High-resolution error detection in the capture process of a single-electron pump

Citation: Appl. Phys. Lett. 108, 023502 (2016); doi: 10.1063/1.4939250
View online: http://dx.doi.org/10.1063/1.4939250
View Table of Contents: http://aip.scitation.org/toc/apl/108/2
Published by the American Institute of Physics

Articles you may be interested in

Gigahertz single-electron pumping in silicon with an accuracy better than 9.2 parts in 10^7

Ultrafast voltage sampling using single-electron wavepackets
Applied Physics Letters 110, 102105 (2017); 10.1063/1.4978388

Validation of a quantized-current source with 0.2 ppm uncertainty

Accuracy of electron counting using a 7-junction electron pump

Dopant-controlled single-electron pumping through a metallic island

Gigahertz single-hole transfer in Si tunable-barrier pumps
High-resolution error detection in the capture process of a single-electron pump

1National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
2Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom

(Received 22 October 2015; accepted 18 December 2015; published online 11 January 2016)

The dynamic capture of electrons in a semiconductor quantum dot (QD) by raising a potential barrier is a crucial stage in metrological quantized charge pumping. In this work, we use a quantum point contact (QPC) charge sensor to study errors in the electron capture process of a QD formed in a GaAs heterostructure. Using a two-step measurement protocol to compensate for 1/f noise in the QPC current, and repeating the protocol more than 10^6 times, we are able to resolve errors with probabilities of order 10^{-6}. For the studied sample, one-electron capture is affected by errors in ~ 30 out of every million cycles, while two-electron capture was performed more than 10^6 times with only one error. For errors in one-electron capture, we detect both failure to capture an electron and capture of two electrons. Electron counting measurements are a valuable tool for investigating non-equilibrium charge capture dynamics, and necessary for validating the metrological accuracy of semiconductor electron pumps. [http://dx.doi.org/10.1063/1.4939250]
the local charge environment and therefore the number of electrons in the QD. We applied a source-drain bias voltage $V_{\text{B}} = 1 \text{ mV}$ across the QPC channel and measured the current I_{QPC} using a room temperature transimpedance amplifier with gain 10^6 V/A and 400 Hz bandwidth. The amplifier output was continuously digitized by an integrating voltmeter with 1 ms aperture. All measurements were performed in a sorption-pumped helium-3 cryostat, at base temperature $\sim 300 \text{ mK}$. A magnetic field was applied perpendicular to the plane of the 2-DEG to enhance the current quantization.

Our measurement protocol is illustrated by schematic potential diagrams in Fig. 1(c). The QD is initialized (frame 1) by applying a voltage $V_{G1}(t)$ to the entrance gate, raising the entrance barrier above the Fermi level of the source electrode and trapping N electrons in the QD. N is tuned by the fixed exit gate voltage V_{G2L}. Two types of entrance gate ramp are used in the experiments, denoted “slow” (Fig. 2(a)) and “fast” (Fig. 2(d)), differing in rise-time by a factor $\sim 10^5$.

The entrance gate ramp $V_{G1}(t)$ terminates at $V_{G1} = V_{G1R}$ (frame 2), with the electrons trapped in a deep potential well. Finally, V_{G2} is adjusted to its readout value V_{G2R} (frame 3), and the QPC current I_N is measured following a 4 ms delay to reject transient effects. This final adjustment is a convenience, which allows readout of the charge state at fixed pump gate voltages $[V_{G1R}, V_{G2R}]$ independently of the tuning parameter V_{G2L}.

The noise spectrum of I_{QPC} in the amplifier bandwidth was dominated by a 1/f contribution, as seen in previous studies on similar QPC devices where the 1/f noise was shown to be due to an ensemble of two-level fluctuators (TLFs). As discussed later, discrete time-domain jumps in I_{QPC} due to the action of single TLFs were also occasionally seen. To ensure high detection fidelity in the presence of the constant noise, we applied a source-drain bias voltage $V_{\text{B}} = 1 \text{ mV}$ across the QPC channel and measured the current I_{QPC} using a room temperature transimpedance amplifier with gain 10^6 V/A and 400 Hz bandwidth. The amplifier output was continuously digitized by an integrating voltmeter with 1 ms aperture. All measurements were performed in a sorption-pumped helium-3 cryostat, at base temperature $\sim 300 \text{ mK}$. A magnetic field was applied perpendicular to the plane of the 2-DEG to enhance the current quantization.

Our measurement protocol is illustrated by schematic potential diagrams in Fig. 1(c). The QD is initialized (frame 1) by applying a voltage $V_{G1}(t)$ to the entrance gate, raising the entrance barrier above the Fermi level of the source electrode and trapping N electrons in the QD. N is tuned by the fixed exit gate voltage V_{G2L}. Two types of entrance gate ramp are used in the experiments, denoted “slow” (Fig. 2(a)) and “fast” (Fig. 2(d)), differing in rise-time by a factor $\sim 10^5$.

The entrance gate ramp $V_{G1}(t)$ terminates at $V_{G1} = V_{G1R}$ (frame 2), with the electrons trapped in a deep potential well. Finally, V_{G2} is adjusted to its readout value V_{G2R} (frame 3), and the QPC current I_N is measured following a 4 ms delay to reject transient effects. This final adjustment is a convenience, which allows readout of the charge state at fixed pump gate voltages $[V_{G1R}, V_{G2R}]$ independently of the tuning parameter V_{G2L}.

The noise spectrum of I_{QPC} in the amplifier bandwidth was dominated by a 1/f contribution, as seen in previous studies on similar QPC devices where the 1/f noise was shown to be due to an ensemble of two-level fluctuators (TLFs). As discussed later, discrete time-domain jumps in I_{QPC} due to the action of single TLFs were also occasionally seen. To ensure high detection fidelity in the presence of the constant

FIG. 1. (a) SEM image of device and electrical connections to the measurement circuit. The crossed boxes numbered 1–3 indicate Ohmic contacts to the 2-DEG. (b) QPC pinch-off characteristic with $V_{\text{B}} = 1 \text{ mV}$. (c) Frames (1–3): schematic potential landscape showing initialization of the QD with one electron. Frames (4–6): initialization of the QD with zero electrons. Frames (1–6) illustrate one measurement cycle. (d) Example of raw QPC current data for one measurement cycle, for the case of two electrons loaded into the QD, illustrating the difference signal ΔI_{QPC}. (e) Same as (d), but one electron is loaded into the QD. (f) Histograms of the QPC currents corresponding to zero and one electron, obtained from 950 measurement cycles spaced evenly over 15 h. Plots (d)–(f) share the same y-axis. (g) Histograms of ΔI_{QPC} for 3 sets of 5000 cycles, with V_{G2L} set to -0.65 V, -0.616 V, and -0.59 V, to load, respectively, 0, 1, and 2 electrons into the QD. Solid black line: Gaussian fit to the $N = 1$ data. $B = 12 \text{ T}$ for all data in this figure.

FIG. 2. (a) Time dependence of the slow entrance gate loading waveform, measured on a sampling oscilloscope. (b) Loading probabilities for up to 3 electrons as a function of exit gate voltage using the slow load waveform. $B = 12 \text{ T}$. Black data points denote values of V_{G2L} where all the cycles yielded the same number of electrons. (c) Log-scale histogram of ΔI_{QPC} for 1847 cycles using the slow waveform, at the exit gate voltage denoted by the vertical arrow marked “A” in graph (b). Vertical dotted lines show the thresholds for discriminating 0, 1, and 2 electrons, and shaded grey boxes show the $\pm 4\sigma$ width of distributions obtained from short calibrations runs similar to Fig. 1(g). (d) Same as (a), but showing the fast loading waveform. (e) Loading probabilities for up to 3 electrons as a function of exit gate voltage using the fast load waveform at $B = 10 \text{ T}$. (f) Same as (c), but using the fast waveform, 1045 cycles at the gate voltage indicated by “B” in (e). (g) Histograms of ΔI_{QPC} for 1847 cycles at the gate voltage indicated by “C” in (e). Plots (f) and (g) share the same y-axis, and $B = 10 \text{ T}$. Boxed values in plots (c), (f), and (g) indicate the number of counts for the relevant N after filtering out artifacts.
1/f noise spectrum, we reference the QPC current \(I_N \propto -N \) for small \(N \) to a second current \(I_Z \). \(I_Z \) is measured with the QD initialised to a known \(N = 0 \) state, by raising the entrance barrier with the exit gate set to a large negative value \(V_{GZH} \) (frame 4). \(N \) is then determined from the difference \(\Delta I_{QPC} = I_N - I_Z \). The series of frames (1–6) illustrate one measurement cycle. Raw QPC current data are shown in Figs. 1(d) and 1(e) for cases \(N = 2 \) and \(N = 1 \), respectively. Fig. 1(f) shows histograms of \(I_N \) (green, lower peak) and \(I_Z \) (black, upper peak) for a set of measurement cycles loading one electron, spread over 15 h. The effect of 1/f noise is visible as asymmetric broadening of the peaks, and the fidelity of measuring \(N \) using the \(I_Z \) data alone is estimated as \(\sim 0.999 \). Fig. 1(g) shows histograms of \(\Delta I_{QPC} \) obtained from 3 runs of 5000 cycles each, with \(V_{GZH} \) set to load approximately 0, 1, and 2 electrons using the slow loading waveform. The histograms form 3 widely separated peaks, which we identify with \(N = 0, 1, 2 \), which fitted well to normal distributions (shown for \(N = 1 \)) with standard deviation \(\sigma = 20 \, \text{pA} \). For these relatively short calibration runs of 5000 cycles, there were no outliers inconsistent with the normal distribution. Applying a simple thresholding algorithm to determine \(N \) from \(\Delta I_{QPC} \), the intrinsic probability \(P_{\text{tail}} \) of measuring the wrong value of \(N \) is given by \(1 - \text{erf}(\Delta I_{1e}/2\sqrt{2}\sigma) \), where \(\Delta I_{1e} = 320 \, \text{pA} \) is the separation between peaks. \(P_{\text{tail}} \) is weakly dependent on the magnetic field \(B \), and for the values of \(B \) used in this study, \(P_{\text{tail}} < 10^{-8} \) which is much smaller than the expected statistical uncertainty in \(P_N \). However, for very long runs, discrete TLF jumps caused a non-Gaussian background to the distribution of \(\Delta I_{QPC} \), requiring a more elaborate protocol than simple thresholding to determine \(P_N \).

In Figs. 2(b) and 2(e) we show \(P_N(V_{GZH}) \) for \(0 \leq N \leq 3 \), obtained from sets of 500 cycles for each \(V_{GZH} \) using the slow and fast loading waveforms, respectively. As expected from DC measurements with the pump in a magnetic field, there are a series of wide plateaus where one value of \(N \) dominates the loading statistics. This is highlighted by color-coding data points black when all the cycles yielded the same value of \(N \). Comparable data have been presented previously, \(N = 0 \) peak. For all the runs, there is a background of events, which are not statistically compatible with any \(N \) state. Examination of the raw \(I_{QPC}(t) \) data for these events showed that most of them could be attributed to TLF events well known to occur in our type of GaAs device. Assuming that TLF events are not correlated with loading errors, \(P_N, \{N \neq N_{\text{DES}}\} \) was evaluated from the small number of counts, indicated on Figs. 2(c), 2(f), and 2(g), with \(\Delta I_{QPC} \) within \(\pm 4\sigma \) of the expected value for a given \(N \neq N_{\text{DES}} \), which could not be attributed to TLF events. From these data, we calculated the most probable values for \(P_N \) and estimated the asymmetric statistical
uncertainties (68.27% confidence interval) from the Poisson distribution.24 For run B, $P_0 = (26.7^{+6.1}_{-5.0}) \times 10^{-6}$, $P_2 = (4.8^{+3.2}_{-2.3}) \times 10^{-6}$ and for run C, $P_0 = (0.1^{+1.6}_{-1.1}) \times 10^{-6}$, $P_1 = (0.9^{+2.0}_{-0.7}) \times 10^{-6}$, P_N for runs A–D are plotted as open points in Figs. 3(a) and 3(b) (the error bars are smaller than the data points), along with the data of Figs. 2(b) and 2(e) replotted on a log scale for comparison (solid points). For $N_{\text{DES}} = 1$, the measured error rates are almost an order of magnitude larger than predicted by fits to the decay-cascade model (solid line in Fig. 3(b)).4,15 Additionally, the coexistence of $N = 0$ and $N = 2$ at the same pump operating point highlights the importance of electron counting measurements, as these errors would partially cancel in an average current measurement. These data also show that caution should be exercised in using theoretical fits to low-resolution data5,8 as a method of predicting the accuracy of a tunable-barrier electron pump on a quantized plateau.

Finally, we compare $\langle N \rangle$ computed from the data set of Fig. 2(e), with the normalised pump current I_p/e when the load waveform was immediately followed by a pulse to eject the trapped electrons to the drain (pump waveform Fig. 4(b)).5,8 The fast load waveform is shown in Fig. 4(a) for comparison. The repetition frequency of the pump waveform was 280 MHz, generating a current $I_p \sim 45$ pA measured by connecting the ammeter to contact 1 in Fig. 1(a), and grounding contacts 2 and 3. The loading parts of the two waveforms had the same $V_G(t)$ profile (grey boxes in Figs. 4(a) and 4(b)). In Fig. 4(c), $\langle N \rangle$ and I_p/e are plotted as a function of exit gate voltage (for the case of the pumping data, the x-axis is the constant DC voltage applied to the exit gate). The reasonable agreement between the two measurements suggests that the electron loading experiment is probing the same dynamical process, which determines the DC current in pumping experiments, and furthermore suggests that the wide quantised pumping plateaus seen here and in previous studies of QD pumps3–8 are indeed due to transport of the same number of electrons in each pumping cycle. On the other hand, close examination of Fig. 4(c) shows that the transitions between plateaus are slightly broader in the loading experiment. This could be evidence for back-action of the QPC on the electron loading process, since the QPC source-drain bias voltage was not present during the pumping experiment. The irregularity in the transition from $\langle N \rangle = 0$ to $\langle N \rangle = 1$ clearly visible in Fig. 3(b) was not present in the DC measurements, and may be further evidence for back-action. Further studies will clarify the back-action of the QPC on the dynamic QD.

In summary, we have presented a simple device architecture and measurement protocol for studying directly the loading statistics of a dynamic QD with high precision. By incorporating a reference measurement using a known charge state, 1/2 noise in the QPC detector is compensated, and the number of electrons in the QD can be measured with an intrinsic fidelity exceeding $1 - 10^{-8}$. This is a significant step towards validating semiconductor QD pumps as metrological current sources. Our device can also be used to study the QD initialization process over many orders of magnitude in barrier rise time, without constraints imposed by the need to measure a small DC current. This will help to clarify the role of quantum non-adiabaticity16,17,25 in the formation of the QD. Improvements to the control and readout electronics will allow $\sim 10^7$ cycles in a reasonable 12 h experimental run, reducing the statistical uncertainty in the measurement of small probabilities, and experimental precautions against TLFs, for example, biased cool-down,26 should remove these unwanted artifacts in future experiments.

We would like to thank Akira Fujiwara, Joanna Waldie, and James Frake for useful discussions and Stephane Chretien for assistance with statistical analysis. This research was supported by the UK Department for Business, Innovation, and Skills and within the Joint Research Project “Quantum Ampere” (JRP SIB07) within the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

17V. Kashcheyevs and J. Timoshenko, “Modeling of a tunable-barrier non-adiabatic electron pump beyond the decay cascade model,” in 2014

23 See supplementary material at http://dx.doi.org/10.1063/1.4939250 for a description of the data filtering procedure.