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Key points 

• Mendelian randomization (MR) is a powerful tool that exploits genetic information 

to inform on the likely causal relevance of an exposure to an outcome, that should 

be free from reverse causality and minimizes confounding 

• In the past 5-10 years, the number of MR studies appearing each year has increased, 

providing important new insights into disease aetiology. 

• However, as MR studies become more common-place, and as increasingly complex 

gene-to-exposure and exposure-to-outcome relationships are investigated, the 

reliable conduct and interpretation of MR analyses can be challenging 

• In this review, we highlight scenarios where MR analyses can be non-trivial and in 

each case, we elaborate on the molecular details and provide what we consider to 

be correct interpretations 

• We conclude by providing some general themes to help guide the MR practitioner 

and reader and to facilitate robust conduct and interpretation of MR analyses 
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Abstract 

Mendelian randomization (MR) is a burgeoning field that uses genetic variants to assess 

causal relationships between exposures and outcomes. MR studies can be straightforward, 

e.g. using genetic variants associated with protein concentrations to assess their causal role 

in disease. However, a more complex role of genetic variants in relation to an exposure can 

make findings from MR more difficult to interpret. We illustrate this with examples from 

recent literature, including using genetic variants: (i) to assess causality of multiple traits 

(e.g. branched chain amino acids and risk of diabetes); (ii) that are pleiotropic, e.g. for C-

reactive protein in assessing its contribution to coronary heart disease (CHD); (iii) that 

disrupt normal function of an exposure (e.g. high-density lipoprotein cholesterol (HDL-C) or 

intereukin-6 and CHD); (iv) encoding enzymes responsible for the metabolism and 

consumption of an exposure (e.g. alcohol and blood pressure); (v) for a potentially time 

dependent exposure (e.g. extracellular superoxide dismutase and CHD); (vi) for a cumulative 

exposure (e.g. low-density lipoprotein cholesterol);  and, (vii) for overlapping exposures (e.g. 

triglycerides and non-HDL-C). We elaborate on the molecular details in each and provide 

explanations for the likely causal relationships. In doing so, we hope to contribute towards 

more reliable interpretations of MR findings.  
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Introduction 

A raison d’être for medical sciences is to understand disease aetiologies to identify 

opportunities for prevention and treatment. Observational epidemiological studies provide 

a wealth of information on associations between exposures and outcomes, but they cannot 

be interpreted as indicating causality, due to limitations introduced by confounding and 

reverse causality1,2. While randomized controlled trials (RCTs) remain the gold standard 

study design for inferring causality, they are exceedingly expensive, long-term efforts with 

high risks (over 50% fail due to lack of efficacy)3,4. RCTs may also use interventions that are 

pleiotropic (e.g. using drugs that modify multiple biomarkers), which can challenge causal 

deductions for any individual biomarker. Furthermore, it is not always feasible or ethical to 

conduct an RCT5, for example, in attempting to clarify the causal role of alcohol in 

cardiovascular disease6-9.  

 

Mendelian randomization (MR)10-13 is an established genetic epidemiological approach that 

can provide information on causality, and prioritize biomarkers for drug target validation14. 

By grouping individuals in the population according to the possession of genetic variants 

that modify an exposure, it is possible to infer whether a biomarker is causally related to a 

disease (Figure 1). This is permissible due to the fundamental nature of the genome: genetic 

variants should be free from conventional confounding owing to the random independent 

assortment of DNA at meiotic segregation of alleles; and, reverse causality bias should be 

abolished due to the essentially non-modifiable nature of the transmitted germline genome. 

Thus, MR can help to strengthen causal inference regarding the role of modifiable 

exposures such as circulating biomarkers in the risk of disease.  For example, genetic 

variants that associate with low-density lipoprotein cholesterol (LDL-C) have been used to 
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assess the causal role of LDL-C in CHD15-18. Irrespective of the genetic variants used to proxy 

LDL-C, strong, dose-response relationships have been identified15. This provides reliable 

evidence that (i) lowering LDL-C by any means would lead to reductions in CHD; and (ii) 

recapitulates the linear dose-response relationship between LDL-C and CHD risk identified 

from meta-analyses of RCTs of statins and other cholesterol lowering interventions19-21. 

 

Key findings from MR analyses include: (i) identifying, in the absence of an RCT of a specific 

CRP-lowering therapeutic, that C-reactive protein is unlikely to play a major role in the 

development of CHD22,23; (ii) that moderate alcohol consumption probably does not protect 

from the risk of CHD24 in a scenario in which an RCT would be unfeasible and possibly 

unethical; (iii) that BMI increases risk of CHD25-27 even though the only RCT for this is 

underpowered28; (iv) concordance of MR analyses of drug targets with findings from RCTs 

for HMG-CoA reductase29,30, secretory phospholipase A2-IIA (sPLA2-IIA)31,32, lipoprotein-

associated phospholipase A2 (Lp-PLa2)33-37 and Niemann-Pick C1-like (NPC1L) protein38, and 

(v) identifying, before adequate evidence has accrued from clinical trials, that 

pharmacological inhibition of PCSK9 may lead to increased risk of diabetes39-41. These and 

other notable examples of MR analyses that have progressed our understanding of the 

aetiology of cardiovascular and metabolic diseases are outlined in Table 1. 

 

As with conventional observational epidemiology and interventional trials, MR analysis can 

express associations with disease risk in relation to a particular difference in the biomarker 

that the genetic variants used in the MR study are instruments for. This approach is most 

robust when a variant is in or near a gene that is responsible for the synthesis of a protein 

under investigation and associates with concentrations of the same protein (but without 
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disrupting protein function), for example using genetic variants in the CRP gene that 

associate with concentrations of circulating C-reactive protein22. However, there are various 

scenarios where the assumptions of MR (see Figure 1) become compromised. In the 

following we discuss some potentially paradoxical interpretations in recent MR analyses.  

 

MR using a genetic variant that associates with multiple biomarkers on 

separate pathways 

In general, a genetic variant used for MR should only affect a single pathway on which the 

exposure of interest lies (see Box 1). When a genetic variant associates with multiple 

biomarkers on a pathway, through influencing an underlying phenotype, this is referred to 

as vertical pleiotropy, and the MR approach would be valid. In contrast, if a genetic variant 

associates with multiple biomarkers on discrete pathways, this is termed horizontal 

pleiotropy (see Figure in Box 1 and Figure 2, Scenario 1), which can yield invalid causal 

estimates. We discuss two related examples below. One, where the same genetic variant is 

used, incorrectly, to assess causal relationships of multiple traits on discrete pathways. A 

second example relates to the use of pleiotropic SNPs in assessing the causal role of C-

reactive protein in CHD, without applying appropriate analytical checks. 

 

PPM1K, branched chain amino acids and risk of diabetes 

Observational studies identify that the branched chain amino acids (leucine, isoleucine and 

valine) associate with risk of incident diabetes42-47. In a recent genome-wide association 

study (GWAS) genetic variants associating with these three amino acids were identified and 

used to conduct MR analyses48. The same locus (PPM1K) was a GWAS hit for all three amino 
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acids, and the authors proceeded to use the exact same SNP in isolation (rs1440581 in 

PPM1K) to generate causal estimates for both leucine and valine, and a SNP in the same 

locus (rs7678928 in PPM1K, in linkage disequilibrium (LD) with rs1440581 at r2=0.79 and 

D’=1) in combination with other SNPs for isoleucine. The authors state that “associations of 

genetic variants appeared highly specific”, generate MR estimates for each of the three 

amino acids and use this to implicate BCAA metabolism in the development of diabetes.  

 

As shown in Figure 3A, the PPM1K locus encodes an enzyme (branched-chain α-keto acid 

dehydrogenase, BCKD) that is responsible for the metabolism of leucine, isoleucine and 

valine to their derivatives (and therefore, by encoding the enzyme responsible for the 

metabolism of these three amino acids, SNPs in the PPM1K locus associate with 

concentrations of all 3 amino acids). In MR analyses, the SNP to disease estimate is scaled to 

the association of the SNP to the exposure to generate a single causal estimate for the 

exposure to risk of disease (Figure 1). When the same SNP to disease (in this case PPM1K 

rs1440581, or a SNP in LD rs7678928, to diabetes) association is used to generate MR 

estimates for each of the three branched-chain amino acids, this ascribes a causal estimate 

that is scaled to the effect of the SNP on the amino acid (see Table 2). Crucially, this makes 

the invalid assumption that each of the three amino acids in isolation would be causal. This 

is in violation of one of the three principal rules of MR: that the instrument only acts on the 

outcome through the exposure of interest. Furthermore, the genetic variant association 

with diabetes is triple-counted, in that the full effect is attributed to 3 different exposures, 

which is incoherent. Using this single locus, it is not possible to clarify which, if any, of the 3 

amino acids is actually driving the causal relationship with diabetes. Thus, while the authors 

conclude that their findings are “consistent with a causal role of BCAA metabolism in the 
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aetiology of type 2 diabetes”, a reader may interpret the quantitative MR estimates that are 

reported for each of the 3 BCAA as providing evidence that each BCAA is individually and 

independently causally related to T2D, which would be incorrect. All that can be inferred is 

that the PPM1K locus encodes an enzyme (BCKD) that has a range of substrates (which may 

not be limited to the three amino acids studied), and that one or more of these pathways 

leads to diabetes.  Thus, while we agree with the authors regarding their results being 

“consistent with a causal role of BCAA metabolism” we feel that the presentation of the 

data could lead to misinterpretation.   

 

APOE, C-reactive protein and risk of CHD 

Naïve use of a genetic variant in APOE that associates with circulating levels of C-reactive 

protein (CRP) may give the impression that CRP would be causal for CHD49. However, this is 

driven by the associations of the APOE genotype with multiple biomarkers on discrete 

pathways, including LDL-C, which is causally related to CAD (Figure 3B). Use of such 

pleiotropic variants in isolation is thereby likely to lead to incorrect causal interpretations.  

An alternative approach would be to combine multiple SNPs across the genome into a gene 

score for CRP50. While in some cases, pleiotropy in a gene score may ‘balance out’ (so-called 

“balanced horizontal pleiotropy”; see Box 1), for the CRP gene score, this is not likely to be 

the case and horizontal pleiotropy could result in biased estimates using conventional MR 

approaches. Furthermore, when using a multilocus gene score for CRP and removing SNPs 

on the basis of tests for heterogeneity, this approach can still yield a biased results as 

multiple SNPs may remain in the instrument that have pleiotropic effects, thus yielding 

biased causal associations for disease that arise from horizontal pleiotropy when analysed 

using conventional MR methods (see “unbalanced horizontal pleiotropy”; Box 1)51. A more 
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optimal approach would be one where SNPs are either confined to within the CRP locus 

(which should show specificity for the protein trait), and/or using SNPS across the genome 

identified from GWAS in combination with use of more novel approaches such as MR-Egger 

(described in Box 2), which allows relaxation of the instrumental variable assumption that 

there is no unbalanced horizontal pleiotropy52,53.  Our recommendation would therefore be 

to utilise a range of applicable methodologies, in the spirit of sensitivity analysis. 

 

MR using a variant that disrupts normal function of the exposure 

If a SNP disrupts the normal function of an exposure, such as binding of the exposure to its 

target receptor, and if that exposure plays a causal role in the aetiology of a disease, this can 

lead to a paradoxical direction in association between the SNP and level of the biomarker in 

comparison to the direction of association in relation to risk for that disease (Figure 2, 

Scenario 2). A naïve interpretation would be to use the difference in biomarker 

concentrations from the instrumental variable analysis to infer directionality of causation. 

However, by perturbing the normal function of the biomarker, the genetic variant can 

paradoxically lead to the biomarker being linked with a directionally opposite risk of disease 

in MR analysis as compared to observational epidemiology. 

 

SCARB1 variants, HDL-C and risk of CHD 

In a recent work54, a team of researchers identified a rare variant in SCARB1 that results in 

loss of function in scavenger receptor B1 (SR-B1). Individuals carrying this variant had higher 

levels of circulating HDL-C, and an elevated risk of CHD. The authors suggested that reduced 

hepatic SR-BI function in humans causes impaired reverse cholesterol transport, which leads 

to increased risk of CHD despite elevation in HDL-C levels.54 These findings have been widely 
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reported55,56 as HDL-C being harmful with respect to CHD in some circumstances, and 

interpreted as questioning the protective role that HDL may have in CHD.  

 

The HDL-mediated transport of cholesterol from peripheral tissues to the liver, so-called 

reverse cholesterol transport57,58, has been expected to lead to a reduction in atheroma 

burden, and a commensurate reduction in the risk of CHD. However, a critical component of 

the HDL-mediated reverse cholesterol transport is the selective uptake of circulating HDL 

particles by the liver. Following hepatic uptake, cholesterol is excreted in bile. This binding 

to, and uptake of HDL particles into the liver, is principally through SR-B159. Thus, the 

increased risk of CHD that accompanies a genetic variant that disrupts normal function of 

SR-B1 potentially provides new evidence that normal function of HDL-mediated reverse 

cholesterol transport (through SR-B1) may have a role in preventing the development of 

CHD (Figure 4A).  

 

However, to temper enthusiasm, a recent study used whole-genome sequencing to 

investigate sequence variants within the SCARB1 locus and identified associations with traits 

including lipoprotein-phospholipase and vitamin E (meaning there is potential for horizontal 

pleiotropy; Box 1). Furthermore, RCTs of HDL-C raising therapies60-62 and several MR 

studies16-18 have not shown benefit for CVD, thus whether HDL metabolism is causal in the 

aetiology of CHD remains speculative, and studies are now moving to investigate multiple 

functions of HDL particles (as opposed to only measuring circulating HDL-C concentrations) 

63-66. In summary, the association of variants in SCARB1 with higher HDL-C and higher risk of 

CHD does not indicate HDL-C being harmful to CHD, but, rather, introduces the possibility 
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that disruption of normal reverse cholesterol transport may be deleterious to cardiovascular 

health. 

 

Genetic variants in IL6R, interleukin-6 and risk of CHD 

 

Interleukin 6 (IL6) is a pro-inflammatory cytokine produced by stromal and immune cells 

that circulates in the blood and binds to plasma membrane receptor complexes. There are 

two signalling mechanisms by which IL6 can exert its biological effect: classical and trans-

signalling. Classical signalling is the situation in which IL6 binds to cellular membranes that 

express both IL6-receptor (IL6R) and glycoprotein-130. Most cells express glycoprotein-130 

but only a limited number express IL6R. In the trans-signalling, a soluble form of IL6R binds 

to circulating IL6 in the blood, and this complex of IL6-IL6R can then bind to any cell 

expressing glycoprotein-130. Since glycoprotein-130 is ubiquitous, trans-signalling can 

involve many more cell types than classical signalling. Classical IL6 signalling is thought to 

have a more prominent role in the development of systemic diseases, whereas trans-IL6 

signalling may be more involved in local tissue inflammation67.  

 

Using a non-synonymous SNP (rs8192284) in the IL6R gene encoding the IL6-receptor, two 

studies reported that variants associated with increased concentrations of circulating IL-6 

related to a reduction in risk of CHD68,69. A naïve interpretation, and one that the authors 

explain is not the case, would be that IL6 is protective of CHD. However, this would be at 

odds with prior considerations regarding the aetiology of CHD, since IL-6 is an inflammatory 

cytokine70. 
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The genetic variant in IL6R (rs8192284) increases generation of soluble IL6R (through 

increased proteolytic cleavage of membrane-bound IL6R71,72). This reduction in membrane-

bound IL6R leads to reduced IL-6 mediated classical signalling, resulting in a shift from 

classical to trans-signalling, and effectively attenuating downstream classical signalling of IL-

6. Decreased classical IL6-signalling results in an increase in circulating IL-6 (owing to a 

reduction in membrane bound IL6R and an increase in circulating IL6-IL6R complex), yet a 

reduction in CRP (as classical IL6 signalling is impaired), as shown in Figure 4B73,74. Of note, 

the association of SNPs in IL6R with CRP concentrations in this scenario reflects vertical 

pleiotropy (see Box 1). While in no way does this indicate that CRP is causal, the association 

of SNPs in IL6R with CRP does not invalidate the use of IL6R in MR as, unlike in Figures 3A 

and 3B, CRP is downstream on the same pathway as IL-6. One particular way to tease this 

out (i.e. that IL6 is causal and CRP non-causal) would be to use separate genetic instruments 

for IL6 and CRP, as in MR for mediation75. 

 

MR of biomarkers on the same pathway  

If a variant associates with multiple traits on the same pathway (vertical pleiotropy; see Box 

1), and if those biomarkers have differing roles in disease, paradoxical situations can arise 

(Figure 2, Scenario 3).  

 

ALDH2 genotype, alcohol and risk of hypertension and oesophageal carcinoma 

Alcohol is metabolized in tissues and in the liver by the enzymes alcohol dehydrogenase 1B 

(ADH1B) and aldehyde dehydrogenase (ALDH2). Metabolism of alcohol by ADH1B yields 

acetaldehyde, a Group 1 human carcinogen76, which is rapidly metabolized by ALDH2 into 

acetate. Normal function of ADH1B and ALDH2 means that circulating and tissue 
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concentrations of acetaldehyde are low. However, when ADH1B enzymatic function is 

increased, or when ALDH2 enzymatic function is impaired, acetaldehyde concentrations 

rise, resulting in symptoms of flushing, nausea and headache, which is unpleasant to the 

person. Naturally occurring genetic variation in ALDH2 (rs671), present in Asians (but not in 

white Europeans), results in loss of function of ALDH2 in a dose-dependent fashion. 

Individuals that are homozygous wild-type can consume alcohol normally, those that are 

heterozygous can still consume some alcohol although they experience symptoms of 

acetaldehyde toxicity (nausea, flushing), while those that are homozygous for the *2 variant 

tend to consume almost no alcohol, given the symptoms drinking alcohol causes amongst 

them.  

 

Alcohol consumption is associated with higher blood pressure77. The ALDH2 *2 variant can 

be used as a genetic instrument to asses the causal role of alcohol consumption in blood 

pressure78. As each additional carriage of the ALDH2 *2 allele reduces alcohol consumption 

in a dose-response relationship (Figure 5), a conventional MR using a per-allele genetic 

model for the *2 allele of ALDH2 will derive a valid causal estimate24. A particular nuance is 

that ALDH2 is monomorphic in Europeans (i.e. individuals are ALDH2 *1*1) and polymorphic 

in East Asians. In Asians, women have generally consumed considerably lower amounts of 

alcohol compared to men, thus stratifying the MR analysis by sex can test one of the 

fundamental principles of MR, that the genetic instrument is acting through the exposure of 

interest79,80. Since the genetic variant should only associate with blood pressure in the 

presence of alcohol, a larger association of the genetic variant on blood pressure should be 

seen in men vs. women (as men consume more alcohol) and this is precisely what is 

seen78,81. The interaction between sex and ALDH2 genotype can be used as the instrumental 
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variable to estimate the causal effect of alcohol on outcomes, an analysis strategy robust to 

some pleiotropic violations of the instrumental variables assumption82. 

 

However, when investigating the association with oesophageal carcinoma, a different 

interpretive framework is required. A naïve expectation would be that individuals that drink 

the most (i.e. those homozygous for the wild-type at ALDH2 rs671) would have highest risk 

of oesophageal carcinoma. However, the highest risk is seen in those individuals that carry 

one copy of the *2 allele83. While it might be tempting to interpret this as moderate 

drinkers having the highest risk of oesophageal carcinoma (a paradoxical scenario that goes 

against a dose-response relationship for alcohol), it can be explained by the impact of 

ALDH2 on alcohol consumption and circulating concentrations of acetaldehyde (Figure 5)84. 

 

When examining circulating levels of acetaldehyde by ALDH2 genotype, individuals that are 

heterozygous for ADLH2 rs671 (i.e. *1*2) have the highest concentrations (Figure 5B), even 

though they do not consume the greatest amount of alcohol (that would be ALDH2 *1 

homozygotes, Figure 5A), nor do they have the genetic variant that conveys highest 

concentrations of acetaldehyde for a given amount of alcohol (this would be ALDH2 *2 

homozygotes84, Figure 5C). The highest absolute concentration of circulating and tissue 

acetaldehyde by genotype results in an increased risk of oesophageal carcinoma in *1*2 

group compared to both *1*1 and *2*2. In this scenario, the genetic variant influences both 

alcohol consumption and, among alcohol drinkers, acetaldehyde. In the latter case a per-

allele analytical model would be inappropriate85. 
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In this example a genetic variant will serve as an exposure measure for different features 

depending on the outcome under investigation. For blood pressure, which appears not to 

display a long-term influence from acetaldehyde levels, the variant instruments for alcohol 

intake. For oesophageal cancer the variant additionally instruments for acetaldehyde among 

consumers of alcohol. Without good understanding of the biological basis of the effects of 

the genetic variant, misleading interpretations could be drawn. 

 

MR of a time dependent exposure 

If an exposure is time-dependent: e.g. if an exposure is only influential during a period of 

development (e.g. adolescence), then although MR results may suggest a causal effect, it 

does not necessarily mean that modification of the exposure in later life will alter the risk of 

disease (Figure 2, Scenario 4).  

 

Vitamin D and multiple sclerosis 

A recent MR study points to vitamin D potentially playing a causal role in the aetiology of 

multiple sclerosis (MS)86. However, previous observational studies of migration and risk of 

MS have consistently identified a time-dependent relationship – i.e. that sunlight exposure 

(and thus perhaps vitamin D) during early life and not during adulthood associates with the 

risk of subsequent MS87-90. In this scenario, an MR study utilizing genetic variants associated 

with circulating levels of vitamin D would yield evidence in support of a protective role of 

vitamin D in the aetiology of MS (Figure 6A). However, modifying vitamin D levels after the 

critical period would not reduce the risk of multiple sclerosis. If this time critical period were 

true, RCTs (perhaps identifying people at risk of multiple sclerosis through family history or 
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genetic risk scores for MS) would need to be commenced in childhood as intervention 

commenced after this critical period would not be expected to influence MS risk. 

 

Extracellular superoxide dismutase and CHD 

There has long been the hypothesis that antioxidants may prevent CHD91. Evidence from 

major randomized clinical trials, conducted in adulthood, have been negative92,93. 

Extracellular superoxide dismutase (ecSOD) is responsible for protecting nitric oxide 

released from smooth muscle cells from degradation by the reactive oxygen species 

superoxide94,95. In preserving the function of nitric oxide, ecSOD facilitates the 

vasodilatation of arterioles, allowing the maintenance of normotension96. Thus ecSOD can 

be thought of as an endogenous antioxidant that could play an important role in vascular 

disease. 

 

Studying a genetic variant (R231G) in ECSOD that encodes a missense mutation in ecSOD, a 

large population-based cohort study reported that a genetic variant associated with 

elevated levels of circulating ecSOD associated with an increase in risk of CHD, contrary to 

expectations97. The genetic variant resulted in an alteration in the heparin-binding domain 

of ecSOD, and the normal structure of this ecSOD domain is important for ecSOD to bind to 

the external membrane of endothelial cells (Figure 6B). As a result, in the presence of this 

variant, ecSOD plasma levels increase, yet ecSOD is unable to effect its role to protect nitric 

oxide from degradation by superoxide anions95. Reduced bioavailability of nitric oxide can 

lead to hypertension and thereby increase risk of CHD. This is therefore another example of 

paradoxical concentrations of the biomarker (ecSOD) in relation to its purported role in 
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disease development and findings from the genetic study, showing that disrupted function 

of ecSOD leads to increased CHD risk, supports the protective role of antioxidants in CHD.  

 

Interestingly, other studies have shown that the same genetic variant (associated with 

higher CHD risk) is associated with a reduction in risk from lung disease98-100, although 

another study casts this into doubt101. However, this can be explained by animal studies that 

used knock in mice102 to show that the R231G SNP in ECSOD results in reduced ecSOD in 

blood vessels and increased ecSOD in alveolar fluids, thus resulting in detrimental effects to 

vascular disease, and beneficial effects for lung disease. However, it may be that 

antioxidants are only important at critical times in vascular disease (unlike LDL-cholesterol, 

which we discuss later). A critical time effect of antioxidants in vascular disease is in keeping 

with other MR studies that have suggested that vitamin-C may play a causal role in CHD 

development103 and could explain the possible discrepancy between such MR studies and 

the null findings from randomized controlled trials of vitamin C supplementation and risk of 

vascular disease in later life104. Similar issues could apply with respect to other antioxidants, 

such as beta carotene, which MR studies suggest does not protect against diabetes, in 

contradistinction to observational studies105,106. With respect to CHD a similar disjunction 

between observational studies and RCTs has been seen92,107, which could arise from a causal 

effect operational only during a critical developmental period. 

 

MR of a cumulative exposure 

If an exposure causes disease over decades, MR may result in a causal estimate that is larger 

than that from a randomized controlled trial (which will only alter exposure for a limited 

period) or from observational epidemiology (which will generally only capture exposure for 
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particular periods). The MR finding should generally be interpreted to reflect a lifelong 

exposure to a biomarker (Figure 2, Scenario 5), although this varies if an exposure only 

occurs after a certain age (e.g. with alcohol or smoking, in which case the genetic 

instrument only influences exposure from after the habit has been taken up)11. 

Furthermore, for biomarkers, it is important to demonstrate that the SNP does associate 

with the biomarker across the lifetime, to allow appropriate interpretation to be made. 

 

LDL-C and the risk of CHD  
 
MR studies using multiple independent genetic loci influencing concentrations of LDL-C 

identify that a 1 mmol/l lower LDL-C results in a >50% reduction in the risk of CHD38. This is 

approximately double the effect estimate reported in RCTs for a similar reduction in LDL-C 

(25% reduction in the risk of major coronary event per 1 mmol/l reduction by statins)108. As 

such, this magnitude of effect from MR could be considered exagerated109. However, the 

causal estimate from MR depicts lifelong exposure to a harmful trait (LDL-C) (Figure 6C). 

Given that atherosclerosis is a disease that accumulates over a lifetime110,111 and results in 

clinical symptoms of CHD typically at older ages112, genetic variants provide an insight into 

expected effect sizes if we were to intervene from childhood to reduce the levels of 

circulating LDL-C. Thus, effect sizes from MR analyses should not generally be considered 

equivalent to those from an RCT of a short-term intervention. Differences in estimates from 

MR and RCTs can thus be informative about disease latency periods. 

 

MR of overlapping exposures 

Finally, emerging MR approaches include combining multiple traits and genetic instruments 

into one model to try to tease out independent causal effects (so-called multivariate MR113). 
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When multivariate MR for discrete traits (e.g. BMI and blood pressure in relation to 

cardiovascular disease) holds its own challenges, such as collider bias (where conditioning 

on a mediator between the exposure and outcome can induce new confounding)114,115, the 

situation becomes more complex if the traits themselves overlap (Figure 2, Scenario 6), i.e. 

they contain the same element in their total value. 

 

Non-HDL-C and triglycerides 

In a recent study gene scores for non-HDL-C and triglycerides (TGs) were used in order to try 

and tease out whether TGs have an independent causal role in CHD116. The authors 

suggested that while LDL-C (calculated using the Friedewald equation117) does not include 

cholesterol from triglyceride-rich lipoproteins (TRLs), mostly consisting of very-low-density 

and intermediate-density lipoproteins (VLDL and IDL, respectively), non-HDL-C does. 

However, estimation of LDL-C via the Friedewald equation also includes IDL-C118. Since IDL 

particles are semi-enriched in TG, LDL-C estimated via the Friedewald equation also contains 

TRL-related cholesterol. A multivariate MR analysis including both non-HDL-C and TG 

showed that while the association of non-HDL-C with risk of CHD remained largely 

unaltered, the association of TG with CHD, after adjusting for non-HDL-C, diminished to 

null116. 

 

It is important to realise here that non-HDL-C and TGs are not discrete entities (Figure 7) but 

overlap. Hence, adjustment of the TG instrument for non-HDL-C adjusts for overlapping 

components, and the diminution of the TG score is not interpretable as meaning that TG has 

no causal effect (as in effect the analysis has adjusted for a component of that trait). In 

contrast, while non-HDL-C contains cholesterol in TRLs, it also contains LDL-C (which has a 
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TG-independent effect on CHD18). Thus, a lack of diminution of the non-HDL-C gene score 

with risk of CHD after adjustment for TG provides no additional information beyond what is 

understood about the causal role of LDL-C in CHD and is not useful in assessing the causality 

of TGs in CHD. In contrast, MR for correlated, but non-overlapping traits can be highly 

informative e.g. separate genetic instruments for CRP and IL-6 show that while IL-6 up 

regulates CRP119, causality for CHD is limited to IL622,23,49,68,69. 

 

Potential solutions for rigorous interpretations of MR analyses 

While each case we have highlighted above is unique, they fit into general themes, each of 

which has potential solutions to aid interpretation. First, when a single genetic variant 

associates with multiple traits on distinct pathways (i.e. horizontal pleiotropy), it is invalid to 

use this individual genetic variant to generate causal estimates for each individual trait as it 

makes assumptions that each trait alone accounts for the causal effect. Furthermore, 

ascribing causal effects when using a single genetic variant to instrument a complex 

phenotype (such as FTO for BMI120) should be undertaken cautiously owing to the high 

likelihood of (horizontal) pleiotropy (see Box 1). This is especially true for non-protein 

(complex) traits as no single genetic variant will account for the exposure under 

investigation.  

 

When an MR analysis gives associations that are directionally opposite to the observational 

epidemiology, investigators should consider whether the genetic variants used in the 

instrument disrupts the normal function of an exposure. If so, the association may arise due 

to the biomarker not being able to exert its normal biological effect, and levels sometimes 
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being elevated despite this lower functional effect. An alternative explanation here may be 

negative bias due to unbalanced horizontal pleiotropy (Box 1). In contrast when the 

magnitude of effect from MR is directionally consistent but larger in magnitude to the 

observational literature, this may be due to cumulative exposure (since the genetic variant 

proxies a lifetime exposure). Alternative explanations include measurement error in the 

observational analysis (leading to regression dilution bias; which the MR analysis is 

protected from) and/or a positive bias induced by horizontal pleiotropy  (Box 1).  

 

In these examples, pleiotropy can seriously perturb estimates derived from MR. Uncovering 

the presence of horizontal pleiotropy when using a single genetic variant is challenging 

unless there is detailed knowledge about its function and/or access to large cohorts where a 

phenome-wide association scan can reveal associations that may be indicative of unknown 

pleiotropy. In contrast, when multiple SNPs are used in combination as genetic instruments, 

approaches now exist (such as MR-Egger) to quantify and assess the presence of pleiotropy, 

and indeed can provide valid causal estimates even in the presence of pleiotropy (although 

additional assumptions are required)52,53,113,121. These tests for pleiotropy should be 

employed as sensitivity analyses in addition to conventional MR approaches. 

 

When an MR study provides evidence of causality that has not been recapitulated in 

randomized controlled trials, it may be that the biomarker is only causal during a particular 

time period of life. Thus, the evidence obtained from MR may not translate into equivalent 

benefit if the intervention to modify the biomarker is at a different period of the life course 

than when it has its causal impact.  
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Finally, when assessing multiple traits in combination, if the traits are overlapping (i.e. 

contain elements of each other in their individual measures) then a multivariate MR may 

not allow reliable individual assessment of which trait is causal: in this scenario, MR suffers 

the same issues as conventional observational epidemiology whereby adjusting for an 

overlapping trait diminishes associations of traits in the model with risk of disease. 

 

Conclusion 

Here we sought to illustrate and provide explanations for potentially paradoxical and 

implausible findings from MR analyses. As MR studies are increasingly conducted to clarify 

causal relationships of the expanding number of traits that are measurable (e.g. “-omics” 

including metabolomics43,122, lipidomics123, proteomics124 and others), these scenarios are 

likely to become more commonplace, highlighting the need for careful application and 

critical appraisal of MR findings.  Indeed, as the relative ease of performing two-sample MR 

studies utilising readily available data increases, it is probable that the reliability of studies 

will decrease, through both methodological errors and through publication bias influencing 

which results are deemed “interesting”125.  Despite these caveats, with increasing large-

scale genetic data becoming available to facilitate two-sample MR126 , together with 

resources such as MR-Base127, LD Hub128 and PhenoScanner129, MR promises to provide an 

efficient and pragmatic means to identifying traits that are causal in cardiometabolic and 

other diseases, and to help prioritize drug targets to take forward into therapeutic clinical 

trials. Such drug target prioritization may avoid late stage failure of multi-billion dollar 

clinical trials and offers optimism to revamping the flailing drug development pipeline.  
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Boxes 

Box 1. Pleiotropy in MR and implications for causal deduction: Single nucleotide 

polymorphisms (SNPs) can be used in isolation or combination as genetic instruments to 

assess the causal role of an exposure or biomarker with risk of disease. When genetic 

variants associate with multiple biomarkers that are on the same pathway, this is termed 

vertical pleiotropy and it does not invalidate the findings from MR. Vertical pleiotropy is also 

known as ‘mediated’, ‘spurious’ and ‘type II’ pleiotropy10. In contrast, when a genetic 

variant (or genetic variants in combination) associate with traits on discrete pathways that 

are also causal in disease, this is termed horizontal pleiotropy. Alternative names for 

horizontal pleiotropy include ‘directional’, ‘type I’ and ‘biological’. When using multiple 

genetic variants in combination, horizontal pleiotropy of multiple variants can ‘balance out’ 

and have no net effect on the association of the exposure under investigation and risk of 

disease; this is termed ‘balanced horizontal pleiotropy’, and does not bias the causal effect 

derived from MR, even when using conventional MR approaches, such as inverse-variance 

weighted MR, although it does lead to increased variance in the effect estimation, and thus 

less precise confidence intervals. However, when conducting an MR using a single variant or 

multiple variants in combination, if horizontal pleiotropy distorts the association between 

the exposure and outcome, it is termed ‘unbalanced’. In unbalanced horizontal pleiotropy, 

the effect estimate from conventional MR approaches can be exaggerated or diminished, 

depending on the direction of the pleiotropy. E.g. if the genetic variant(s) associates with 

pleiotropic pathways that are positively associated with disease risk, this will exaggerate the 

causal association of the biomarker and risk of disease from MR analyses. In contrast, if the 

genetic variant(s) associates with pathways that are negatively associated with disease risk, 

this will diminish the MR estimate of the biomarker and risk of disease. For example, when 
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using variants in APOE as an instrument for C-reactive protein, the association of APOE with 

LDL-C results in unbalanced horizontal pleiotropy (as LDL-C causes CHD). In contrast, in using 

APOE as an instrument for LDL-C, the association of APOE with CRP does not result in 

horizontal pleiotropy as CRP is non-causal in the aetiology of CHD22,23,49. Presence of 

unbalanced horizontal pleiotropy can be formally assessed through use of MR-Egger52 (if 

certain assumptions are satisfied) and furthermore, MR-Egger provides a valid MR estimate 

that takes into account presence of unbalanced horizontal pleiotropy (see Figure in Box). 

Other approaches include median and weighted median MR53, which  provide a valid MR 

estimates as long as the majority of SNPs (or the majority of the statistical weight 

contributed by the SNPs) in the instrument are valid. Each of these approaches (inverse-

variance weighted MR, MR-Egger and weighted median MR) has their own assumptions, 

which are described further in53 and, when possible, investigators should run MR-Egger, 

weighted median MR and other forms of sensitivity analyses when conducting conventional 

(inverse-variance weighted) MR analyses. 
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Figure to accompany Box 1 
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Box 2. Conventional and new approaches to MR: When using multiple SNPs for MR in 

summary-level data, a conventional (inverse variance weighted) analysis up till recently was 

the state of the art. However, this approach forces the y-intercept through the origin. In the 

context of no unbalanced pleiotropy, this should not lead to bias and the slope of the 

regression line can be reliably interpreted as the causal effect of the exposure on the 

outcome. However, in the context of unbalanced horizontal pleiotropy, conventional MR 

analysis can lead to bias as the y-intercept, being forced through the origin, means that the 

directional bias influences the regression slope (see Figure to Box 2, left panel). To 

overcome this issue, investigators relied on approaches such as ‘manual pruning’ of SNPs 

that they considered to be pleiotropic. However, this approach is suboptimal as: (i) it relies 

on availability and precision of SNP to trait estimates to inform on presence of such 

pleiotropy (e.g. many SNP associations that do not meet conventional significance 

thresholds in GWAS are false negatives owing to the stringent alpha values used to avoid 

false positives130,131); (ii) it is subjective as one investigator may consider a trait to represent 

vertical pleiotropy (i.e. part of the pathway from exposure through to disease) and another 

investigator could consider the same trait to be evidence of horizontal pleiotropy (i.e. on a 

pathway distinct to that of the exposure); (iii) reasons for exclusion can be non-transparent 

and differ by study, thus removing objectivity from the study; (iv) while use of all SNPs 

identified from a GWAS of a trait is collectively informative and meaningful on the 

underlying genetic architecture of a trait, such manual pruning can lead to a genetic 

instrument that is no longer biologically meaningful of the exposure (i.e. the SNPs that are 

retained in the instrument may not be informative of any tangible entity). 

In contrast to conventional MR, MR-Egger52 takes the approach of Egger regression132 (in 

the context of small study bias evaluation in clinical trials) and allows the y-intercept to 
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float. This flotation of the y-intercept does two things. First, it provides a statistical test for 

presence of unbalanced horizontal pleiotropy (when there is evidence that y is different to 0 

when x=0, this suggests presence of unbalanced horizontal pleiotropy). Second, by 

absorbing the pleiotropic effects into the y-intercept, MR-Egger can provide a reliable 

estimate for the underlying causal effect (when certain additional assumptions are satisfied) 

from the slope of the regression line (see Figure to Box 2, right panel). Thus, the advantages 

of MR-Egger are manifold as it obviates the need for manual pruning of SNPs (that can be 

subjective), the intercept can inform on presence of unbalanced pleiotropy and the slope 

can provide a valid causal estimate even in the presence of such pleiotropy. The 

disadvantages are that for a given sample size, power in MR-Egger is reduced (compared to 

inverse variance weighted MR), although newer extensions to MR-Egger, such as MR-Egger 

with SIMEX133, seek to increase power. 
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Figure to accompany Box 2 

 

 

 

Legend: Each diamond represents a single SNP plotted so that the SNP to exposure estimate is on the x-axis and the SNP to outcome estimate 
is on the y-axis. Filled diamonds = non-pleiotropic variants and open diamonds = pleiotropic variants. In MR using summary level data, the 
regression slope provides an estimation of the causal effect of the exposure on the outcome.  
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Table 1: Notable Mendelian randomization studies in cardiometabolic disease 

Exposure Outcome Interpretation Importance Refs 

Biomarkers and drug targets 

BMI  Metabolites BMI causally 
influences 
many 
circulating 
metabolites 

Supports the 
interpretation that 
BMI may influence 
cardiometabolic 
disease through its 
influence on 
metabolites  

134 

HMGCR/ 
Statins 

Metabolites Casual Shows consistency 
of observational 
data on statins vs 
predicted MR 
effects on 
metabolites 

29 

BMI CHD BMI causally 
increases risk 
of CHD 

No trial yet to show 
this 28 

25-27   

C-reactive 
protein 

CHD No causal 
relationship 

No trial of a therapy 
specific to CRP for 
CVD events has 
been conducted 

22,23,49 

LDL-C CHD Dose-response 
relationship 
irrespective of 
locus 

Suggests LDL-C 
lowering by many 
means beneficial, 
consistent with 
statin and other 
cholesterol lowering 
trials19,21,108 

15 

HDL-C CHD No causal 
effect 

Counter to 
observational 
data135 but 
supportive of 
RCTs60-62 

16-18 

TGs CHD Causal Precedes trial data 
of a TG-lowering 
agent 

16,18,136 

sPLA2-IIA CHD Non-causal Published at a 
similar time to 

31 
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negative VISTA-16 
trial32 

Lp-PLA-IIA CHD Non-causal $bn spent on trials 
that showed 
therapeutic 
lowering of Lp-PLA-
IIA does not lower 
risk of CVD34,61; 
some MR studies 
were published 
prior to RCTs 

33,35,36,137 

NPC1L1/ 
Ezetimibe 

CHD Causal Preceded trial data 
that showed 
lowering of LDL-C 
via inhibition of 
NPC1L1 results in 
reduced risk of 
CVD138 

38,139 

PCSK9, 
Lipoprotein 
(a) and 
ANGPTL4 

CHD 

 

Causal 

 

Causal.  Drugs 
developed for CVD 
prevention on basis 
of genetic findings 

 

140-142 

LDL-C Diabetes Causal Suggests LDL-C 
lowering in general 
may lead to 
increased risk of 
diabetes and has 
ramifications for 
drugs that lower 
LDL-C  

18 

HMGCR/ 
Statins 

Diabetes Causal Indicates that the 
diabetogenic effects 
of statins seen in 
RCTs143 are on-
target 

30 

PCSK9 Diabetes Causal Suggests PCSK9 
inhibition may 
increase risk of 
diabetes 

39-41 

Exogenous exposures 
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Alcohol Cardiovascular 
diseases 
(including 
blood pressure, 
coronary artery 
calcification 
and CHD) 

Causal Suggests alcohol is 
harmful to 
cardiovascular 
health at all doses 
of consumption, 
contrary to decades 
of observational 
data6 & important 
for public health 
policy 144 

24,78,85,145  
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Table 2. Mendelian randomization of discrete biomarkers when using identical or highly correlated genetic variants. 
 
 

Branched chain 
amino acid 
(BCAA) 

SNP in 
PPM1K 

Linkage 
disequilibri
um with 
rs1440581  

Effect/ 
other 
allele 

EAF Beta (SE) of 
Metabolite 
Level per Allele 

P-value for 
BCAA 

OR (95% CI) for 
Type 2 Diabetes per 
Allele 

P-value 
for T2D 

MR estimate of 
diabetes  per 1-SD 
higher BCAA 

P-value for MR 
estimate 

Leucine rs1440581 1.0 C/T 53% 0.08 (0.013) 3.9×10−25 1.04 (1.02–1.07) 0.00034 1.85 (1.41–2.42) 7.3×10−6 

Isoleucine rs7678928 0.8 T/C 46% 0.09 (0.013) 5.6×10−19 1.03 (1.01–1.05) 0.0055 1.40 (1.10–1.78) 5.5×10−3 

Valine rs1440581 1.0 C/T 53% 0.10 (0.013) 4.4×10−24 1.04 (1.02–1.07) 0.00034 1.54 (1.28–1.84) 4.2×10−6 

 
 
Legend: Adapted from Lotta et al48. BCAAs are arranged according to the effect size of the SNP on each trait (sorted smallest with lightest green shading to 
largest with deepest green shading). Given that the association of each SNP with diabetes is identical (or near-identical when using rs7678928, in LD with 
rs1440581 at r2=0.79; equal blue shading) the MR estimate is scaled to this effect. Thus leucine has the highest association with risk of T2D (deepest orange 
shading) and valine the lowest (lightest orange shading). This reflects precisely how the MR estimates are generated – by dividing the SNP-T2D estimate by 
SNP-BCAA: thus when the SNP-BCAA estimate is the smallest (as for leucine), the MR estimate is the highest. However, critically, none of the MR estimates 

for the three BCAA is valid as they all assume that each BCAA individually is causal.   taken from Table S6 in Lotta et al48.
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Figure captions 

 

Figure 1. Instrumental variable analysis to generate causal estimates through Mendelian 

randomization. The three principles of an instrumental variable (IV) are: (i) the IV (in this 

case a genetic variant either in isolation or in combination with other variants) must 

associate with the exposure; (ii) the IV must not associate with confounders that are both 

known and unknown (represented by “U” in the figure); (iii) there is no pathway from the 

SNP to disease that does not include the exposure of interest. SNP= single nucleotide 

polymorphism; U= unknown/unmeasured confounders. 

 

Figure 2. Paradoxical scenarios in Mendelian randomization. 

Scenario 1: MR using a pleiotropic variant. The genetic variant associates with multiple 

biomarkers on separate biological pathways. It is invalid to generate separate causal 

estimates for biomarkers 1 and 2 as they ascribe the same SNP-disease effect to each 

biomarker. Furthermore, if only one of the biomarkers is causal, then using the SNP to make 

causal inference on the non-causal biomarker may draw an erroneous conclusion. 

Scenario 2:  MR using a variant that disrupts normal function of the exposure. Here, the 

genetic variant encodes impaired function of the exposure. Possession of the genetic variant 

may lead to increased concentration of the exposure (e.g. due to impaired clearance) yet 

paradoxically leads to an increased risk of disease (if the normal function of the biomarker 

would be protective of disease) or vice versa if the normal function of the biomarker 

increases risk of the disease. 

Scenario 3: MR of biomarkers on the same pathway. Genetic variant encodes an enzyme 

that metabolises a substrate into a metabolite. If the substrate and metabolite have 

contrasting roles in the development of diseases, this may lead to considerable complexity 

in the interpretation of findings. 

Scenario 4: MR of a time dependent exposure. The biomarker is only causal during a critical 

period; thus MR may yield evidence of a protective effect, however intervening on the 

biomarker during the non-critical period will not alter risk of disease 

Scenario 5: MR of a cumulative exposure. The exposure is causal in disease but has a long 

latency – e.g. the disease typically presents after decades of exposure-induced subclinical 

disease development. 
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Scenario 6: MR of overlapping traits. MR of overlapping biomarkers can lead to paradoxical 

findings as the overlapping nature of the traits is responsible for diminishing their causal 

effect on multivariate analyses. 

 

Figure 3. Mendelian randomization using a genetic variant that associates with multiple 

biomarkers on separate pathways. 

A: PPM1K genotype, branched chain amino acids and risk of diabetes. Using SNPs in 

PPM1K to infer causality of three separate amino acids yields an erroneous conclusion as 

this ascribes a causal estimate to each amino acid from the same PPM1K-diabetes 

association that is scaled to the PPM1K-amino acid estimate (Table 2). BCKD: branched-

chain α-keto acid dehydrogenase 

B: APOE genotype, C-reactive protein and risk of CHD. Using SNPs in APOE to infer causality 

for C-reactive protein yields an erroneous conclusion, as the SNP is pleiotropic for CRP and 

LDL-C. 

 

Figure 4. Mendelian randomization using a variant that disrupts normal function of the 

exposure. 

A: SCARB1 genotype, HDL-C and risk of CHD. Reduced hepatic uptake of HDL particles 

through the scavenger receptors leads to the accumulation of circulating HDL-C and 

increased risk of CHD. However, this does not point to HDL-C being harmful, but, on the 

contrary, supports the notion that appropriate function of reverse cholesterol transport 

may be beneficial to cardiovascular health. 

B: IL6R genotype, IL-6 and risk of CHD. The variant in IL6R leads to reduced membrane-

bound IL6R, which leads to (i) increased levels of circulating IL6,  (ii) disruption of classical 

IL6 signaling with reduced CRP, and (iii) a reduction in risk of CHD. 

 

Figure 5. Mendelian randomization of biomarkers on the same pathway; ALDH2 genotype, 

alcohol, blood pressure and risk of cancer. 

A: ALDH2*1 homozygotes: Individuals consume normal amounts of alcohol which leads to 

higher blood pressure but since acetaldehyde is efficiently cleared by ALDH2, the risk of 

oesophageal cancer is low.  
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B: ALDH2*2 heterozygotes: Individuals consume lower amounts of alcohol which leads to 

higher blood pressure. Reduced functioning of ALDH2 leads to increased acetaldehyde 

levels leading to increased risk of oesophageal cancer. 

C: ALDH2*2 homozygotes: Individuals consume almost no alcohol thus blood pressure 

levels are lower. Acateldehyde levels are also lower since alcohol consumption is near zero. 

Hence risk of oesophageal cancer is lower too (and similar or lower than ALDH2 *1/*1, 

depending on alcohol consumption among ALDH2 *1/*1 carriers).  

 

Figure 6. Mendelian randomization of a time dependent and cumulative exposure. 

A: Vitamin D and risk of MS. As the SNP-disease association reflects lifetime associations 

(including causal effects that only occur during adolescence), an MR may show evidence of a 

causal effect when in fact this only occurs during a time critical period. 

B: Extracellular SOD and risk of CHD. The genetic variant alters the heparin binding domain 

of extracellular superoxide dismutase. This means that ecSOD cannot bind to the external 

membrane of endothelial cells, and cannot preserve nitric oxide (NO) from degradation by 

superoxide anions. Less NO results in vasoconstriction and increased risk of CHD. 

C: LDL-C and risk of CHD. Genetic variants instrumenting LDL-C have large effects on risk of 

CHD, which reflects that the variants are proxying lifetime exposure. Since CHD is a disease 

that develops over decades, the effect estimates are equivalent to the estimates that would 

be derived from lifelong lowering of LDL-C. 

 

Figure 7. Mendelian randomization of overlapping exposures; TG, non-HDL-C and risk of 

CHD. As TGs are overlapping with non-HDL-C, adjusting the TG association for non-HDL-C 

diminishes the causal effect of TG to null. In contrast, non-HDL-C contains the entire cascade 

of apolipoprotein B-containing lipoproteins, including IDL-C and LDL-C, meaning that an 

association persists between non-HDL-C and CHD on adjustment for TGs. The attenuation of 

the TG-CHD association does not provide any information about the causality as it is 

adjusting for an overlapping trait.  

 


