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 Scanning the Horizon: challenges and solutions for neuroimaging research. 
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Abstract 

 

Neuroimaging techniques have transformed our ability to probe the neurobiological basis of 

behaviour and are increasingly being applied by the wider neuroscience community. However, 

concerns have recently been raised that the conclusions drawn from some human 

neuroimaging studies are either spurious or not generalizable. Problems such as low statistical 

power, analytical flexibility and lack of direct replication apply to many fields, but perhaps 

particularly to neuroimaging. Here we discuss these problems, outline current and suggested 

best practices, and describe how we think the field should evolve to produce the most 

meaningful answers to neuroscientific questions. 

 

 

Main text 

 

Neuroimaging, particularly using functional magnetic resonance imaging (fMRI), has become 

the primary tool of human neuroscience 1, and recent advances in the acquisition and analysis 

of fMRI data have provided increasingly powerful means to dissect brain function.  The most 

common form of fMRI (known as “blood oxygen level dependent” or BOLD fMRI) measures 

brain activity indirectly through localized changes in blood oxygenation that occur in relation to 

https://paperpile.com/c/BVQBEO/gjzr


synaptic signaling 2.  These signal changes provide the ability to map activation in relation to 

specific mental processes, characterize neural representational spaces 3, and decode or predict 

mental function from brain activity 4,5.  These advances promise to offer important insights into 

the workings of the human brain, but also generate the potential for a “perfect storm” of 

irreproducible results.  In particular, the high dimensionality of fMRI data, relatively low power of 

most fMRI studies, and the great amount of flexibility in data analysis all potentially contribute to 

a high degree of false positive findings.   

 

Recent years have seen intense interest in the degree to which widespread “questionable 

research practices” (QRPs) are responsible for high rates of false findings in the scientific 

literature, particularly within psychology but also more generally6–8.  There is growing interest in 

“meta-research”9, and a corresponding growth in studies investigating factors that contribute to 

poor reproducibility. These factors include study design characteristics which may introduce 

bias, low statistical power, and flexibility in data collection, analysis, and reporting — termed 

“researcher degrees of freedom” by Simmons and colleagues7. There is clearly concern that 

these issues may be undermining the value of science – in the UK, the Academy of Medical 

Sciences recently convened a joint meeting with a number of other funders to explore these 

issues, while in the US the National Institutes of Health has an ongoing initiative to improve 

research reproducibility10. 

 

Perhaps one of the most surprising findings in recent work is the lack of appreciation of the QRP 

problem by researchers.  John and colleagues11 polled psychology researchers to determine the 

rate of QRPs, and asked them to rate the defensibility of a number of QRPs on a scale of 0 

(indefensible) to 2 (defensible).  These researchers gave surprisingly high defensibility ratings to 

such clearly problematic practices as stopping data collection once a desired result is found 

(mean rating = 1.76), reporting unexpected results as having been predicted a priori (mean = 

1.5), and deciding whether to exclude data after looking at the effects of doing so (mean = 

1.61).  These results suggest that there remains a substantial need for raising the awareness of 

QRPs among researchers. 

 

In this article we outline a number of potentially questionable research practices in 

neuroimaging that can lead to increased risk of false or exaggerated results. For each 

problematic research practice, we propose a set of solutions. Most of these are, in principle, 

uncontroversial, but as is evident from the discussion below, it is not always clear whether best 

practices have been followed. Many of these solutions arise from the experience of other fields 

with similar problems (particularly those dealing with similarly large and complex data sets, such 

as genetics; Box 1).  

 

Statistical power 

 

The analyses of Button and colleagues12 provided a wake-up call regarding statistical power in 

neuroscience, particularly by highlighting the point (raised earlier by Ioannidis6) that low power 

not only reduces the likelihood of finding a true result if it exists, but also raises the likelihood 

that any positive result is false, as well as causing substantial inflation of observed positive 
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effect sizes13.  In the context of neuroimaging, Button and colleagues considered only structural 

MRI studies.  In order to assess the current state of statistical power in fMRI studies, we 

performed an analysis of sample sizes and the resulting statistical power of fMRI studies over 

the past 20 years.  

 

To gain a perspective on how sample sizes have changed over this time period, we obtained 

sample sizes from fMRI studies using two sources.  First, manually annotated sample size data 

were obtained from from published meta-analyses14.  Second, sample sizes were automatically 

extracted from the Neurosynth database 15 for fMRI studies published between 2011 and 2015 

(by searching for regular expressions reflecting sample size, e.g. “13 subjects”, “n=24”) and 

then manually annotated to confirm automatic estimates and identify single-group versus 

multiple-group studies. (Data and code to generate all figures in this paper are available from 

the Open Science Framework at https://osf.io/spr9a/.) Figure 1a shows that sample sizes have 

steadily increased over the past two decades, with the median estimated sample size for a 

single-group fMRI study in 2015 at 28.5. A particularly encouraging finding from this analysis is 

that the number of recent studies with large samples (greater than 100) is rapidly increasing 

(from 8 in 2012 to 17 in 2015, in the studied sample), suggesting that the field may be 

progressing towards adequately powered research. On the other hand, the median group size in 

2015 for fMRI studies with multiple groups was 19 subjects, which is below even the absolute 

minimum sample size of 20 per cell proposed by Simonsohn et al.7. 

 

In order to assess the implications of these results for statistical power, for each of the 1131 

sample sizes shown in Figure 1a we estimated the standardized effect size that would be 

required to detect an effect with 80% power (the standard level of power for most fields) for a 

whole-brain linear mixed-effects analysis using a voxelwise 5% familywise error (FWE) rate 

threshold from random field theory16 (a standard thresholding level for neuroimaging studies). In 

other words, we found the minimum effect size that would have been needed in each of these 

studies in order for the difference to be considered statistically significant, given the sample 

size.  We quantify the standardised effect size using Cohen’s D, computed as the average effect 

divided by the standard deviation for the data. 

 

To do this, we assumed that each study used a statistical map with T-values in an MNI 

(Montreal Neurological Institute) template with smoothness of three times the voxel size, a 

commonly used value for smoothness in fMRI analysis.  The MNI template is a freely available 

template, obtained from an average T1 scan for 152 subjects with a resolution of 2 millimeters 

and a volume within the brain mask of 228483 voxels, used by default in most fMRI analysis 

software. We assume that in each case there would be one active region, with voxelwise 

standardised effect size D; that is, we assume that for each subject, all voxels in the active 

region are on average D standardised units higher in their activity than the voxels in the non-

active region, and that the active region is 1,600 mm2 (200 voxels).  To calculate the voxelwise 

statistical significance threshold for the active region in this model statistical map, we used the 

function ptoz from the FSL17 software package, which computes a FWE threshold for a given 

volume and smoothness using the Euler Characteristic derived from Gaussian random field 

theory 18. This approach ensures that the probability of a voxel in the non-active brain region 
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exceeding this significance threshold is controlled at 5%; the resulting significance threshold, tα, 

is equal to 5.12. 

 

--- Figure 1 about here --- 

 

The statistical power defined as the probability that the local maximum peak of activation in the 

active region exceeds this significance threshold. This probability was computed using a shifted 

version of the null local maximum distribution, with shift of D*sqrt(n) to reflect a given effect size 

and sample size. The median effect size needed to exceed the significance threshold in each of 

the studies was found by selecting the effect size D that results in statistical power higher than 

0.80 as computed in the previous step. 

 

Figure 1b shows the median effect sizes needed to establish significance, with 80% power and 

alpha = 0.05. Despite the decreases in these hypothetical required effect sizes over the past 20 

years, Fig. 1b shows that in 2015 the median study is only sufficiently powered to detect 

relatively large effects of greater than ~0.75. Given that many of the studies will be assessing 

group differences or brain activity–behaviour correlations (which will inherently have lower 

power than average group activation effects), this represents an optimistic lower bound on the 

powered effect size.  

 

Indeed, the analysis presented in Box 2 demonstrates that typical effect sizes observed in task-

related BOLD imaging studies fall well below this level. Briefly, we analysed BOLD data from 

186 individuals who were imaged using fMRI while performing motor, emotion, working memory 

and gambling tasks as part of the Human Connectome Project20. Assessing effect sizes in fMRI 

requires the definition of an independent region of interest that captures the expected area of 

activation within which the effect size can be measured.  To acheive this, we created masks that 

captured the intersection between functional activation (identified from Neurosynth.org as 

regions consistently active in studies examining the effects of ‘motor’, ‘emotion’, ‘gambling’ and 

‘working memory’ tasks) and anatomical masks (defined using the Harvard–Oxford probabilistic 

atlas21, based on the published regions of interest from the HCP)22 . Within these intersection 

masks, we then determined the average task-related increases in BOLD signal — and the effect 

size (Cohen’s D) — associated with each different task. Additional details are provided in Box 2. 

The figure in Box 2, which lists the resulting BOLD signal changes and inferred effect sizes, 

demonstrates that realistic effect sizes  – i.e. BOLD changes associated with a range of 

cognitive tasks -  in fMRI are surprisingly small: even for powerful tasks such as the motor task 

which evokes median signal changes of greater than 4%, 75% of the voxels in the masks have 

a standardised effect size smaller than 1.  For more subtle tasks, such as gambling, only 10% of 

the voxels in our masks demonstrated standardised effect sizes larger than 0.5.  Thus the 

average fMRI study remains poorly powered for capturing realistic effects.  

 

Solutions. 

When possible, all sample sizes should be justified by an a priori power analysis. A number of 

tools are available to enable power analyses for fMRI (for example, neuropowertools.org (see 

Further information; described in ref 23) and fmripower.org (see Further information; described in 
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ref. 24). When previous data are not available to support a power analysis, one can instead 

identify the sample size that would support finding the minimum effect size that would be 

theoretically informative (e.g. based on results from Box 2). The use of heuristic sample size 

guidelines (for example, based on a small number of previously published studies) is likely to 

result in a misuse of resources, either by collecting too many or (more likely) too few subjects.  

 

In some cases, researchers must use an insufficient sample size in a study, due to limitations in 

the specific sample (for example, when studying a rare patient group). In such cases, there are 

two commonly used options to improve power. First, researchers may engage in a consortium 

with other researchers in order to combine data. This approach has been highly successful in 

the field of genetics, in which well-powered genome-wide analyses require samples far beyond 

the ability of any individual laboratory (see Box 1). Examples of successful consortia in 

neuroimaging include the 1000 Functional Connectomes Project and its International 

Neuroimaging Data-sharing Initiative (INDI)25  and the ENIGMA (Enhancing Neuro Imaging 

Genetics by Meta-Analysis) consortium26. Second, researchers may restrict the search space 

using a small number of a priori regions of interest (ROIs) or an independent ‘functional 

localizer’ (a separate scan used to identify regions based on their functional response, such as 

retinotopic visual areas or face-responsive regions) to identify specific ROIs for each individual. 

It is essential that these ROIs (or a specific functional localizer strategy) be explicitly defined 

before any analyses. This is important because it is always possible to develop a post hoc 

justification for any specific ROI on the basis of previously published papers — a strategy that 

results in an ROI that appears independent but actually has a circular definition and thus leads 

to meaningless statistics and inflated Type I errors. By analogy to the idea of HARKing 

(hypothesizing after results are known; in which the results of exploratory analyses are 

presented as having been hypothesized from the beginning)27, we refer to this as SHARKing 

(selecting hypothesized areas after results are known).  We would only recommend the use of 

restricted search spaces if the exact ROIs and hypotheses are pre-registered28,29.  

 

 

Problem: Analytic flexibility 

 

The typical fMRI analysis workflow contains a large number of preprocessing and analysis 

operations, each with choices to be made about parameters and/or methods (see Box 3). 

Carp30 applied 6,912 analysis workflows (using the SPM31 and AFNI32 software packages) to a 

single data set and quantified the variability in resulting statistical maps. This revealed that 

some brain regions exhibited more substantial variation across the different workflows than did 

other regions. This issue is not unique to fMRI; for example, similar issues have been raised in 

genetics33. These “researcher degrees of freedom” can lead to substantial inflation of Type I 

error rates7, even when there is no intentional “p-hacking”8.  

 

Exploration is key to scientific discovery, but rarely does a research paper comprehensively 

describe the actual process of exploration that led to the ultimate result; to do so would render 

the resulting narrative far too complex and murky. As a clean and simple narrative has become 

an essential component of publication, the intellectual journey of the research is often obscured. 
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Instead, reports often engage in HARKing27. Because HARKing hides the number of data-driven 

choices made during analysis, it can strongly overstate the actual evidence for a hypothesis. 

There is arguably a great need to support the publication of exploratory studies without forcing 

those studies to masquerade as hypothesis-driven science, while at the same time realizing that 

such exploratory findings will ultimately require validation in independent studies. 

 

Solutions: 

We recommend pre-registration of methods and analysis plans as a default. The details to be 

pre-registered should include planned sample size, specific analysis tools to be used, 

specification of predicted outcomes, and definition of any ROIs that will be used for analysis. 

Exploratory analyses (including any deviations from planned analyses) should be clearly 

distinguished from planned analyses in the study description. Ideally, results from exploratory 

analyses should be confirmed in an independent validation data set. 

 

Problem: Multiple comparisons 

 

The most common approach to neuroimaging analysis involves “mass univariate” testing in 

which a separate hypothesis test is performed for each voxel. In such an approach, the false 

positive rate will be inflated if there is no correction for multiple tests.  A humorous example of 

this was seen in the now-infamous “dead salmon” study reported by Bennett and colleagues34, 

in which “activation” was detected in the brain of a dead salmon (which disappeared when the 

proper corrections for multiple comparisons were performed).   

 

Figure 2 presents a similar example in which random data can be analysed (incorrectly) to lead 

to seemingly impressive results, through a combination of failure to adequately correct for 

multiple comparisons and circular ROI analysis. We generated random simulated fMRI and 

behavioral data from a Gaussian distribution (mean±standard deviation = 1000±100 for fMRI 

data, 100±1 for behavioral data) for 28 simulated subjects (based on the median sample size 

found in the analysis of Figure 1 for studies from 2015). For the fMRI data, we simulated 

statistical values at each voxel for a comparison of activation and baseline conditions for each of 

the simulated subjects within the standard MNI152 mask, and then spatially smoothed the 

image with a 6mm Gaussian kernel, based on the common smoothing level of 3 times the voxel 

size. A univariate analysis was performed using FSL to assess the correlation between 

activation in each voxel and the simulated behavioural regressor across subjects, and the 

resulting statistical map was thresholded at p < 0.001 and with a 10-voxel extent threshold 

(which is a common heuristic correction shown by Eklund et al.35 to result in highly inflated 

levels of false positives). This approach revealed a cluster of false positive activation in the 

superior temporal cortex in which the simulated fMRI data are highly correlated with the 

simulated behavioural regressor (Fig. 2a).  

 

The problem of multiplicity was recognized very early, and the last 25 years have seen the 

development of well-established and validated methods for correction of familywise error and 

false discovery rate in neuroimaging data36.  However, recent work35 has suggested that even 
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some very well-established inferential methods based on spatial extent of activations can 

produce inflated Type I error rates (also see below under Software Errors).   

 

-- Figure 2 about here-- 

 

There is an ongoing debate between neuroimaging researchers who feel that conventional 

approaches to multiple comparison correction are too lax and allow too many false positives37, 

and those who feel that thresholds are too conservative, and risk missing most of the interesting 

effects38. In our view, the deeper problem is the inconsistent application of principled correction 

approaches39. Many researchers freely combine different approaches and thresholds in ways 

that produce a high number of undocumented researcher degrees of freedom7, rendering 

reported p-values uninterpretable.  

 

To assess this more directly, we examined the top 100 results for the Pubmed query ("fMRI" 

AND brain AND activation NOT review[PT] AND human[MESH] AND english[la]), performed 

May 23, 2016; of these, 65 reported whole-brain task fMRI results and were available in full text 

(full list of papers and annotations available at https://osf.io/spr9a/).  Only three presented fully 

uncorrected results, with four others presenting a mixture of corrected and uncorrected results; 

this suggests that corrections for multiple comparisons are now standard.  However, there is 

evidence that researchers may engage in “method-shopping” for techniques that provide greater 

sensitivity, at a potential cost of increased error rates.  Nine of the 65 papers used the FSL or 

SPM software packages to perform their primary analysis, but then used the alphasim or 

3dClustSim tools from the AFNI software package (7 papers) or other simulation-based 

approaches (2 papers) to correct for multiple comparisons. This is concerning, because both 

FSL and SPM offer well-established methods that use Gaussian random field theory or 

nonparametric analyses to correct for multiple comparisons. Given the substantial degree of 

extra work (e.g. software installation, file reformatting) involved in using multiple software 

packages, the use of a different tool raises some concern that this might reflect analytic p-

hacking.  This concern is further amplified by the finding that until very recently, this AFNI 

program had substantially inflated Type I error rates 35.  Distressingly, whereas nonparametric 

(randomization/permutation) methods are known to provide the more accurate control over 

familywise error rates compared to parametric methods36,40, they were not used in any of these 

papers. 

 

 

Solutions: 

To balance Type I and Type II error rates in a principled way, we suggest a dual approach of 

reporting FWE-corrected whole-brain results, and sharing a copy of the unthresholded statistical 

map through a repository that allows viewing and downloading (such as Neurovault.org41). For 

an example of this practice, see ref42 and shared data at http://neurovault.org/collections/122/. 

Any use of non-standard methods for correction of multiple comparisons (for example, using 

tools from different packages for the main analysis and the multiple comparison correction) 

should be justified explicitly (and reviewers should demand such justification). 
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Problem: Software errors 

 

Most fMRI researchers use one of several open-source analysis packages for preprocessing 

and statistical analyses; many additional analyses require custom programs.  Because most 

researchers are not trained in software engineering, there is insufficient attention to good 

software development practices that could help catch and prevent errors. This issue came to the 

fore recently, when a 15-year-old bug was discovered in the AFNI program 3dClustSim (and the 

older AlphaSim), which resulted in slightly inflated Type I error rates 35 (the bug was fixed in May 

2015).  The impact of such bugs could be widespread;  for example, PubMed Central lists 1362 

publications mentioning AlphaSim or 3dClustSim published prior to 2015 (query [("alphasim" OR 

"3DClustSim") AND 1992:2014[DP] ] performed July 14, 2016).  Similarly, the analyses 

presented in a preprint of the present article contained two software errors that led to different 

results being presented in the final version of the paper.  This led us to perform a code review 

and to include software tests in order to reduce the likelihood of remaining errors. 

 

Solutions: 

Whenever possible, software tools from a well-established project should be used instead of 

custom code. Errors are more likely to be discovered when the code is used by a larger group, 

and larger projects are more likely to follow better software-development practices. Researchers 

should learn and implement good programming practices, including the judicious use of 

software testing and validation. Validation methodologies (such as comparing with existing 

implementation or using simulated data) should be clearly defined. Custom analysis codes 

should always be shared upon manuscript submission (for an example, see43), and code should 

be reviewed as part of the scientific review process. Reviewers should request access to code 

when it is important for evaluation purposes. 

 

 

Problem: Insufficient study reporting 

 

Eight years ago we44 published an initial set of guidelines for reporting the methods used in an 

fMRI study.  Unfortunately, reporting standards in the fMRI literature remain poor.  Carp45 and 

Guo and colleagues46 analyzed 100 and 241 fMRI papers respectively for the reporting of 

methodological details, and both found that some important analysis details (e.g. interpolation 

methods, smoothness estimates) were rarely described.  Consistent with this, in 22 of the 65 

papers discussed above it was impossible to identify exactly which multiple comparison 

correction technique was used (beyond generic terms such as “cluster-based correction”) 

because no specific method or citation was provided. The Organization for Human Brain 

Mapping (see Further information for link) has recently addressed this issue through its 2015–

2016 Committee on Best Practices in Data Analysis and Sharing (COBIDAS), which has issued 

a new, detailed set of reporting guidelines47 (http://www.humanbrainmapping.org/COBIDAS).   

 

Beyond the description of methods, claims in the neuroimaging literature are often advanced 

without corresponding statistical support. In particular, failures to observe a significant effect 
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often lead researchers to proclaim the absence of an effect—a dangerous and almost invariably 

unsupported acceptance of the null hypothesis. “Reverse inference” claims, in which the 

presence a given pattern of brain activity is taken to imply a specific cognitive process (e.g., “the 

anterior insula was activated, suggesting that subjects experienced empathy”), are rarely 

grounded in quantitative evidence15,48. Furthermore, claims of “selective” activation in one brain 

region or experimental condition are often made when activation is statistically significant in one 

region or condition but not in others—ignoring the fact that “the difference between significant 

and non-significant is not itself significant”49 and in the absence of appropriate tests for 

statistical interactions50. 

 

Solutions: 

Authors should follow accepted standards for reporting methods (such as the COBIDAS 

standard for MRI studies), and journals should require adherence to these standards. Every 

major claim in a paper should be directly supported by appropriate statistical evidence, including 

specific tests for significance across conditions and relevant tests for interactions. 

 

 

Problem: Lack of independent replications 

 

There are surprisingly few examples of direct replication in the field of neuroimaging, likely 

reflecting both the expense of fMRI studies along with the emphasis of most top journals on 

novelty rather than informativeness.  One study51,52 attempted to replicate 17 studies that had 

previously found associations between brain structure and behaviour. Only one of the 17 

replication attempts showed stronger evidence for an effect as large the original effect size 

rather than for a null effect, and 8 out of 17 showed stronger evidence for a null effect. This 

suggests that replicability of neuroimaging findings (particularly brain-behavior correlations) may 

be exceedingly low, similar to recent findings in other areas of science such as cancer biology53 

and psychology54.   

 

Solutions: 

The neuroimaging community should acknowledge replication reports as scientifically important 

research outcomes that are essential in advancing knowledge. One such attempt is the OHBM 

Replication Award to be awarded in 2017 for the best neuroimaging replication study in the 

previous year. 

 

Conclusion 

 

We have outlined what we see as a set of problems with neuroimaging methodology and 

reporting, and solutions to solve them.  It is likely that the reproducibility of neuroimaging 

research is no better than many other fields, where it has been shown to be surprisingly low. 

Given the substantial amount of research funds currently invested in neuroimaging research, we 

believe that it is essential that the field address the issues raised here, so as to ensure that 

public funds are spent effectively and in a way that maximizes our understanding of the human 

brain. 
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Further information 

 

Fmripower: fmripower.org 

Human Connectome Project: https://www.humanconnectome.org/ 

Organisation for Human Brain Mapping (OHBM): www.humanbrainmapping.org 

NeuroPower: neuropowertools.org 

Neurosynth: http://neurosynth.org/ 

Neurovault: http://neurovault.org/  

 

 

Text Boxes: 

 

Box 1: Lessons from Genetics 

 

The study of genetic influences on complex traits has been transformed by the advent of whole 

genome methods, and the subsequent use of stringent statistical criteria, independent 

replication, large collaborative consortia, and complete reporting of statistical results. Previously, 

“candidate” genes would be selected on the basis of known or presumed biology, and a handful 

of variants genotyped (many of which would go unreported) and tested in small studies (typically 

in the low 100s). An enormous literature proliferated, but these findings generally failed to 

replicate55. The transformation brought about by whole genome methods (i.e., genome wide 

association studies) was partly necessitated by the simultaneous testing of several hundred 

thousand genetic loci (hence the need for very stringent statistical criteria in order to reach 

“genome wide significance”), but also an awareness that any effects of common genetic 

variants would almost certainly be very small (generally <1% phenotypic variance). The 

combination of these factors required very large sample sizes, in turn necessitating large-scale 

collaboration and data sharing. The resulting cultural shift in best practice has transformed our 

understanding of the genetic architecture of complex traits, and in a few years produced many 

hundred more reproducible findings than in the previous fifteen years56. Routine sharing of 

single nucleotide polymorphism (SNP)-level statistical results has facilitated routine use of meta-

analyses, as well as the development of novel methods of secondary analysis57.  

 

This relatively rosy picture contrasts markedly with the situation in “imaging genomics”--a 

burgeoning field that has yet to embrace the standards commonly followed in the broader 

genetics literature, and remains largely focused on individual candidate gene association 

studies, which are characterized by numerous researcher degrees of freedom.  To illustrate, we 

examined the first 50 abstracts matching a PubMed search for “fMRI” and “genetics” (excluding 

reviews, studies of genetic disorders, and nonhuman studies) which included a genetic 

association analysis (for list of search results, see https://osf.io/spr9a/).  Of these, the vast 

majority (43/50) reported analysis of a single or small number (5 or fewer) of candidate genes; 

only 2/50 reported a genome-wide analysis, with the rest reporting analyses using biologically 

inspired gene sets (3/50) or polygenic risk scores (2/50). Recent empirical evidence also casts 

doubt on the validity of candidate gene associations in imaging genomics.  A large genome-

https://www.humanconnectome.org/
http://neurosynth.org/
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wide association study of brain structure58 (including whole-brain and hippocampal volume) 

identified two genetic associations that were both replicated across two large samples each 

containing more than 10,000 individuals.  Strikingly, analysis of a set of candidate genes 

previously reported in the literature showed no evidence for any association in this very well-

powered study58.  

 

Box 2: Effect-size estimates for common neuroimaging experimental paradigms. 

The aim of this analysis is to estimate the magnitude of typical effect sizes of blood oxygen 

level-dependent changes in fMRI signal associated with common psychological paradigms. We 

focus on four experiments administered by the Human Connectome Project (HCP)59: an 

emotion task, gambling task, working memory task and motor task (detailed below). We chose 

data from the HCP for its large sample size, which allows computation of stable effect size 

estimates, and its diverse set of activation tasks.  The data and code used for this analysis are 

available at https://osf.io/spr9a/ .  

 

Briefly, the processing of data from the Human Connectome Project was carried out in 4 main 

steps: 

 

1. Subject Selection: The analyses are performed on the 500 subjects release of the HCP 

data, freely available at www.humanconnectome.org. We selected 186 independent subjects 

from the HCP data on the bases that (1) all subjects have results for all four of the tasks and (2) 

there are no genetically related subjects in the analysis. 

 

2. Group Analyses: The first-level analyses, which summarise the relation between the 

experimental design and the measured timeseries for each subject, were obtained from the 

Human Connectome Project. The processing and analysis pipelines for these analyses are 

shared together with the data. Here we perform second-level analyses — that is, an 

assessment of the average effect of the task on BOLD signal over subjects  — using the FSL 

program flame117 which performs a linear mixed-effects regression at each voxel, using 

generalized least squares with a local estimate of random effects variance. This analysis 

averages over subjects, while separating within-subject and between-subject variability to 

ensure control of unobserved heterogeneity.  

 

The specific contrasts that were tested are: 

● Motor: average BOLD response for tongue, hand and foot movements versus 

rest 

● Emotion: viewing faces with a fearful expression versus viewing neutral faces 

● Gambling: monetary reward versus punishment 

● Working memory: a contrast between conditions in which the participants 

indicate whether the current stimulus matches the one from 2 trials earlier (“2-

back”), versus a condition where the participants indicate whether the current 

stimulus matches a specific target (“0-back”) 

 

https://paperpile.com/c/BVQBEO/MBhT
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3. Create Masks: The masks used for the analyses are the intersections of anatomical and a 

priori functional masks for each contrast. The rationale behind this is to find effect sizes in 

regions that are functionally related to the task, but restricted to certain anatomical regions. 

 

● Functional: We created masks using www.neurosynth.org60. To do this, we 

performed forward inference meta-analysis using the respective search terms 

"Motor","Emotion","Gambling","Working memory" for each of the tasks, with 

false discovery rate (FDR) control at 0.01, the default threshold on neurosynth.  

The resulting mask identifies voxels consistently found to be activated in 

studies that mention each of the search terms in their abstract. 

● Anatomical: We have used Harvard-Oxford probabilistic atlas21 at p>0. 

Regions were chosen for each task based on the published a priori 

hypothesized regions from the HCP22. The size of the masks was assessed by 

the number of voxels in the mask. 

 

Task Anatomical Mask 

Motor ● Precentral gyrus 

● Supplementary motor cortex 

● Left putamen 

● Right putamen 

Working memory Middle frontal gyrus 

Emotion ● Left amygdala 

● Right amygdala 

Gambling ● Left accumbens 

● Right accumbens 

 

4. Compute Effect Size: The intersection masks created above were used to isolate the 

regions of interest in the second-level-analysed BOLD signal data. From these mask-

isolated data sets, the size of the task-related effect (Cohen’s D) were computed for each 

relevant region(see Figure B2 below). FSL’s Featquery computes for each voxel the % 

BOLD change in the data within the masks.  

 

https://paperpile.com/c/BVQBEO/vVSd3
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Figure B2: The distributions of the observed effect size estimates and BOLD signal change 

estimates for common experimental paradigms.  The boxplot inside the violins represent the 

inter-quartile range (first quartile to third quartile) and the white dot shows the median value. 

 

     

      

         

         

         

         

         

         

         

         

         

 

Box 3: Analytic flexibility in fMRI 

 



In the early days of fMRI analysis, it was rare to find two laboratories that used the same 

software to analyze their data, with most using locally-developed custom software.  Over time, a 

small number of open-source analysis packages have gained prominence (SPM, FSL, and 

AFNI being the most common), and now most laboratories use one of these packages for their 

primary data processing and analysis.  Within each of these packages, there is a great deal of 

flexibility in how data are analyzed; in some cases there are clear best practices, but in other 

cases there is no consensus regarding the optimal approach. This leads to a multiplicity of 

analysis options. In Table B1 we outline some of the major choices involved in performing 

analyses using one of the common software packages (FSL).  Even for this non-exhaustive list 

from a single analysis package, the number of possible analysis workflows exceeds the number 

of papers that have been published on fMRI since its inception more than two decades ago!  

 

It is possible that many of these alternative pipelines could lead to very similar results, though 

the analyses of Carp30 suggest that many of them may lead to significant heterogeneity in the 

results. In addition, there is evidence that choices of preprocessing parameters may interact 

with the statistical modeling approach (e.g., interactions between head motion modeling and 

physiological noise correction), and that the optimal preprocessing pipeline may differ across 

subjects (e.g. interacting with the amount of head motion)61. 

 

Table B3: A non-exhaustive list of data processing/analysis options available within the FSL 

software package, enumerating a total of 69,120 different possible workflows. 

 

Processing step Reason Options [suboptions] Number of 
plausible 
options 

Motion correction Correct for head motion 
during scanning 

Interpolation [linear vs. 
sinc] 
Reference volume [single 
vs. mean] 

4 

Slice timing 
correction 

Correct for differences in 
acquisition timing of different 
slices 

No/before motion 
correction/after motion 
correction 

3 
 

Field map 
correction 

Correct for distortion due to 
magnetic susceptibility 

Yes/No 2 

Spatial smoothing Increase SNR for larger 
activations and ensure 
assumptions of Gaussian 
random field theory 

FWHM [4/6/8 mm] 3 

Spatial 
normalization 

Warp individual brain to 
match a group template 

Method [linear/nonlinear] 
 

2 

High pass filter  Remove low-frequency Frequency cutoff [100 secs, 2 

https://paperpile.com/c/BVQBEO/nvmk
https://paperpile.com/c/BVQBEO/gf38


nuisance signals from data 120 secs] 

Head motion 
regressors 

Remove remaining signals 
due to head motion via 
statistical model 

Yes/No 
If Yes: 6/12/24 parameters 
or single timepoint 
“scrubbing” regressors 

5 

Hemodynamic 
response 

Account for delayed nature 
of hemodynamic response to 
neuronal activity 

Basis function [single-
gamma, double-gamma] 
Derivatives 
[none/shift/dispersion] 

6 

Temporal 
autocorrelation 
model 

Model for the temporal 
autocorrelation inherent in 
fMRI signals. 

Yes/no 2 

Multiple 
comparison 
correction 

Correct for large number of 
comparisons across the 
brain 

Voxel-based GRF, Cluster-
based GRF, FDR, 
nonparameteric 

4 

Total possible 
workflows 

  69,120 

 

 

  



 

 

 
Figure 1 | Sample size estimates and estimated power for fMRI studies. a | 904 sample 

sizes over more than 20 years obtained from two sources: 583 sample sizes by manual 

extraction from published meta-analyses14, and 548 sample sizes obtained by automated 

extraction from the Neurosynth database15 with manual verification. These data demonstrate 

that sample sizes have steadily increased over the last two decades, with a median estimated 

sample size of 28.5 as of 2015. b | Using the sample sizes from the left panel, we estimated the 

standardized effect size required to detect an effect with 80% power for a whole-brain linear 

mixed-effects analysis using a voxelwise 5% familywise error rate threshold from random field 

theory16 (see main text for details). Median effect size for which studies were powered to find in 

2015 was 0.75.  Data and code to generate these figures are available at https://osf.io/spr9a/ 

 

 
Figure 2: Small samples can produce misleadingly large effects. 

Seemingly impressive brain-behavior association can arise from completely random data 

through the use of uncorrected statistics and circular ROI analysis to capitalize on the large 

sampling error arising from small samples.  The analysis revealed a cluster in the superior 

temporal gyrus (left panel); signal extracted from that cluster (i.e., using circular analysis) 

showed a very strong correlation between brain and behavior (right panel; r = 0.87).  See main 

https://paperpile.com/c/BVQBEO/JksF
https://paperpile.com/c/BVQBEO/ymU0
https://paperpile.com/c/BVQBEO/rn03


text for details of the analysis.  A computational notebook for this example is available at 

https://osf.io/spr9a/.  
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