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ABSTRACT: This paper demonstrates how Tipping Point Analysis can be used to predict the 

onset of structural strain, induced by ice formation. In civil structures, water-ice transitions 

present many potential issues that can lead to structural damage or plant shutdowns. Examples 

include freeze-thaw damage in concrete and masonry, and ice build-up on moving parts such as 

wind turbine blades. Early indication of ice formation could prevent irreparable damage if this 

information could be used to actuate de-icing procedures. The transition considered in this work 

is the strain induced in a polypropylene container by the volume change of water as it freezes, 

measured using surface-mounted fibre-optic strain sensors. This first order phase transition can 

be detected early on using degenerate fingerprinting, which identifies “slowing down” of the noise 
prior to the critical point of the transition. 

Water was supercooled which, at freezing, causes a rapid increase in temperature, presenting an 

identifiable specific transition point for reference. The analysis was able to consistently predict 

freezing around 5-10 minutes prior to the transition. A linear relationship was found between 

mass calculated from the calorimetric equation and mass from experimental measurements. Strain 

could not be estimated from this mass, since the random process of freezing in an open top 

container causes an irregular distribution of force. These tests will allow the method and the model 

to be continually developed towards a more practical application. 

1 INTRODUCTION 

Structural Health Monitoring (SHM) can be defined as continuous assessment of normal 

operating conditions and/or any existing damage of the structure. SHM is used in many industries 

such as civil Ko et al (2003), aeronautical Nicolas et al (2016), oil and gas Inaudi et al (2006). 

The most desired and currently implemented SHM systems involve civil, transport, marine, oil 

and gas, and power network infrastructure, with many employing fibre Bragg gratings (FBGs) for 

health monitoring Chan et al (2006) Lima et al (2008) Bai et al (2016). FBGs present many 

advantages over conventional electronic strain sensors, such as immunity to electromagnetic 

interference, multiplexing ability and small size Kashyap et al 2010. Robust, long-life designs are 

also achievable Niewczas et al (2011).  

The objective of this work is to develop a system capable of predicting and alerting of the freezing 

transition of water – to be used to initiate de-icing procedures to prevent ice formation. 



  

 

  

1.1 Potential Applications 

The system described has potential applications in many fields where ice formation is undesirable: 

examples include aeronautical, civil and electrical power engineering; and even biochemistry and 

culinary science. In the context of civil engineering, for example, FBGs have already shown 

promise in monitoring reinforced concrete structures. A common degrader of concrete in colder 

climates is freeze-thaw: damage is accrued with the introduction of water, which expands upon 

freezing causing cyclic stress and damage over multiple freeze-thaw cycles Li et al (2016). The 

forms of damage caused by freeze-thaw range from exterior damage to the outer layer of concrete 

known as scaling or pop-outs, to internal damage and crack initiation or expansion Harrison et al 

(2001). Eventually, these cracks can provide a pathway for corroding agents to attack the 

underlying steel reinforcement, reducing the structure’s tensile strength. Concrete freeze-thaw 

damage is a common and ongoing concern for infrastructure managers, since the effects only 

become visibly apparent after significant degradation. The method we propose here could be used 

to inform manual maintenance or could be used in conjunction with a simple, automatically 

triggered heating element to prevent ice formation. 

An ice detection system for wind turbine blades is another example where the system we have 

demonstrated would be valuable. Methods currently employed include detection via changes in 

low frequency vibration signals caused by imbalance due to weight of ice, or by anemometry 

slowing compared to wind speeds due to ice buildup. In both cases, significant ice formation is 

required for detection. Usually, visual-inspection follows detection to ensure existence of ice. 

Switching the turbine off and on is a simple way to forcibly remove the ice, some turbines have 

heated blades that remove ice. Our method would improve the efficiency of both of these systems 

as they would only need to be used when required. 

1.2 Competing technologies 

There are many proposed ice detector systems, including those currently implemented, reviewed 

by Cattin et al (2015). They measure factors affected by ice such as: humidity changes, speed 

variation of rotating objects (e.g. anemometers), vibration fluctuations on a probe, refraction or 

blocking of light, and natural frequency alterations. The common issues these sensors face include 

inefficient ice detection due to indirect measurements of key measurands, and that the sensors 

require a significant amount of ice to form before indication is possible. 

1.3 Background 

1.3.1 FBG Functionality 

An FBG sensor is formed by exposing an optical fibre to an Ultra Violet light of modulating 

intensity to create a periodic alteration of the refractive index. When broadband light is projected 

through the FBG, it reflects a range of wavelengths of the incident light with a distinctive peak at 

the Bragg wavelength, ߣ஻. The peak wavelength is determined during production of the FBG and 

is a function of grating period, ο, and effective refractive index, ߟ௘, of the fibre Rao et al (1996). ߣ௕  ൌ  ௘ο  (1)ߟʹ 

Both variables in Equation 1 are mainly affected by strain and temperature Hill et al (1997). 

Equation 2 shows the effects on the reflected wavelength of a bonded FBG due to a change in 

temperature, ȟܶ, and strain, ߳. Constants, ݇௧ and ݇ఢ, are the temperature coefficient and strain 

sensitivity after bonding, respectively. A separate unbonded FBG, which does not measure strain 

(i.e. ݇ఢ = 0) is usually added for temperature compensation.  



  

 

  

୼ఒചఒച ൌ ݇௧ȟܶ ൅ ݇ఢ߳  (2) 

1.3.2 Ice Formation – First Order Phase Transitions 

In a number of physical systems, approaching a critical point causes “slowing down” of the noise 

in some key measurands. This occurs due to the energy levels between two states shifting as the 

system approaches a transition (see Figure 1), causing the gradient of walls between potential 

minima to decrease. Figure 1 illustrates the molecular process of transition from a lower to a 

higher volume state, such as is the case for the first order water-ice phase transition. Minima 

containing molecule A at temperature T1 represents liquid phase and at T3 the solid phase. For a 

constant pressure, when T1 decreases to T3 nucleation occurs, ice forms and volume is increased. 

At T2 the energy required to transition has decreased, which decreases the oscillation (noise) 

frequency indicated by the dashed double arrow curve. 

Figure 1. First order phase transition. Molecule A resides in the lower volume state initially. Energy 
required to transition to increased volume state decreases with temperature (T1 > T2 > T3), causing 
“slowing” of noise oscillations before transition. 

1.3.3 Tipping Point Analysis 

It has been demonstrated previously that state transitions in time series data can be identified early 

using Tipping Point Analysis (TPA) Perry et al (2015) Livina et al (2015). Many different 

approaches are possible when attempting this as the data can demonstrate many interesting aspects 

such as memory, variability and “flickering” Dakos et al (2012). For this work, the memory 

analysis method called “degenerate fingerprinting” was deemed most suitable due to the first 

order phase transition behavior. The water-ice transition is indicated by an increase in volume. 

This increase in volume can be indirectly detected via the strain increase it induces in a 

surrounding solid medium. In an applied context, this could be the walls of the crack, but in our 

laboratory experiment, it is the walls of an enclosure. Equation 3 shows that total strain measured 

in the walls of the enclosure, ߳ܶሺݐሻ, is a sum of static (or relatively slowly changing) strain in 

component, ߳଴ሺݐሻ and Gaussian noise ߳௡ሺݐሻ. ்߳ሺݐሻ ൌ ߳଴ሺݐሻ ൅ ߳௡ሺݐሻ  (3) 

As discussed in section 1.3.2, the oscillation of the system about the minima creates the 

noise, ߳௡ሺݐሻ, and this noise “slows down” when the system approaches a critical transition. In 

most cases, the noise will be filtered out to ensure a more accurate measurement of component 

strain. However, in this case, the noise is utilized to provide an indicator of future events of the 

system. Degenerate fingerprinting uses lag-1 auto-correlation on a sliding window of extracted 

noise data to detect trends in the noise that are symptomatic of slowing down behavior. Assuming 

a window of noise data, ܼ௧ୀଵǣே, the auto-correlation function, ߩ௞, can be calculated using 

Equation 4. 

T3 TT1 



  

 

  

௞ߩ ൌ σ ሺ௓೟ିఓሻሺ௓೟శభିఓሻ೟ಿసభσ ሺ௓೟ିఓሻమ೟ಿసభ   (4) 

Where Ɋ is the expected value of ܼ௧ and ܰ is the length of the window. Should the transition be 

detected, ߩ௞ should begin to rise to a value of 1, as slow noise shows a strong auto-correlation. 

1.3.4 Water-Ice Transition Model 

Gholaminejad et al (2013) produced an extensive study into the process of supercooling. At the 

point of forced nucleation, the water temperature would instantly rise to 0ƕC in some cases from 

temperatures as low as -5ƕC. In contrast, the process was not forced in this work, but occurred 

randomly during experimentation. This temperature rise provided a reference point of ice 

formation to be used during analysis. Any increase in volume (and hence strain) due to freezing 

should coincide with the onset of temperature increase, at which point only a fraction of the water 

mass has transitioned to ice mass, ݉௜௖௘. Ice can form initially in multiple ways in an open top 

container: top layer first (usually in larger bodies of water), on all walls first or both 

simultaneously. Since the thermal conductivity of polypropylene (0.2 ܹȀ݉ܭ) is greater than that 

of air (0.024 ܹȀ݉ܭ), ice should form first on the container walls. 

The strain measured on the wall of the container is caused by the rapid expansion of ice. 

Unfortunately, due to unknown factors such as number of impurities, exact amount of ice formed 

and position of nucleation center the strain is difficult to accurately predict. Qualitatively, we can 

assume that more ice forming causes higher strain. Estimation of ice mass formed by supercooled 

water freezing can be made by equating the heat energy provided by the exothermic water-ice 

transition to the reduction in internal energy going from supercooled water to ice Bochnicek et al 

(2014)  (Equation 5). ݉௪ܿȟ ௌܶ ൌ  ݉ூ ௙݈    (5) 

Where ݉௪ is the mass of water, ܿ is the specific heat capacity of liquid water (Ͷͳͺͳ ܬȀ݇݃ƕC), ȟ ௌܶ is the increase in temperature at freezing point, ௙݈ is the latent heat of fusion of ice 

(͵͵͵ͷͷͲ ܬȀ݇݃) and ݉ூ is the estimated mass of ice. To test this hypothesis, ݉௜௖௘ and ȟ ௌܶ were 

measured for multiple freezing cycles and compared to estimated mass ݉ூ (Table 1). 

Table 1. Calculated mass compared to measured mass of freezing cycles of tap water. 

ǻT 

(°C) 

Ice mass, ݉௜௖௘, 

(g) 

Calculated 

mass, ݉ூ ǡ 
(g) 

݉௜௖௘݉ூ   
1.2 27.64 7.56 3.66 

1.4 31.56 8.82 3.58 

1.8 34.32 11.34 3.03 

2.9 

4.0 

5.4 

57.10 

99.50 

119.72 

18.27 

25.20 

34.01 

3.13 

3.95 

3.52 

These tests show that the mass of ice that forms, ݉௜௖௘, is on average 3.48 times greater than ݉ூ, 
calculated using Equation 5. The equation does not take into account the type of water used. This 

may be an issue since the rate that ice forms depends on the number of nucleation sites (including 

impurities) in the water, shown in Equation 6. 



  

 

  

ܴ ൌ ௣ exp ሺെܭ  ୼ீ௞ಳ்ሻ    (6) 

Where ܭ௣ is a constant which contains the number of nucleation sites and the rate at which 

molecules attach to the nucleus. ȟܩ is the change in Gibbs free energy of the nucleus at transition, ݇஻ is the Boltzmann constant and ܶ is the temperature. Work by Stott et al (2008) has shown that 

the rate of ice formation in purified water varies from ͲǤͲͲͲ͸ െ ͲǤͲʹ͵ ݉ିݏଵ. Purified water has 

around 10-50 parts per million (PPM) of total dissolved solids (representing number of nucleation 

sites in ܭ௣), whereas still tap water is known to have around 300-600 PPM. This difference may 

cause a variation in the rate of ice formation, which may change the structure of the ice crystal 

itself, which may in turn have an impact on the mass of ice formed. 

2 METHODOLOGY 

2.1 Experimental Setup 

Figure 2. Experimental set up. 

To demonstrate the method of predicting ice formation as described in Section 1.3.3, a 

polypropylene container (low Young’s modulus) was filled with 0.5 l of regular tap water and 

instrumented with an FBG measuring strain and an FBG measuring temperature to compensate 

for thermal effects (Figure 2). Container was placed within an environmental chamber to ensure 

consistent freezing cycles and sensors were connected to an FBG interrogator with sampling 

frequency of 50 Hz with a laptop interface (Figure 2). The strain FBG was fully epoxied along 

the water level, whereas the temperature FBG was epoxied on one side to ensure thermal contact 

only. Finally, thermal grease was applied over both to ensure equal heat transfer for both sensors. 

A total of seven freezing cycles were run under the same conditions, with the environmental 

chamber programmed to begin at 25°C and cool to -14°C for a period of around 5 hours, after 

which the ice was fully melted before repeating the cycle. 

2.2 Results 

To perform TPA, the noise from the strain FBG was first extracted by using a moving average to 

remove trend, acquiring the noise signal only. Lag-1 autocorrelation (Equation 4) was performed 

on the noise signal over a sliding, self-intersecting window as described in section 1.3.3. The 

analysis was performed over the entire freezing cycle. The final result is an autocorrelation 

function (ACF) indicator for each freezing cycle. The window size over which ACF was 

calculated was adjusted to provide the most significant indication in each cycle. Window size is 

dependent on a few factors, some of which are defined initially and remain constant such as the 

sampling rate or length of event. System’s dynamics however, can vary for each cycle, requiring 

adjustment of the window size. Currently, the choice of window size can be informed through 

sensitivity analysis and the experimenter’s understanding the time dependence of the system’s 



  

 

  

dynamics. However, in future work, we aim to develop an algorithm to automatically determine 

window size.  

For a successful prediction, the ACF indicator should display a trend towards 1 prior to the 

transition Livina et al (2007), which has been time-stamped as the point of freezing. In a single 

experiment, seven freezing cycles were run on the same body of water. Figure 3 portrays four 

examples of cycles where an early indication was significantly apparent and provided an alert. 

ACF window size for cycles one, two, and seven was 50,000 data points (16 minutes 40 seconds), 

and for cycle four it was 10,000 data points (3 minutes 20 seconds). 

Figure 3. Tipping point results of four freezing cycles, all of which provided early detection prior to ice 
formation. 

In the cases of the first, second and seventh freeze, the indicators trend to 1 is clearly apparent 

and would be easy to identify with a simple automatic detection system. In the fourth freeze, there 

is a noticeable increase which could be identified by eye, but would depend on the sensitivity of 

the detection system. These results all provided an alert around 5-10 minutes prior to the freezing 

point. The further three cycles provided insufficient rise in indicator to provide an alert – they did 

not provide any false positives either. This means the ACF calculation did not find sufficient 

evidence to provide a rise. To understand why, we can first look at the temperature compensated 

strain values. Table 2 provides the strain values, extracted in each cycle using the temperature 

FBG for compensation in Equation 2. Using Equation 5 we can calculate the ice mass at freezing 

point, then provide an estimate for the real mass formed in the experiment (3.48 times greater 

than ݉ூ). 
 

 

 



  

 

  

Table 2. Strain on container wall in each cycle – bold text indicates successful predictions (cycles 1, 2, 4 
and 7).  

Cycle # 

 

Strain in FBG ߳଴ሺݐሻ 

Ɋߋ 

Temperature 

increase ߂ ௌܶ 
ƕ
C 

Calculated mass 

(݉ூሻ 

g 

Estimated mass 

(݉௜௖௘ሻ 

g 

1 28.687 1.760 11.086 38.579 

2 27.386 1.735 10.929 38.033 

3 32.604 1.443 9.090 31.633 

4 13.043 1.915 12.060 41.969 

5 13.042 1.750 11.020 38.350 

6 6.521 1.875 11.811 41.102 

7 22.826 1.361 8.398 29.225 

From this set of data and experimental set up, we can conclude that the measured strain is 

uncorrelated with the ice mass that forms at freezing. For example, cycle 4 had the largest 

temperature rise, thus largest estimated mass, but only the 5th highest strain. The reasons for this: 

ice does not form on the single instrumented wall alone and may not from equally on all walls, 

behavior of ice expanding is influenced by the open air and surrounding water, causing 

distribution of force to be unknown. Finally, why did the ACF react to the small strain witnessed 

in cycle 4, but not to the highest strain witnessed, cycle 3? This emphasizes that the ACF is 

calculated from the de-trended noise signal alone, ߳௡ሺݐሻ (Equation 3). A larger strain exerted on 

the wall should not lead to an increased probability of early detection of ice formation. However, 

considering the four successful indications, cycle 4 had the smallest measured strain and the most 

difficult to detect trend in the ACF. Therefore, perhaps the magnitude of the ACF indicator trend 

is dependent on the component strain, ߳଴ሺݐሻ, but the probability of prediction is dependent on 

only the dynamical behavior witnessed in the noise, ߳௡ሺݐሻ. This means to acquire a successful 

prediction that is easily detected, both dependencies are required to be met. 

3 CONCLUSION 

The work in this paper set out to determine if water-ice transitions could be predicted using tipping 

point analysis. The potential applications for this method include the prevention of freeze-thaw 

damage in concrete and ice build-up on wind turbine blades. Of the presented experimental data 

which included seven freezing cycles within an open container, four cycles provided successful 

predictions around 5-10 minutes prior to freezing point. The other three cycles showed no false 

positives, since the autocorrelation function indicator did not rise, demonstrating the potential of 

this method to be applied in a real world application to alert of an imminent ice formation. 

The choice of an open top container in an attempt to closely imitate some real world applications 

caused difficulty in modelling the system and exhibited random behavior during formation. For 

example, the strain did not correlate with mass due to the fact the location of ice formation is 

unknown and only one wall was instrumented. Perhaps instrumenting more walls would improve 

probability at the cost of more sensors. Nevertheless, promising results were acquired from the 

degenerate fingerprinting, as even strains in the magnitude of 13Ɋߋ presented alerts. In future 

work a closed container will be used, although less relatable to the real world applications 

discussed, it will remove any dependency on component strain, ߳଴ሺݐሻ, as this will be greater and 

less variable each cycle. With no air to displace, the force distribution should be equal throughout 

the container meaning one sensor should be sufficient. A more thorough model of strain relation 



  

 

  

to mass would also be possible. Further methods of tipping point analysis will be explored to 

determine the most effective for this application. 
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