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Abstract 8 

This paper investigates the effect of size and complexity of composite structures on the 9 

formation of low-velocity impact damage via experimental tests and numerical modelling. The 10 

ASTM standard low-velocity impact test and a scaled-up version of the test were conducted.  A 11 

novel numerical technique is presented that combines 3D solid and thin 2D shell elements for 12 

modelling different domains to achieve a high level of fidelity locally under the impact location, 13 

whilst achieving good computational efficiency for large structures. Together with the 14 

experimental studies at the different scales, the predictive capability of the numerical models 15 

was systematically validated. This modelling method demonstrated an advanced computational 16 

efficiency without compromising predictive accuracy. The models are applied to a case study 17 

of low-velocity impact of a large-scale stringer-stiffened panel, showing this modelling 18 

approach to be suitable for predicating low-velocity impact damage and structural response 19 

of laminated composites over a range of sizes and complexities. 20 

Keywords: laminated composites, low-velocity impact, finite element analysis, large complex 21 

structure 22 
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1. Introduction 28 

Polymer matrix composite materials are being widely and increasingly used in aerospace 29 

structures. Despite their superior properties, such as high specific stiffness and strength, over 30 

conventional metal alloys, they are susceptible to low-velocity impact, especially for laminated 31 

carbon fibre epoxy composites. Different to isotropic materials, laminated composites under 32 

transverse loadings easily result in Barely Visible Impact Damage (BVID), the extent of which 33 

is not clearly visible from the surface but causes debilitating internal damage. BVID can be 34 

caused by runway debris during aircraft take-off and landing or by dropped tools during 35 

manufacturing. If the impact velocity is as low as the case of the latter scenario, impact damage 36 

is usually dominated by the resin or matrix properties, without the fibre failure. Matrix cracking 37 

occurs as the first damage mode at intra-ply locations due to intralaminar shear and tension and 38 

acts as a precursor to delamination. Usually driven by interlaminar shear, delaminations occur 39 

between plies and are prone to propagate under in-plane compressive loading, which could 40 

eventually lead to catastrophic failure of the structure. Delamination is therefore one of the 41 

most critical factors limiting design. As laminated composites are used in structures at various 42 

locations, the impact damage mechanisms and extent of which, in relation to different size and 43 

complexity of the boundary conditions of the structures, is not able to be accurately quantified 44 

through the commonly used standard small-coupon experiments (e.g. ASTM-D7136, Boeing 45 

BSS-7260, Airbus AITM-1.0010, etc.). It is important to understand the low-velocity impact 46 

damage behaviour of composites under the different boundary conditions resulting from such 47 

structural applications. This is largely approached by expensive testing regimes, but accurate 48 

high-fidelity numerical modelling has a role to play in understanding the various scales and 49 

complexities, which could significantly reduce cost and time [1]. 50 

Numerous studies in the literature have focused on modelling standard impact events and 51 

predicting impact damage using Finite Element Analysis (FEA). By combining Continuum 52 
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Damage Mechanics (CDM) at the ply level and Cohesive Zone Modelling (CZM) at 53 

interlaminar regions, the degradation behaviour of plies and delaminations induced by low-54 

velocity impact of laminated composites can be captured [2–11]. Adopting CZM only at both 55 

intra- and interlaminar levels are also often found in the literature, especially for modelling the 56 

interactions between matrix cracks and delaminations of laminated composite under tension, 57 

open-hole tension, notched tension and transverse loading [12–20], where damage and 58 

degradation within the plies is modelled by cohesive elements placed along the fibre directions, 59 

instead of using CDM approach. The full CZM method has been applied to previous studies of 60 

laminated composite under static indentation [14,21] and is here implemented further in a 61 

dynamic impact environment to investigate the robustness of the modelling approaches 62 

developed thus far and extend it to large scale structures. 63 

Numerical models with implementation of either CDM or CZM require considerable 64 

computational cost for cases where the laminates have complex stacking sequences and when 65 

the dynamic effects are not negligible. The high computational cost and long run times make 66 

such FEA models less attractive for impact damage analysis for large and complex composite 67 

structures. With the difference in numerical efficiency between 3D solid and thin shell elements 68 

for modelling composites, finite element techniques combining different element types in 69 

different regions of a composite structure become one of the obvious solutions. In cases such 70 

as laminates under point loading or with a geometric discontinuity like a pre-crack, the potential 71 

damage locations can be approximated or derived from small-coupon tests in advance, allowing 72 

regions with and without damage to be modelled separately, with different element types, in 73 

order to reduce cost without losing basic accuracy. Even with a single element type, different 74 

mesh schemes at different regions lead to significant improvement in efficiency. Riccio et al. 75 

[22,23] and Caputo et al. [24,25] used solid elements throughout in a model to capture the low-76 

velocity impact damage of laminated composite; contact was used to tie the fine-mesh detailed 77 
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local domain and coarse mesh global domain. This application was later developed for 78 

predicting impact damage in an all-composite wing-box structure [26], and numerical 79 

predictions coincided well with experimental data. Approaches, involving solid-shell coupling 80 

techniques or similar, have been investigated by numerous researchers for various applications; 81 

for example, a mesh superposition technique developed by Gigliotti and Pinho [27], Sellitto et 82 

al. [28,29] for a non-matched mesh coupling techniques, Ledentsov et al. [30] for applications 83 

of sheet metal forming simulation, Krueger et al.[31–34] in studying composite structures with 84 

delaminations, Cho and Kim [35] in investigating bifurcation buckling behaviour of 85 

delaminated composites, and Davila and Johnson [36] in predicting compressive strength of 86 

dropped-ply laminates. Both computational efficiency and accurate prediction were 87 

demonstrated by these studies. Few of the studies in the literature have systematically 88 

investigated the effectiveness of global-local modelling approaches for low-velocity impact 89 

with fully solid (i.e. accurate but computational heavy) models, combined with experiment 90 

results as the structural dimensions and complexity increases.  91 

A high-fidelity numerical modelling strategy, first developed and validated in a previous study 92 

on quasi-static indentation [14], is here applied to the case of low-velocity impact. To evaluate 93 

the scalability of such modelling techniques for various sizes and boundary conditions of 94 

composite structures, impact tests were performed on laminates with two in-plane sizes (i.e. 95 

the standard ASTM-D7136 size [26] and a scaled up version of this test). In order to model the 96 

larger scale a mesh coupling technique is introduced to combine the accuracy of the solid based 97 

high fidelity models, with the structural and computational efficiency of shell elements. This 98 

modelling technique was then further applied to a stringer stiffened skin panel as a full 99 

structural application example.  100 

 101 
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2. Specimen Preparation and Experiments 102 

Low velocity impact (LVI) tests were designed and then carried out using an Instron Dynatup 103 

9250 HV drop-weight impact tower. During impact testing, the impact force and displacement 104 

were measured by a single accelerometer inside the tup, and the measured data is automatically 105 

processed by a 4 kHz filter of the console software to reduce the noise and oscillations. All 106 

laminates tested in this work were manufactured from Hexcel’s IM7/8552 unidirectional 107 

carbon fibre pre-preg sheet and fabricated by hand lay-up and autoclave. Two laminate stacking 108 

sequences were used; single-ply laminates with a [45
o
/0

o
/90

o
/−45

o
]4S layup and blocked-ply 109 

laminates with a [45
o
2/0

o
2/90

o
2/−45

o
2]2S layup. These are designated as Sublaminate-scaled (Ss) 110 

and Ply-blocked scaled (Ps) laminates, respectively. Both types of laminates have a nominal 111 

thickness of ~ 4 mm.  112 

The specimen geometry was based on the ASTM D7136 standard [26]. Baseline specimens 113 

that exactly followed the standard were cut to 100 mm x 150 mm for both Ss and Ps laminates 114 

and then submitted to low-velocity impact test, with various impact energies. Large-scale (Ls) 115 

specimens, using only the Ps stacking sequence, were cut to 200 mm x 300 mm and tested at 116 

various impact energies and impact locations. To accommodate the Ls laminate in the standard 117 

impact testing equipment, a new supporting structure was designed and manufactured. The 118 

opening dimensions of the larger supporting window were directly scaled up, giving an opening 119 

of 250 mm x 150 mm, based on double the standard opening (i.e. 125 mm x 75 mm), however 120 

the impactor with diameter of 16 mm was used for both test conditions. The testing 121 

configurations are listed in Table 1, and Figure 1 shows the standard and large supporting 122 

windows.  123 

In order to be consistent with the previous quasi-static indentation study [14], the impact 124 

energies used were controlled to only result in matrix cracks and delaminations, without the 125 



6 

 

occurrence of fibre breakage and perforation. For each post-impact laminate, the projected 126 

delamination area was inspected by ultrasonic C-scanning. In addition, X-ray Computed 127 

Tomography (CT) scanning was also performed on selected standard specimens.  128 

Table 1: Configurations of the standard (Ps and Ss cases) and large laminates tested and size of 129 
the support openings. 130 

 131 

  
(a) (b) 

Figure 1: (a) the supporting window for standard size specimen with opening 125 mm x 75 mm. 132 
(b)the large supporting accommodating large size laminate impact with an opening 250 mm x 150 133 

mm. 134 

To investigate the effect of the impact location, and hence boundary conditions, on damage 135 

and structural response, central and offset impact tests were conducted on the Ls specimens. 136 

Figure 2 illustrates the configurations of central impact on the standard plates (i.e. the Ps and 137 

Ss cases) and the two offset impacts on the Ls plate. Three impact tests were performed on 138 

each Ls plate, one at each location, denoted as the central impact (C-Imp), longitudinal 139 

direction offset impact (L-Imp) and the width direction offset impact (W-Imp). The impact 140 

energies used were 12 J, 5 J and 12 J, respectively. The effect of boundary conditions on 141 

damage extent was expected to be significant for the W-Imp case, so the lowest impact energy 142 

Specimen 

Specimen  

size 

(mm) 

Supporting 

window 

opening (mm) 

Stacking 

sequence 

Effective ply 

thickness 

(mm) 

Number 

of 

plies 

S
ta

n
d

ar
d

 

p
la

te
s 

Ply-blocked 

scaling (Ps) 
150 x 100 125 x 75 

[45
o

2/0
o

2/90
o

2/−45
o
2]2S 0.25 16 

Sublaminate 

scaling (Ss) 
[45

o
/0

o
/90

o
/−45

o
]4S 0.125 32 

Large scale laminate 

(Ls) 
300 x 200 250 x 150 [45

o
2/0

o
2/90

o
2/−45

o
2]2S 0.25 16 
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was used for this case (i.e. 5 J) to avoid interaction between delamination and the edges of the 143 

plate. Impact locations in Ls plates were designed to be sufficiently far apart so as to avoid 144 

interactions between secondary and pre-existing impact damage. 145 

 

(a) (b) 

Figure 2: Schematic of the standard (a) laminate size with underlying supporting window opening 146 
and the large laminate size (b) with underlying support opening and impact locations (central, 147 

longitudinal offset and width direction offset impacts). 148 

 149 

3. Modelling Techniques 150 

3.1 High-fidelity Solid (3D) Model 151 

The high-fidelity 3D models used in this study were similar to those developed in the previous 152 

quasi-static indentation study [14], in that the same composite laminate model and boundary 153 

conditions were used, but here the load was applied dynamically. FE models were pre-154 

processed using the Oasys-Primer software and then solved by nonlinear explicit FE software 155 

LS-Dyna.  156 

Plies of the laminate model were modelled with single integration point brick elements (Type 157 

1 in LS-Dyna). 6 strips of intralaminar cohesive elements (Type 19 in LS-Dyna) were inserted 158 

vertically in each ply, parallel to the fibre orientation, such that they were evenly spaced under 159 

the impactor, at the centre of the plate. These strips of intralaminar cohesive elements simulate 160 

major matrix cracks damage during impact. The spacing of strips of intralaminar cohesive 161 
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elements was determined from CT-scanning performed in [14]. In addition, layers of 162 

interlaminar cohesive elements were positioned between plies with different fibre orientations 163 

to predict delamination damage. According to the calculation presented in Harper and Hallett 164 

[37] for accurate interface element performance, finer meshes were required in the interlaminar 165 

cohesive layers than in the plies. Hence, segment based tied contact was defined between 166 

surfaces of adjacent plies and the corresponding layers of interlaminar interface elements 167 

between them. The interface element failure algorithm used a quadratic damage initiation 168 

criterion and an energy-based propagation criterion, with mixed mode failure being a linear 169 

combination of mode I and II. A complete description of the modelling techniques and details 170 

of how cohesive elements were placed at inter- and intralaminar locations is given in [14]. The 171 

material properties for ply and interface properties used in the model are listed in Table 2. It is 172 

noted that an identical set of interface properties were used for both intra- and interlaminar 173 

cohesive elements in all of the models in this study. This was deemed appropriate as a number 174 

of experimental studies have shown comparable values for intra- and interlaminar properties 175 

[38,39]. The enhancement factor ( ) essentially serves as an internal friction coefficient that 176 

allows the increase of the Mode II interfacial strength and critical energy release rate due to 177 

through thickness compression stress and controls the critical load corresponding to the 178 

delamination initiation. The value used in this dynamic impact simulation is empirically 179 

derived here and higher than that used in the static indentation simulations in [14] because of 180 

the strain-rate sensitivity of the friction coefficient [40]. 181 

The impactor and supporting window were modelled as rigid bodies. The weight and size of 182 

impactor model was configured as to be the same as that used in the experiment (i.e. 6.35 kg 183 

weight and 16 mm diameter). The impactor was placed 0.1 mm above the top surface of the 184 

laminate model and given an initial velocity calculated from the pre-defined impact energies 185 

for the different cases. During the impact simulation, the impactor engages with the plate and 186 
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bounces back. The simulation was terminated after the impactor returned to its original position. 187 

The model’s impact force was derived from the contact force between impactor surface and 188 

the top surface of the laminate. The four rubber-tipped clamps were designed to stop the plate 189 

moving upwards after impact in the experiment and located inside the boundary of the 190 

supporting edges [41]. They should not affect the impact response and damage incurred, so 191 

were not included in the simulations. 192 

Table 2: Material properties of IM7/8552 [42,43] (The interface properties listed were used for 193 
inter- and intralaminar interface elements) 194 

Ply properties Interface Properties 

3

5

332211

231312

2312

332211

/6.1

1030

98.317.5

436.03.0

4.11161

cmg

GPaGGPaGG

GPaEEGPaE



















 

3

**

/0.1

58.01

/8.0/2.0

9060

100

cmg

mmNGmmNG

MPaMPa

GPaEE

IICIC

III

III

















 

 195 

3.2 Solid/shell Modelling Technique 196 

Laminated composites subject to low-velocity impact can be divided into two regions; the first 197 

is the highly nonlinear delaminated region and the second is the linear undamaged region 198 

[44,45]. The undamaged region plays a key role for load transfer between the boundary and 199 

impact site as well as establishing the panel’s global response, together with the damaged 200 

region. During large-mass low-velocity impact, the geometric (specimen length and width) and 201 

boundary (plate edges and boundary conditions) have significant effects on the impact response, 202 

and have to be included in the model. This is different from the high-velocity impacts where 203 

the response is highly localised, and it may not even be necessary to take the undamaged region 204 

into account for virtual testing [46]. The solid/shell coupling approach developed in this work 205 

is thus appropriate for any quasi-static and low velocity loading condition, except those where 206 

the damage location is not known prior to the simulation.  207 
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Figure 3: (a), (b) and (c) Solid/shell model in a global/local approach for impact modelling; (d) 208 

modelling strategies for integrating high-fidelity solid and shell part into Solid/shell impact 209 
model. 210 

Figure 3a, b and c illustrate the global-local approach for low-velocity impact modelling. With 211 

the knowledge of the approximate underlying damage size, the laminate can be divided into a 212 

potential damage region and an undamaged region, which behaves elastically during the impact 213 

event (see Figure 3b). Before delamination initiation, the response of the whole laminate is 214 

linear elastic, because the minor matrix cracking and indentation that occurs does not cause 215 

significant global stiffness degradation. After the critical load is reached, multiple 216 

delaminations grow and lead to the laminate forming multiple sublaminates. These thin 217 

sublaminates exhibit strong nonlinearity under transverse loading, and therefore there is a high 218 

geometric nonlinearity at the delaminated region (see Figure 3c). This phenomenon has been 219 

widely used for obtaining analytical solutions for impact modelling [44,47]. It can be seen that 220 

if the size of the damageable region is carefully determined, the only role of the undamaged 221 
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region is in transferring the loads and displacements to the damageable region from the 222 

boundaries. Shear deformations, through-thickness stresses and membrane deformations have 223 

very little effect on the response of the undamaged region that is far away from the transverse 224 

loading. This approach conforms to the simplest thin plate theory and in turn the shell theory, 225 

as deflections are small.  With an efficient coupling mechanism, a single layer of shell elements 226 

with equivalent material properties located at the mid-plane of the undamaged region, away 227 

from transverse loading and the nonlinear response region, is therefore sufficient to represent 228 

the elastic response of the undamaged region of the laminate under transverse loading. In order 229 

to model different damage modes at different locations, 3D solid elements are necessary at the 230 

potential damage region. 231 

When coupling solid and shell elements in one model, it is of importance to ensure that 232 

rotational degrees of freedom (DoF) from nodes of the shell elements are fully transferred to 233 

the translational DoF of the connecting nodes of the solid elements. The solid elements used 234 

for plies are reduced integration 8-node hexahedron element with a single integration point at 235 

the centre of the element with 3 translational DoF at each integration point. For normal shell 236 

elements, each integration point has translational and rotational DoF. Therefore, a sufficient 237 

number of solid elements in the through thickness direction should be considered in order to 238 

transfer rotations to the connecting shell elements. The solid/shell coupling is here 239 

implemented using nodal rigid body constraints. Each node on the connecting shell element is 240 

rigidly connected to a line of nodes through the thickness on the connecting solid elements at 241 

the same in-plane location. 242 

Based on the aforementioned concept, the solid/shell model was developed and is shown in 243 

Figure 3d. The full description and characteristics of the damageable 3D solid part in the region 244 

of interest were presented in the previous section. The surrounding shell part representing the 245 

undamaged region was modelled by computationally efficient shell elements (Type 2 in LS-246 
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Dyna). Each ply was defined as an integration point in the shell normal direction. In order to 247 

connect the fine mesh region of the fully damageable 3D solid part in the local domain with 248 

the coarse mesh region of the shell layer at the global domain, a ring-shaped mesh transition 249 

part consisting of 8 solid elements in the through thickness direction was introduced between 250 

the fine mesh solid part and the coarse shell part. A surface-based tied contact was defined 251 

between the inner surface of the mesh transition part and the outer surface of the damageable 252 

solid part. The transition part had homogenised material properties, equivalent to the multilayer 253 

solid part. Nodes at the inner edge of the shell part were merged with the nodes at the mid-254 

plane of the transition part. Each nodal rigid body was defined by a line of nodes (see ‘Node 255 

set rigid body’ in Figure 3d) in the through-thickness direction at the inner edge of the shell 256 

part (outer edge of the solid transition part), which allows displacement and rotation transfer 257 

between local and global domains. However, the line of nodes are rigidly connected, which 258 

means any relative displacement between nodes in each nodal rigid body definition is 259 

prohibited. Thus, the nodal rigid body complies with the thin plate theory in that the line 260 

remains normal to the mid-plane before and after a small deflection. The transverse 261 

displacements and rotations of the local solid domain due to impact loading can be effectively 262 

transferred to the global shell layer that couples to the mid-plane of the local solid plate. The 263 

diameter of the fully damaged solid part (see Figure 3d) was set to 60 mm which is determined 264 

by the size of the maximum damage area measured in the ASTM standard impact tests.  265 

To develop efficient and robust numerical models that can represent global behaviour and 266 

predicting failure of large-scale composite structures under impact, there is a need for a 267 

systematic approach. Error! Reference source not found. highlights the work flow used in 268 

this study. The 3D high fidelity 3D models were first validated against low-velocity impact 269 

experimental results. Standard size ASTM virtual impact tests using the solid/shell modelling 270 

technique were then performed, and the numerical results were thoroughly compared with the 271 



13 

 

previous baseline fully solid model, to ensure a high level of similarity in both global response 272 

and damage prediction. Once the modelling technique at the standard coupon scale was 273 

validated, the numerical study was moved to the large-scale plate impact modelling to simulate 274 

the structural behaviour and associated damage. The numerical results of the large-scale plate 275 

models were validated against experimental observations obtained in this study, after which 276 

the capability of the modelling approach was further explored, as a case study, by applying it 277 

to a large stringer stiffened panel. The modelling results for this structural level component 278 

were compared with the experiment results available in the literature [10].    279 

 280 
Figure 4: Methodology of numerical modelling from small coupon level to structural component. 281 

4. Experimental Results and Discussions 282 

4.1 Standard Test 283 

Figure 5 shows the impact force history plots of the Ps and Ss cases at the threshold energy 284 

(i.e. ETHLD). The load drops reflect the delamination initiation, followed by unstable 285 

propagation. The threshold impact energy was determined by trial impact tests. Plates impacted 286 

with energies lower than the threshold values were confirmed by smooth half sine wave force 287 

histories and no detectable damage in the C-scans [48]. The threshold energies for the Ps and 288 

Ss laminates are found to be 6 J and 10 J, respectively, which means that the Ss laminates are 289 

more impact resistant than the Ps laminates.  290 

Figure 6 shows force history plots of the Ps and Ss laminates under increasing impact energies. 291 

Both figures confirm the obvious experimental scatter in the critical load levels between the 292 
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different energy tests, and the figures also highlight the trend of the critical load (FC) in the Ss 293 

case being higher than the Ps case, which was also observed in the static indentation tests [14]. 294 

In the 16 J Ps case it is noticeable that there is a second load drop on the curve. This corresponds 295 

to a second unstable delamination propagation that is observed in the post-impact c-scan results.  296 

  

(a) (b) 

Figure 5: Force history plots for (a) Ps and (b) Ss specimens under low-velocity impact with 297 
threshold impact energy. (S01 denotes specimen number). 298 

  
(a) (b) 

Figure 6: Representative force history plots for; (a) Ps configuration; (b) Ss configuration.  299 
The averaged critical load (FC(avg.)) is marked. 300 

 301 
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 302 

 
(a) 

 
(b) 

Figure 7: (a) Collection of C-scan images of the Ss and Ps laminate with various impact energies; 303 
(b) Delamination diameter comparison between the Ps and Ss case against impact energy. (ETHLD 304 

denotes the threshold impact energy) 305 

 306 

Figure 7a shows a comparison of delamination area measured by ultrasonic C-scan in selected 307 

Ps and Ss specimens with different impact energies, and Figure 7b plots the relationship 308 

between impact energies and the projected delamination areas in each case. It can be seen that 309 

the projected delamination shapes for both laminate types are repeatable and similar to each 310 

other for all impact events, except for the case of the Ps specimen under 16 J impact. For the 311 

Ps specimen impacts under 16 J or higher, an unstable increase of the delamination area is 312 

observed (i.e. the second significant load drop in the force history plot in Figure 6a). In this 313 

case, there is significant and unstable delamination growth at some interface(s), which leads to 314 
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an asymmetric overall projected delamination shape. For Ps laminates subjected to 20 J impact, 315 

the relationship between delamination size and impact energy tends to level off.  In contrast, 316 

the Ss specimens under the same impact energies (16 J and 20 J) still retain an overall circular 317 

delamination area. The stable growth in projected delamination area observed for the Ss 318 

specimens once again confirms the fact that Ss laminates are more impact resistant compared 319 

to the Ps case. 320 

 321 
Figure 8: Comparison of detailed individual delamination area in 10 J post-impact Ps and Ss 322 
laminates. The delamination area is normalised by the maximum delamination area found in 323 

available interfaces. 324 

Selected post-impact Ps and Ss specimens that were impacted at 10 J were submitted to X-ray 325 

CT-scanning for detailed damage assessment. The through-thickness information on individual 326 

delamination areas of these specimens are compared in Figure 8, normalised by the maximum 327 

delamination area found in each case. It can be seen that larger delaminations are found at 90o 328 

interfaces (i.e. the angle difference of neighbouring plies), rather than 45o interfaces, for both 329 

configurations. The maximum delaminations in both cases occur at 90o interfaces close to 330 

bottom surface and are located at a roughly similar through-thickness location, whilst the 331 

minimum delaminations are located at the top and bottom interfaces.  332 
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(a) 

 

 
(b) 

Figure 9: Comparisons of force-displacement plot and energy plot generated from the 

drop-weight impact tower between Ps and Ss specimen under (a) 10 J and (b) 14 J 

impact energy. 

 

Ps and Ss laminates under 10 J and 14 J impact energies (see Figure 7a and b) generate similar 333 

projected delamination areas. The Ss laminate has nearly twice the number of available 334 

interfaces for delamination compared to Ps due to the single ply stacking sequence; hence, the 335 

total delamination area of the Ss specimen was expected to be relatively larger than that in the 336 

Ps laminate for a given impact energy. Figure 9 shows comparisons of force-displacement plots 337 

and energy absorption of the Ps and Ss cases under 10 J and 14 J impacts. As the figure shows, 338 

despite the total delamination area of the Ss laminates being larger than the Ps case for given 339 
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impact energies, the difference in total delamination is not directly reflected by a difference in 340 

absorbed energy in these plots. However, Figure 9 and the rest of the force-displacement plots 341 

indicate slightly higher amplitude of force oscillations after the load drop in Ss cases compared 342 

to the Ps cases. The higher number of delaminations in the Ss case may lead to an increase in 343 

the vibration of the laminate during change in stiffness; whereas the Ps case has fewer 344 

interfaces, exhibiting a more progressive and smooth change of stiffness than the Ss case. The 345 

same behaviours were also reported by González et al [49], where the authors observed a clear 346 

difference in the amplitude of the force oscillation after the load drop in three sublaminate 347 

scaled laminates under the same impact test conditions. A clear trend of increasing 348 

delamination area in three laminate clustering configurations (single- double- and quadruple-349 

blocked ply laminates) under given impact energies was experimentally observed and reported 350 

in [50–54]. Here, this trend is not so obvious until the impact energy is higher than 16 J.  351 

 352 

4.2 Large Plate Test 353 

One of the key objectives of this study was to characterise the impact response of composite 354 

plates as the size increases and impact location changes. The offset impact tests allow one to 355 

investigate the correlation of impact damage with differences in boundary conditions under a 356 

given impact energy. The results from this section were also used to evaluate the solid/shell 357 

numerical modelling techniques for larger structures.  358 

Figure 10a, b and c shows the force/energy histories, force-displacement plots and C-scan 359 

image of delamination for central (C-Imp), longitudinal offset impact (L-Imp) and width offset 360 

impact (W-Imp) events, respectively. The impact force history and duration vary as the impact 361 

location and boundary condition change, although it is notable that the force at first load drop 362 

remains fairly consistent at about 5 kN, with similar delamination areas. There is also a slight 363 
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change in shape of the delamination in the W-Imp case to oval instead of circular, as shown in 364 

Figure 10, due to changes in the boundary conditions. The stiffness variation can be explained 365 

by the boundary conditions and the distance between impact location and the nearest support 366 

window edge. The W-Imp case (see Figure 2b) has the stiffest response and shortest impact 367 

duration. For the same reason, there is also less force oscillations (see energy plot in Figure 368 

10c). In contrast, the C-Imp case exhibits force oscillations at the very beginning of the impact.  369 

Despite the changes in boundary conditions hence the stiffness of the response, experimental 370 

results show that first delamination occurs at an approximately constant force and gives largely 371 

the same area in all cases. These observations are in line with the statements from Davies and 372 

Zhang [55] who identified the critical force is the most important parameter, driven by material 373 

property and being independent of size and shape of the laminates.  374 

 
(a) 
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(b) 

 
(c) 

Figure 10: Force and energy histories and force-displacement plots for; (a) central impact under 375 
12 J energy, (b) longitudinal offset impact under 12 J energy and (c) width offset impact under 5 J 376 

energy. The dashed line at the LHS of each plot indicates the energy history. 377 

 378 

5. Numerical Model and Validation 379 

5.1 3D Solid Model of ASTM Standard Impact 380 

In this section, the numerical results of the fully solid model are compared and validated against 381 

the experimental observations, including force history, energy absorption and damage 382 

assessment from ultrasonic C-scanning and CT-scanning. 383 
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(a)  (b) 

 
(c) (d) 

Figure 11: Comparison of force histories in low-velocity impacts (LVI) between experimental and 384 
finite element results (a) Ps laminate under 6 J impact; (b) Ps laminate under 10 J impact; (c) Ss 385 

laminate under 10 J impact; (d) Ss laminate under 16 J impact.  386 

Figure 11 compares the force histories of numerical and experimental results for Ps and Ss 387 

laminates. Two impact simulations were performed for each Ps and Ss case; one at the 388 

delamination threshold energy (i.e. 6 J for the Ps case and 10 J for the Ss case) and the other at 389 

a higher energy (i.e. 10 J for the Ps case and 16 J for the Ss case). The figures show that the 390 

critical load levels predicted by the 3D solid model are consistent with the experimental results 391 

for each laminate configuration and are insensitive to the impact energy levels; the difference 392 

between the predicted and experimental results on critical load are less than 7% for both 393 

laminate configurations. The numerical models also capture the magnitude of the load drop 394 

reasonably well. Each force oscillation associated with the interaction between plate vibrations 395 
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and delamination propagation is well captured by the impact models at the correct frequency, 396 

but the magnitude and duration is slight larger in the simulations compared to the test results, 397 

since no damping was used in the model. The higher critical load in the Ss laminate (as 398 

compared to Ps), is correctly captured and can be attributed to the same sublaminate-scaling 399 

effect that was described in [14]. 400 

The impact durations for all cases are well captured with a difference of less than 5%.  The 401 

overall peak impact force (after first load-drop) is related to the residual flexural stiffness of 402 

the delaminated laminate, as well as the residual kinetic energy of the impactor. The peak force 403 

predictions are consistently higher than the experimental results for both cases in both impact 404 

conditions. This is likely to be because not every single damage event and energy dissipation 405 

mechanism is captured in model. If one compares the energy absorbed in these low velocity 406 

impacts with the quasi-static indentations from [21] using the area under the force displacement 407 

curve (see Table 3), it can be seen that, for a similar delamination size, the quasi-static case 408 

absorbed energy is much lower. The predicted absorbed energy from the low velocity impact 409 

models is much closer to the quasi-static case in this comparison, thus indicating that a 410 

significant amount of impactor kinetic energy loss can attributed to energy dissipation 411 

mechanisms other that dissipated in creating matrix cracks and delaminations, since in all three 412 

cases the damage levels are very similar. The prediction of the energy loss during the impact 413 

testing was not the primary concern of this work and this lack of correlation is not seen as 414 

significant. 415 

 416 

 417 

 418 

 419 
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Table 3: Energy absorption comparison between FE and experimental results. 420 

Laminate 

configuration 

Impact 

energy 

(J) 

Eab 

Exp. 

(J) 

Eab of static indentation 

tests with the similar 

delamination size (J) [14] 

Eab Num. 

Impact (J) 

Blocked-ply 

laminate (Ps) 

6 4.96 2.98 2.34 

10 7.95 3.0 2.95 

Sublaminate 

scaling laminate 

(Ss) 

10 8.20 3.11 3.36 

14 8.77 4.1 3.92 

 421 

  
(a) (b) 

Figure 12: Comparison between numerical and experimental results for the Ps and Ss cases; (a) 422 
projected delamination area for 6 J, 10 J and 14 J low-velocity impacts (LVI); (b) total 423 

delamination area for 10 J impact.  424 

The projected and total delamination areas of the Ps and Ss laminates after impact were 425 

measured by C-scan and X-ray CT scan respectively and compared with FE model predictions 426 

in Figure 12. In general, the predicted delamination areas are slightly smaller than the 427 

experimental results. However, the underestimations are within 10%. This also reflects in the 428 

overestimation of the predicted peak force, indicating less loss of compliance, which would be 429 

expected to improve if the predicted delamination area was closer to the experimental result. 430 

The projected delamination area is influenced by the large individual delaminations at the lower 431 

90
o
 interfaces (see Figure 8) which overshadow smaller delaminations at 45

o
 interfaces. When 432 

comparing the trend of delamination area growth from 6J to 10J for the Ps case, and 10 J to 14 433 

J for the Ss case, the high-fidelity FE models capture the development of delamination very 434 

well. Figure 12b compares the total delamination area derived experimentally from CT-scans 435 
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(also see Figure 13) and numerically from the Ps and Ss cases under 10 J impacts. The predicted 436 

total delamination area correlates with experimental results even better than the projected 437 

delamination area.  438 

 439 
Figure 13: Comparison of projected delamination area between FE models and CT-scan images 440 
for Ps and Ss specimen under 10 J impact. Note that the interface is position from top (impact 441 

surface) to down (back surface).  442 

Two impacted specimens, the Ps and Ss laminates under 10 J impacts were submitted to X-ray 443 

CT-scanning to provide the full detail of delamination damage and to further validate the 444 

predictive capability of the numerical models. From the comparison in Figure 13, it can be seen 445 

that the models capture the overall delamination size very well, and also the large delaminations 446 

at 90
o
 interfaces (in cyan) and some of the delaminations at 45

o interfaces (in blue and magenta) 447 

at the lower half of the laminate.  448 
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 449 
Figure 14: Individual delamination comparison between CT-scan images and FE predictions of 450 

high-fidelity 3D solid model at each interface in the case of Ply-block scaling (Ps) laminate under 451 
10 J impact. 452 

Figure 14 compares the individual delaminations at the different interfaces between the 3D 453 

solid model and post-processed CT-images for the Ps laminates under a 10 J impact. The 454 

individual delamination shapes, sizes, and delamination free zone captured by the FE model 455 

are in good agreement with the CT-scan images, especially for the ‘peanut’ shaped 456 

delaminations on the 90o interfaces. Some of the delamination shapes, such as the 45o interfaces, 457 

are somewhat larger compared to experimental results, and some of the delamination 458 

predictions near the delamination free zone (centre of the plate) are slightly underestimated. 459 
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Once again, this could be caused by the experimental scatter of the low-velocity impact testing 460 

and limitations of the current modelling approach. However, these small deviations do not 461 

significantly influence the overall laminate response and energy dissipation. The individual 462 

delamination predictions in the dynamic case are very similar to the predictions from the static 463 

loading condition that was presented in [14], which further proves the robustness of the high-464 

fidelity 3D solid modelling approach in both static and dynamic conditions. 465 

5.2 Solid/shell Model Validation 466 

5.2.1 ASTM Standard Impact 467 

To validate the solid/shell model and to confirm if solid/shell modelling can be a direct 468 

replacement for 3D solid models, the ASTM standard size test was modelled as described in 469 

section 3.2 and compared to results from the high-fidelity fully solid model. 470 

  
(a) (b) 

Figure 15: Comparison of ASTM standard experimental and numerical results of the Ps case; (a) 471 
under 6 J impact and (b) under 10 J impact. 472 

Figure 15 shows comparisons of force histories between experimental and two numerical 473 

results of the Ps case under two impact energies. Generally, the solid/shell simulations agree 474 

with both the fully solid and experimental results. The force drop attributed to the development 475 

of damage and the interaction with the flexural wave during impact are captured. In addition, 476 

the predicted critical load and maximum impact load are similar to experimental results. 477 

However, it is apparent that the solid/shell models slightly overestimate the post load-drop 478 
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force history, as was the case for the fully solid model. This is because only localised matrix 479 

cracks and delaminations are modelled for both cases, overestimating the residual stiffness of 480 

the plate after initial damage.  When looking at the time required to reach maximum force and 481 

the impact completion, the solid/shell models is less responsive than the fully 3D model. This 482 

could be attributed to minor coupling effects between solid and shell parts. In addition, due to 483 

the additional degrees of freedom in the shell part and the coupling effects, the force oscillations 484 

after the damage initiation in Solid/shell models are more severe compared to the 3D solid 485 

models.  486 

 487 

Figure 16: Comparison of interlaminar stressess level of the mid-plane ply in Solid/shell model 488 

and fully solid high-fidelity models; (a) 
YZ  and (b) XZ . 489 

It has been suggested from numerical [14] and analytical [56] modelling that the delamination 490 

causing the critical load drop starts at the interface closest to the mid-plane, where the 491 

interlaminar shear stresses are highest [55]. The through thickness shear stresses (𝜏𝑋𝑍 & 𝜏𝑌𝑍) 492 

in the mid-plane ply are thus the governing parameters for the correct prediction of 493 
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delamination damage. Figure 16 illustrates the contour plots of the through thickness shear 494 

stress components of the mid-plane ply in the solid/shell and fully solid high-fidelity models 495 

before damage initiation (the peak values exceed the interface shear strengths in table 2 due to 496 

the compression enhancement effect). There is some interaction between the stress field and 497 

the solid-shell transition, which is expected due to the inclusion of the homogenised solid 498 

transition part. In general, it is clear that the stress levels of solid/shell model at mid-plane 499 

correlate very well with the full solid high-fidelity model in the critical region under the 500 

impactor. The stress levels in regions away from centre will have little effect on damage 501 

predictions due to their low magnitude.  502 

There is also good agreement in the global damage prediction, as shown in Figure 17.  This 503 

figure compares the projected delamination area measured in experiment (i.e. CT-scan images); 504 

the fully solid model and solid/shell model, all at 10 J impact for the Ps laminate. The projected 505 

delamination shape, size and distribution in the fully solid and solid/shell model are in close 506 

agreement to each other and similar to the experimental observations. The delamination area is 507 

slightly underestimated in the solid/shell model, which could be due to the number of DoFs in 508 

shell elements leading to a more flexible response compared to the equivalent 3D solid. This 509 

can also explain the smaller delamination-free zone in the solid/shell model compared to 3D 510 

model. 511 
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 512 

Figure 17: Comparison of detailed delamination between CT-scan, fully 3D high-fidelity and 513 
Solid/shell models under 10J impact. 514 

The main advantage of the solid/shell model is the higher computational efficiency compared 515 

to the 3D solid model. Factors like number of elements (integration points), contact 516 

formulations, dynamic effects and the implementation of user sub-routines can dramatically 517 

increase the computational cost of nonlinear explicit FE analyses. Cohesive elements typically 518 

require a fine mesh, with at least three elements in the process zone. According to the equations 519 

from [37], a cohesive length of ~ 0.2 mm is required for the current material system. Replacing 520 

part of the solid element high-fidelity mesh with a single layer of shell elements in the 521 

undamaged region, effectively reduces the number of elements. To evaluate the computational 522 

cost, high-fidelity 3D and solid/shell models were computed through the University of Bristol’s 523 

Linux HPC cluster (2 high-memory nodes, with 32 CPUs in total). The completion time and 524 

memory required for the solid/shell model in the ASTM standard impact virtual testing were 525 

reduced by 50% and 37% respectively, compared to the 3D solid model. Table 4 provides a 526 

summary of the total number of elements used in each model developed in this study. It can be 527 

seen that the number of solid and cohesive elements of 3D models are significantly reduced 528 

and replaced by reasonable number of shell elements in solid/shell model. If the size of the 529 

damageable region stays constant, then the larger the part, the more efficient this method 530 

becomes.  531 

 532 
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Table 4 Summary of total number of elements used in each model developed in this study. 533 
Elements with rigid body property are excluded in here. 534 

No. of 

element 

High-fidelity 3D models 
Solid/shell 

models 
Large plate impacts 

Ps Ss Ps Central L-Imp W-Imp 

Solid 182,216 290,480 195,178 195,178 195,178 195,178 

Cohesive 1,356,796 2,907,624 764,696 764,696 764,696 764,696 

Shell N/A N/A 2,444 7809 8784 8970 

 535 

5.2.2 Large Scale Impact 536 

One of the key objectives of this study was to characterise the impact response of composite 537 

plates as the boundary conditions change with increasing structural scale and to capture this 538 

through an efficient modelling technique. The impact tests on the scaled-up ASTM standard 539 

impact test, reported in section 4.2, allow validation of the solid/shell modelling technique for 540 

large flat plates with various impact locations and energies (see Error! Reference source not 541 

found.). 542 

 543 

 
(a) 

 
(b) 

 
(c) 

Figure 18: Solid/shell FE model overview. (a) central impact; (b) longitudinal offset impact (L-544 
Imp); (c) width offset impact (W-Imp). 545 

For modelling of the large-scale (Ls) composite plates using the solid/shell approach, the global 546 

shell part in the ASTM sized models can simply be scaled up to the relevant dimensions. An 547 
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overview of the Ls solid/shell models for the three different impact locations is illustrated in 548 

Figure 18.  Because the maximum impact energy used in the Ls impact tests is lower than that 549 

used in the benchmark tests, the maximum delamination area induced in the Ls tests was 550 

expected to be less than the area of the 3D solid part in the solid/shell models. Impact conditions 551 

and parameters used in the virtual environment are the same as that in actual Ls impact tests. 552 

The modelling techniques and material models used for the Ls impact simulations were the 553 

same as those used in the standard ASTM solid/shell model (see Table 2).   554 

Figure 19a, b and c show the comparisons of modelling and experimental force history plots 555 

for the C-Imp, L-Imp and W-Imp cases, respectively. It can be seen that the critical load, impact 556 

duration and impact force variations are all well captured by the solid/shell model for each 557 

configuration. Similar to the trend shown in Figure 15 for the ASTM standard case, the 558 

solid/shell models seem less responsive compared to the experiments and have longer impact 559 

durations. Again, this could be due to the coupling effects at the boundary between solid and 560 

shell parts. However, each force oscillation and the general responses seem to be better 561 

captured than for the ASTM standard case. This implies that there is less interaction between 562 

the solid-shell element interface and global response as the relative sizes of the two regions 563 

decreases. Figure 20 shows a comparison of delamination areas between prediction and C-scan 564 

images for all cases. The overall damage predictions of the solid/shell Ls models correlate with 565 

experimental results well. The predicted damage in the central and longitudinal offset impact 566 

cases are slightly underestimated. In the width offset impact case there is a better damage 567 

prediction.  568 
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    (a)         (b) 

 
         (c) 

Figure 19: Comparison of force histories of experimental and numerical results in  569 
(a) central (C-Imp) 12 J impact test; (b) logitudinal offset (W-Imp) 12 J impact test;  570 

(c) width offset (W-Imp) 5 J impact test. 571 

 572 

 573 

 574 

Figure 20: Comparison of projected delamination area observed by C-scan and obtained by 575 
numerical modelling. 576 

 577 
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5.2.3 Complex Structure Impact 578 

To finally show the extent of modelling capability that can be achieved with the solid/shell 579 

technique, it was applied to a large and complex composite stringer stiffened panel. The 580 

geometry of the structure and material properties were taken from a previous study presented 581 

in the literature, which provided experimental results and numerical model validation [10,57]. 582 

Here, similar to the standard and large-scale laminate models, the potential damage region was 583 

modelled by fully damageable solid part, with a single layer of shell elements elsewhere in the 584 

panel, to represent the global behaviour. The geometry and lay-up of the stiffened panel are 585 

illustrated in Figure 21. Each stringer was made from three laminates, having two ‘C’ sections 586 

placed back-to-back, and the third laminate placed at the top of the two ‘C’ sections as a stringer 587 

cap. The stringer is modelled by three separate layers of shell elements, each representing one 588 

of the stringer laminates, connected via coincident nodes. The material used was HTA/6176C, 589 

and the basic mechanical properties of the laminae and interfaces were taken from [57,58]. 590 

Figure 21 also provides an overview of the FE model. The impact event occurs in the middle 591 

of the skin bay with 15 J impact energy. The nodes at the ends of the panel were fully fixed in 592 

the X direction, to simulate the clamped boundary condition. Here the modelling of debonding 593 

between skin and stringers was excluded from this study, but could easily be added via 594 

additional cohesive elements at selected locations. The mesh size increased from 0.2 mm at the 595 

damageable region to 4.75 mm at the undamaged skin and all stringers. All nodes in the 596 

undamaged region, including the undamaged skin and all stringers, could thus be merged 597 

together without any form of tied contact.  598 
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 599 

Figure 21: Overview of FE model of the stiffened panel with solid/shell part embedded at the 600 
impact location. 601 

 602 

 

 

                (a) (b) 
Figure 22: (a) comparison of force history plot of experimental results [57] and Solid/shell model 603 
results; (b) comparison between c-scan image of delamination damage from [57] and prediction 604 

from Solid/shell model. 605 

Numerical results from the solid/shell model of the stringer stiffened panel were compared to 606 

experimental results from [57]. These comparisons include force history and projected 607 

delamination size. Figure 22 shows the force history plots of the experimental and modelling 608 

results. Similar to the solid/shell models in the previous section, the model appears to be less 609 

responsive then the experimental results. The predicted first significant load drop, indicating 610 

the delamination onset, was 9% higher than the experimental results (i.e. 3809 N in simulation 611 
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and ~ 3500 N in experiment). Because of the steel impactor vibration and its interaction with 612 

geometric features and the flexural wave, the oscillatory behaviour of the impact force in the 613 

experiment was not accurately captured in the solid/shell model. This is because the predicted 614 

force is the contact force and the impactor was modelled with a rigid material, without stress 615 

update. However, most of the local peak impact forces, indicating the structural responses, are 616 

well captured by the model. The prediction of the peak impact force is slightly overestimated 617 

at 5590 N in the model compared to ~ 5200 N in the experiment. This may be because other 618 

damage modes apart from matrix cracking and delamination were not taken into account in the 619 

damage prediction. The bottom ply fibre direction tensile stress predicted in the model at the 620 

moment of maximum deflection slightly exceeded the material strength level (see Table 1 in 621 

[10]), which may explain the slight overestimations in delamination area and peak impact force, 622 

as shown in Figure 22b. However, the observation of fibre failure in the original experimental 623 

results published in [57] was not confirmed.  624 

In general, the correlation between experimental results and modelling results in regards to 625 

global impact behaviour and damage extent was very good. This preliminary case study shows 626 

the potential of the solid/shell approach. It is possible for this approach to be adapted to large 627 

and complex structures whilst giving good damage prediction. The circular high-fidelity solid 628 

part for damage simulation can be easily moved to other locations for a complete impact 629 

damage vulnerability study. In addition, the shell and solid element peripheries (i.e. the 630 

transition part) can conveniently be incorporated within parts of any shape and curvature. The 631 

secondary failure mechanism, that is, the interfacial behaviour between the panel skin and 632 

stringer foot also can be analysed by inserting cohesive elements between susceptible regions.  633 

6. Conclusions 634 

The work presented here has investigated the low-velocity impact damage resistance of scaled 635 

composite laminates, as well as demonstrating the robustness of high-fidelity 3D solid finite 636 
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element modelling in a dynamic impact environment. A clear difference in critical load 637 

between single-ply (Ss) and blocked-ply (Ps) laminates was observed. The higher critical load 638 

in the Ss laminate leads to a higher delamination threshold and delays the delamination 639 

propagation in most of the impact events. The difference in delamination area between the Ss 640 

and Ps cases appeared to be insignificant for the lower impact energies used, until unstable 641 

delamination growth occurs in the Ps case at higher impact energies. These observations are 642 

consistent with a previous study that used equivalent quasi-static indentations. High-fidelity 643 

3D FE models were presented and validated by highly detailed experimental observations. The 644 

structural responses and detailed damage predictions were in a good agreement with 645 

experimental results.  646 

This high quality numerical prediction capability is not however suitable for analysis of low 647 

velocity impact on composites with in-plane scaling, to larger structural dimensions. Such 648 

analyses are necessary to capture the effects of boundary conditions in relation to the impact 649 

locations, to predict the damage threshold and global structural response. This drove the 650 

development of a coupled solid/shell modelling technique. This was adopted to model several 651 

impact events and was systematically validated by low-velocity impact experiments on ASTM 652 

standard plates and larger scale structures. This demonstrated an efficient modelling approach 653 

that not only provides high-fidelity predictive capabilities but also retains modest 654 

computational costs. In addition, from the experimental observations of this paper and the 655 

previous study [14], it can be concluded that static indentation tests can provide a suitable 656 

substitute for low-velocity impact tests for composite laminates, at least within the impact 657 

energy range tested.  658 

In future work the modelling will be extended to include other failure modes, such as fibre 659 

failure, and applied to further cases, such as curved composite structures.  660 
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