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Abstract: As the human population increases there is an increasing reliance on aquaculture to
supply a safe, reliable, and economic supply of food. Although food production is essential
for a healthy population, an increasing threat to global human health is antimicrobial resistance.
Extensive antibiotic resistant strains are now being detected; the spread of these strains could
greatly reduce medical treatment options available and increase deaths from previously curable
infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the
natural processes of horizontal gene transfer and mutation events that allow genetic exchange within
microbial populations have been ongoing since ancient times. By their nature, aquaculture systems
contain high numbers of diverse bacteria, which exist in combination with the current and past use
of antibiotics, probiotics, prebiotics, and other treatment regimens—singularly or in combination.
These systems have been designated as “genetic hotspots” for gene transfer. As our reliance on
aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance,
and monitor and analyse the transfer of antimicrobial resistance between the microbial community,
the environment, and the farmed product, in order to better understand the implications to human
and environmental health.
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1. Introduction

1.1. Antimicrobial Use and Antimicrobial Resistance in Aquaculture

To feed the growing human population, global finfish and shellfish stocks (hereafter referred to
collectively as ‘fish’) have been substantially exploited, with estimates of up to an 80% reduction [1,2].
To reduce this depletion, our reliance on aquaculture has intensified due to its potential to provide
sustainable, safe, and reliable alternative food production systems. In 2014, 70.5 million tonnes of food
fish and 26.1 million tons of aquatic algae were produced via aquaculture systems. The aquaculture
production figures indicate a substantial increase in the relative contribution of aquaculture to total
fish consumption from 5% in 1962, to 49% in 2002 [1]. Further estimates predict that European
aquaculture production will reach 4 million tonnes by 2030 [1]. This global increase in production
has also resulted in a wide diversity of species being cultivated—currently, over 580 species in total
(consisting of 362 finfish and 62 crustaceans) [1,3]—with a wide range of growth and maximum
production conditions.
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Aquaculture systems vary in their levels of parameter control, but the main aim is to maximise
the speed of growth and intensity of production, while providing safe and sustainable products [4].
To enhance fish survival and market value, a number of key strategies are regularly employed:
extensive aquaculture, where predators are removed and competitors are controlled; semi-intensive,
where food is supplemented and enhanced; and intensive, where all food needs are supplied. Due to
the growing demands for finfish and shellfish, there has been a shift from extensive to semi-intensive
and intensive systems, as they can produce greater yields [5]. However, this intensification increases
stocking density and nutrient pollution, often leading to poor water quality issues. The combination of
high density and poor water quality increases the likelihood of pathogen outbreaks [6], which can, in
turn, have negative implications for the quality and rate of production. An outcome of these higher
disease rates in intensive farming is a reliance on antibiotics and other supplements, especially in
countries where regulatory limits may not be clearly defined or monitored closely [7,8].

Antimicrobial use in aquaculture is governed by a variety of factors including legislation and
regulation by the respective government organization, the particular pathogen present (and its
antimicrobial sensitivities), the treatment timing, the disease status of the host, and the system
parameters (salinity, temperature, photoperiod, etc.). Data on the amounts of antibiotics used in
aquaculture are scarce, as few countries monitor the quantity of antibiotics used [9]. However,
in general, the use of antibiotics in aquaculture depends on local regulations, which vary widely.
In some countries (specifically Europe, North America, and Japan), regulations on the use of antibiotics
are strict and only a few antibiotics are licensed for use in aquaculture. In Europe, for example, the
practice of non-therapeutic prophylactic use of antibiotics was banned in 2001 by the EU Veterinary
Medicinal Products Directive, as amended and codified in Directive 2001/82/EC [10–12]. In Norway,
stricter regulatory oversight of antimicrobial use, combined with increased vaccinations and excellent
stewardship has been credited, in part, for a 99% fall in antimicrobial use between 1987 and 2013,
despite output growing more than 20-fold [13,14]. However, 90% of the world aquaculture production
is carried out in developing countries, which lack regulations and enforcement on the use of
antibiotics [15], leading to high variability in antibiotic use. In salmon (Salmo spp.) aquaculture,
for example, antibiotic use ranges from ~0.02–0.39 g/tonne of harvested biomass in Scotland and
Norway, to ~660 g/tonne in Chile [16]. Although there is no evidence that antibiotics are routinely
used as growth promoters in aquaculture, as is the case in the industrial raising of livestock in some
countries [17], the prophylactic use of antibiotics in aquaculture has been commonplace in the past,
particularly in shrimp [18] and salmon aquaculture [19], and the difficulty of treating individual
affected finfish and shellfish means that metaphylactic use of antimicrobials to treat entire populations
is still commonplace [7,15,20,21].

Antibiotics are the first line treatment for bacterial infections, and therefore play an essential role
in modern medicine [22]. Antibiotic resistance is an ancient process and predates any clinical antibiotic
usage [23], however, the increase of extensive drug resistant (XDR) and multidrug drug resistant (MDR)
strains is a cause of immense concern. Bacteria are becoming resistant to a wide array of antibiotics as
a result of natural processes [23] and widespread anthropogenic activity [24–26]. Bacteria can acquire
antimicrobial resistance (AMR) either through mutation, or more likely horizontal gene transfer (HGT)
in the environment, via natural transformation, transduction, or conjugation [27–33]. The genetic
plasticity of the microbial community enables resistance genes to move quickly throughout different
environmental bacterial populations and communities. The resistome (a collection of all AMR genes in
a microbial community) in many different habitats has become an area of intense focus, with many
studies examining how AMR pathways spread and evolve [34–37].

Aquaculture systems and farms have been designated as “genetic reactors” or “hotspots for AMR
genes” where significant genetic exchange and recombination can occur, which can shape the evolution
of future resistance profiles [38,39]. It has been estimated that 90% of bacteria originating in seawater
are resistant to one or more antibiotics and up to 20% of the bacteria are resistant to at least five [40].
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Once bacteria have acquired AMR genes, they may exist in the environment for a long time, even after
the selection pressure ceases [41].

The prolonged use of antibiotics in aquaculture increases the selective pressure on bacterial
populations, even at concentrations of antibiotics well below the minimum inhibitory concentration
of the susceptible wild type population [42], and also increases HGT rates, including human
and fish pathogens. Due to antibiotics being relatively stable and non-biodegradable, residual
antibiotics can remain in commercialised fish and shellfish for consumption [7,8]. Done and Halden
(2015) [43] measured low but significant levels of tetracycline (oxy- and 4-epioxytetracycline), macrolide
(virginiamycin), and sulfonamide (sulfadimethoxine/ormetoprim) antibiotics in samples of farmed
trout (Oncorhynchus spp.), tilapia (Oreochromis spp.), and salmon from 11 countries including the
US, China, Mexico, Thailand, Scotland, and Canada. While the concentrations were in compliance
with US FDA regulations, it was suggested that the presence of these antibiotics might provide a
selection and enrichment mechanism for resistant bacteria [43]. Similarly, Wang et al. (2017) [44]
screened finfish and shrimp samples collected from across Shanghai City for 20 common antibiotics
(tetracyclines, fluoroquinolones, macrolides, β-lactams, sulfonamides, and phenicols). Antibiotic
residues were found in 52% of the samples (40–91% of the finfish sampled and 17% of shrimp), with
residues and their consumption accounting for 75% and 70% of the overall variance of estimated
antibiotic exposure for men and women, respectively [44]. Given that 10% of the aquatic products
sampled exceeded the maximum residue limits (MRL) for some antibiotics [44], it is clear that aquatic
products have the potential to pose multiple health and AMR selection risks in countries where MRLs
are not strictly enforced.

In addition to the use of antibiotics, other pharmaceuticals and metal-containing products are
often used in aquaculture to prevent fouling, and to feed and treat fish, in order to limit the spread
of infections [17]. For example, copper (Cu)-containing materials are often applied as anti-fouling
agents for farm cages and nets and in the chemical control of parasites [45]; some cages themselves
are made from Cu alloys [17], and high concentrations of cadmium, iron, lead [46], and mercury [47]
have been reported in some commercial fish feeds. The introduction of heavy metals into the natural
environment through aquaculture practices and other anthropogenic sources to the environment
(e.g., the use of cadmium in pesticides and fertilizers [48]), frequently results in metal concentrations in
water and sediments that exceed levels predicted to drive the co-selection of antibiotic resistance in the
marine environment [49]. Therefore, the exposure of bacterial communities in and around aquaculture
operations to the combination of heavy metals, antibiotics, and other co-selecting factors may further
increase the likelihood of selection and co-selection of antibiotic resistance [37,38,40]. For example,
previous studies on fish and eel aquaculture systems have found strains of Aeromonas with high levels
of resistance to antibiotics and heavy-metals [50], with multiple plasmids, integrons, and gene cassettes
for antibiotic resistance [51].

Fish are reservoirs of zoonotic pathogens that cannot only infect the animal host but can also
infect humans who are in contact with the aquaculture facility and via foodborne infections [52].
Common infections in aquaculture facility fish handlers include Aeromonas hydrophilia, Mycobacterium
marinum, Streptococcus iniae, Vibrio vulnificus, and Photobacterium damselae [53,54]. Although problematic
as zoonotic pathogens, these microorganisms may also contain and spread AMR genes such as
extended-spectrum beta-lactamases (ESBL) [5]. Faecal matter from Sparus aurata (Gilthead seabream)
was found to contain ESBL-resistance genes, including blaTEM-52, blaSHV-12, as well as cmlA, tetA,
aadA, sul1, sul2, and sul3 [55]. Furthermore, bacterial strains carrying resistance determinants in
commercial seafood products [56] include disease-causing pathogenic bacteria in humans [57,58],
thereby increasing the risk of spreading AMR from aquaculture to the consumer.

1.2. Increased Transfer of AMR Directly to the Environment through Open Systems

Antimicrobial agents are usually administered to fish, mixed with food, and doses can be
proportionally higher than those in livestock [13]. Not only can residues of antimicrobials remain in
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fish products, but undigested food and fish faeces containing unabsorbed antimicrobials and secreted
antimicrobial metabolites can remain in the water and sediment around fish farms for an extensive
period of time, depending on their concentrations and biodegradability [19,59]. Indeed, some studies
suggest that 70–80% of antibiotics given to fish are excreted into the water [17,20,60] and can further
alter the microbial communities present [61]. Such material can persist and select for AMR bacteria,
even at low concentrations [42], leading to major alterations in the biodiversity of the sediment and
water in the near proximity of open aquaculture systems, by replacing susceptible communities of
bacteria (and other microorganisms) with resistant ones ([13] and references therein). Not only is
the biodiversity altered in the surrounding sediments, but the resistome also increases in complexity,
with larger numbers of antibiotic resistance genes and increases in mobile genetic elements [40,62–65].
A schematic representation of these processes is shown in Figure 1.
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Sediments hold an active mix of bacterial communities, with evidence to suggest that they may
be a substantial reservoir of faecal pathogens [66] and antimicrobials [67]. Detection of numerous,
globally distributed, AMR genes in aquatic sediments have recently reported [32,36,68–70]. Various
AMR genes have been documented to be present in aquatic sediment, such as sul1, sul2, tetB, tetC,
tetM, tetO, tetW, qnrA, aadA, blaTEM, blaSHV, blaCTX-M, and blaNDM [59,71–73]. Moreover, Yang et al. [73]
examined marine sediment, and found numerous tetracycline resistance genes (mentioned above).
More importantly, several contigs sharing high identity with transposons or plasmids from human
pathogens were detected, indicating that the sediment bacteria recently contributed or acquired
resistance genes from pathogens [73]. Therefore, sediment systems are a significant environmental
matrix for genetic transfer and recombination, and sediment particles offer a key interface for complex
microbial community interactions, enabling AMR gene transfer [32,74].

Many studies have reported high frequencies of AMR in bacteria in the vicinity of open
aquaculture operations (for reviews, see Cabello, 2006 [7]; Cabello, et al., 2013 [20]), however, few
studies have been adequately designed to determine the actual impact of antimicrobial use on AMR
prevalence. As Smith (2008) [9] points out, there are often issues with the media and cut-off values
used for determining resistance frequencies, adequate control samples are often not included, and
innate resistances are generally not considered. Other factors that may increase the frequency of
AMR, such as organic enrichment, are often not considered and few studies investigate the spatial and
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temporal footprint of resistance. Importantly, many studies were not originally designed to investigate
the linkage between the frequency of AMR bacteria and the administration of antimicrobials and do
not present data on the concentrations of antimicrobials in the water and sediments. However, it is
clear from a large body of laboratory and field evidence [18,59,75,76] that the use of antimicrobials
in aquaculture will result in the entry of some antimicrobial compounds and their residues into the
surrounding environment, which has the potential to exert selective pressure to increase the frequency
of AMR in environmental microbes. For example, Zhu et al., (2017) found that concentrations of two
major classes of antibiotics (tetracyclines and macrolides) were positively correlated with the total
abundance of AMR genes in estuarine sediments [76].

Of particular concern are the hormetic properties of antimicrobials, where higher concentrations
of antimicrobials in close proximity of aquaculture sites may select for resistant bacteria, while
sub-inhibitory concentrations of antimicrobial residues in surrounding water and sediments might
stimulate HGT and mutagenesis [77]. Molecular studies have shown that genes involved in AMR
in bacteria associated with aquaculture are similar to those that have been detected in terrestrial
bacteria associated with human and land-based animal disease [9], including in human uropathogenic
Escherichia coli [78]. Aquatic AMR bacteria are most likely to come into contact with terrestrial bacteria
and other potentially co-selective pollutants from storm-water runoff, contamination from agricultural
wastes, and discharges from sewage treatment plants, in the relatively shallow coastal waters of
estuaries and sheltered bays, where most open aquaculture systems are sited [79]. Tracking the flow
of AMR genes is challenging, however, as gene flow may not be directly from aquatic bacteria to
human pathogens, but may involve intermediaries such as other environmental bacteria or commensal
microbiota of animals or humans [19]. Regardless of the pathway, the transfer of AMR genes from
environmental microbes to fish, human, and animal pathogens would have a detrimental effect on
piscine (both wild and farmed) and human health, and this potential link between the aquatic and
terrestrial resistomes is of particular concern, as many of the antimicrobials authorised for use in farmed
fish (e.g., oxytetracycline, fluorfenicol, and amoxicillin) are all medically important for human use [13].
Even when antimicrobials not associated with antimicrobial therapy in humans are selected for use in
aquaculture, once the acquisition of AMR to one antimicrobial within a class occurs, cross-resistance is
often conferred [80].

1.3. AMR in Closed Aquaculture Systems

Closed containment aquaculture systems refer to systems that isolate the farming process from
the environment and control system parameters such as oxygenation, temperature, and photoperiods.
These range from single-pass flow-through water systems to comprehensive near zero-discharge
recirculating systems. As a consequence of process control and water recycling, closed systems are
often seen as a sustainable practice for intensive aquaculture, dramatically reducing the amounts of
waste, antibiotics, and chemical treatments reaching the environment. Closed flow-through systems
produce wastewater containing suspended solids and nitrogen, phosphorous, and high microbial
loads, which will either enter the municipal wastewater system after a number of treatment steps, flow
to constructed wetlands, or be treated to produce a sludge that can be added to land as a fertilizer
(Figure 1) [81–84]. This use of aquaculture sludge has numerous implications for the concentration
and spread of AMR genes onto food crops and into the soil system [85].

Near zero-discharge recirculating aquaculture systems (RASs) are designed to produce species at
high density and minimize environmental impact by effectively managing, collecting, and treating
wastes that accumulate during fish growth for both freshwater and marine systems. Under optimal
conditions, these systems do not require water replacement except to account for losses due to
evaporation. RASs rely on both mechanical and biological filtration processes to provide an efficient,
productive, and biologically secure environment [86–88]. Biological processes are driven by activities
within microbial biofilms that develop on integrated filtration media and tank surfaces, as well as on
the fish themselves, and are driven by the nutrient input. Thus, under ideal conditions, fish wastes
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(i.e., nitrogen in the form of excreted ammonia, and carbon and nitrogen derived from uneaten feed
and faecal matter) are eliminated by the presence of interacting physiological processes including
nitrification, denitrification, anammox, and methanogenesis [89]. Because system water is recycled and,
under optimal conditions, very little (if any) water is exchanged with the environment, it is conceivable
that antibiotics added in feed may accumulate throughout the system, promoting the growth of
AMR bacteria associated with the host, the sediment (waste solids), and the RAS biofilter community.
Li et al. (2017) [90] found that biofilms from RAS mixed bed biofilters are a reservoir for antibiotic
resistance genes, including tetO, qnrA, and tetE. Biofilms, however, are generally resistant to penetration
by antibiotics [90,91], which, makes the treatment of pathogens difficult [92]. While Bebak-Williams
(2002) [93] found increased levels of oxytetracycline residue in sediment, biofilter, and fish muscle
in a freshwater RAS after treatment with medicated feed, oxytetracycline levels decreased to nearly
undetectable levels with time after withdrawal of the drug. Very little is known about the occurrence of
AMR bacteria in RASs and those that have screened for AMR pathogens concluded that their presence
could be explained by the use of infected fish stocks [94,95]. Table 1 details some of the representative
antimicrobial resistance factors that have been detected in aquaculture facilities across the world.
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Table 1. Representative microbial antibiotic resistance determinants identified from aquaculture systems.

Antibiotic Class Antibiotic Resistance Gene Aquaculture System or Fish Species Reference

β-Lactam (e.g., Ampicillin, Amoxicillin) blaTEM-52, blaSHV-12 Gilthead Seabream Sousa et al. [55]
blaTEM Fish farms, Pakistan and Tanzania Shah et al. [96]

Tetracycline (tetracycline,
oxytetracycline, chlortetracycline)

tetM, tetO, tetT, tetQ Fish farms, Tianjin, and Guangdong, China Gao et al. [64], Xiong et al. [65]
tetM, tetS Japanese and Korean coastal farms Kim et al. [97]

tetA, tetG
Chilean salmon Shah et al. [98]

Fish farms, Pakistan and Tanzania Shah et al. [96]
tetA Marine aquaculture, Spain and Portugal Rodriguez-Blanco et al. [99]

tetA, tetB, tetK Salmon aquaculture, Chile Buschmann et al. [19]

Sulfonamide, sulfamethizole
sul1, sul2, sul3 Fish farms, Tianjin, China; farmed freshwater fish,

Guangdong, China; Gilthead seabream Sousa et al. [55], Gao et al. [64], Xiong et al. [65]

sul1, sul2 Chilean salmon; fish farms, Tanzania and Pakistan Shah et al. [96], Shah et al. [98]

Aminoglycoside (Streptomycin,
spectinomycin, neomycin)

aadA strA-strB Chilean salmon, fish farms, Tanzania and Pakistan;
catfish farm, Vietnam; carp farms, Poland

Shah et al. [96], Shah et al. [98], Nguyen et al. [100],
Piotrowska et al. [101]

aad1 Gilthead Seabream Sousa et al. [55]

Amphenicol (chloramphenicol, florfenicol)

cmlA Gilthead Seabream Sousa et al. [55]
cat-1 Fish farms, Tanzania and Pakistan Shah et al. [96]
floR Salmon aquaculture, Chile Buschmann et al. [19]
catB Catfish farm, Vietnam Nguyen, et al. [100]

Quinolones (oxolinic acid, ciproflaxin) qepA, oqxAB, qnrS, aac(6′)-Ib, qnrB, qnrD Farmed freshwater fish, Guangdong, China Shah et al. [98], Jiang et al. [102]
qnrA, qnrB, qnrS Salmon aquaculture, Chile Buschmann et al. [19]

Macrolides (erythromycin) mefA Fish farms, Tanzania Shah et al. [96]
ermC, ermE, ermX, ermC Carp farms, Poland Piotrowska et al. [101]

Trimethoprim dfrA1, dfrA5, dftA12 Chilean salmon; fish farms, Tanzania and Pakistan Shah et al. [96], Shah et al. [98]
dfrA12 Catfish farm, Vietnam Nguyen et al. [100]

Quinoxoline 1, 4-di-N-oxides
(carbadox, olaquindox, mequindox) oqxA Salmon aquaculture, Chile Buschmann et al. [19]
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1.4. Integrated Fish Farming and “Waste as Feed”

In addition to the direct therapeutic application of antibiotics to aquaculture systems, integrated
fish farming is another potential source for antimicrobial residues and AMR bacteria in aquatic
environments in and around aquaculture farms. Integrated fish farming is a finfish or shellfish
production system that combines other agricultural/livestock farming operations and is practiced
widely throughout Asia and Africa. Finfish or shellfish are typically raised in ponds with units of
livestock, such as pigs, cattle, and poultry, located over or near a pond, allowing drainage of livestock
manure and excess feed into the pond as direct feed for fish and/or as fertiliser for phytoplankton
and other live fish feed [103]. The livestock are usually reared intensively, with antimicrobials used
as growth promoters and for prophylactic and therapeutic treatment [104]. Therefore, although
such systems are considered sustainable in many ways, they also pose potential food safety hazards
including transmission of AMR bacteria and faecal zoonotic pathogens, as well as accumulation of
antimicrobials and other chemical residues [105].

Very few studies have investigated the relationship between antibiotic contamination and AMR in
aquatic environments relating to human and agricultural activities within integrated farming systems.
Peterson et al. [80] studied integrated chicken-fish farms in Thailand and found a significant increase
over time in the resistance of Acinetobacter spp. to six different antimicrobials, with resistance to
oxytetracycline and sulfamethoxazole increasing from between 1% and 5% to 100% within 2 months
of a new fish production cycle. Of great concern was that when looking at the long-term effects of
integrated farming, AMR genes were particularly prevalent among Enterococcus spp. [80], some of
which are known to cause clinical infections in humans. Selection for AMR appeared to occur in the gut
of the chicken, with AMR higher in the chicken manure than for isolates from water-sediment samples.
Upon release into ponds, AMR bacteria from livestock manure may act as donors of AMR genes, or
their presence may be favoured due to selection pressure exerted by the presence of antimicrobials or
antimicrobial residues. Other studies have also shown that integrated agriculture/aquaculture systems
are reservoirs for antimicrobials and AMR genes [14,104,105]. Because ponds function as water storage
systems and are not subject to frequent exchange, AMR bacteria and antimicrobials accumulate in
pond water and sediments and there is adequate time for bacteria to develop resistance by promoting
HGT [106]. During water exchange and at harvest time, pond water is often released as a point source
into rivers, estuaries, or the sea [107], potentially disseminating AMR bacteria and antimicrobials into
the wider aquatic environment.

Recovery of fish-processing wastes for aquafeeds (“waste as feed”) has also been suggested as
a means of increasing the sustainability of aquaculture, by reducing dependence on wild fisheries
for fishmeal and fish oil. Currently, between 30% and 70% of the volume of fish biomass ends up
as wastes, depending on the type of fish processing level [108], so recycling waste as feed is an
attractive prospect. However, the use of fish-processing wastes, particularly those originating from
aquaculture, raises additional concerns about the transmission of AMR bacteria, as well as concerns
about the bioaccumulation of contaminants (including antimicrobials), and cross-species transmission
of pathogens. Although few studies have examined the effects of integrated fish farming or “waste
as feed” approaches on the occurrence of AMR, the findings of these studies raise great concerns
regarding the long term effects of antibiotic use in agriculture and aquaculture systems, and it is clear
that these methods of farming pose substantial risks to human and environmental health.

1.5. Probiotic Application

Probiotics were initially described by Parker (1974) [109] as “microbes or substances that improve
intestinal balance of a host animal”. However, a Food and Agriculture (FAO) and World Health
Organisation (WHO) joint report (2001) [110] refined the definition as “live microorganisms which,
when administered in adequate amounts, confer a health benefit on the host” [111]. This change in
definition reflects the increase in understanding of the complexity of the host microbiota interactions.
Kozasa (1986) [112] reported the first application of probiotics in aquaculture, using Bacillus toyoi spores
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as an additive in feed for yellowtail. Aquaculture probiotics can be acquired from a wide range of
sources—host or non-host derived cultures may be used; host derived probiotics are generally isolated
from fish digestive tracts, skin mucus, and gills, suggesting that they are part of the resident microbiota,
as well as from system water and component surfaces (associated with biofilms) [113]. Probiotics
generally refers to bacteria—both Gram-positive and Gram-negative members of diverse phyla (for
reviews see Adel et al. [114] and Pérez-Sánchez et al. [115])—and fungi (e.g., Aspergillus sp. [116]
and Saccharomyces spp. [115,116]), however, microalgae (e.g., Tetraselmis suecica, which is inhibitory
to Aeromonas and Vibrio spp.) have also been shown to possess probiotic characteristics [117].
The regimens and application methods can have a number of effects on AMR transfer within
aquaculture. The high doses of bacteria often added daily, could cause major shifts in the microbial
community present, possibly leading to an excess of AMR species within the aquaculture system.

The antibacterial effect exhibited by probiotics is due to a variety of factors including the
production of antibiotics, iron-scavenging siderophores, enzymes (e.g., proteases, amylases, and
lysozyme), hydrogen peroxide, organic acids (which in mammals may alter the host’s intestinal pH),
and bacteriocins [118]. Bacteriocins are proteinaceous toxins produced by a wide range of bacteria and
archaea and have a number of properties similar to antimicrobials that make them ideal candidates for
pathogen control: potency, mode of action, target cells receptors, size, and structure [119]. Although
their high selectivity make bacteriocins attractive alternatives to classical antibiotics, initial studies
indicate that bacteriocinogenic bacteria may harbour AMR genes [119]. Specific AMR determinants
carried on mobile genetic elements constitute a reservoir of resistance for potential food or gut
pathogens, thus representing a serious safety issue [120] and highlighting the importance of assessing
AMR susceptibility when prospecting bacteria for use as probiotics.

Probiotics may offer alternatives to antimicrobial compounds, however, microbes used as
probiotics are not exempt from acquiring antibiotic resistance genes via HGT. Given their shared
microbial environment in the gastrointestinal tract, there is a risk of probiotic microbes acquiring
antibiotic resistance genes from pathogenic microbes, and vice versa [120]; Munoz-Atienz (2013)
reported the presence of several antibiotic resistance genes in lactic acid bacteria of aquatic animal
origin that were intended for use as probiotics in aquaculture [121]. The long term implications of
adding high numbers of live bacterial populations to aquaculture systems that may still have high
levels of AMR genes and antimicrobials in situ, needs to be further examined.

2. Conclusions and Perspectives

The persistence and proliferation of AMR in the environment represents a global health crisis,
with a current estimate of 700,000 AMR deaths attributed annually and estimated to rise to 10 million
deaths per year in 2050 [121]. Furthermore, by 2050 AMR could cost $100 trillion in lost economic
output [122]. Therefore, it is critical that we better understand environmental hotspots for genetic
exchange of AMR genes such as aquaculture systems and determine how they might transfer to
clinically relevant strains.

In this review we have highlighted a number of critical areas that facilitate and promote
antimicrobial gene transfer in aquaculture systems. Some essential areas for further study include: the
role of probiotic microorganisms in HGT of antibiotic resistance genes; the ability of AMR genes to
transfer to the host organism; the role of waste when used as a food or a fertilizer as a potential source
of AMR genes and issues with cross species AMR factor interactions; and the resilience of AMR genes
in aquaculture systems. Globally, wide ranges of products are farmed in many types of aquaculture
systems operating under the control of a myriad of legislative policies. A consistent approach to AMR
control and food safety is required in order to reduce the threat of worldwide resistance. Although
considerable studies have been performed in other intensive food production areas such as pig and
poultry farming, there is currently a lack of extensive studies in aquaculture systems. International
efforts to better understand the transfer and stability of AMR are required to fully understand these
mechanisms and develop strategies for their mitigation.



Mar. Drugs 2017, 15, 158 10 of 16

Since the use of antibiotics for disease inhibition and as growth promoters have been prohibited
in Europe and regulated in other countries, alternative strategies have been used to alleviate pathogen
activity including: vaccination [123]; immune stimulation using nutritional factors derived from
bacterial, algal, or animal (including hormones and cytokines) sources [124]; phage therapy [125]; and
quorum sensing disruption (affecting virulence) [126]. In addition, the disinfection of system water
may be managed with UV application [127] or, as is often the case for intensive systems, via ozone
treatment [127,128]. These alternative strategies combined with a better understanding of the effects
on the microbiome of the farmed host may provide alternative solutions to improve aquaculture health
and function, while reducing the potential for the spread of antimicrobial resistance.
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