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ABSTRACT  

The Middle Triassic (Anisian) Otter Sandstone was laid down mostly by braided rivers in a 

desert environment and is now well exposed along the south-east Devon coast in south-west 

England, part of the ‘Jurassic Coast’ World Heritage Site. It yields uncommon and generally 

fragmentary fossils, principally of vertebrates, including fish, temnospondyl amphibians and 

reptiles such as rhynchosaurs, predatory archosaurs, and small superficially lizard-like forms. 

These provide important information about a freshwater and terrestrial ecosystem that marks 

recovery from the end-Permian mass extinction, but pre-dated the appearance of dinosaurs 

and mammals. The constantly eroding Otter Sandstone exposures continue to reveal new taxa 

(for example, freshwater sharks). Furthermore, microvertebrate material obtained by sieving 

bone-bearing levels has the potential to further expand the faunal list. Newly discovered 

associated and articulated vertebrate remains, including small tetrapods, improve knowledge 

of whole-body anatomy and facilitate systematic work. Invertebrate burrows and reptile 

footprints provide information on ecological interactions and detailed bed-by-bed collecting 

casts light on taphonomic processes and faunal changes over time. 
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1. Introduction  

Continental red beds deposited during the Permian and Triassic, between approximately 

300 and 200 million years ago, are well exposed along the south-east Devon coast, southern 

England. During that time, the continents were united as the supercontinent Pangea, and what 

is now Devon was located towards the hot and arid continental interior. Like today, such 

desert environments supported little life and the Devon red beds are mostly unfossiliferous. 

There was, however, a Middle Triassic interval during which an extensive network of braided 

to meandering rivers, the ‘Budleighensis’ river system of Wills (1956, 1970), flowed 

generally northwards from what is now northern France, up through southern and central 

England and into the East Irish Sea Basin. These river channels provided life-supporting 

water, and the associated sediments contain the remains of organisms. In Devon, this rock 

sequence is termed the Otter Sandstone. The Otter Sandstone previously had formation status, 

but has recently been subsumed by the British Geological Survey within the Helsby 

Sandstone Formation, along with other sandstone formations of similar age throughout 

southern Britain (Ambrose et al., 2014). Reaching a total inland thickness of around 210 m 

(although thinner on the coast), the Otter Sandstone comprises mostly reddish-hued fine-

grained sandstones with subordinate conglomerates and mudstones (Edwards and Gallois, 

2004). It is magnificently exposed, although often difficult to access, along approximately 10 

km of sea cliffs and intertidal foreshore ledges extending eastwards from the coastal town of 

Budleigh Salterton to just east of Sidmouth (Fig. 1) (National Grid References SY 0807 8212 

to SY 1297 8730), forming part of the Dorset and East Devon Coast World Heritage Site 

(popularly known as the ‘Jurassic Coast’). 

Magnetostratigraphic data indicate that the Otter Sandstone encompasses most of the 

Anisian stage of the Middle Triassic, with the top of the sequence lying close to the Anisian-

Ladinian boundary (Hounslow and McIntosh, 2003). It therefore represents an age range of 

approximately 247 – 242 Myr (Cohen et al., 2013). 

The Otter Sandstone fossil remains, although generally fragmentary and uncommon, 

indicate a moderately diverse biota comprising plants, arthropods, fish, temnospondyl 

amphibians, rhynchosaurs, archosaurs and small, superficially lizard-like reptiles (e.g. see 

Milner et al., 1990; Benton et al., 1994). Invertebrate and vertebrate trace fossils also occur 

(Gallois, 2013; Coram and Radley, 2015). 

The recorded vertebrates indicate a broadly Anisian age for these beds, supporting the 

magnetostratigraphic data (Benton et al., 2002) and corresponding to the Perovkan land-
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vertebrate faunachron of Lucas (1998, 2010). Anisian terrestrial vertebrate sites are 

uncommon worldwide, and especially so in Europe, which was largely submerged beneath 

the Muschelkalk sea (Benton, 1997). The Otter Sandstone, and coeval fossiliferous deposits 

in the English Midlands, therefore make an extremely valuable contribution to knowledge of 

the mid Triassic non-marine biota. This was an important time for terrestrial vertebrate 

evolution; reptiles in particular were recovering and diversifying 10 Myr or less after the end-

Permian mass extinction, the most severe in the planet’s history. Among these vertebrates 

were the ancestors of dinosaurs, pterosaurs and mammals, which appeared later in the 

Triassic. 

 Research on Otter Sandstone fossils commenced in the latter part of the 19
th

 century, with 

the discovery of a rhynchosaur bone on the bank of the River Otter, near Budleigh Salterton 

(Whitaker, 1869). Subsequent finds were made along the coast further east between High 

Peak and Sidmouth (e.g. Lavis, 1876). Following a long period of relative inactivity, an 

extensive and well-studied collection of vertebrate material was made in the late 20
th

 

Century, by P.S. Spencer and others, mostly from coastal exposures either side of Sidmouth 

(e.g. Milner et al., 1990; Benton and Gower, 1997; Spencer and Storrs, 2002; Hone and 

Benton, 2008). 

Collecting activity and palaeontological research has continued to the present. The coastal 

sections are still actively eroding and producing new vertebrate material, some of it 

exceptionally preserved and/or representing previously unrecorded taxa, which are currently 

under study and will be formally described elsewhere. Additionally, new information is being 

provided by vertebrate and invertebrate trace fossils that have until recently received little 

attention. This article summarises and discusses some of this new material, and outlines 

recent research that is improving our knowledge of the Otter Sandstone fauna and 

palaeoenvironment, and contributing to a better understanding of the global Anisian non-

marine biota. It will also suggest further potentially profitable areas of investigation. Figured 

vertebrate fossils were collected by RAC; deposited specimens are housed in the collections 

of the University of Bristol (prefix BRSUG). 

 

2. Palaeoenvironments 

The lowermost part of the Otter Sandstone has been interpreted as aeolian in origin, and 

the remainder as predominantly braidplain deposits (Benton et al., 2002; McKie and 

Williams, 2009; Barton et al., 2011). It was laid down under a hot, seasonally semi-arid 
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climate, and comprises a cyclical series of mostly ochre-red sandstone units typically around 

2 m thick. These are sometimes separated by generally thin red lacustrine mudstones, 

especially towards the top of the sequence (Fig. 2). The cycles reflect the migration of river 

channels across the landscape, the sand bars deposited by them often eventually becoming 

subaerially exposed, supporting terrestrial plant and animal life, before being buried beneath 

mudstone or sandstone to initiate the next sedimentary cycle (Benton et al., 1994). 

Historically, most of the Otter Sandstone vertebrate remains have been collected from 

intraformational conglomerates which often form the base of, and fine up into, the main 

sandstone beds (Spencer and Isaac, 1983). These are interpreted as channel lags deposited by 

energetic migrating river channels that partly eroded and reworked the underlying braidplain 

sandstones and mudstones, as well as collecting subaerially exposed debris including animal 

remains. In addition to bone material, intraclasts typically include red rip-up mudstone clasts 

and reworked carbonate nodules including fragments of rhizocretions. 

The Otter Sandstone palaeoenvironment would have included a range of aquatic habitats: 

braided river channels, river-fed ponds and small lakes and generally larger, more isolated 

and less hospitable ephemeral water bodies. Terrestrial habitats were primarily life-

supporting vegetated channel borders and interfluves, which would have been periodically 

inundated by river floods and buried beneath fresh sediment delivered by migrating channels. 

Beyond the influence of the Budleighensis river system, there would have been generally 

more elevated terrain such as the Cornubian Massif occupying present-day Cornwall and 

west Devon, similarly subjected to long arid phases punctuated by heavy rainfall. 

There would have been some biological overlap between aquatic and terrestrial habitats, 

for example, temnospondyl amphibians and certain insects would have been aquatic when 

immature but spent at least some of their adult lives out of the water. 

 

3. Aquatic biota 

3.1. Invertebrates 

Various invertebrates would have inhabited the braided rivers and associated braidplain 

water bodies, but fossil evidence for these is presently meagre. Conchostracans (Euestheria 

and Lioestheria) have been recorded from lacustrine facies (Benton, 1997) and may indicate 

ephemeral conditions by analogy with recent taxa (Scholze and Schneider, 2015). 

Additionally, the channel sandstones preserve a variety of invertebrate trace fossils similar to 

those produced by various extant aquatic annelid worms and arthropods. These have received 
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little research attention despite providing an insight into ecological interactions and revealing 

the presence of organisms, albeit poorly identified, that are not known from body fossils. 

Gallois (2013) figured some pencil-shaped (and roughly pencil-sized) burrows, which he 

interpreted as possibly produced by deposit feeding insects or crustaceans. Sometimes similar 

burrows are exposed in profusion on the foreshore to the west of Sidmouth (Fig. 3). 

 

3.2. Fish  

In contrast to invertebrates, body fossils of fish are reasonably common in the channel 

sandstones and their basal lags, although in these lithofacies they are invariably disarticulated 

to a greater or lesser extent. Historical records of fish are sparse, and they have received little 

study (Milner et al., 1990; Dineley and Metcalf, 1999). Recent collecting, however, has 

revealed a moderately diverse fish fauna with hitherto unrecognised taxa. These include 

relatively large forms which probably preyed on smaller fish, such as freshwater sharks (Fig. 

4A) and an undescribed pike-sized predator represented by a jaw (Fig. 4B). These augment 

knowledge not only of aquatic faunal diversity but also of aquatic food chains. Recent sieving 

trials of known bone-bearing sandstone horizons by one of us (RAC) have also yielded 

identifiable microvertebrate remains, principally of fish (Fig. 5), offering potential for the 

recovery of further new taxa. 

Rare more intact fish fossils also occur in the Otter Sandstone, collected from lithofacies 

other than channel sandstones. Articulated, although headless, examples of the small deep-

bodied perleidiform Dipteronotus have previously been recorded from a presumably 

lacustrine mudstone near Sidmouth (Milner et al., 1990). More recently, further articulated 

specimens of this fish have been recovered, which provide additional morphological details, 

especially regarding the head (Fig. 6). The remains are usually found clustered in what were 

evidently pools occupying hollows on the exposed surfaces of channel bars. These 

subsequently became rapidly filled by an influx of fine river sand which presumably killed 

the fish and preserved them (Fig. 7). Whether the fish were perennial inhabitants of the bar-

surface pools, or were stranded by retreating river waters, and then perhaps concentrated as 

pools dried out and reduced in size, is unknown. 

 

3.3. Coprolites  

Generally ovoid coprolites (fossilised droppings) up to c. 60 mm long are frequently 

encountered in the Otter Sandstone channel lags. Such structures were unlikely to have been 

able to withstand extended transport and so were probably produced by local aquatic 
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vertebrates, most likely fish. Some coprolites are packed with scales and bones, mostly or all 

from smaller fish. Such concentrations may offer potential for the recovery of informative 

microvertebrate material and facilitate the reconstruction of food webs, although confidently 

associating particular coprolites with their producers is not easy. Some clues are provided by 

their structure; for example, spiral coprolites such as that in Figure 8 are likely to have been 

produced by sharks (Duffin, 1979). 

 

4. Terrestrial biota 

4.1. Plants and invertebrates 

As the Budleighensis river channels migrated across the landscape, the sand bars often 

became subaerially exposed, as indicated by gypsum moulds and occasional desiccation 

cracks. Most conspicuously, the roots of conifer trees are preserved as calcareous cylindrical 

rhizocretions (Purvis and Wright, 1991) and can often be observed in spectacular abundance 

in cliff faces and within foreshore sections. Channel bar surfaces thus often remained exposed 

long enough for the establishment of presumably extensive groves and woodlands of 

conifers. Other types of vegetation would have been present as well, but other than occasional 

portions of equisetalean (horsetail) stems, first reported by Hutchinson (1879), these have not 

been documented. Similarly, miospores, which would greatly assist dating within the 

sequence, have so far not been detected (Benton, 1997). 

The plants would have supported organisms including insects and other terrestrial 

arthropods such as scorpions, which are known from rare and fragmentary body fossils 

(Benton, 1997), and possible trace fossils. Rhizocretions sometimes bear on their surfaces 

small (1–2 mm) diameter burrows attributed by Gallois (2013) to Taenidium isp. (Fig. 9) and 

which may have been produced by sap-sucking insects.  

 

4.2. Large tetrapods 

Most of the Otter Sandstone tetrapod remains are found in channel-lag conglomerates. The 

bones are almost invariably disarticulated, and often broken or worn, indicative of fluvial 

transport and burial in a relatively high energy and abrasive environment (Spencer and Isaac, 

1983). Since this material is transported, it can say little about the original life habitats of the 

taxa, their living abundance and the extent to which they coexisted and interacted.  

The commonest vertebrate fossils encountered in the channel sandstones are those of 

squat, herbivorous archosauromorph rhynchosaurs (Fig. 10), accounting for approximately 
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half of identifiable specimens (Benton et al., 1994; pers. obs. RAC). This suggests that they 

were common animals on the local floodplains, perhaps forming herds, although the general 

sturdiness of their bones no doubt favoured their preservation. Rhynchosaurs are also, 

unusually for the larger tetrapods, known from somewhat more complete remains. Partial or 

intact skulls from two named genera, Fodonyx and Bentonyx, have been recovered (Langer et 

al., 2010), as well as associated body portions, most notably a partial headless skeleton from 

Ladram Bay, to the southwest of Sidmouth (Benton et al., 1993; Hone and Benton, 2008). 

Found in an otherwise barren red channel sandstone, the latter is interpreted as a recently 

dead carcass that was washed into a river, or even fell in whilst alive (Hart, 2014).  

Isolated bones, teeth and rarer jaw portions attributable to several predatory archosaur 

reptile taxa have also been recovered from the channel-lag conglomerates (Fig. 11). Notable 

previous finds include a toothed lower jaw possibly of the poposauroid Bromsgroveia, 

remains of which are known from the English Midlands (Benton, 2011), and an enigmatic 

elongate bone that may be a neural spine of a ‘sail-backed’ poposauroid (Milner et al., 1990; 

Benton and Gower, 1997). 

The larger Otter Sandstone archosaurs also left trace fossils (Coram and Radley, 2013, 

2015). Figure 12 shows an abandoned channel bar surface temporarily exposed on the 

foreshore to the west of Sidmouth. Accompanying scattered rhizocretions, there is a right 

hind footprint attributed to Chirotherium. Such tracks, first found in Germany almost 200 

years ago, derive their name from the Greek for ‘hand beast’ because of the blunt outward-

pointing digit that superficially resembles a human thumb (Kaup, 1835). There was much 

Victorian speculation regarding what could have produced these footprints, with giant frog-

like amphibians (what are now recognised as temnospondyls) and even bizarre marsupials 

being mooted as candidates (e.g. Owen, 1842). They are now thought to have been generated 

by terrestrial predatory crocodile-line ‘rauisuchians’, a paraphyletic group of taxa known 

from all continents that includes mainly quadrupeds, but also some bipedal forms that might 

have looked superficially like theropod dinosaurs (Gower, 2000; Nesbitt, 2011). With a 

length of about 280 mm, the footprint in Figure 12 would have belonged to an animal 

approximately 4 m in length, based on calculations provided by Coram and Radley (2013).  

Chirotheriid footprints are now known from several levels in the higher part of the Otter 

Sandstone, mostly in reddened lacustrine lithofacies that are virtually lacking in body fossils 

(Coram and Radley, 2013, 2015). The footprints can occur in large densities and in a range of 

sizes, suggesting herding behaviour.  
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The rare body fossils found in association with the footprints may furnish clues to the 

trackmakers’ lives. Figure 13 shows a block bearing a tooth adjacent to a partial chirotheriid 

footprint. Blade-shaped and with serrated edges, the tooth is evidently that of a predatory 

archosaur. Theropod dinosaurs regularly shed their teeth when they became worn, as do 

modern crocodiles (Poole, 1961). The worn extremity of this tooth, which would have 

compromised its slicing and piercing function, indicates that it too was probably shed by a 

living animal. Although it may have been fortuitously washed up next to a chirotheriid 

footprint, in the near absence of other tooth or bone material at this level, it may well instead 

have been derived from one of the trackmakers, conceivably the actual individual that 

produced the adjacent print. Such isolated large, serrated teeth attributed to rauisuchians have 

already been reported as being reasonably common in the Otter Sandstone (Benton and 

Gower, 1997).  

Also rarely found at footprint-bearing levels are small clusters of bone fragments (Fig. 

14A). Again, these could be chance associations, but their close proximity to footprints and 

apparent absence from otherwise similar mudstones suggests, alternatively, that they are the 

remains of trackmaker meals, indigestible remnants that were either regurgitated or defecated 

by the wandering animals. The fragment enlarged in Figure 14B bears a surface groove 

commensurate with bite damage by a serrated archosaur tooth (Fig. 14C). All bone material 

found in association with chirotheriid footprints pertains to superficially crocodile-like 

temnospondyls, recognisable from the distinctively pitted ornamentation, suggesting that 

these were favoured prey of the trackmakers. Presumed rauisuchian predation damage to 

temnospondyl bones has also recently been reported from the Middle Triassic of Germany 

(Schoch and Seegis, 2016). 

Temnospondyl bones are also frequently encountered in Otter Sandstone channel-lag 

conglomerates (Fig. 15), outnumbered only by rhynchosaur fossils. Past material has been 

referred to Mastodonsaurus, Eocyclotosaurus and an unnamed taxon (Milner et al., 1990), 

although Damiani (2001) considered the Mastodonsaurus remains to be indeterminate. Being 

amphibians, the temnospondyls almost certainly returned to water to breed, and were 

probably semi-aquatic at other times. This inference, however, is presently not supported by 

preservational context, since their invariably fragmentary remains cannot be distinguished 

taphonomically from those of the presumably primarily or exclusively terrestrial 

rhynchosaurs and archosaurs. Their conical pointed teeth indicate that they were predatory, 

perhaps mostly feeding on fish. Like modern crocodiles, the larger individuals, probably 
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reaching lengths in excess of 5 m, may also have been ambush predators of terrestrial 

animals, perhaps including rauisuchians, that approached too close to the water. 

 

4.3. Small tetrapods  

Several taxa of small superficially lizard-like reptiles have previously been recognised, on 

the basis of uncommon jaw and skull material derived mostly from sandstone channel lags.  

These include the possible lepidosauromorph Coartaredens (Spencer and Storrs, 2002) and a 

tooth resembling that of the long-necked archosauromorph protorosaurian Tanystropheus 

(Milner et al., 1990). Also known are several procolophonid parareptiles, one assigned to 

Kapes, a genus known from Russia and helping to confirm the Anisian age of the Otter 

Sandstone fauna (Spencer and Storrs, 2002). Another taxon, known from a single lower jaw, 

shows similarities to the Central European genus Sclerosaurus (Spencer and Storrs, 2002), 

although Sues and Reisz (2008) considered it too poorly preserved for positive identification. 

A number of further procolophonid skulls, including a leptopleuronine, have been collected 

over the years, and these are currently under study by other researchers, including Angela and 

Andrew Milner at the Natural History Museum, London. 

As well as within channel lags, bones of large and small terrestrial tetrapods are 

sometimes preserved on the very tops of channel bar sandstones, but these are often too 

fragmented or worn for confident identification. Such bones would have undergone extended 

transport and/or prolonged exposure, along with possible scavenging, on the exposed sandbar 

surfaces prior to burial. 

In total contrast, such surfaces have recently yielded a small number of exquisitely 

preserved small tetrapods. These were evidently residents of the exposed surfaces that were 

alive or only recently dead when overwhelmed by sudden influxes of fine alluvial sand. Their 

small size facilitated rapid burial, meaning that the skeletons show variable, but sometimes 

good, articulation. 

Figure 16 shows a small diapsid reptile, possibly, pending systematic study, a basal 

lepidosaur or a protorosaurian. This new Devon specimen is well articulated, although 

lacking tail and hindlegs, mostly or entirely due to recent coastal erosion. The life habits of 

small Middle Triassic diapsids are somewhat equivocal. The protorosaurian Macrocnemus, 

known from Central Europe and China (Rieppel, 1989; Jiang et al., 2011) is inferred from the 

limb structure to have been predominantly terrestrial, and perhaps a facultative biped when 

running at speed (Rieppel, 1989). The gracile build and sharp conical teeth suggest an active 

hunting lifestyle, probably of insects and other arthropods, along with smaller vertebrates, but 
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the fine preservation of many of the European and Chinese specimens  in marine sediments 

suggests at least a littoral lifestyle, and maybe even semi-aquatic, although probably not fully 

aquatic, habits, along with perhaps a more piscivorous diet (Fraser, 2006). The Otter 

Sandstone small diapsids may therefore similarly have frequented the margins of water 

bodies and perhaps ventured into them. 

The small articulated procolophonid in Figure 17 was likely to have been similarly 

overwhelmed and buried largely intact. It has subsequently lost the tail and hindlimbs to 

recent erosion. Procolophonids were probably predominantly herbivorous and almost 

certainly terrestrial, exhibiting no aquatic adaptations. It has been inferred from histological 

and morphological evidence that at least some were fossorial (Botha-Brink and Smith, 2012). 

The excessively long cranial spines of the newly recovered specimen (which probably bore 

keratinous sheaths that would have extended them even further in life; Cisneros, 2008) are 

likely to have impeded burrowing activity, so this life mode cannot be inferred here. 

Histological study of the Otter procolophonid and other small tetrapod material could 

provide further information about their life modes, and the more intact fossils offer scope for 

investigative techniques that were not applicable, or less applicable, in the past. These include 

computed tomography (CT) scanning to reveal bones and osteological details still obscured 

by matrix, currently being undertaken by MJB at the University of Bristol (Fig. 17B,C). 

 

5. Faunal changes through time 

The fluvial Otter Sandstone has been subdivided by Gallois (2004, 2013) into three 

members (Fig. 18). In succession, these are: the Otterton Point Sandstone Member, probably 

in excess of 100 m thick (although interrupted by faults on the coast) and principally exposed 

in the western part of the coastal section; the Ladram Bay Sandstone Member, c. 55 m thick 

and most accessible at Ladram Bay midway along the section; and the c. 15 m thick 

Pennington Point Member, exposed at shore level at the eastern end of the section, on either 

side of the town of Sidmouth. 

Although vertebrate skeletal material has been recorded throughout the fluvial Otter 

Sandstone, there is a noticeable increase in abundance above the Otterton Point Sandstone 

Member, peaking near the top of the succession within the Pennington Point Member 

(Benton et al., 1994; pers. obs. RAC). This increase in richness is, however, exaggerated by 

collecting bias because the higher beds, exposed on either side of Sidmouth and in Ladram 
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Bay, are the most accessible, whereas much of the lower part of the Otter Sandstone can only 

be reached with difficulty at low tide, or by boat. 

Otter Sandstone deposition is likely to have spanned most or all of the Anisian Stage 

(Hounslow and McIntosh, 2003), equating to approximately 5 Myr of time (Cohen et al., 

2013). Temporal changes in palaeoenvironment, biotic composition and diversity are to be 

expected, as well as evolutionary changes in specific lineages. 

In lower parts of the fluvial succession, the abundant rhizocretions are usually vertically 

oriented, and evidently represent tap-roots that extended to several metres down to the water 

table (Purvis and Wright, 1991). Higher in the succession, immediately above the top of the 

Otterton Point Sandstone Member, the orientation of the rhizocretions changes quite abruptly 

to predominantly subhorizontal, indicating a higher water table, likely linked to an increase in 

rainfall (Coram and Radley, 2015). Preserved channel widths also increase from <10 m to 

<100 m at this level (Gallois, 2013), suggesting increased discharge. The observed upward 

increase in frequency of vertebrate fossils mentioned above similarly accords with a 

transition to a more benign, and perhaps less seasonally arid, climate. 

Gallois (2013) figured and discussed large putative burrows in the Otter Sandstone and, on 

the basis of their size and structure, speculated that they could have been produced by 

therapsid synapsids (‘mammal-like reptiles’). Interestingly, these structures have only been 

noted at the very top of the Otterton Point Sandstone Member (Fig. 18), which, if confirmed 

as therapsid burrows, could reflect short-term conditions suitable for these creatures that are 

otherwise unknown from the British Middle Triassic, and very rare in western Europe in 

general, favouring more temperate palaeolatitudes (Parrish et al., 1986; Maisch et al., 2009). 

While previously reported burrows in Permo-Triassic sandstones of the South African Karoo 

have frequently been identified as those of therapsids, and certain examples contain skeletons 

of basal cynodonts (e.g. Jasinoski and Abdala, 2017), one contained a temnospondyl and 

others contain procolophonids (Abdala et al., 2006). Therefore, a therapsid burrow-maker is 

plausible by comparison with previously described examples of large burrows and their 

inhabitants, but the absence of therapsid fossils in the Devon Triassic might suggest another 

maker, presumably one of the taxa represented by body fossils. So far, no-one has described 

diagnostic morphological features of burrows constructed by these different tetrapod groups. 

Red lacustrine mudstone bands become more conspicuous in the higher part of the Otter 

Sandstone sequence, particularly in the Pennington Point Member. These are virtually 

lacking in body fossils, testifying to inimical conditions for life, perhaps due to high or 

rapidly fluctuating temperatures and/or salinity, as well as possible isolation from more 
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favourable environments such as active river channels. Towards the top of the Otter 

Sandstone sequence, the braided river channels and their associated sandstones become less 

dominant as rivers disappeared from the landscape with a return to more arid conditions 

(Mader and Laming, 1985). In situ rhizocretions are absent from the topmost sandstones, 

suggesting an absence of local tree cover. The sandstones are eventually replaced almost 

entirely by red mudstones of the overlying Sidmouth Mudstone Formation of the Mercia 

Mudstone Group (Gallois, 2001). This was deposited mostly in playa palaeoenvironments 

with little fluvial input (Hounslow and Ruffell, 2006; Barton et al., 2011) and is virtually 

unfossiliferous. 

Vertebrate body fossils disappear with the last of the thick fluvial sandstones, but the 

overlying mudstones immediately beneath the junction with the Sidmouth Mudstone 

Formation contain a thin zone rich in chirotheriid footprints. This footprint level is evident in 

foreshore sections both to the east and west of Sidmouth, approximately 2 km apart, 

indicating that it is extensive (Fig. 19). As in other track-bearing mudstones in the Pennington 

Point Member (Coram and Radley, 2015), the footprints are associated with traces of 

presumed rootlets, indicative of water levels low enough for plant growth and terrestrial 

archosaur activity. It is not known why these animals were aggregating in what had evidently 

become an increasingly forbidding landscape, in which fresh water and animal prey were 

likely scarce; possibly they were migrating between more suitable habitats. Despite the 

occurrence of lithologically similar rootlet-bearing horizons in the overlying Sidmouth 

Mudstone Formation (pers. obs. RAC), definitive chirotheriid footprints have not been 

recognised at these levels, suggesting that the archosaur trackmakers were no longer present 

in the area. 

 

6. Conclusions and further research  

Based on the fossil evidence obtained to date, it is possible to make a basic reconstruction 

of the local palaeoenvironment and elucidate some of the more likely trophic interactions 

(Fig. 20). The rate of recovery of new material, particularly of vertebrates, indicates that 

many taxa await discovery, perhaps representing as yet unrecognised life modes, for example 

arboreal or even gliding. Additional undescribed specimens probably reside in private 

collections and further prospecting of the constantly eroding coastal outcrops, particularly the 

poorly sampled lower horizons at less accessible sites, will no doubt be rewarding. 

Historically, most Otter Sandstone fossils have been collected from fallen beach blocks of 

imprecisely known stratigraphic provenance, and bed-by-bed collecting of in situ 
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macrofossils, as well as further sampling for microfossils, will provided the opportunity to 

investigate finer-level faunal changes. 

In addition to vertebrates, effort should be made to improve knowledge of the poorly 

documented plant and invertebrate fossils. Although the generally coarse-grained sandstone 

lithologies making up most of the sequence are not conducive to the preservation of delicate 

structures such as plant foliage, conchostracans and insect wings, further investigation of the 

fine-grained, laminated mudstone and siltstone facies that also occur has the potential to yield 

more important material. Conchostracan remains, in particular, are likely to assist more 

accurate dating of the sequence. 
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Figure captions  

Fig. 1. Geological sketch map of the coast between Budleigh Salterton and Sidmouth, Devon, 

south-west England, showing surface outcrop of Otter Sandstone (also exposed at shore level 

between High Peak and Peak Hill).  

Fig. 2. Otter Sandstone exposed at Pennington Point, east of Sidmouth.  

Fig. 3. Invertebrate trace fossils exposed on foreshore below Peak Hill, west of Sidmouth. 

Width of hammer head 220 mm. 

Fig. 4. (A) Fin spine of freshwater shark, BRSUG 29950-1. Scale in mm. (B) Lower jaw of 

predatory bony fish, BRSUG 29950-2.  

Fig. 5. Selected microvertebrate remains sieved from c. 20kg sample of a sandstone bed 

exposed near Sidmouth. Fish scales (a), teeth of fish (b-h) and possible temnospondyl (i,j), 

and indeterminate jaw portion (k). 

Fig. 6. Intact perleidiform fish Dipteronotus, BRSUG 29950-3, in lateral view. 

Fig. 7. Fish-bearing sandstone (A) infilling hollow on surface of channel bar sandstone (B), 

exposed west of Sidmouth. Hammer length 300 mm. Photo taken in 2013 and outcrop since 

removed by coastal erosion.  

Fig. 8. Coprolite, BRSUG 29950-4, perhaps from a shark, showing spiral cross-section. Scale 

in mm. 

Fig. 9. Rhizocretion in channel sandstone showing associated thread-like burrows of cf. 

Taenidium (enlarged in inset). Width of hammer head 220 mm.  

Fig. 10. Rhynchosaur remains: (A) humerus (upper arm bone), BRSUG 29950-5, in channel 

lag conglomerate matrix; (B) lower jaws, BRSUG 29950-6, viewed from above.  

Fig. 11. Archosaur remains: (A) vertebra, BRSUG 29950-7, in side view; (B) upper jaw and 

associated skull elements of small form, BRSUG 29950-8.  

Fig. 12. Exposed surface of channel bar showing rhizocretions (e.g. A) and chirotheriid 

footprint (B), enlarged in inset. Digits I and II are incompletely preserved, III and IV show 

the clawed terminations, V is the blunt, outwardly-projecting ‘thumb’. Hammer length 300 

mm.  

Fig. 13. Partial chirotheriid footprint (A) with associated archosaur tooth (B), BRSUG 

29950-9, tooth enlarged in inset (scale in mm).  
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Fig. 14. (A) Chirotheriid footprint with associated temnospondyl bone fragments, largest 

shown in inset. Width of hammer head 220 mm. (B) Detail of same bone showing presumed 

biting damage. (C) Tooth of predatory archosaur from a different horizon showing serrated 

margin. Scale in mm. 

Fig. 15. Temnospondyl remains: (A) partial skull, BRSUG 29950-10, orbits indicated by X; 

(B) clavicle (collarbone), BRSUG 29950-11.  

Fig. 16. Articulated skeleton of small diapsid reptile, BRSUG 29950-12. 

Fig. 17. Procolophonid skull with partial skeleton, BRSUG 29950-13. (A) Partially prepared 

in matrix; (B,C) computed tomography scan of fossil showing ventral (B) and dorsal (C) 

aspects. 

Fig. 18. The Otter Sandstone succession of east Devon, adapted from Gallois (2013), 

showing the vertical distribution of biogenic features discussed in the text. 

Fig. 19. Chirotheriid footprint horizon close to top of Otter Sandstone. Note upward 

transition to unfossiliferous playa mudstones of overlying Sidmouth Mudstone Formation. 

(A) Foreshore beneath Peak Hill. Right hind footprint in inset. (B) Foreshore east of 

Pennington Point. Two incompletely preserved hind footprints in inset. Hammer length 300 

mm. 

Fig. 20. Preserved biota and inferred trophic interactions on the Otter Sandstone braidplain. 

FPOM is fine particulate organic matter. 
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