorescence intensity

The biotinylated liposomes have been prepared and con-

jugated to microbubbles employing avidin–biotin adhe-

sion as described by Kheirolomoom et al.5 The average

diameter of extruded liposomes was evaluated using

zetasizer (Zetasizer Nano ZS, Malvern Instuments Ltd,

Malvern, UK) and was found to be 204 + 1.559 nm

(Figure 1) with a polydispersity index of 0.27 + 0.026.

The size of liposomes after 2 months at 1.1 bar pressure

and 4�C temperature remained unchanged (average

Figure 5. (a) All peaks surrounding the microbubble shows the fluorescent intensity peaks relating to liposome concentration. (b) An
example image shows a single microbubble for further analysis. The out of focus lipid fluorescence was removed via preprocessing. (c)
The fluorescent peaks related to each liposome-conjugated microbubble are identified and used to obtain the correlation peak. A
correlation peak fitted with the Gaussian function is shown. All blue dots represent the raw correlation values corresponding to its
spatial positions, whereas green surface represents the fitting function (d). The solitary peak shows the presence of background noise.
(e) After removing noise, the Gaussian peak is fitted to obtain correlation peak to count liposomes.
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diameter 187 + 1.861 nm with a polydispersity index of

0.36 + 0.010 nm). A minor peak at 5000 nm indicated

slight aggregation in the liposomal sample. The liposo-

mal fluorescence intensity was then evaluated using con-

focal fluorescence microscopy and the extent (numbers)

of microbubble–liposome binding by ICS (Figure 2). For

a constant concentration of NBD-cholesterol, the fluor-

escence intensity of the microbubble–liposome construct

carrying liposomes with an average diameter of 200 nm

was calibrated (Figure 2). The liposome and liposome–

microbubble conjugate samples are prepared on glass

slides as horizontal smears of both samples in solution.

Since Figure 4(b) focusses on microbubbles (5–6 mm)

decorated with several liposomes, free liposomes

approximately 200 nm in size appear obscure. Hence,

the view looks non-uniform.

Microbubble size and concentration

Quantification of microbubble counts was carried out in

triplicate using a haemocytometer. The number of micro-

bubbles per millilitre of solution was found to be approxi-

mately 8 � 108. Their initial diameters were determined

using image analysis and was found to be in the range of

2–7 mm (mean size of 5 mm + 0.5 mm standard deviation;

Figure 3). Microbubbles have been prepared using PEG2000

and PEGkBiotin at concentrations optimized for stability.5

The CSLM images (Figure 4) show insignificant change in

the size distribution of the microbubble population. However

a reduction in microbubble numbers was observed. Bubbles

prepared using our device have shown appreciable stabi-

lity.12 Considering the aforementioned observations, the

drop in the microbubble count was the consequence of wash-

ings for removal of unincorporated lipids. The size of the

microbubbles showed insignificant change in the images

(Figure 4), which indicates no cross-linking between micro-

bubbles after the conjugation procedure.

Liposome binding efficiency

Measurement of the mean fluorescence intensity of the

liposomes in the resultant microbubble–liposome construct

(Figure 4(b), c0) was used to estimate the relative number of

liposomes bound to microbubbles and was measured using

CSLM.

All six stacks were used to calculate the correlation func-

tion value of g(0,0,0). An example of such correlation peak

for one of the representative images is shown in Figure 5(e).

Some of the representative liposome-loaded microbubble

images are shown in Figure 4(b), c0 and f0. In these images,

the bubble appears red, while liposomes appear green. For

image analysis, the images obtained via green channel were

used to calculate the correlation peak. These images filtered

out the red colour of the Sudan red and thus allowed calcula-

tion of the correlation peak related exclusively to the lipo-

somes concentration. To determine the value of peak at zero

lag, the Gaussian function was fit to the correlation peak

(Figure 5(e)). Since g(0,0,0) values are inversely propor-

tional to the number of liposomes, the number of liposomes

bound to one microbubble was estimated using the inverse of

the total fluorescent intensity. The values for the number of

particles for the first three highest peaks were found to be

16,666 + 310, 28,654 + 621 and 22,966 + 755. The total

number of liposomes around the bubbles was found to be

1.01 � 105 + 11,425. This mean value was derived by

combining the number of liposomes present in each peak

of every image in a stack.

For validation of this method, the estimated numbers by

image analysis were compared with the numbers obtained

experimentally. The experimental method used was based

on haemocytometry. In haemocytometry, the liposome–

microbubble was diluted in equal volume of buffer solu-

tion. The bubbles were excited to emit fluorescence, which

was detected in an appropriate channel. Results were

expressed as mean fluorescence per microbubble using

unloaded microbubbles as a blank. The average diameter

for size distribution of conjugated microbubbles was higher

than the unloaded microbubbles. Considering liposome as

200 nm spheres, the thickness of liposome coating on

microbubbles was used to calculate the number of

liposomes.15

The number of liposomes calculated using ICS was

found to be þ6% to �2% of the estimated number calcu-

lated via haemocytometry. The errors between these two

methods were of acceptable level, which validated the esti-

mation of liposomes using the ICS method. Using neutra-

vidin, the binding of liposomes with an average diameter of

200 nm approached the number of 1.01 � 105 liposomes/

microbubble. The estimated number of liposome per

microbubble was consistent with the estimation published

earlier by Kheirolomoom et al.5 Kheirolomoom et al.

showed estimated approximately 1 � 105 for 100 nm lipo-

somes. However, their microbubble diameter was in the

range of 1.6 mm that was approximately half the average

diameter of the microbubble used in our experiment. Our

higher surface area might have contributed to the estima-

tion of large number of liposomes. Moreover, our 2D anal-

ysis did not take the 3D attachment of the liposome into

consideration. However, it can be argued that filtering the

red colour from the image may have allowed the appear-

ance of some liposomes attached on the top and bottom

surface of the microbubble. Considering this argument,

we can conclude that the estimation via ICS may have been

5%–10% higher than that expected.

Conclusion

Microbubbles in the concentration range 8 � 108 micro-

bubbles/mL and size distribution (2–7 mm) were prepared

and conjugated to the liposomes for potential theranostic

application. The conjugation of liposomes to the microbub-

bles was evaluated using ICS to show the efficacy of the

Malik et al. 7



conjugation method. The image analysis method for non-

interacting particles was applied to estimate the number of

liposomes conjugated to the microbubble surface. The esti-

mation of liposome numbers using the image analysis

method was found to be slightly higher than the experi-

mental counting method. This suggests that the image anal-

ysis method can potentially be used for the approximation

of lipid counts.
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