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Abstract: In this paper, parameter-varying technique is firstly addressed for modelling a 4.8MW 10 

wind turbine system which is nonlinear in essence. It is worthy to point out that the proposed 11 

parameter-varying model is capable of describing a nonlinear real-time process by using real-12 

time system parameter updating. Secondly, fault reconstruction approach is proposed to 13 

reconstruct system component fault and actuator fault by utilizing augmented adaptive observer 14 

technique with parameter-varying. Different from the offline tuning adaptive scheme, the 15 

proposed adaptive observer includes adaptive tuning ability to online adjust the observer based 16 

on varying parameter. The effectiveness of the proposed parameter-varying modelling and fault 17 

reconstruction methods is demonstrated by using a widely-recognized 4.8 MW wind turbine 18 

benchmark system. 19 

Keywords: Adaptive observer; Fault diagnosis; Fault reconstruction; Parameter-varying 20 

modeling; Wind turbine systems;  21 
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 22 

1. Introduction 23 

    Recently, wind turbine industries have been rapidly developed which have dominated renewable 24 

energy market.  Since most of the wind power systems are placed along mountains, farmland, coastline, 25 

and even in seas, it is challenging to maintain and repair them timely when any unexpected faults occur in 26 

the wind turbine system. Therefore there is a high demand to improve the system reliability of the wind 27 

turbine systems by implementing effective real-time monitoring and fault diagnosis [1, 2]. Fault diagnosis 28 

methods can be generally categorized into model-based approach, signal-based approach and data-driven 29 

approach [3-6]. Model-based fault diagnosis is one of the most powerful and popular system monitoring 30 

and fault diagnosis methods for wind turbine systems, and some results were reported in [7-13], generally 31 

utilizing linearized time-invariant models of wind turbine systems. However, wind turbines are nonlinear 32 

or parameter time-varying in nature. Therefore, linear time-invariant models at some operation points 33 

would fail to describe the global wind turbine system performance. In particular, nonlinearities in the 34 

aerodynamic torque are indispensable [14, 15]. In order to better describe wind turbine systems, 35 

parameter-varying  models or fuzzy models were utilized for modelling wind turbine systems [16-19]. 36 

Based on linear parameter-varying models, a variety of approaches for control synthesis, monitoring and 37 

fault diagnosis for wind turbine systems were also addressed in [20-25]. However, a big concern is the 38 

complexity of the design and implementation by using the aforementioned methods in [20-25]. In 39 

addition, it could cause system oscillation when control or observation switching strategies were used. 40 

Therefore, there is a strong motivation to develop a novel modelling and real-time monitoring techniques 41 

for wind turbine systems. In this paper, a novel parameter-varying model for wind turbine systems is 42 

established, which is used for real-time monitoring and fault reconstruction in wind turbine systems.  43 

Adaptive observation and regulation play an important role in system analysis and control synthesis, 44 

and some interesting results are reported on the basis of time-varying parameter models. In [26], an 45 
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adaptive control method with exponential regulation in a parameter-varying model was addressed. In [27], 46 

time-varying parameter adaptive control was investigated. A periodic parameter adaptation approach for 47 

time-varying parametric uncertain systems was discussed in [28]. It is noticed that most of the approaches 48 

in [26-28] are Lyapunov function based methods, where it is a challenging to find a proper Lyapunov 49 

function for the system stability analysis, as well as not easy to solve and implement for some cases, for 50 

instance, the case for system with varying parameters at arbitrary velocity [28].  51 

In this paper, a novel observer is constructed with adaptive parameters tuning for fault reconstruction 52 

based on the proposed parameter-varying model. It is designed offline, but performed and regulated 53 

automatically on-line for real-time monitoring and fault diagnosis. The augmented system approach and 54 

the parameter-varying model are integrated for designing this novel fault estimator to simultaneously 55 

reconstruct the concerned faults as well as system states. From the error dynamics analysis and simulation 56 

results, it can be concluded that the proposed adaptive parameter-varying observer possesses a certain 57 

ability of disturbance rejection, apart from being able to estimate system states and reconstruct system 58 

faults. 59 

The paper is organized as follows. Parameter-varying modeling for wind turbine is discussed in Section 60 

2. Faulty system for wind turbine systems with concerned component fault and actuator fault is addressed 61 

in Section 3.  Parameter-varying-model based states observation and fault reconstruction for wind turbine 62 

systems is investigated in Section 4. Validation studies on a 4.8 MW wind turbine benchmark are 63 

addressed in Section 5. The paper is ended with conclusion in Section 6. 64 

2. Parameter-varying Modeling for Wind Turbine 65 

Due to highly nonlinearity and random uncontrolled driving wind, wind turbines should be identified 66 

along the global operating region. Parameter-varying modelling is an effective method to build a model to 67 

describe the wind turbine operation. However, conventional parameter-varying models generally possess 68 

nonlinear switched affine structures, which may bring complexity and challenges in the design and 69 
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implementation of the model-based controller and fault detector. In order to overcome the potential 70 

drawbacks of the conventional parameter-varying modelling methods, a novel parameter-varying model 71 

for wind turbine system is built by using real-time parameter updating.  72 

A 4.8MW benchmark wind turbine system [25] is depicted by Figure 1, which is composed of 73 

aerodynamics and blade system, drive train and generator, and the symbols in Figure 1 are listed in Table 74 

1. 75 

 76 

Figure 1. Wind turbine’s architecture 77 

Table 1. System parameters I 78 

Symbols Quantity Unit 

rv  Wind speed m/s 

aT  Aerodynamic torque Nm 

λ  Tip-speed-ratio [  ] 

  Blade pitch angle   

r  Reference blade pitch angle   

r  Rotor speed Rad/s 

grT  Reference generator torque Nm 

g  Generator speed Rad/s 

gT  Generator torque Nm 

gP  Generator power MW 

rP  Reference generator power MW 

  Torsion angle of the drive train   
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 79 

2.1. Aerodynamic Model 80 

    The aerodynamic torque 
aT  acting on the blades is: 81 

23 ),(
2

1
rq

r

m
a vCR

p
T 


                                                   (1) 82 

where 
mP  denotes the mechanical power,   is the air density [Kg/m3], R is the radius of the rotor [m], 83 

and rv  is  the wind speed limited to 0~25[m/s], ),( qC  is the torque coefficient which is a strong non-84 

linear term, depending on the blade pitch angle  , and the tip-speed-ratio   defined as rr vR  .  85 

The relationship between ),( qC  and ,  is generally characterized by a Lookup Table scheme, 86 

which cannot be utilized directly in model-based control and observation design and implementation.   87 

From Eq.(1), one can see the nonlinearity of the torque 
aT  is caused by 2

rv  and ),( qC . In this study, 88 

we construct a nonlinear polynomial function to illustrate the nonlinear dynamics. Here, ),( qC  will be 89 

identified by the curve fitting method using the real data and Linear Least Square method, which is 90 

carried out by using Matlab Curve Fitting Toolbox, described as follows by using the polynomial of the 91 

two input parameters: 92 

l

l

k

kq ppppppppC  00

2

02

2

2011011000),(                        (2) 93 

where lpppp 0011000 ,,   are the coefficients of the polynomial, k and l are the orders of the polynomial 94 

illustrating the curve fitting accuracy. By replacing the Lookup Table, the obtained polynomial equation 95 

of qC  can be used on line. 96 

Figure1. Wind turbine’s architecture 
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 97 

Figure 2. (a) Real data (Dot) and fitting curve result (Color surface) of torque coefficient qC ; 98 

                                   (b) Zoom-in curve of qC . 99 

  Figure 2 depicts the curve ),( qC  against the pitch angle   and tip-speed-ratio  . In Figure 2a, the 100 

black dot shows the real data of the measurement used as the Lookup Table in [25], and the color surface 101 

shows the curve fitting result of ),( qC . It is noticed that ),( qC  can take values either positive or 102 

negative, which correspond to the generation mode or motor mode, respectively [29]. From the zoom-in 103 

Figure 2b, one can see ),( qC  takes positive values when the generator works in generation mode.  104 

    Substituting  Rv rr    to Eq.(1), 
aT  is rewritten as: 105 

225 ),(
2

1



rq

r

m
a CR

p
T                                                (3) 106 

    Obviously, the nonlinearity of the torque 
aT  is caused by r   and ),( qC . 107 

    For the above mentioned  , the state-space representation is given as follows [25]: 108 
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where 
n  and   denote the natural frequency and damping ratio respectively;   and r  are respectively 110 

the pitch angle and its reference value with the changing range [-2°~95°],  and 


 
20

1

n

  is proportional 111 

to the change rate of the pitch angle. 112 

2.2. Drive Train and Generator Model 113 

    From [25], we can see the drive train dynamics including gear box is subjected to the most of 114 

prominent nonlinear dynamics of a wind turbine system. The two-mass drive train model is driven by the 115 

two inputs: the aero dynamic torque 
aT  and the generator torque gT , which make the nonlinear dynamics 116 

distributed in the state matrix and input matrix separately in the state-space equation. In this paper, the 117 

system is expressed as a parameter-varying model with only one input from the generator torque gT  as 118 

follows: 119 

)(

0

0

)(

)(

)(

01

)(

)(

)(

)(

1

1

22

11

tT

t

t

t

a

λ,β,ωa

t

tω

tω

gJg

r

n

Jn

K

Jn

B

J

K

Jn

B

r

g

r

g

g

gg

dtdt

gg

dtd t

r

d t

rg

dt











































































 















                          

  (5) 120 

where 121 

r

a

r

rdt
r

J

T

J

BB
λ,β,ωa

'

)(
11
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

 ,
g
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
rq
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a
a CR

T
T   122 

and k and l in Eq.(2) both equal to 5, namely, 
5

05

5

50011000),(  pppppCq   . From the 123 

above, it is indicated that ),,(11 ra  is a nonlinear function of  ,  and r . For simplicity, 124 

),,(11 ra   is denoted as 11a  in the rest of the paper.  125 

    The generator and converter dynamics can be modelled as a first-order dynamics: 126 

                                                          (6) 127 
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where g is the time constant of the model. The power produced by the generator is given by 128 

)()()( tTttP gggg  , where g  is the efficiency of the generator.  129 

The parameters of the system are shown in Table 2 [25]. 130 

Table 2. System parameters II 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

2.3. Parameter-varying Model of Wind Turbine  139 

    On the basis of the subsections 2.1 and 2.2, the parameter-varying model of overall wind turbine system 140 

can be derived as follows: 141 









)()(

)()(),,()(

tCxty

tButxAtx r
                                               (7) 142 

where 143 

  Tggr tTttttttx )()()()()()()( 0 
 ,  Trgr ttTtu )()()(  ,  144 

            )()()()()( ttTttty ggr   . 145 

 ,  and r are the scheduling parameters,   and r  can be measured to real-time update the model,   146 

can be calculated by the measuring variables rv  and r . ),,(11 rA  , B, C are shown as follows: 147 

Symbols Quantity Parameter Unit 

rJ  Moment of inertia of the low-

speed shaft 

55×106  kgm2 

dtB  Drive train’s torsion damping 
coefficient  

775.49 Nms/rad 

gn  Gear ratio 95 [  ] 

dtK  Torsion stiffness of the drive 

train 

2.7 ×109 Nms/rad 

gJ  Moment of inertia of the high-

speed shaft 

390 kgm2 

rB  Rotor external damping 7.11 Nms/rad 

gB  Viscous friction of the high-

speed shaft 

45.6 Nms/rad 

dt  Efficiency of the drive train 0.97 [  ] 

n  Natural frequency 11.11 Rad/s 

  Damping ration 0.6 [  ] 

g  Time constant 0.02 s/rad 
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3. Wind Turbine System Subjected to Faults 149 

  By taking into account the component fault and actuator fault, the parameter-varying wind turbine model 150 

can be represented by: 151 


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                                                  (9) 152 

where nRtx )( represents the state vector, mRtu )(  is input vector, ak

au Rtf )( is actuator fault vector, 153 

ck

c Rtf )( is the component fault vector, dk
Rtd )( stands for the process  disturbance vector, pRty )( is the 154 

measurement output vector; Ba , Bc and Bd are the distribution matrices of the actuator faults, component faults and 155 

process disturbances. For the wind turbine system, 4,6  pn and 2m , and  ),,(11 rA  , B, C are defined 156 

as in (8).   157 

In order to reconstruct the faults concerned, we construct an augmented system as follows:  158 
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  kpe CC  0 ,  k  is the total number of the concerned faults, 









)(

)(
)(

tf

td
tde  ,

 

and 









c

au

f

f
f  represents the 162 

faults to be reconstructed. Here, the faults are assumed to be slow-varying, which can cover the typical faults in 163 

engineering systems such as abrupt faults and incipient faults by assuming )(tf to be bounded. 164 

  In this paper, the parameter fault and the actuator fault are both considered.  The parameter gB is assumed to have 165 

an additive fault, denoted by gfB . As a result, the resulting fault and distribution matrix can be respectively 166 

represented by   167 

g

ggf

c
J

B
f


 , and  TcB 000010  168 

The generator torque is assumed to be faulty, and its distribution matrix  is expressed as: 169 
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



1
00000  170 

In order to simplify formulas, ),,( reA   is abbreviated as 
eA  in the following sections. 171 

4. Parameter-varying model-based observer 172 

4.1. Design of Parameter-varying Model-based Observer 173 

  As there are only four independent columns in the output system matrix eC , we can make the first four 174 

columns of the eC  are independent, but the others are zero by using some coordination transformations. 175 

In other words, we can make a simple change of the coordinates so that all the non-zero elements in the 176 

system output matrix will appear in the first four columns only. More precisely, we set: 177 

)()( tPxtz e                                          (11) 178 

where 179 
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    As two faults are considered, the dimension of the augmented system state is 8 kn . Via the 181 

coordination transformation (11), the augmented system (10) becomes: 182 









)()(

)()()()(

tHzty

tJdtGutFztz e


                                         (12) 183 

where 1 PPAF e , 
ePBG  , 1 PCH e , 

dePBJ  . 184 

    The observability matrix is given by: 185 
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(13) 186 

From (13), one can find that 8rank  knO , which indicates the system (12) is observable. As a 187 

result, one can make another linear transformation in order to transform the system into an observable 188 

canonical form.  189 

Let 190 

)()( tOzt                                   (14) 191 

one can have 192 
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    An observer for this transformed system can be designed as follows: 198 

))(ˆ)(()()(ˆ)(ˆ
.

tHtyLtuBtAt eee                                         (16) 199 

where 
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21

44 2

I

I

A
L



0
,  0 . It is notice that the observer gain can be real-time updated as the 200 

parameters 
21A  is real-time updating. Therefore, the observer (16) can be called adaptive observer as it 201 

can update gain adaptively when the system parameters are changing.  202 

    Letting  )(ˆ)()( ttt    , the error dynamic of the observer is given by: 203 
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    Let   ,)()()(
21

T
ttt   the error dynamic (17) is rewritten as: 205 
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    Consider the linear transformation: 207 
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   The eigenvalues of the matrix A  is  , therefore the error dynamic in (19) can be ensured to be stable. 213 

Moreover, the effects from the disturbance terms )(t and )(td e can be prevailed if a reasonably large   214 

is chosen. 215 

    In terms of (16), the proposed observer can be transformed back into the following form: 216 

))(ˆ)(()()(ˆ)(ˆ 1
.

tzHtyLOtGutzFtz  
                             (20) 217 

where )(ˆ)(ˆ 1 tOtz  . 218 

    Furthermore, from (12) and (20), the observer for the system (10)  can be obtained as follows: 219 
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          ))(ˆ)(()()(ˆ),,()(ˆ 11 txCtyLOPtuBtxAtx eeeeree  
               (21) 220 

Where )(ˆ)(ˆ 1 tzPtxe

 . 221 

4.2. Procedure of The Observer Design 222 

The steps of the observer design are as follows: 223 

Step1: Constructing augmented system as Eq.(10); 224 

Step2: Selecting linear transformation matrix P and O, via twice coordination transformation, generate an 225 

observable canonical form of the augmented system; 226 

Step3:  Design observer L to ensure the error dynamics to be stable. 227 

Step 4: Produce the estimated states   exIx ˆˆ
266  0 , and the reconstructed faults 228 

  eau xf ˆ01ˆ
61 0 and a   ec xf ˆ1ˆ

71 0 . 229 

5. Real-time simulation and validation studies 230 

5.1. Parameter-varying Wind Turbine Modeling 231 

The 4.8MW wind turbine benchmark system is developed under Matlab/Simulink environment, which 232 

is utilized to validate the parameter-varying modelling approach addressed in Section 2 of this paper. In 233 

this wind turbine benchmark system, the target of power generation is 4.8 MW with a changing wind 234 

speed input, shown as Figure 3a. The system measurable outputs are: rotor speed, blade angle, generator 235 

torque and generator speed. The responses of the benchmark wind turbine system and the parameter-236 

varying model are shown in Figure 3b-3f, where in order to show clearly, the solid lines, dash-lines and 237 

“○” mark have been employed to illustrate the different responses of the benchmark system model and 238 

the parameter-varying model in each Figure, respectively. One can see the responses of the parameter-239 

varying model with real-time updating nonlinear polynomial function can well track the responses of the 240 
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wind turbine benchmark system under the condition with the same inputs and controller. It is evident that 241 

all the parameters of the parameter-vary model are consistent with those of the real-time benchmark 242 

system, no matter on the transient responses or steady states.    243 

 244 

 245 
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          246 

Figure 3. (a) Wind speed;  247 

   (b)-(f) States comparison between parameter-varying model and benchmark model. 248 

5.2. Adaptive Parameter-varying Observer for State Estimation and Fault Reconstruction 249 

(i) State estimates 250 

  By using adaptive observer with parameter-varying given by (21), one can simultaneously estimate the 251 

system states and the concerned faults. Figure 4a-4f show the state variables of the wind turbine system 252 

and their estimates, where the solid lines are the estimates and the lines with circle marks denote the 253 

system states. One can see that the parameter-varying observer is able to track the states of the benchmark 254 

model rapidly. Actually, the state estimates are the by-products of the adaptive observer, from which we 255 

can obtain the information of the healthy status of the wind turbine system.  256 
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 257 

 258 

 259 

Figure 4. Wind turbine states and their estimates by using the proposed observer 260 
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(ii) Fault reconstruction 261 

  In the wind turbine system, the actuator fault and component faults are both considered. A band-limit 262 

white noise is added as the process disturbance. For the component faults, the viscous friction parameter 263 

of the high-speed shaft, described as fault reference value gfrB  , has an effect on the term 22a  in the 264 

system matrix, causing the generator speed fault, which is considered as multiplicative term A  of the 265 

system matrix: 266 
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For the actuator faults, the generator and converter additive fault would bring a bias  for the generator 268 

reference torque gfrT : 269 
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Figure 5. Faults monitoring; (a) Actuator fault; (b) Component fault 272 

  The simulation results for fault reconstructions are shown as Figures 5a and 5b. The reconstructed 273 

actuator bias fault and the component fault are obtained, by using the proposed observer with the poles at  274 

2
1
  or 10

2
 . One can see the estimated fault signals can well track the actual fault signals with 275 

good disturbance attenuation ability. In the meanwhile, the considered faults are intermitted, 276 

encouragingly; the proposed fault reconstruction technique can successfully track this kind of challenging 277 

faults. As a result, the proposed fault reconstruction technique is effective and powerful.  278 

6. Conclusions 279 

This paper has addressed a novel design for parameter-varying modeling and adaptive observer for 280 

fault reconstructions in wind turbine systems. The proposed parameter-varying model is real-time 281 

updating nonlinear model, and the proposed fault estimation is adaptive with real-time parameter 282 

updating. The fault diagnosis scheme is away from the conventional switching strategy, and the diagnosis 283 

process is non-invasive without any effects on the system operation. The effectiveness of the proposed 284 

model and fault reconstruction technique has been well demonstrated on the 4.8MW real-time wind 285 

turbine system.   286 

In the future, interesting research directions are to use the parameter-varying models to develop fault-287 

tolerant control strategy with real-time parameter regulations, which would significantly improve the 288 

reliability and availability of wind turbine energy systems.   289 
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