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Upper Limb Motion Intent Recognition Using Tactile Sensing
In Stroke Patients

Stefanou T.1 Turton A.2 Lenz A.3 and Dogramadzi S.4

Abstract—Focusing on upper limb rehabilitation of
weak stroke patients, this pilot study explores how
motion intent can be detected using force sensitive
resistors (FSR). This is part of a bigger project which
will see the actuation and control of an intent-driven
exoskeleton. The limited time stroke survivors have
with their therapists means that they can not often get
enough training. During active-assisted training, ther-
apists guide the paralysed limb through a movement
only after detecting visual or haptic cues of the motion
intent from the patient. Aiming to replicate therapist
practices of recognising patients’ intention to move,
a pilot study of a tactile system is performed. The
system will perform consistently even with patients
who have low muscle strength and control ability.
Currently available devices for detecting muscle ac-
tivity do not offer the robustness and performance
necessary; Electromyography (EMG) sensors, a well-
established method, is affected by factors like skin
moisture and BCI (Brain Computer Interface) has a
slow response time. The proposed tactile sensing sys-
tem is a simple yet robust solution both from a sensing
as well as a usability point of view. Pilot experiments
have been performed with a healthy subject emulating
low muscle activation conditions. An overall accuracy
of 80.45% is achieved when detecting forearm and arm
muscle contractions and hence motion intent.

I. INTRODUCTION
A. Background

Rehabilitation helps stroke survivors to learn new ways
of movement with the potential to help them regain
use of the affected limbs. Recovery is influenced by
quantity of training and the specific tasks practised[22].
Physicians’ guidelines suggest a combination of repetitive
task training (RTT), including constraint-induced move-
ment (CIMT), depending on the individual’s ability[29].
During active-assisted exercises the therapists wait for
the initiation of the movement by the patient; the cues
are either visual or haptic. They then support and guide
the limb through the completion of the exercise. The
visual feedback, of the movement of the limb that occurs
following muscle contraction, and proprioception of the
patient improves the rebuilding of neural pathways, re-
placing the damaged ones[1]. Discussions with therapists
in the field indicated that where there is a lack of mobility
they feel the soft tissue in the proximity of the actuation
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muscle to detect the onset of motion. As the muscle
contracts it shortens, resulting in a shape change that
can be felt by the therapist.

B. Rehabilitation Devices

Given the actual ratio of occupational therapists to
patients in the NHS (1.1:10), compared to the ideal
(3.3:10)[20], the therapy time for each patient is about
three times lower than that required. Robotic devices
have great potential in assisting therapists with reha-
bilitation[19] and have already been implemented in the
medical sector[29]. The aim of the system proposed is
to mimic the recognition of movement intention in this
therapist-patient interaction. Recognising intention, by
using the same cues as therapists do, a safe input for
an upper limb rehabilitation exoskeleton can be used to
guide the limb through a motion.
Within the last two decades, multiple upper-limb re-

habilitative devices/exoskeletons have been developed.
They can support all upper limb degrees of freedom
of the shoulder, elbow, forearm and wrist through the
full range of motion[24][2]. Commercially available re-
habilitation devices are being used in conjunction with
traditional therapy[32]. Intention-driven ones[27] usually
lack robustness[9] as they are unable to detect intent
under different conditions.
A variety of sensors have been used in movement

intent recognition systems; these include sEMG, joint
torque sensors and EEG (Electroencephalography) sen-
sors, recording brain activity for BCI (Brain Computer
Interface) systems. EMG signals sense motor-neuron
train spikes. They have been widely implemented in
assisted living, rehabilitation and prosthetic systems;
nonetheless, EMG controlled systems have still not
reached acceptable performance consistency[9]. There are
limitation on the conditions under which they are being
used[7]. For example, it has been shown that adipose
tissue (fat) can affect amplitude and create crosstalk
between signal recordings[17], while skin moisture also
affects signal acquisition[28].
Kiguchi et al[14] have used EMG signals to detect

the intent of motion in the upper limbs. Together with
Gopura they developed EMG based control methods
for a 7DOF upper-limb exoskeleton[10][15]. EMG
sensing here was complemented by torque sensors on
the exoskeleton, creating a more robust system. The
limitations arise from the fact that the system relies on



the user’s ability to produce detectable joint torques.

Steering away from EMG triggered controllers, devel-
opments by Barsotti et al[3] included a Motor Imagery
(MI) based BCI to control the BRAVO (Brain com-
puter interfaces for Robotic enhanced Action in Visuo-
motOr tasks) exoskeleton[4]. Tests with stroke patients
demonstrated a classification accuracy of 82.5% during
reaching-grasping exercises. The limitations in this ap-
proach are seen in the response time of the system;
it takes about (3.45 ± 1.60)s to initiate a movement.
This could cause issues if the patient needs to urgently
terminate the movement as even greater delays would
occur taking into account the actuation stopping time.

In prosthetics, force Myography (FMG), also referred
to as tactile imaging, has shown promising results when
used for intent recognition. The idea that the volumetric
and shape changes that take place within the muscle can
be monitored on the skin surface and used as an indica-
tion of motion intent was first captured by Moromugi
et al[21]. They implemented push buttons, with load
sensors, indented in the skin to capture "muscle stiffness"
for the purpose of actuating a prosthetic hand. Wininger
et al[33] performed one of the first studies implementing
FSR sensing to predict grip force in hand prostheses.
Using a grip dynamometer, Wininger mapped the read-
ings measured during gripping and the pressure exerted
by the forearm on the FMG cuff. Testing the concept
on healthy young adults, they concluded that FMG is a
useful alternative to EMG. Furthermore, a high resolu-
tion tactile sensor system developed by Schürmann was
used in a proof of concept study carried out by Castellini
et al to create tactile images of the anterior forearm[5].
This was followed by a feasibility study that indicated
tactile sensing offers more stability than sEMG[26]. The
same sensory technology was embedded and tested in
a tactile sensor bracelet[16]. Lastly, a feasibility study
performed by Cho indicated that FMG resulted in clas-
sification accuracies of over 70% in all grip classifications
attempted[6].
In this paper we investigate how tactile sensing can be
used to detect motion intent in stroke patients with up-
per limb paralysis in order to actuate an exoskeleton that
will help them perform their rehabilitative exercises. The
challenges lie in the stroke patient’s muscular strength
that needs to be detected by the system, which could be
as low as 5%[8] of their nominal strength. In this paper
we describe the methodology and set up for the three
sets of experiments performed using this tactile motion
intent recognition system. The experimental section that
follows presents the validation of the sensory system and
the testing and evaluation of the concept using hand
grasping and elbow flexion.

II. METHODOLOGY
The FMG approach has been adopted in this study

aiming to find a robust solution that offers a fast, consis-

tent and accurate motion intent recognition system for
stroke patients. The aim is to mimic the way therapists
use their sense of touch to detect the intention of motion.
A series of experiments have been designed to emulate
the low muscle activation, as would be the case with weak
stroke patients. Three different experimental stages were
completed
A) Proof-of-concept experiment to validate the sensi-

tivity of the sensors
B) Testing of the sensory system to detect motion

intent during griping
C) Testing of the sensory system to detect motion

intent during griping
Indications as to whether a particular movement
is being attempted is acquired by monitoring the
activity in the identified muscle areas. The sensors
are placed on an arm brace designed to tightly fit on
the arm. Muscle contraction or relaxation will alter
the shape of the proximal tissue area, causing contact
force changes between the arm or forearm and the brace.

Gripping-induced muscle contractions was the first
concept we tested. The muscles providing the main
forces during gripping are the three extrinsic ones[18]
located in the forearm; flexor digitorum superficialis
(FDS), flexor digitorum profundus (FDP) and flexor
pollicis longus (FPL), Fig. 1.

Fig. 1: The flexor digitorum profundus (FDP), flexor
digitorum superficialis (FDS) and flexor pollicis longus
muscles (FPL) - in all three diagrams the volar compart-
ment of the forearm is shown[34]. Indicated are also the
approximate sensor posiions when in contact with the
forearm.

These are, therefore, the muscles targeted. The sensors
will be located in the upper central half on the anterior
and posterior parts of the forearm for the gripping
motion; in proximity to the muscle belly, the thicker
part of the muscle, as seen in Fig. 1, where all muscle
fibres come together.

A. Stage1
For the initial stage of experiments we determined that

the sensor sensitivity is good enough to detect contact



force changes in the forearm during low grip strength
motions; as would be expected in a weak stroke patient.
To perform these experiments, a measurement device was
used to measure the grip forces exerted.
1) Grip Holder: An analog grip strength meter, a

Saehan hydraulic hand dynamometer[25], was utilised
to monitor the grip strength used by the subject. Such
devices are mainly used to evaluate grip strength after
hand surgery or during the rehabilitation program.

Fig. 2: Sehan hydraulic hand dynamometer used to
measure grip strength[25].

The minimum strength requirement the sensors
needed to detect was evaluated. Stroke survivors are
at their weakest right after the stroke incident That
is when their affected limb has on average 18% of the
unaffected side’s nominal grip strength[30]; this can be
as low as 5-10%. According to a study performed in
UK[8], the peak optimum median grip is 51kg and 31kg
for male and female respectively. Thus, 5-10% of the
latter calculates to 1.55-3.10kg (15.21-30.41N). Seeing
as the resolution of the device is only 2kg (19.62N), the
indicator was kept just below that. Therefore, the goal
was to detect the contact force changes that take place
between the forearm and the sensors, during gripping
motions with what is determined to be as less than
6.45% of the average nominal strength of females.

2) Sensing: The next step was to choose the sen-
sors. Piezoresistive tactile sensors were preferred over
capacitive sensors as the latter are very susceptible to
noise[31]. The Interlink Electronics flexible FSRs were
chosen as they provide the largest active surface area for
the cheapest price[11].

The FSRs have a conductor substrate with a printed
interdigitated circuit pattern and another one coated
with carbon-based ink; when a force is applied, the
conductive substrate deforms and contact is made with
the printed circuit lines varying the resistance and pro-
portionally the measure voltage. FSRs require a simple
interface and their size (thickness of 0.46mm and 18.3mm
diameter)[12] and allow for an easy integration.

These sensors have a minimum force detection of
1N and a maximum repeatability error of ±2%. The
sensor sensitivity has an exponential behaviour, Fig. 3.
Experiments determined its sensitivity by recording of
the readings as 100g weights (adding up to 1kg) were

added on the sensor’s active area.

0 100 200 300 400 500 600 700 800 900 1000

Force (N)

0

0.5

1

1.5

2

2.5

3

V
ol

ta
ge

 (
V

)

FSR Sensitivity

Fig. 3: Sensor sensitivity, force-to-voltage conversion de-
termined by experimentation.

The sensors were centrally placed on the anterior and
posteriorforearm,in proximity of the gripping muscles,
Fig. 1. Two sensors were used; sensor1 was placed at the
top, dorsal part of the forearm (palm facing upwards)
and sensor2 bottom of the inner lining of the support
(volar forearm), Fig. 4.

3) Forearm Support: Finally a forearm brace was
built. To ensure a good contact of the forearm with
the sensors a an adjustable interface that allows a tight
fit was created. Avoiding obstruction of movement and
minimising the weight and cost were also important
factors.

Although a cheap adjustable strap would have offered
good comfort levels and a tight fit, the sensors would not
function as well if mounted on a flexible surface[12]. The
forearm brace was designed to have adjustable height and
separately adjustable width, to accommodate different
arm sizes.
4) Integration: The sensors were fixed on the brace

and their circuit outputs were fed into the Arduino ana-
log inputs which provide 10bits of resolution. The data
broadcast on the serial port was recorded using a MAT-
LAB script. Their acquisition frequency was 104Hz. The
frequency typically used in body movement monitoring
or human movement classification implementations[13] is
100Hz.

B. Stage2
Having shown that the contact force changes between

the arm and the brace can be detected when low grip
forces, up to 6.45% of the nominal, were used, the
grip meter was replaced with a microswitch[23]. This
provided a ground truth on the gripping state of the
hand. The switch closes when the two gripper levers come
together during gripping. A torsion spring integrated in
the system pushes the gripper open. Hence its ON state
indicates contraction of the muscles, and its OFF state
indicates relaxation. It was attempted to keep the grip
force used as low as possible, just about exceeding the
resistive torque of the spring, 2.10 ∗ 10−5Nm, with stiff-
ness 0.6582Nmm/rad and the switch maximum operating
force, 0.25N. For the elbow flexion, monitoring of the



Fig. 4: Adjustable brace
and FSR sensors.

Fig. 5: Gripper with an
ON-OFF switch.

Fig. 6: Stage2 experiments: gripping motions wearing the
support.

biceps/triceps muscles will be required; in which case, the
brace will be worn on the arm. Interface of both sensors
and the microswitch was done using using the Arduino
UNO board and the data transmitted through a serial
connection to MATLAB.

Interface of both the sensors and the microswitch was
done using the Arduino UNO board and the data was
transmitted through a serial connection to MATLAB.

C. Stage3
Finally, the concept was tested on biceps/triceps activ-

ity detection. The gripper with the switch was attached
on the underside of a table with the arm supported
just underneath. As the elbow flexes and the forearm is
raised the switch closes, Fig. 7. The two gripper handles
were constrained at about 10mm apart, just enough to
keep the switch open. To close the switch an average
weight person would have to surpass the 0.113Nm torque
needed to raise their 1.149kg forearm, as well as the
0.25N required to close the switch.

The sensors were placed in the proximity of the biceps
(sensor1) and triceps muscles (sensor2). The forearm
was resting on an arm-rest at about a 90◦ angle, just
below the bottom of the gripper. The wrist joint was
kept fixed at all times to ensure that the biceps was the
one working to close the switch and not the flexor carpi
radialis/ulnaris (wrist flexing muscles);

III. EXPERIMENTS
A. Proof of Concept

In this first stage of experiments, tests were performed
with the forearm muscles relaxed or contracted (using a
grip strength of approximately 2kg, see II-A), at certain
pre-determined points in time. The forearm, which was
placed inside the brace, rested on the table with the palm

Fig. 7: Arm experiments, supported forearm closes switch
during elbow flexion.

facing upwards, supination position. A total of 10 initial
experiments were run, that lasted 20-25s each, where 2-
3 gripping motions were performed. There were slight
variations in the contact points of the sensors (brace)
with the forearm across experiments as the arm-brace
was removed at the end of each one. The arm and
shoulder were kept relaxed.

The forearm had good contact with sensor2 since its
weight was resting on it. As it can be observed in Fig.
8, there are distinct voltage variations when gripping
is performed. Visual inspection of the complete signal
indicates certain emerging patterns. As the hand grips
the dynamometer, the flexor digitorum contracts while
the extensor digitorum (volar forearm compartment)
relaxes completely; this causes a decline in the contact
forces between the volar part of the forearm and sensor2.
The first step change of the recorded voltage indicates
that a gripping motion is taking place and one in the
opposite direction signals the relaxation of the muscles.
The forearm placement, its shape and weight and exerted
force, affect the contact forces between the sensors and
the forearm. With the chosen forearm orientation, con-
tact with sensor1 was inconsistent; hence the focus was
on sensor1 readings.
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Fig. 8: Proof-of-concept experiment; sensor2 readings
during muscle contraction/relaxation in the forearm.

The results in this first set of experiments indicated
that it may be possible to detect small muscle con-
tractions and hence recognise motion intent. They also
suggest that the sensitivity of the sensor is good enough
to detect the contact force changes that take place
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Fig. 9: Plot of sensor2 forces and microswitch data
indicating the state of the arm.

between the forearm and the brace when a grip strength
of 2kg(19.6N) is used; across all stage1 experiments the
contact force changes gave rise to a detectable potential
difference changes. As observed, a grip strength of 19.6N
(2kg) in this experiment produced a potential difference
change on the FSR sensors from 2.565V to 1.285N was
recorded, which corresponds to contact force change of
5.30N, Fig. 3.

B. Intent Recognition: Forearm
With the conclusion of these first experiments, it was

clear that the sensor system was sensitive enough to
detect contact force changes between the arm and its
brace when grip strength was limited to 19.6N. Dur-
ing the second stage experiments the switch state was
also recorded alongside the sensors. This allowed us to
perform state prediction and determine the accuracy
of the results. In total over twenty 2-3min experiments
were performed with an arbitrary number of gripping
movements (>2).

No discernible contact force changes were detected on
sensor1, Fig. 10. This was expected, as its contact with
the forearm was weak; therefore, the sensor2 readings
were the ones analysed, Fig 9. As it can be observed
in Fig. 10, where the force derivatives are presented,
large gradient changes hint towards a grip state change.
Negative gradients indicate muscle contraction of the
gripping muscles, which causes the volar part of the
forearm and the sensor to loose contact. Following that,
increasing contact forces hint towards return to the initial
state. Drifting can be observed, Fig. 9, which can be
attributed to the increased blood flow in the forearm as
well as the slight shifting of contact points due to the
solid nature of the brace.

An algorithm was developed to classify the state of
the forearm, Algorithm. 1, whether it is ‘at rest’(muscle
relaxation) or under tension (muscle contraction). The
binary classification algorithm developed determines the
state based on the emerging signal features, such as large
gradient step changes and their direction with respect to
the baseline as well as previous tendencies. The accuracy
is determined by comparing the algorithm output to the
microswitch state recorded. The algorithm focuses on the
patterns that emerge with every new, incoming data set;
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Fig. 10: Force derivatives of sensor1 and sensor2. The
former barely records any changes.
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Fig. 11: Examples of predicted state, during gripping,
when the algorithm is run against sensor readings along
with the actual state.

aiming for a state change detection within 1s. The initial
state is always assumed to be ‘at rest’and a baseline
value is thus determined. Calibration was performed
during the preprocessing of the data; this included the
use of a moving average filter to reduce noise which also
introduced a time delay of 0.12s.

The algorithm’s classification accuracy, averaged over
all Stage2 experiments, was found to be 77%, with
a standard deviation of 11%. This was calculated by
comparing the state of the switch that represents the
actual state with the predicted state output. Drifting
observed in the FSR sensor readings did not affect its
performance. It was important to avoid false positives,
false prediction of rest-to-tension state change. As long
as it is not a consistent occurrence, non detection is not
as problematic. During most experiments the algorithm



input : sensor reading
output: state
while serialConnection = true do

state(i)=state(i-1);
if SChange(i) > ChangeThres and DiffToBaseln(i)>DiffToBaseln(i-1) and ReturningToRest=false then

if SReading(i) > SReading(i-1) then
ContactForceIncreasing;

else
ContactForceDecreasing;

end
else if SensorChange >ChangeThres and DiffToBaseln(i)<DiffToBaseln(i-1) and
state(i)=muscleContraction then

if (DiffToBaseln:DiffToBaselnMAX) < ReturnThres then
ReturningToRest← true;

end
if (ContactForceIncreasing > UpperLimit and ContactForceDecreasing < LowerLimit) or
(ContactForceDecreasing > UpperLimit and ContactForceIncreasing < LowerLimit) then

state(i) ← muscleContraction;
end
if ContactForceIncreasing=false and ContactForceDecreasing=false and state(i-1)=muscleContraction
then

StillINContraction
end
if ReturningToRest(i-1)=true and SChange(i) < ChangeThres then

state(i) ← muscleRelaxation;
end
if SChange(i) < ChangeThres and state(i)=muscleRelaxation then

if b > BaselnThres then Baseln ← SReading(i);
end

Algorithm 1: Algorithm overview; some of the indicative parameters that were adjusted for each muscle group
are ChangeThres, ReturnThres LowerLimit and UpperLimit, and BaselnThres

was able to correctly detect the state changes within 1s.

The gripper had to move quasi-statically which in-
creased the delay between muscle contraction and move-
ment reaction detection. This was evident in certain
cases where the detection of tension happened prior
to the switch indication. This can be seen in Fig. 11a
where the first tension period is detected 0.10s beOct2016
fore there is any indication from the switch state. The
maximum delay that is estimated to be 0.455s. This
could be improved by using a continuous gripping force
measurement device; this would enable detection of the
movement instantaneously.

When the algorithm successfully detected the state
change, the maximum delay found was 0.6s. At the ab-
sence of key patterns1 from the waveform the algorithm
will not make a decision until it is certain of the change.

In about a fifth of the data points the forearm intention
to move was wrongly classified. This was due to the
delays in detecting muscle relaxation and early detections
of tension when the switch state change delays with
respect to the motion onset. One cause of the false
positives though that could cause issues would be the
complete failure to detect the arm has gone back to rest;

such as in Fig. 11b, at t=23.24s.
C. Intent Recognition: Arm

Stage3 involved testing the motion intent detection
system performance during elbow flexion. As mentioned
earlier, II-C, to experiment with elbow movement the
arm brace was fitted on the arm. Similar contact force
patterns emerged, Fig. 12, during elbow flexion, as pre-
viously in the forearm when gripping was performed. A
total of 10 experiments were performed with an arbitrary
number of elbow extensions (>2) per minute as each one
lasted between 2 and 5 minutes.

As the biceps contract to raise the forearm, muscle
flexion causes an increase in the contact forces. The arm
brace was fitted tightly around the arm which caused
the contact forces monitoring the biceps and the triceps
vary in a similar manner. The sensor in proximity to the
biceps recorded changes of slightly higher magnitudes
than the triceps, by an average of 20%.

The classification algorithm parameters were tuned
accordingly for use on the forearm, producing an average
accuracy of 83.9%. As Fig. 13 illustrates, the adapted
algorithm was successful at correct state prediction with
higher confidence levels than gripping.
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Fig. 12: Sensor1 and sensor2 recorded contact forces in
the arm during elbow flexion.
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Fig. 13: Elbow flexion state prediction using the adapted
algorithm.

During this set of experiments, there was a slight
movement of the brace, and sometimes even a small
rotation, as the biceps contracted. This affected the
accuracy of the data acquisition as the point of contact of
the sensor with the arm was shifting, influencing classifi-
cation. Nonetheless, the state classification accuracy was
improved compared to gripping which is a more complex
movement involving a greater number of smaller muscles.

IV. DISCUSSION

In this pilot study on the use of tactile sensing for
motion intent recognition in stroke patients the results
were promising for the development of a reliable, quick
detection system, as part of an actuated exoskeleton
device. Evidence suggests that using two FSR sensors
we can detect low activations of muscles, when using no
more than 6.45% of average nominal strength input. De-
tection occurs within 1s in both the upper and forearm.

The accuracies of this pilot study system when classifying
the state of the arm/hand averaged at 80%.

A. Limitations
There were some limitations and shortcomings in the

experiments completed. Firstly, there was a visible delay
between the initiation of the movement and the change
in the microswitch state in some cases; this created an
uncertainty in the results as it is not possible to know
the exact time a state change took place. Hence, instead
of a binary gripper, we intend to introduce a continuous
gripping force measurement device. Furthermore, this
system has not yet been tested on stroke survivors.
Nonetheless, an attempt was made at setting some
force limitations during experimentation based on the
minimal strength data for stroke patients. Whether
these could be sensed as well with a thicker forearm
and weaker muscles is yet to be seen. Additionally,
the slight movement of the arm brace, during the
Stage3 arm experiments, affects the trustworthiness
of the results. While keeping the sensors attached on
solid surfaces they will be held together on the arm
using a tight fitted arm band. With a hard-coded
feature algorithm there are limitations when it comes
to generalisation. Alternatively, a supervised learning,
classification algorithm will be trained on the features
using the experimental data.

V. CONCLUSIONS AND FUTURE WORK
This paper demonstrates a new approach to motion

intent recognition in stroke patients. The results in
this pilot study were promising despite aforementioned
limitations, which will be taken into account for the
improvement of the system. The addition of more sensors
will be c onsidered, as well as the integration with EMG,
as a new lighter, easy-to-wear brace is built. Future work
will include the actuation of an upper limb brace and its
use to support the elbow flexion/extension motion using
a tactile sensing driven controller.
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