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Abstract 

Objective 

We used whole brain T1-weighted MRI to estimate the age of individuals with 

medically refractory focal epilepsy, and compared with individuals with newly 

diagnosed focal epilepsy and healthy controls. The difference between 

neuroanatomical age and chronological age was compared between the three 

groups. 

Methods 

Neuroanatomical age was estimated using a machine learning-based method that 

was trained using structural MRI scans from a large independent healthy control 

sample (N = 2001). The prediction model was then used to estimate age from MRI 

scans obtained from (i) newly diagnosed focal epilepsy patients (N = 42), medically 

refractory focal epilepsy patients (N = 94) and healthy controls (N = 74). 

Results 

Individuals with medically refractory epilepsy had a difference between predicted 

brain age and chronological age that was on average 4.5 years older than healthy 

controls (p = 4.6 x 10-5). No significant differences were observed in newly 

diagnosed focal epilepsy. Earlier age of onset was associated with an increased 

brain age difference in the medically refractory group (p = 0.034).  

Significance 

Medically refractory focal epilepsy is associated with structural brain changes that 

resemble premature brain aging. 
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1. Introduction 

Medically refractory focal epilepsy is associated with decreased brain-wide 

volumetric measures and cognitive function, both of which are also observed in 

normal aging1-4. Prior studies have noted that epilepsy-related neuroanatomical and 

cognitive changes are greater than those observed in normal aging and therefore 

may be conceptualized as accelerated aging5-8.  

Evidence for an association between chronic focal epilepsy and brain atrophy has 

primarily come from analyses of cortical thickness changes or local gray matter 

volume in temporal lobe epilepsy. Medically refractory temporal lobe epilepsy has 

been shown to be associated with brain-wide reductions in regional cortical 

thickness or volume7; 9-12. A modest number of studies have identified brain changes 

beyond the primary lesion in focal cortical dysplasia, however reported extra-lesional 

changes in these studies are not typically atrophic13; 14. 

In this study, the difference between predicted and chronological age was cross-

sectionally compared in three groups, comprising (i) individuals with medically 

refractory localization-related epilepsy being assessed for epilepsy surgery, (ii) 

newly diagnosed localization related epilepsy cases enrolled in the Human Epilepsy 

Project, and (iii) healthy matched controls imaged contemporaneously with epilepsy 

subjects. We used a previously validated multivariate machine-learning method for 

analysis of whole brain structural MRI to predict the age of individuals with focal 

epilepsy15. This methodological framework allowed us to test the hypothesis that the 

brains of individuals with medically refractory epilepsy resemble those of older 
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healthy individuals, as well as explicitly estimating the magnitude of the 

hypothesized aging effect. In addition to the primary analysis investigating increased 

neuroanatomical age in medically refractory cases, we also investigated whether 

age of seizure onset and epilepsy duration were related to the difference between 

predicted and chronological neuroanatomical age. 

2. Methods 

2.1 Participants 

Two epilepsy groups were included in the study. The first group comprised 

consecutively recruited individuals with medically refractory epilepsy referred for 

imaging as part of pre-surgical assessment at the NYU Comprehensive Epilepsy 

Center between 2007 and 2015. Investigations included clinical semiology, video-

EEG monitoring, clinical MRI, neuropsychological assessment, and PET/SPECT 

when deemed appropriate by clinical investigators. Age of epilepsy onset was 

obtained from clinical records for these epilepsy patients. 

The second group of epilepsy participants were recruited for the Human Epilepsy 

Project, an ongoing prospective study of newly diagnosed focal epilepsy. 

Participants were recruited if they were between 12 and 60 years of age and had a 

clinical history consistent with focal epilepsy and had two confirmed spontaneous 

seizures within the previous 12 months. 

Healthy controls were recruited by community advertisement. Control participants 

were excluded if they reported prior history of psychiatric or neurological disorders, 

head injury or substance abuse. 
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For all participants whole brain T1 weighted MRI was obtained on a 3T Siemens 

Allegra scanner using an MPRAGE volumetric acquisition (voxel size 1.3 × 1 × 1.3 

mm, echo time = 3.25 ms, repetition time = 2530 ms, inversion time = 1100 ms, flip 

angle = 7°). 

2.2 Image analysis 

The age of each individual was predicted using Pattern Recognition for 

Neuroimaging Toolbox (PRoNTo, http://www.mlnl.cs.ucl.ac.uk/pronto16). The 

prediction model was developed using T1-weighted MRI of healthy individuals 

obtained from 14 publicly available neuroimaging databases (total N = 2001, mean 

age = 36.95 ± 18.12 years, range 18 – 90, 1016 male, 985 female, see 

supplementary material for database list and demographic information17-30). Each T1 

weighted MRI scan was segmented into gray matter and white matter and spatially 

warped into a common space to ensure voxelwise correspondence between 

individuals. The SPM software package was used for segmentation, non-linear 

(DARTEL) registration and resampling into Montreal Neurological Institute (MNI) 152 

template space 31. Images were smoothed with a 4mm FWHM kernel and modulated 

to ensure final images retained localised volumetric information from the original 

images. Each voxel in the final images thus represents a regional estimate of gray or 

white matter volume. A Gaussian Processes Regression (GPR) machine learning 

algorithm was then trained to predict chronological age using the gray matter and 

white matter maps32. The prediction accuracy of the GPR model was then assessed 

using k-fold cross-validation with k = 10, to generate predicted age values on all 

training images.   
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The accuracy of the model was quantified using the correlation between 

chronological age and predicted, the amount of variance in age explained by the 

model (R2), the mean absolute error (MAE) and the root mean squared error 

(RMSE). The model was then applied to the GM and WM segments to provide an 

estimated age for all individuals in the study (medically refractory epilepsy, newly 

diagnosed epilepsy and the study-specific healthy control group). 

The difference between the predicted age of the individual and their chronological 

age was calculated, where a positive value corresponded to an increased estimated 

neuroantomical age relative to chronological age. These values were then compared 

between the three groups using a general linear model, with age and sex included 

as covariates. We also investigated the effect of (i) age of onset and (ii) epilepsy 

duration on the difference between predicted and chronological age after controlling 

for age at the time of scan. 

3. Results 

Ninety-four individuals with refractory epilepsy, forty-two individuals with newly 

diagnosed epilepsy and seventy-four healthy controls were included in our study 

(Table 1). For the medically refractory epilepsy group, seizures were localized to the 

temporal lobe in forty-seven patients (50%), frontal lobe in eighteen patients (19%), 

parietal lobe in four patients (4 %) and the occipital lobe in two patients (2%). The 

remaining twenty-three cases had adjacent multilobar seizure onset. Twelve of the 

forty-seven temporal lobe cases had histopathologically confirmed mesial temporal 

sclerosis, and twenty-two participants had focal cortical dysplasia. For the medically 

refractory group, seizure onset age ranged from one to fifty-three years of age 
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(mean = 17.4; SD = 12.2 years) and epilepsy duration ranged from one to forty-five 

years (mean = 15.9; SD = 11.8 years). In the newly diagnosed epilepsy group, 

seizure onset age was between eleven and sixty (mean = 29.3, SD = 11.5 years) 

and epilepsy duration ranged from zero to nineteen years (mean = 2.1, SD = 3.9 

years). 

Cross-validation in the training dataset indicated that the model was able to 

accurately predict age (r = 0.938, R2 = 0.88, MAE = 5.01, RMSE = 6.31), based on 

combined GM and WM volume images (permutation corrected p = 0.001). Accuracy 

estimates in the independent healthy control test dataset were: r = 0.74, R2 = 0.54, 

MAE = 5.73, RMSE = 7.34.  

Individuals with medically refractory epilepsy had a difference between predicted 

brain age and chronological age that was on average 4.5 years older than healthy 

controls (Figure 1, p = 4.6 x 10-5). Although individuals with newly diagnosed 

epilepsy had a brain age 0.9 years older than their chronological age, this difference 

was not statistically significant (p = 0.55). There was a statistically significant 

relationship between age of onset and the difference in neuroanatomical and 

chronological age (-0.15 years difference per year, p = 0.034, r = 0.5). This finding 

indicates that the difference between predicted and chronological age is larger in 

individuals with earlier epilepsy onset. No significant relationship was observed 

between the amount of time someone had refractory epilepsy and the difference 

between their neuroanatomical and chronological age (0.13 years difference per 

year with epilepsy, p = 0.083). No relationship was observed between age of onset 

(p = 0.29) or epilepsy duration (p = 0.29) and the difference between 
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neuroanatomical and chronological age in the newly diagnosed epilepsy group. No 

significant association was observed between the difference in neuroanatomical and 

chronological age and the presence of hippocampal sclerosis or focal cortical 

dysplasia when these were included as additional covariates in the statistical model, 

suggesting that the observed brain aging effect in refractory epilepsy is not driven by 

lesional cases (hippocampal sclerosis p = 0.47, focal cortical dysplasia p = 0.57). 

 
Predicted age - chronological age

−20 −10 0 10 20

−20 −10 0 10 20

−20 −10 0 10 20

Healthy controls

Newly diagnosed 

epilepsy

Medically 

refractory 

epilepsy



 9 

Figure 1. Long term medically refractory epilepsy is associated with an average 

increased brain age of 4.5 years. The figure shows the distribution of differences 

between predicted neuroanatomical age and chronological age in healthy controls 

(top row, green), newly diagnosed epilepsy patients (middle row, purple) and 

intractable epilepsy patients (bottom row, orange). 

 

4. Discussion 

We have demonstrated that medically refractory chronic epilepsy is associated with 

an increased brain age of 4.5 years, when estimated using whole brain T1-weighted 

MRI. This finding suggests that long-term medically refractory focal epilepsy disrupts 

the typical trajectory of aging in the brain. The biological mechanism underlying the 

brain aging effect observed in our study is unknown at this stage. It is unclear if the 

neuroanatomical changes that cause the brain of an individual with medically 

refractory epilepsy to appear older are due to the early onset of the same biological 

mechanisms that are associated with aging in healthy adults or reflect different 

pathological effects that mimic the atrophic volumetric changes that occur in aging 

brains. 

Previous studies have shown that medically refractory epilepsy is associated with 

cognitive decline, and others have conceptualized this phenomenon as accelerated 

cognitive aging5. Because the neuroanatomical changes observed in medically 

refractory epilepsy cases resemble increased aging, these changes provide a 

potential biological mechanism to explain epilepsy-related cognitive decline. It is 

interesting to note that our secondary analysis of age of onset and epilepsy duration 
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in the medically refractory group suggest that age of onset makes more of a 

contribution to increased brain aging than the duration of epilepsy. These findings 

parallel previous work that suggests age of onset may be more important than 

epilepsy duration for global cognitive impairment in temporal lobe epilepsy33. Our 

findings of a greater influence of age of onset vs. epilepsy duration should be 

interpreted with caution since these variables are correlated; in our study individuals 

with an earlier age of onset had epilepsy for a longer period of time. Furthermore the 

significance of the link between brain age and epilepsy duration was marginally 

statistically significant (p = 0.083). Prospective future studies would be required to 

confirm these relationships between age of epilepsy onset, epilepsy duration and 

neuroanatomical aging. Similarly future studies should assess both structural 

changes and cognition in refractory epilepsy in order to determine if cognitive and 

neuroanatomical aging effects in epilepsy are related. 

The one-year average increase in brain age observed in the newly diagnosed focal 

epilepsy group, although not statistically significant over the whole group, suggests 

that a subset of individuals with recent onset epilepsy also have an increased brain 

age. Approximately one third of newly diagnosed focal epilepsy patients will develop 

medically refractory epilepsy34. Because the newly diagnosed epilepsy patients will 

be longitudinally followed as part of the Human Epilepsy Project, we will be able to 

determine if the subset of newly diagnosed patients with increased brain age 

comprise the medically refractory portion of the group. If so, neuroanatomical age 

estimation using MRI may be a useful clinical marker for predicting intractability early 

in the course of an individual’s epilepsy. 
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It is possible that the aging effect we have observed is not due to the underlying 

epilepsy or ongoing seizures but may be a result of long term antiepileptic 

medication use. Previous studies have reported brain volume reductions are 

associated with antiepileptic medication use35; 36.  It is important to note that patients 

with newly diagnosed epilepsy in our study also showed a trend towards increased 

brain age, and AED use had only been recently started in these individuals. This 

provides supporting evidence that our observed brain age differences are not due to 

AED use at the time of scanning. A relatively simply way to investigate this question 

would be to assess brain aging in a group of epilepsy patients with long term but well 

controlled epilepsy or by using a larger sample size that controls for AED type. 

This study contributes to the growing literature that applies machine learning 

techniques to imaging data to identify epilepsy-related structural and functional brain 

abnormalities and predict health outcomes37-45. Machine learning-based methods for 

estimating age using MRI have found a range of application in other clinical 

populations, including increased brain age in schizophrenia, diabetes, following 

traumatic brain injury and as a marker of risk for development of Alzheimer’s 

disease15; 46-48. The overarching theme of these studies is that brain maturation may 

be disrupted by neurological insult or disease. Age estimation based on brain 

structure provides additional information compared with chronological age, and may 

allow us to non-invasively assess how events over the lifespan impact brain 

structure. 

In summary, we have demonstrated that the brains of individuals with medically 

refractory focal epilepsy resemble the brains of older healthy individuals. These 
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findings are consistent with cognitive deficits observed in individuals with medically 

refractory epilepsy. Neuroanatomical age assessment using structural MRI may be a 

useful clinical tool for assessing how ongoing seizures impact brain development 

and maturation across the lifespan. 
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