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Abstract 

The oxidation of the tri(o-tolyl)phospine complex of the doubly cyloplatinated 2,6-di(4-

fluorophenyl)pyridine ligand with the electrophilic oxidant iodobenzenedichloride was 

studied. Three products were formed in the ratio 15:15:70, and all were identified. The simple 

cis-dichloro platinum(IV) complex 2 (15%) remained in solution and could be purified and 

fully characterised. The triply cyclometallated 3 (15%), formed via the activation of a methyl 

group on a tolyl ring, precipitated from the reaction mixture and could not be redissolved or 

characterised further. Transcyclometallated 4 (70%), where one of the original 

cyclometallated aryl rings has exchanged for a cyclometallated phosphine ring, crystallised 

from the reaction mixture and was characterised crystallographically.  Redissolution of 4 gave 

a new agostic species with the phosphine moving to a less sterically demanding position. 
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Introduction 

The study of platinum complexes has had a crucial role in our understanding of C-H bond 

activation chemistry,1 with many studies on the mechanism of reactions.2 The popularity of 

the study of platinum complexes is partly due to the amenability of study, but largely derives 

from the relevance of complexes to actual processes, and the ability to activate methane.3  

We have been studying oxidation reactions4 and reductive couplings5 at cyclometallated 

platinum where we have looked at the reaction of square planar platinum(II) complexes with 

PhICl2. Oxidation with PhICl2 gives an the initial delivery of a Cl+ to the metal, generating a 

very electrophilic metal centre.6 The metal would normally then react with a Cl– to complete 

the oxidation and, for many complexes, the result is simply the addition of two chloride 

ligands to the metal centre giving an octahedral Pt(IV) centre;4a,4c,5a,5b which may or may not 

isomerise.4a,7 However, the electrophilic metal centre can also be intercepted before it 

combines with chloride and significantly different reactions result when the organic groups on 

the ligand systems can interact with the metal centre. On occasion we have observed agostic 

intermediates at low temperatures (e.g. -60°C) prior to transcyclometallation8 reactions that 

lead to cyclometallated alkyl phosphines.9 With other ligands fast intra-molecular C-H 

activation of aromatic groups (which proceed via an electrophilic attack of the metal on an 

aryl ring), also at low temperature, have been observed.4c,10 Crucial to the stability any 

intermediate formed is the size of the ring that is created: triphenyl phosphine can only give 

an unfavoured four-membered ring and no C-H activation is observed.9b On the other hand, a 

benzyl group on a phosphine ligand can lead to the formation of a favourable five-membered 

ring and we have recently reported on our study of such complexes: in addition to the 

expected electrophilic attack on the benzyl groups, we also saw a reductive coupling reaction 

from the newly formed metallacycle, a reaction that was ultimately identified as being 

reversible.11 

In this paper, we report on our investigations into the effect of putting an tolyl group into the 

role of intercepting ligand and three competing reactions are observed. 

 

Results 

The synthesis of the new C^N^C platinum(II) tri(ortho-tolyl) phosphine complex 1 proceeds 

smoothly at room temperature giving product in high yield and purity, Scheme 1. The 

difluorinated C^N^C ligand was chosen as the NMR active 19F nuclei provide a very 

convenient remote reporting handle on the central 195Pt nucleus and do not significantly affect 

the chemistry.12 
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Spectroscopic data initially suggested an impure compound as there were two 19F resonances 

(-110.23 ppm, 4JF-Pt = 33 Hz and -111.79 ppm, 4JF-Pt = 27.5 Hz), and at least twenty 1H signals, 

including one with strong 195Pt satellites at 5.73 ppm. However, a single peak in the 31P NMR 

spectrum (17.17 ppm, 1JP-Pt = 3942 Hz) and a doublet in the 195Pt NMR (–4227 ppm, 1JPt-P ≈ 

3950 Hz) proved that only one species was present in solution. The presence of platinum 

satellites on both 19F peaks indicated that the C^N^C ligand was dicyclometallated and we 

concluded that it is the size of the phosphine, which must be too large to freely rotate (on the 

NMR timescale) which renders the two sides of the C^N^C group inequivalent in the NMR. 

This restricted rotation also affects the 1H signals of the phosphine and all twelve phosphine 

aromatic signals appear to be separate, as are the three methyl group signals. In the 1H NMR 

spectrum one of the protons ortho to Pt and F is noticeably upfield shifted at 5.73 ppm, the 

other seems relatively unaffected at 6.55 ppm. One of the o-tol aryl protons has a resonance at 

8.99 ppm, compared with the rest in the range 7.7-7.1 ppm, and appears to have a weak 

interaction with the central platinum, as can be seen in the 195Pt–1H correlation spectrum. 

A crystal structure, Figure 1, highlights the crowded nature of the platinum centre. One of the 

aromatic protons on the diphenyl pyridine (on the right-hand side in Fig 1) is pointing directly 

into the one of the phenyl rings of the phosphine, and is 2.70Å from the centroid of the this 

ring, this is presumably responsible for the 1H resonance at 5.73 ppm.  The other two 

phosphine phenyl rings have their methyl groups pointing in different directions, rendering 

them inequivalent. Also seen in the crystal structure is an o-tol aryl proton pointing directly at 

the Pt, with the distance being 2.87Å, presumably this has the 1H resonance at 8.99 ppm. 
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Figure1. Crystal structure of 1, thermal ellipsoids drawn at 50% probability level. Selected bond lengths (Å) and 

angles (°): Pt1-C1 2.094(3); Pt1-C17 2.085(3); Pt1-P1 2.2548(8); Pt1-N7 2.024(2); C1-Pt1-P1 97.54(8); N7-

Pt1-C1 79.80(11); N7-Pt1-P1 177.32(7); N7-Pt1-C17 79.53(11); C17-Pt1-C1 158.86(12); C17-Pt1-P1 

103.10(9). 

Addition of PhICl2 to a chloroform solution of 1 at -40°C gave immediate and complete 

consumption of the starting material with the production of three new Pt(IV) complexes. The 

proportions of the three complexes did not seem to be affected reproducibly by reaction 

conditions; temperature and solvent of reaction had only little affect on product distribution. 

Around 15% of the product mixture was a complex that could be separated from the other two 

and fully characterised: it turned out to be the simple dichloro- oxidised complex 2, Scheme 2. 

 

Pure samples of 2 were analysed; a peak at -13.96 ppm (1JP-Pt = 2470 Hz) in the 31P NMR 

spectrum and a doublet in the 195Pt NMR spectrum at -2403 ppm indicated a Pt(IV) species.13 

A single peak in the 19F NMR spectrum at -106.50 ppm (4JF-Pt = 14 Hz) and the number of 

peaks present in the 1H NMR spectrum indicated the C^N^C ligand remained 

dicyclometallated with both sides equivalent and showed that the phosphine is now able to 

rotate freely, suggesting that the phosphine is now cis to the pyridine nitrogen. A crystal 

suitable for X-ray crystallography was grown and confirmed the cis geometry, Figure 2. 
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Figure 2 Crystal structure of 2, thermal ellipsoids drawn at 50% probability level, solvent removed for clarity. 

Selected bond lengths (Å) and angles (°): C1-Pt1 2.100(5); Cl1-Pt1 2.3323(18); P1-Pt1 2.3503(15); Pt1-Cl2 

2.3974(15); Pt1-N7 1.985(5); Pt1-C17 2.065(7); C1-Pt1-Cl1 100.0(3); C1-Pt1-P1 91.97(17); C1-Pt1-Cl2 

87.48(16); Cl1-Pt1-P1 97.53(6); Cl1-Pt1-Cl2 86.26(6); P1-Pt1-Cl2 176.21(7); N7-Pt1-C1 81.1(4); N7-Pt1-Cl1 

169.29(16); N7-Pt1-P1 93.06(17); N7-Pt1-Cl2 83.15(16); N7-Pt1-C17 81.4(3); C17-Pt1-C1 162.5(4); C17-Pt1-

Cl1 96.8(2); C17-Pt1-P1 90.5(2); C17-Pt1-Cl2 88.9(2). 

The remaining material consisted of two new complexes, both of which had Pt-CH2 bonds, 

easily identified by the presence of 195Pt satellites on alkyl 1H signals. All three products were 

stable in solution at -60°C, with no inter-conversion or further reaction. Thus, acquisition of 

solution spectroscopic data was possible at low temperature and confident assignments of 

structure could be made. However, allowing the reaction mixture to warm to room 

temperature resulted in the two products with Pt-CH2 bonds precipitating from solution. It 

was this behaviour that allowed the simple oxidised product 2 to be isolated in a pure form. 

The less abundant complex with the Pt-CH2 bond made up a further 15 % of the product mass, 

and was characterised as the triply cyclometallated complex 3. A peak in the 195Pt NMR 

spectrum at -3028 ppm (1JPt-P ~ 2800 Hz) and a peak in the 31P NMR spectrum at 20.26 ppm 

(1JPt-P = 2818 Hz) indicated a Pt(IV) species. The large downfield shift of the 31P resonance 

(when compared with 2) suggests that the phosphorus is part of a metallacycle.14  In the 1H 

NMR spectrum, two protons on the cyclometallated alkyl group could be seen at 2.75 ppm 

(2JH-H = 13 Hz, 2JH-Pt = 74 Hz) and at 3.77 ppm (2JH-H = 13 Hz, 2JH-Pt = 90 Hz), with the 2JH-H 

coupling (and COSY correlation) showing that the two protons are attached to the same 

carbon. Two aryl peaks with significant platinum satellites (6.18 ppm, 3JH-Pt = ~30 Hz and 

5.18 ppm,  3JH-Pt = ~25 Hz) were also seen. Both the two alkyl and the two aryl protons 

coupled to the same 195Pt nucleus. In the 19F NMR, peaks at -107.52 ppm (4JF-Pt = 28 Hz) and 
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-110.29 ppm (4JF-Pt = 23 Hz) were seen: the presence of satellites on both peaks shows that the 

C^N^C ligand is still dicyclometallated. 

At first sight, the notional mirror plane (vertical, as drawn in Scheme 2) through 3 should lead 

to only one alkyl 1H resonance with Pt coupling, one aryl 1H resonance with Pt coupling and 

one 19F resonance with Pt coupling. However, the doubling of all these resonances 

presumably arises for a similar reason to that which complicates the NMR spectra of 1: the 

bulk of the phosphine ligand. Thus, the preferred conformation will be one where the new 

cyclometallated ring twists out of the notional mirror plane and renders the two sides of the 

molecule inequivalent.  With a barrier to inter-conversion that is sufficiently high, the 

molecule will appear to be frozen on the NMR timescale, especially at the low temperature of 

-40°C we were studying the reaction, giving rise to the additional resonances. While the 195Pt 

shift and the magnitude of the 1JPt-P coupling constant suggests a P-N trans arrangement, it is 

the doubling of the 1H, and 19F resonance that provides the strongest evidence for this 

geometry. Once precipitated, we were unable to redissolve 3 in any common solvent, 

rendering further study impossible. 

The major component of the reaction, 4, made up the remaining 70 % of the product mass.  A 

doublet in the 195Pt NMR spectrum at -3324 ppm is suggestive of a Pt(IV) species, with the 

large downfield shift (when compared to 2) of the 31P resonance to 33.21 ppm (1JP-Pt = 3199 

Hz) once again suggesting that the phosphorus is now part of a platinacycle. Two peaks in the 

19F NMR spectrum, one at -109.62 ppm with platinum satellites (4JF-Pt = 43 Hz) and one at -

112.68 ppm (no satellites) indicate that the C^N^C ligand is only monocyclometallated. In 1H 

NMR spectrum there are two proton peaks for the cyclometallated alkyl group, at 4.07 ppm 

(2JH-Pt = 76 Hz) and 4.66 (2JH-Pt = 102 Hz), both on the same carbon. Thus the solution data is 

consistent with the structure 4 depicted in Scheme 2. With time, this species precipitated from 

solution, often crystallising. Crystals suitable for X-ray diffraction were isolated and the 

structure solved, confirming the transcyclometallated nature of the complex and the trans P-N 

geometry, Figure 3.  
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Figure.3 Crystal structure of 4, thermal ellipsoids drawn at 50% probability level. Selected bond lengths (Å) and 

angles (°): Pt1-Cl1 2.4429(6); Pt1-P1 2.2906(6); Pt1-C1 2.041(2); Pt1-Cl2 2.4086(6); Pt1-N7 2.179(2); Pt1-

C18 2.075(2); P1-Pt1-Cl1 99.69(2); P1-Pt1-Cl2 90.37(2); C1-Pt1-Cl1 90.68(7); C1-Pt1-P1 96.77(7); C1-Pt1-

Cl2 172.86(7); C1-Pt1-N7 80.19(9); C1-Pt1-C18 87.83(10); Cl2-Pt1-Cl1 88.15(2); N7-Pt1-Cl1 84.39(6); N7-

Pt1-P1 174.99(6); N7-Pt1-Cl2 92.69(6); C18-Pt1-Cl1 177.53(8); C18-Pt1-P1 82.45(8); C18-Pt1-Cl2 93.09(8); 

C18-Pt1-N7  93.41(9). 

Considerable distortions away from a perfect octahedral geometry are present in the structure 

of 4: while the P1-Pt1-Cl2 and C1-Pt1-Cl1 angles are less than 0.5° from an ideal 90°, the C1-

Pt1-N7 angle is 80.19(9)°, the pyridine ring is canted more than 26° from the Pt-N vector and 

the cyclometallated aryl ring is inclined some 23.6° from the pyridine it is attached to. 

We attempted to redissolve the crystals of 4 in all standard solvents, but it was only in acetone 

that appreciable quantities did dissolve.  Even then, the redissolution was slow and appeared 

to be accompanied by loss of a chloride and an isomerisation. Solutions were too weak to 

fully characterise, but key data indicated that the phosphorous and nitrogen adopt a cis 

arrangement, allowing the bulk of the uncyclometallated o-tolyl rings to move out to a 

position over the plane of the original cyclometallated ligand, 5, Scheme 3, with an agostic 

methyl completing the coordination sphere. 

 

Thus, solution data still shows two peaks (and only one having platinum satellites) in the 19F 

NMR spectrum at -109.33 ppm (4JF-Pt = 45 Hz) and -115.18 ppm, a peak in the 31P NMR 
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spectrum, at 23.69 ppm (1JP-Pt = 2969 Hz) and a doublet in the 195Pt NMR spectrum (-2583 

ppm). In the 1H NMR spectrum, the protons on the cyclometallated alkyl group are at 5.12 

ppm (2JH-Pt = 95 Hz) and 4.25 ppm (2JH-Pt = 45 Hz) and a clear agostic interaction from one of 

the methyl groups (1.22 ppm) was seen in the 195Pt-1H correlation spectrum. 

 

Discussion. 

In several examples published by us earlier, oxidation of a C^N^C platinum phosphine 

complex with PhICl2 initially gave a trans dichloride, which subsequently isomerised to the 

less sterically crowded and more stable cis isomer. Thus we have seen this behaviour for the 

DMSO, PMe3, PPr3, PBu3, and PPh3 analogues of 1 and have, in some cases, been able to 

crystallographically characterise both isomers.9 Analogous behaviour was also seen with the 

addition of methyl iodide: the initial complex with the phosphine trans to pyridine isomerises 

to one in which the phosphine is cis to the pyridine;5d others have seen similar behaviour.15 

That the oxidation of 1 did not give an initial trans complex, and went straight to the less 

crowded cis must be a function of the sheer bulk of the tri(o-tolyl)phosphine. We have already 

seen how positioning the phosphine trans to the nitrogen in the square planar Pt(II) 1 results 

in considerable steric constraints, and presumably the addition of two additional chlorides is 

simply impossible with the phosphine trans to the pyridine, hence the direct formation of the 

cis isomer 2. Even now, the cis arrangement in 2 is not completely unstrained: a N7-Pt1-Cl1 

angle of 169.29(16)° is some way away from an ideal 180°. 

That 2 is not the only product of the reaction is a function of the two step process by which 

oxidation with PhICl2 takes place. As an electrophilic reagent, the first step of reaction will be 

the delivery of a Cl+ to one face of 1, generating an unseen five-coordinate cationic 

intermediate. This intermediate could combine with chloride (with isomerisation) to give 2, 

Scheme 4, or, more interestingly, interact with the periphery of the phosphine ligand, in this 

instance, a methyl group. 

 

Once the methyl group of interacts with the platinum centre, two possibilities present 

themselves. Firstly the methyl group could be directly deprotonated with concomitant 

formation of a C-Pt bond to give tricyclometallated 3 or, secondly, a methyl proton could be 
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transferred in a transcyclometallation8 reaction to one of the original cyclometallated aryl 

groups, together with combination with the final chloride to give 4, Scheme 5.  

 

Previously we have worked with alkyl phosphines, where only the second, 

transcyclometallation, pathway was observed (with the relief of strain associated with the 

fused cyclometallated rings of the C^N^C ligand being partially responsible for driving the 

reaction).9 This behaviour might be expected, given that the high pKa of an alkyl group 

suggests direct deprotonation is not a viable reaction pathway. The pKa of the tolyl-Me 

protons is around 40, about 20 units lower than an alkyl chain, due to resonance effects from 

the aryl ring, and this reduction in pKa must be sufficient to now render the deprotonation a 

viable reaction pathway, hence the formation of some 3. However, the reduction in pKa is 

clearly not enough to make this the exclusive or indeed, dominant, pathway as the majority of 

the reaction did indeed follow the transcyclometallation route. 

We should at this point compare our proposed intermediate with the agostic complex 5 that 

forms upon redissolution of 4, Scheme 3. That the agostic methyl in 5 is stable enough in 

solution at room temperature to be identifiable, as it does not undergo a second 

transcylometallation reaction, is not unexpected: their would be no relief of strain helping to 

drive the transcyclometallation reaction. So the non-deprotonation of the agostic methyl in 5 

reinforces our point above about the pKa of the methyl: it is still too high for pathways 

involving deprotonation to represent readily accessible reaction routes, but is low enough to 

be viable under certain circumstances. Thus we can conclude the course of our oxidation 

reaction must be finely balanced and, presumably, it ought to be able to influence the outcome 

under appropriate conditions. We had limited scope for changing reaction conditions, with 

neither reaction temperature (-60°C to +20°C) or reagent concentration having any effect on 

product distribution. 
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Conclusions 

The products of the oxidation of the tri(o-tolyl)phosphine complex of the C^N^C doubly 

cycloplatinated diphenylpyridine ligand with iodobenzene dichloride are consistent with 

electrophilic attack by the oxidant, giving an unseen five-coordinate intermediate. Three 

pathways of reactivity are seen from this intermediate: simple combination with a chloride, 

electrophilic attack on a methyl group, and transcyclometallation. We were unable to control 

the relative proportions of the products, but the evidence would suggest that each pathway is 

independent of the others, and essentially irreversible. 
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Experimental 

General 

All chemicals were used as supplied, unless noted otherwise.  All NMR spectra were obtained 

on a Bruker Avance 400, 500 or 600 MHz spectrometers and were recorded at room 

temperature, in chloroform, unless stated otherwise. 1H and 13C signals are referenced to 

external TMS, assignments being made with the use of decoupling, GOESY and COSY pulse 

sequences. 1H-19F, 1H-31P and 1H-195Pt correlation spectra were recorded using a variant of the 

HMBC pulse sequence. 19F and 31P chemical shifts are quoted from the directly observed 

signals (referenced to external CFCl3 and 85% H3PO4, respectively) whereas the 195Pt 

chemical shifts quoted are taken from the 2D HETCOR spectra (referenced to external 

Na2PtCl6). Starting platinum complex DMSO was prepared as previously reported.16  

The following labelling scheme was used for the complexes: 

 

Synthesis of complex 1 

To a solution of [(2,6-di(4-fluorophenyl)pyridine)Pt(DMSO)] (100 mg, 1.86 x10-4 mol) in 

chloroform at room temperature was added a chloroform solution of tri(o-tolyl)phosphine (62 

mg, 2.05 x10-4 mol, 1.1 equiv). The mixture was stirred for five minutes before solvent and 

liberated DMSO were removed under high vacuum. Column chromatography (chloroform on 

silica) was used to purify the product. Yields: 136 mg (1.79 x10-4 mol, 96%). 

δH = 8.99 (1H, dd, 3JH-H = 16 Hz, 3JH-H = 8 Hz, HAr)*, 7.67 (1H, dd, 3JH-H = 11 Hz, 3JH-H = 8 

Hz, HAr), 7.63 (1H, dd, 3JH-H = 8 Hz, Hi), 7.23-7.47 (9H, m, HAr) 7.41 (1H, He), 7.38 (1H, Hm), 

7.26 (2H, dd, 3JH-H = 8 Hz, Hh,j), 7.14 (2H, m, HAr), 6.62 (1H, dt, 3JH-H = 3JH-F = 8 Hz, 4J = 2 

Hz, Hd), 6.58 (1H, dt, 3JH-F = 3JH-H = 8 Hz, 4J = 2 Hz, Hn), 6.55 (1H, dd, 3JH-F = 11 Hz, 4JH-H = 

2 Hz, 3JH-Pt = 29 Hz, Hp), 5.73 (1H, dd, 3JH-F = 11 Hz, 4JH-H = 2 Hz, 3JH-Pt = 26 Hz, Hb), 2.99 

(3H, s, Me), 1.88 (3H, s, Me), 1.75 (3H, s, Me) ppm. 

*Shows a correlation to platinum in the 1H-195Pt HMBC spectrum when the experiment is 

optimised for long range coupling. 

δC = 22.19 (d, 4JC-P = 9 Hz,CMe), 23.39 (d, 4JC-P = 4 Hz,CMe), 25.03 (d, 4JC-P = 9 Hz, 

CMe),110.27 (Cd,n), 114.27,  (CAr),  121.29 (d, 4JC-P =  Hz, 4JC-P =  Hz, Hb), 124.72-125.75 

(Ch,j,p,Ar), 125.75-127.00 (Cg,k,Ar) 133.15 (Ce,m), 140.12 (Ci), 143-147 (Cf,l,Ar) 144.56 (CAr), 

162.89-165.36 (Cc,o,Ar) 167.78 (m, Ca/q) 170.74 (m, 1JC-H = 737 Hz, Ca/q) ppm. 

 δF = -110.23 (4JPt-F = 32.5 Hz), -111.79 (4JPt-F = 27.5 Hz) ppm. δP = 17.17 (1JP-Pt = 3942 Hz) 

ppm. δPt = -4227 (d, 1JPt-P = ~3800 Hz) ppm. 



 12 

HR-MS (ESI): found 764.1784, calculated 764.1784 = C38H30F2N
194PtP [M]+. 

Crystals suitable for Xray analysis were grown by the slow evaporation of solvent from a 

chloroform solution, Table 1. 

Synthesis of complexes 2, 3 and 4 

To a chloroform (10 ml) solution of 1 (20 mg, 2.6 x10-5) was added PhICl2 (10 mg, excess) at 

-40 °C giving full conversion to complexes 2, 3 and 4 (15, 15, 70% respectively by NMR 

integration). Allowing the reaction mixture to warm to room temperature led to the 

precipitation of 3 and 4. Complex 2 was recovered by filtering the mixture and removing the 

solvent; additional purification was by column chromatography, loading on a silica column 

with chloroform and eluting with ethyl acetate (3 mg, 3.7 x10-6 mol, 14%) 

Complex 2 

δH = 7.69 (2H, dd, 3JH-F = 8 Hz, 4JH-H = 2.5 Hz, 3JH-Pt = 19 Hz, Hb), 7.42 (1H, t, 3JH-H = 8 Hz, 

Hi), 7.31 (2H, dd, 3JH-H = 8.5 Hz, 4JH-F = 5 Hz, He), 7.18 (3H, m, Hl), 7.10 (3H, m, Hm), 7.01 

(2H, d, 3JH-H = 8 Hz, Hh), 6.96 (3H, m, Hk), 6.85 (3H, m, Hn), 6.64 (2H, td, 3JH-F = 3JH-F = 8.5 

Hz, 4JH-H = 2.5 Hz, Hd), 1.37 (9H, s, Hp) ppm. 

δC = 22.76 (d, 3JC-P = 4 Hz, Cp), 122.32 (d, 2JC-F = 24 Hz, Cd), 116.19 (s, 3JC-Pt = 30 Hz, Ch), 

121.85 (d, 2JC-F = 20 Hz, Cb), 124.78 (d, 2JC-P = 12 Hz, Ck), 127.03 (d, 3JC-F = 9 Hz, Ce), 

129.05 (s, Cl), 131.54 (s, Cm), 132.86 (d, 3JC-P = 10 Hz, Cn), 140.37 (s, Ci), 121.94 (d, 4JC-F = 2 

Hz, Cf), 143.28 (m, Cj), 162.08 (s, Cg), 163.93 (m, Ca), 164.13 (d, 1JC-F = 260 Hz, Cc) ppm. 

δF = -106.5 (4JF-Pt = 14 Hz) ppm. δP = -13.96 (1JP-Pt = 2470 Hz) ppm. δPt = -2403 (d, 1JPt-P  ~ 

2500 Hz) ppm. 

HR-MS (ESI): found 798.1397, calculated 798.1394 = C38H30F2PN194Pt = [M-Cl]+. 

Crystals suitable for X-ray analysis were grown by the slow evaporation of solvent from a 

chloroform solution, Table 1. 

Complex 3 

δH = 9.08 (dd, 3JH-P = 16 Hz, 3JH-H = 9 Hz, HAr), 6.18 (d, 3JH-F =11 Hz, 3JH-Pt = ~30 Hz, Hb), 

5.18 (d, 3JH-F =10 Hz, 3JH-Pt = ~25 Hz, Hb), 2.75 (d, 2JH-H = 13 Hz, 2JH-Pt = 74 Hz, CH2), 3.77 

(d, 2JH-H = 13 Hz, 2JH-Pt = 90 Hz, CH2) ppm. 

δF = -107.52 (4JF-Pt = 28 Hz), -110.29 (4JF-Pt = 23 Hz) ppm. δP = 20.26 (1JP-Pt = 2818 Hz) ppm. 

δPt = -3028 (d, 1JPt-P = ~2900 Hz) ppm.  

Complex 4 

δH = 8.55 (dd, 3JH-P = 17 Hz, 3JH-H = 8 Hz, HAr), 5.92 (d, 3JH-F =11 Hz, 3JH-Pt = 39 Hz, Hb), 4.07 

(d, 2JH-H = 12 Hz, 2JH-Pt = 76 Hz, CH2), 4.66 (d, 2JH-H = 12 Hz, 2JH-Pt = 102 Hz, CH2) ppm. 

δF = -109.62 (4JF-Pt = 43 Hz) -112.68 ppm. δP = 33.21 (1JP-Pt = 3199 Hz) ppm. δPt = -3324 (d, 

1JPt-P = ~2900 Hz) ppm.  
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Crystals suitable for X-ray grew from the reaction mixture, Table 1. 

Synthesis of Complex 5 

Crystals of 4 were stirred in d6-acetone until (approx. 3 weeks) sufficient was dissolved to 

record solution data. 

Complex 5 

δH (Acetone-d6) = 6.54 (dd, 2JH-F = 7 Hz, 3JH-Pt = 52 Hz, Hb), 5.12 (d, 2JH-H = 13.5 Hz, 2JH-Pt = 

95 Hz, CH2), 4.25 (d, 2JH-H = 13.5 Hz, 2JH-Pt = 45 Hz, CH2) 1.86 (3H, s, Me), 1.22 (3H, s, 

Me)* ppm. *Correlation to platinum seen, though satellites not visible. 

δF (Acetone-d6) = -109.33 (4JF-Pt = 45 Hz), -115.18 ppm. δP (Acetone-d6) = 23.69 (1JP-Pt = 

2969 Hz) ppm. δPt (Acetone-d6) = -2583 (d, 1JPt-P = ~3000 Hz) ppm.  

A large (relative to background) peak in the electrospray mass spectrum suggests a cationic 

species. HR-MS (ESI): found 798.1396, calculated 798.1394 = C38H30F2PN194Pt = [M]+. 
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Table 1: Xray data for the complexes 

Complex 1 2 4 

Crystal form yellow block colourless block colourless block 

Dimensions/mm    0.2 × 0.18 × 0.12 0.2 × 0.18 × 0.03 0.3 × 0.2 × 0.06  

Emp. Formula 
C39H31Cl3F2NPPt C38H30Cl2F2NPPt 

C41H36Cl2F2NOPP

t 

Mw 884.06 835.59 893.67 

Crystal system monoclinic monoclinic triclinic 

Space group C2/c P21/n P-1 

a/Ǻ             36.4648(9) 10.92104(15) 9.33343(14) 

b/Ǻ                8.3932(2) 15.5683(2) 12.19811(14) 

c/Ǻ                 23.2143(7) 18.6739(3) 16.57528(15) 

α/° 90 90 99.8343(9) 

β/° 104.094(3) 95.5114(15) 105.1171(10) 

γ/°    90 90 101.2367(11) 

U/Ǻ3  6891.0(3) 3160.30(8) 1737.24(4) 

T/K   150(2) 150(2) 150(2) 

Z 8 4 2 

Dcalc/Mg m−3      1.704 1.756 1.708 

F(000)           3472.0 1640.0 884.0 

μ(MoKα)/mm−1 4.392 4.701 4.284 

θ max/°          31.29 30.891 31.497 

Refl. Measured      27581 42117 97999 

Unique data    10276 9104  11081 

R1 [I > 2σ(I)]   0.0321 00232 0.0216 

wR2    0.0677 0.0437 0.0691 

Data/rest/param  10276/0/464 9104/0/409 11081/0/446 
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Supporting Information 

Full details and discussions of the Xray structures are available. CIF files are also available to 

download from the CCDC, reference numbers: 1565876-1565878. 
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