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A B S T R A C T

Mini-grids for rural electrification in developing countries are growing in popularity but are not yet widely
deployed. A key barrier of mini-grid proliferation is the uncertainty in predicting customer electricity con-
sumption, which adds financial risk. Energy-use surveys deployed in the pre-feasibility stage that capture
present and aspirational consumption are intended to reduce this uncertainty. However, the general relia-
bility and accuracy of these surveys has not been demonstrated. This research compares survey-predicted
electrical energy use to actual measured consumption of customers of eight mini-grids in rural Kenya. A
follow-up audit compares the aspirational inventory of appliances to the realized inventory. The analysis
shows that the ability to accurately estimate past consumption based on survey or audit data, even in a rela-
tively short time-horizon is prone to appreciable error — amean absolute error of 426 Wh/day per customer
on a mean consumption of 113 Wh/day per customer. An alternative data-driven proxy village approach,
which uses average customer consumption from eachmini-grid to predict consumption at other mini-grids,
was more accurate and reduced the mean absolute error to 75 Wh/day per customer. Hourly load profiles
were constructed to provide insight into potential causes of error and to suggest how the data provided in
this work can be used in computer-aided mini-grid design programs.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Current access to modern energy services is neither universal nor
guaranteed. The World Energy Outlook (Birol, 2016) estimates that
1.2 billion people do not have access to electricity. Projections by
the IEA suggest that efforts to electrify Africa will slightly outpace
population growth but still leave leave half a billion still with-
out electricity by 2030 (Birol, 2015). Overall investment levels are
expected to reach US$30 billion annually in electricity access alone.
Within the range of solutions, renewables-based mini-grids are a
promising option owing to their relatively low initial investment
levels, scalability, and suitability for rural areas.

While of considerable interest as a marquee solution, the practi-
calities of implementation and operation ofmini-grids is challenging.
Often located in remote areas with difficult terrain and impover-
ished customers, the sustainability of mini-grids is far from guar-
anteed. Issues such as limited local technical and managerial skills,
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low energy demand, poor availability of supply components, and
unproven financingmodels have been noted as some of the problems
facing rural mini-grids (Azimoh et al., 2017).

Mini-grids are often designed to be financially viable once
installed and many developers are hoping this will pave the way
for commercial funding. Mini-grids are established on the princi-
ple of providing affordable energy for the rural population in their
service area while balancing the need for an acceptable level of
reliability and financial viability. Estimates place the costs of mini-
grid supplied energy above that from the centralized grid, ranging
from US$1.35/kWh to US$2.04/kWh compared to US$0.41/kWh to
US$0.80/kWh for grid extension (Action, 2016), although in some
scenarios mini-grids are cost-competitive (Nerini et al., 2016). For
proponents of mini-grids in developing countries, it is essential that
financial viability is a top priority.

The design of a mini-grid determines critical project parameters
such as mix of renewables, component sizing, and network design.
Clearly, these choices have a large impact on the overall financial
model and determine the cost of energy required to make the mini-
grid profitable. A common design approach is to use software such
as HOMER (Bekele and Tadesse, 2012; Díaz et al., 2011; Kolhe et
al., 2015; Olatomiwa et al., 2015; Rajbongshi et al., 2017). However,
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this approach requires accurate predictions of consumption profiles
to yield meaningful designs. Recent efforts to produce consump-
tion profiles for design purposes have used simulation techniques to
generate more realistic consumption profiles. However, the efforts
are still reliant on surveyed data as a primary input data (Boait
et al., 2015; Mandelli et al., 2016b). While the advantage of the
simulation techniques is an increased accuracy (mainly by the inclu-
sion of stochastic elements) of certain aspects of load variation, the
fundamental inaccuracy of the primary input data is not addressed.

Operational information for existing mini-grids is sparse, but is
becoming more common due to the use of low-cost data acquisition
systems (Blanchard and Little, 2016; Louie et al., 2016). Technical
design data that have been published are rarely accompanied with
an evaluation of the design suitability after installation.

Neither over- nor under-designing systems is desirable and it
may lead to a lack of sustainability. Given that many of the users
will gain access to electricity for the first time in their lives, pre-
dicting consumption based on past use is impossible. Alternatively,
a widespread practice is to employ energy-use surveys of potential
customers to predict consumption (GIZ, 2016).

The energy-use survey approach is common but receives little
coverage in the literature. As a result it is unclear how effective it is
at predicting consumption. This paper draws attention, in particular,
to the accuracy of the energy-use survey. It is of utmost importance
how a few survey questions are converted into a consumption pre-
diction for mini-grid sizing and the implications of errors in this
process.

Importance of energy prediction in mini-grid design

Although consumption prediction is a key element of system
design, critical reviews that compare predicted to actual values are
rare. Yet, recent research indicates that prediction errors can be con-
siderable; in Louie and Dauenhauer (2016) an average error of 305%
was reported.

Over-prediction of consumption leads to an over-sized system,
which reduces financial viability. Financial viability is widely noted
as a critical premise for successful projects (GIZ, 2016; Krithika and
Palit, 2013; World Bank, 2012). At best, a short-term problem of low
revenues may occur as customer ability to pay can have an upper
ceiling. Substitution of electricity with alternative energy sources
and low ability to pay limit the ability of the mini-grid owner to raise
prices to cope with low revenue generation. Failure of load growth
materializing over time represents a major investment risk and can
sink the project financially. In Louie and Dauenhauer (2016), it was
found that increasing system reliability from 99.7% to 99.9% (in terms
of total energy served) drastically reduced the number of systems
which could be deployed with an equal investment.

Under-prediction of consumption lowers reliability and avail-
ability of the system, potentially leading to serious issues that
undermine the technical sustainability of the system, for example,
reduction in battery lifespan (Government of New Zealand, 2010;
IEEE Working Group for Energy Storage Subsystems, 2007a; IEEE
Working Group for Energy Storage Subsystems, 2007b). Under-sized
systems can also present sustainability challenges that are non-
technical. For customers, reduced availability of the system can be
catastrophic when the loss of electrical service at, for example, a
maternity ward, may jeopardize lives (World Health Organization
and others, 2014). Businesses that cannot depend on the mini-grid
will face economic consequences and may employ coping strategies
by procuring diesel gen-sets (Rao et al., 2016). Lack of trust in the
system to provide reliable electricity may prevent people from pur-
chasing further appliances, thereby decreasing consumption growth.

Standard of practice of energy-use surveying

A survey-approach to energy estimation involves employing a
structured questionnaire to: take an inventory of current appliances

and likely (near-term) future appliances, determine power ratings
and predict daily usage of these appliances (GIZ, 2016; Meier et al.,
2010). An average daily energy requirement is then calculated and
aggregated for the entire mini-grid. Daily profiles, for example with
hourly resolution, can also be formulated if the surveys capture a
prediction of what time of day each appliances is used.

This basic structure of energy-use surveys have been present
in development programs at least since the 1990s (Ellegård and
Nordström, 2001; ESMAP, 1999; Gustavsson, 2007). A comprehen-
sive energy-use survey can be found in World Bank (2003). While
this may offer more structure than other simpler surveys, crucially,
all depend on respondent-supplied inputs. More recent literature
imply that the practice is still prevalent (Alzola et al., 2009; Camblong
et al., 2009; Ramchandran et al., 2016).

Challengeswithmeasuring energy demand in low-income house-
holds in developing countries have been acknowledged (Brook and
Smith, 2000). In their 2000 mini-grid design manual, ESMAP noted
that “. . . making load projections that reflect reality is frequency a

difficult task to accomplish, especially for perspective consumers who

have little experience with electrification” (Inversin, 2000). Unfamiliar-
ity with electricity, changes in behavior before and after installation,
and difficulty projecting future energy growth have been noted as
specific issues (Ustun, 2016). Furthermore, during design, hourly
time-series data for load profiles are typically needed, making the
task of estimating this evenmore difficult through a survey approach
(Mandelli et al., 2016a).

Alternative prediction approaches

Alternative energy prediction approaches have been proposed,
including use of experts, regression and census data.

The expert approach relies on expert knowledge and judgment
to predict consumption using a black-box approach, without specifi-
cally collecting individual data (Ghafoor and Munir, 2015). Although
simplistic, this approach has the benefit of low data gathering
requirements.

Regression can be used to map electricity consumption to
explanatory demographic variables, such as the number of people
living in the household, and presence of a flush toilet (Fabini et al.,
2014; Louw et al., 2008; Zeyringer et al., 2015). Census data of appli-
ance ownership and usage levels can be used to infer likely usage
patterns among newly connected customers. Thismethod essentially
assumes that the census samples and the target samples are drawn
from the same population (Askari and Ameri, 2012; Nouni et al.,
2008; Sen and Bhattacharyya, 2014).

Although these approaches produce a prediction of consump-
tion, none attempt to quantify the error. For practical purposes,
this leaves a mini-grid designer with few reliable options. These
alternative approaches add complexity, additional data and analysis
requirements, and costs. Expert-based approaches are the exception,
though use of this approach in an actual mini-grid project would be
questionable given the subjectivity involved. These obstacles rein-
force the practice of energy-use surveying which, in essence, has not
changedmuch in several decades and has not received sufficient crit-
ical attention. Consequently, the impact this has on sustainability
of the underlying systems, clearly a important issue for furthering
electricity access, is not fully known.

Study objectives and paper structure

This research evaluates the accuracy of the widely-employed
energy-use survey prediction method. An improved understanding
of the boundaries of error will assist mini-grid operators in assess-
ing the risk of consumption prediction error at the design stage.
Moreover, it provides them support for weighing the costs and ben-
efits of conducting surveys. The research is based on responses from



90 C. Blodgett et al. / Energy for Sustainable Development 41 (2017) 88–105

energy-use surveys for eight Kenyan mini-grids, actual measured
consumption over a 31-month period and a follow-up audit of a sub-
set of the customers. Survey, audit and select hourly consumption
statistics are included in the Appendix.

Following a description of the systems in Mini-grid description
section, we provide the survey methodology in Energy use survey
section. Analysis of measured data occurs in Consumption char-
acteristics section. The prediction errors are statistically analyzed
in Accuracy of energy-use production section. Results of a follow-
up audit are presented in Follow-up audit section. We evaluate an
alternative data-driven “proxy” method in Proxy approach of con-
sumption prediction section. An hourly analysis is performed in
Hourly load profile analysis section. Discussion section discusses the
practical importance of the results. In Conclusions and future work
section, we point toward future directions for this research.

Mini-grid description

This work considers eight commercial solar-powered mini-grids
installed in Kenya as described in Table 1. The mini-grids are owned
and managed by Vulcan, Inc., with on-the-ground operations man-
aged by SteamaCo. Two additional mini-grids were part of the orig-
inal data set, but due to limited data available on these systems,
they were omitted from the analysis. The mini-grids vary in capacity
from 1.5 kW to 5.6 kW and are located in different off-grid villages
in diverse socio-economic and geographical areas as shown in Fig. 1.
The mini-grids serve a variety of customer types, including house-
holds, businesses and social service institutions such as churches,
among others. The locations were selected based on socio-economic
data of nearly 50 communities, balancing potential for commercial
success with potential for community development and impact.

Technical description

A generic system diagram for a mini-grid is provided in Fig. 2.
The mini-grids are supplied by solar photovoltaic (PV) arrays. Energy
is stored in deep-cycle lead acid batteries with capacities ranging
from 20.5 to 41 kWh configured in either 24 V or 48 V strings. Charge
controllers with maximum power point tracking (MPPT) optimize
the energy converted by the photovoltaic arrays and prevent over-
charging of the batteries. Inverters supply 230 VAC at 50 Hz to the
customers. Customers are nominally provided a 13 A connection
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Fig. 1. Location of the mini-grids. The first three letters of each village are used for
identification.

and one compact fluorescent light bulb (CFL) upon connection. The
cloud-connected meters automatically disconnect customers when
their credit balanced drops to zero.

Technical data set

The mini-grids were installed at various times from September
2014 to April 2015. It is important to note that not all customers
within the same mini-grid were connected on the same date, and
that they did not necessarily begin their consumption at the same
time. The line to each customer was equipped with a SteamaCo
cloud-connected meter that measures and transmits energy con-
sumption with hourly resolution (SteamaCo, 2016). The data set
extends through 31 March 2017, spanning up to 31 months for some
customers.

As is expected with real-world data, the technical mini-grid data
required pre-processing and cleaning. Data corresponding to lines
that were installed but never used, had tenant changes, and those
with unclear survey responses were censored from the analysis.
Only customers with consumption data for at least 93% of the days
analyzed were considered.

In general, the mini-grids were designed to have excess capac-
ity in order to reliably supply customer demand. However, in
Entesopia on certain days — particularly after a series of rainy days —
customer supply was automatically interrupted due to low battery
voltage. This artificially lowers consumption. However, the inter-
ruptions occurred in the late evening when energy consumption
is low. For example, considering those days without interruptions,
the consumption between 20:00 and 4:00 averages just 10% of the
total daily consumption. To compensate, on days in which inter-
ruptions occurred, the measured consumption is increased by an
amount commensurate with the consumption that would likely have
occurred during the interruptions, based on historical consumption,
timing and duration of the interruption.

Any day where more than 30% of the consumption was estimated
to have been interruptedwas censored from the data set. The average
adjustment for days with service interruptions and are included in
the data set is just 2.9%, and so the effects of service interruptions
does not appreciably detract from the findings of this work.

Tariff structure and implementation

The tariff that each customer pays is structured using economy-
of-scale pricing, giving high-consumption customers discounts if
their electricity usage reaches a certain threshold. The tariff charged
varies between US$1.80/kWh to US$4.00/kWh, depending on the
level of consumption.

Energy use survey

Methodology

Data from an energy-use survey carried out at each mini-grid site
between June and November 2014 were provided by Vulcan, Inc.
The energy-use surveys were conducted by SteamaCo immediately
prior to installing the grid. Customers were asked about their current
appliances and the appliances that they hoped to acquire once they
had electricity access, although no time framewas specified. For each
appliance, the customer predicted their typical duration of use each
day.

After filtering for completeness, and clarity, energy-use surveys
of 176 customers were considered for this work.

Energy use prediction

As is the standard of practice, the results of the energy-use sur-
veys were used to predict average daily consumption according to:

Êg =
∑A

a=1 PaTa (1)
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Fig. 2. Representative schematic of a generic N-customer mini-grid.

where Êg is the predicted average daily energy consumption of
mini-grid customer g in watthours, A is the total number of appli-
ances, and Pa and Ta are the assumed adjusted power rating and
predicted hours of use of appliance a, respectively. Note that Pa
can be decomposed into pa × Ka where pa is the power rating of
the appliance and Ka is the loading percent of the appliance. The
loading percent reflects that certain appliances such as refrigera-
tors do not continuously consume rated power. The loading percent
is based on estimates or documented typical loading percentages
(Energy Information Administration, 2012). The appliances identified
by the energy-use surveys, alongwith the assumed power ratings are
provided in the Appendix.

Consumption characteristics

The analysis begins with the statistical characterization of the
measured consumption. The analysis is useful in contextualizing the
survey results and identifying ways that predictions of consumption
can be improved.

Appliance ownership and aspiration

Fig. 3 shows the total quantity of each appliance reported as being
owned or aspired to being owned in the energy-use survey. CFLs
and mobile phone chargers are the most common, and the median
number of appliances per customer is three.
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Fig. 3. Count of appliance ownership and aspirational ownership from the energy-use
survey.

Consumption trend

The prediction formulated in Eq. (1) is based on average usage
behavior and a specific inventory of appliances. It is not well-suited
for consumption that varies a-periodically over time, for example as
new appliances are added or discarded, or as usage habits or ability
to pay for electricity change. The value of even a highly accurate
prediction is diminished if it is only valid for a short amount of time.

Fig. 4 shows the average per-customer daily consumption plotted
against the number of days since their first use of mini-grid electric-
ity. The average is based on 161 customers that had a consumption
record of at least two years, independent of if they responded to
the energy-use survey. Linear interpolation was used to estimate the
consumption for missing days, if any. The first 15 days are censored
as many customers exhibited a short-term spike in consumption
immediately following connection.

The overall trend is that of increased consumption as time
progresses. Note that because customers did not necessarily begin
their consumption on the same day, the abscissa values cannot be
mapped to specific calendar days.

Also plotted in Fig. 4 is the best fitting — in a least squares sense —
exponential model:

Êmodel(t) = ae(bt) (2)

where Êmodel (t) is the modeled daily consumption, t is time in days
and the coefficients a = 111.7 and b = 0.00021. The R2 value of the
model is 0.12, suggesting that other variables influence consumption.
The b coefficient corresponds to an 8% increase in consumption
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Fig. 4. Trend of average per-customer daily energy consumption since day of first use.
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per year based upon this historical data set. However, the increase is
not monotonic, and the time-series of consumption does not appear
to be stationary, making it challenging for the mini-grid developer
to make practical use of a single-point prediction of consumption. It
also challenges the evaluation of the prediction’s accuracy.

To account for shorter-term fluctuations, in this research the
accuracy of the predictions is compared to actual consumption dur-
ing the year-long period from 30 November 2015 to 29 November
2016. In December 2016, a pilot appliance leasing program began in
Entesopia, so it is appropriate to select an end date prior to the pro-
gram’s start. At the start of the period, customers had been connected
to electricity for between 7 and 15 months, a reasonable balance of
new and established customers.

Village-level consumption

Examined next is the consumption characteristics of each mini-
grid. We consider only the 154 customers that have energy-use
survey responses and satisfied data-quality requirements for the
one-year period ending 29 November 2016. Fig. 5 shows a box plot
of the average daily consumption per customer in each mini-grid
considering the one-year period.

The center line of the box plot is the 50th percentile (median), the
box edges are the 25th and 75th percentiles; and the “+” are outliers.
Entesopia has the greatest daily median — 121 Wh, but the rest are
similar, ranging from 42 Wh to 81 Wh. The mean of Entesopia — 230
Wh — is inflated by several outliers, and is notably greater than the
other mini-grids, which average 84 Wh.

An Analysis of Variation (ANOVA) (Howell, 2010) was conducted
on the data. Briefly, ANOVA is a statistical hypothesis test between
the means of several sets of samples. The null hypothesis is that the
samples are from the same population. In the case of the mini-grid
data, the null hypothesis is equivalent to assuming that the cus-
tomers in, for example, Marti are no different than those in Entesopia
in terms of average daily energy consumption, and the variation in
averages is due to random chance alone. ANOVA provides informa-
tion on whether or not the null hypothesis should be rejected for a
given confidence level.

Using a confidence level of 0.05, the mean daily consumption of
the customers in Entesopia was found to be significantly different
from Barsaloi, Opiroi and Marti. All other comparisons among and
between the other villages, however, are not statistically significant
enough to reject the null hypothesis.

The result of the ANOVA test is surprising, given that the mini-
grids are in different locations, with different customer mixes and
local economies, yet from a statistical viewpoint, there is no evi-
dence of a difference between them, with the exception of Entesopia.
Importantly, it suggests that the mean daily consumption from one
grid can be used to accurately estimate the consumption of other
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Fig. 5. Box plot of average daily energy consumption per customer, grouped by
mini-grid.
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Fig. 6. Histogram of customer average daily energy consumption.

grids, with the particular exception of Entesopia. Indeed, Entesopia
owes it larger mean to a small number of outliers. This proxy predic-
tion method is explored further in Proxy approach of consumption
prediction section.

Individual consumption

Narrowing further, we next consider the characteristics of indi-
vidual customers. The distribution of average daily consumption for
each customer is provided in Fig. 6. The dashed line is the mean daily
consumption, 113 Wh, whereas the dotted line is the median con-
sumption, 58 Wh. The wide range of average consumption and the
skewness of the distribution can make accurate prediction particu-
larly challenging. It is worth noting that the top 10% of consumers —
thosewith average daily consumption exceeding 318 Wh— consume
46% of the total energy. It is therefore especially important to be
able to accurately predict the consumption of these high-consumers
when compared to other customers.

Averages hide the range of day-to-day consumption of the cus-
tomers. Twenty-six percent of the 55,767 individual customer-days
of considered data showed zero consumption. The median percent-
age of days with zero consumption when considering individual
customers is 13%. In other words, a typical mini-grid customer goes
without consumption four days per month. It is unclear exactly
why consumption is frequently zero. Possible explanations include:
inability to afford or ration energy credits or prolonged travel.

Accuracy of energy-use prediction

We now examine the accuracy of the survey-based energy pre-
dictions for the set of 154 customers with energy-use survey and
year-long consumption data. The first row of Table 2 provides the
actual daily energy consumption statistics, which is important to
refer to for context.

Table 1

Mini-grid characteristics.

Location Installation date No. of customers

Barsaloi Oct. 2014 58
Enkoireroi Sept. 2014 27
Entesopia Dec. 2014 63
Marti Apr. 2015 29
Merile Oct. 2014 27
Namba Koloo Sept. 2014 19
Olenarau Oct. 2014 29
Opiroi Oct. 2014 26

Total 276
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Table 2

Individual customer average daily consumption statistics.

n Min. (Wh) Median (Wh) Max. (Wh) Avg. (Wh) Total (kWh)

Actual 154 0.01 58 1063 113 17.4
Survey 154 16 193 9172 470 72.4

Energy use prediction

The bulk statistics of the predictions are provided in second row
of Table 2. The prediction error is computed as:

eg = Êg − Eg (3)

where Eg is the actual average daily consumption of the gth customer
and Êg is the prediction. Positive values of eg therefore indicate over-
prediction. Note that when considering bulk statistics of individual
errors, it is more meaningful to consider |eg| rather than eg. Predic-
tion errors are best expressed in watthours, rather than percentages,
as the consumption of a few customers is near zero, yielding cum-
bersomely high percent errors. Instead, the error is given context by
noting the average per-customer daily consumption is 113 Wh.

We first examine the distribution of errors, as shown in Fig. 7.
The error of the predictions are skewed toward over-prediction. The
severity of the over-prediction is most evident in the last column
of Table 2, showing the predicted total is more than four times the
actual. The error distribution also has a long tail — several errors are
greater than 2000 Wh. Unfortunately, this causes wide bounds asso-
ciated with the predictions: half of the errors lie outside the interval
[−32, 287] watthours; and ten percent of the errors are outside
[−240, 1830] watthours.

The absolute error statistics are found in the first row of Table 3.
The average per customer error is 426 Wh, which is considerable
given the average consumption is 113 Wh per day. This is notably
similar to the 305% error reported in Louie and Dauenhauer (2016),
which suggests wider applicability of the results. The Root Mean
Square Error (RMSE), which emphasizes large errors, reflects the long
tail of the distribution of error. The median error, which is less influ-
enced by outliers, is lower than the mean; it is 151 Wh. However,
it too is larger than the average consumption, showing that error
cannot be explained by a few poor predictions.

Of interest is the relative relationship between actual and pre-
dicted consumption, which is shown in Fig. 8. Each “+” in the figure
corresponds to a specific customer. The zoomed-in inset displays
greater detail. For reference, the diagonal corresponds to the trace of
error-less prediction and the dashed lines are ±25% prediction error.
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Fig. 7. Distribution of energy-use survey prediction errors. The 25th and 75th per-
centiles are shown as the dashed lines, and the 5th and 95th percentiles are the dotted
lines.

Table 3

Prediction error statistics.

Data set n Avg. Abs. error
(Wh)

Median Abs. error
(Wh)

RMSE
(Wh)

All days 154 426 151 1079
Zero days censored 154 421 142 1085

More than 70% of the predictions over-predicted consumption. The
linear correlation coefficient is 0.28, and is statistically significant
using a confidence level of 0.05. Although statistically significant, the
correlation coefficient itself is small, indicating that predictions of
high (low) consumption are not strongly associated with actual high
(low) consumption.

The influence of irregular consumption — the high percentage of
days with zero consumption — on prediction accuracy is considered
by censoring these days from the analysis. The second row in Table 3
shows the results. The error decrease is marginal, and the predictions
remain biased toward over-prediction.

Aggregate prediction

Whereas prediction of an individual customer’s consumption is
useful in deciding whether or not to connect that customer, aggre-
gate prediction is useful in sizing the critical components of the
mini-grid. Aggregate prediction is expected to reduce error because
individual over- and under-predictions offset each other.

The error statistics of individual and aggregate consumption,
grouped by village, are provided in Table 4. The fifth and sixth
columns are the aggregate and individual errors divided by the num-
ber of customers. The individual errors were discussed in Energy
use prediction section. Aggregation offers some improvement in the
error. However, the chronic bias toward over-prediction is evident,
as large errors remained after aggregation.

Overall, the results support the suspicion that the standard prac-
tice energy-use surveys lead to inaccurate and unreliable predic-
tions of average consumption. Over-prediction of consumption is
associated with systems with higher than required reliability and
increased capital costs (Louie and Dauenhauer, 2016). It is important
to contextualize the magnitude of this prediction error. In Louie and
Dauenhauer (2016), it was shown that for each watthour of over-
prediction, there was a concomitant increase in critical component
cost (battery and PV array) of up to US$6.08. For each customer, this
translates into a theoretical increase capital cost of US$918 assuming
over-prediction by the median error.
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Table 4

Aggregate prediction error statistics.

Data n Actual
(Wh)

Survey
(Wh)

Agg. error
(Wh/Cust.)

Individual error
(Wh/Cust.)

Barsaloi 29 1680 12,418 370 391
Olenarau 11 1352 2526 107 211
Enkoireroi 15 1246 7746 433 476
Entesopia 31 7132 19,703 405 581
Marti 24 2326 11,361 376 408
Merile 18 1794 14,676 716 727
Namba Koloo 7 301 1392 156 156
Opiroi 19 1565 2537 51 148
All 154 17,365 72,359 357 426

Follow-up audit

A possible explanation for errors in energy use surveys is their
prognostic nature. Respondents must estimate their future appliance
ownership and behavior. To explore the accuracy of these estima-
tions, a follow-up audit of actual appliance ownershipwas conducted
in Entesopia (n = 42) and Barsaloi (n = 44). A total of 48 customers
responded to both the survey and audit. The audits were conducted
from 29 Nov. 2016 to 1 Dec. 2016 in Entesopia and from 26–27 Jan.
2017 in Barsaloi. These locations were chosen as they have the great-
est amount of customers and they represent mini-grids with high
and low average consumption.

The following sub-sections discuss potential sources of error
which may have caused the differences between predicted and
actual demand. Potential sources of error include: number of
appliances, appliance rating, and hours of use.

Appliance inventory

Table 5 compares the appliances from the energy-use survey and
the audit. Only the top 15 appliances by number documented in the
audit are shown. The total quantity of some appliances in the survey
closely matches those in the audit, for example CFLs, TVs and radios.
Others show a wide discrepancy. However, the energy-use survey
tends to under-predict appliance ownership compared to the audit.

The accuracy of energy-use surveys to predict appliance owner-
ship tends to be low. The final column in Table 5 shows the percent
of respondents whose survey responses matched the audit for each
appliance. The calculation does not include those that indicated in
the energy-use survey they did not or would not own an appliance,
otherwise the accuracy for uncommonly owned appliances would be
high. Customers were error-prone in particular at predicting owner-
ship of all appliances other than CFLs and TVs. Not a single customer
was able to accurately predict their entire appliance inventory. It
is notable that most of the high-power devices such as cookers,

Table 5

Appliance ownership comparison.

Appliance Survey total Audit total Percent correct

Phone charger 17 115 0
CFL 117 93 18.8
LED 0 26 0
TV 26 23 29.4
TV decoder 0 14 0
Radio 12 14 4.0
DVD player 2 12 7.7
Woofer 2 7 0
Music system 4 6 11.1
Hair dryer 2 4 0
Freezer 1 4 0
Blow dryer 0 4 0
Desktop computer 0 3 0
Laptop computer 0 2 0
Fan 0 2 0

Table 6

Appliance rating comparison.

Appliance Energy Survey
(W)

Audit
Min. (W)

Audit
Avg. (W)

Audit
Max. (W)

CFL 8 9 11.1 20
DVD player 15 10 20.9 25
Hair dryer 150 900 900.0 900
Iron 1500 1100 1100.0 1100
Hot air gun 375 375 375.0 375
Laptop 80 60 60.0 60
LED light 5 5 6.9 20
Music system 150 25 52.5 80
Radio 10 18 26.2 50
TV 35 36 61.6 92
TV decoder 25 18 19.5 20

microwaves and kettles, that customers predicted that they would
have, were not found during the audit.

Appliance ratings

Energy-use surveys in general rely on assumptions of appliance
ratings. Table 6 shows the appliance ratings assumed in the energy-
use survey and those documented in the audit. Shown are only those
appliances that appeared in the energy-use survey and the audit,
and had accessible nameplate ratings during the audit. Assumed
and documented ratings of the other appliances are found in the
Appendix.

The assumed appliance ratings generally are within the range
of the minimum and maximum values documented in the audit.
Although the ratings did not match those documented in the audit,
the rating mismatch alone does not explain the observed large pre-
diction errors. In fact, replacing the assumed ratings in the energy-
use survey with the average documented in the audit increases the
error of the prediction.

Hours of use

Another source of error is in the hours of use of each appliance.
During the appliance audit, the customers were also asked to esti-
mate their average hours of use of each appliance in a similar fashion
as was done in the energy use survey. It must be borne in mind that
these are customer estimates of usage, and that comparing survey
predictionswith audit estimations explores response consistency and
not necessarily accuracy as actual duration of use was not measured.

Comparing the estimates made during the audit with the predic-
tions made during survey again shows a disconnect. Table 7 shows
the average number of hours of use of those respondents that indi-
cated at least one appliance of a given type in either the survey or
audit. For example, those indicating at least one CFL on the survey
and were found to have at least one during the audit originally pre-
dicted on average 4.1 h of usage, but estimated 3.0 h of usage during
the audit. Note that only one customer indicated a radio in the survey
and was found to have one in the audit, so this result might not be
generally representative. With the exception of TVs, which matched
reasonably well, the survey responses tended to predict increased
appliance use compared to the audit.

Table 7

Appliance duration of use comparison.

Appliance Survey Avg. Hrs. Audit Mean Hrs Percent match

CFL 4.1 3.0 15.0
TV 3.5 3.8 0
Radio 8.0 3.0 0
Phone charger 4.7 2.3 33.3
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Table 8

Predicted and estimated consumption errors.

Data set n Avg. Abs. error
(Wh)

Med. Abs. error
(Wh)

RMSE
(Wh)

Survey prediction 42 565 143 1563
Audit estimate 42 286 155 580

Estimation of energy consumption

We next construct an estimation of average consumption based
upon the findings of the appliance audit and the customer estima-
tion of usage. Here, the nuance between prediction and estimation
is important. Predictions, as based on the energy-use survey, can
be used in pre-implementation design and planning of a mini-grid.
The estimates are obtained post-implementation. Nonetheless, the
accuracy of the estimates can be considered a near-best case1 of
predictions, since they are based on actual appliance inventories
and customers’ recollection of recent consumption, which should be
more accurate than speculative prediction.

A total of 42 customers responded to both the energy-use survey
and the audit and had consumption data that satisfied data quality
requirements. The most recent 31 days prior to start of the appliance
audit for each grid is considered.

The error statistics of the estimations and predictions for this sub-
set of customers are provided in Table 8. For reference, the average
actual daily consumption for this subset of customers over that inter-
val is 182 Wh. As expected, the estimations are more accurate than
the predictions, 286 Wh compared to 565 Wh. The improvement
was largely due to a reduction in particularly high-error predictions,
as the RMSE reduced by over 60%, although the median increased
slightly to 155 Wh. Despite the improvements, the estimation error
remains high and is larger than the average consumption.

Proxy approach of consumption prediction

The overall results show that prediction errors from energy-
use surveys for commercial mini-grids remain unsatisfyingly high,
suggesting that alternative approaches be considered. To further
probe the potential of alternative prediction methods, we explore
a data-driven proxy approach. In this approach, given the results
of the ANOVA test discussed previously, the average consumption
of one mini-grid should provide a reasonably accurate prediction of
another.

For direct comparison, the same 154 customers from Accuracy
of energy-use production section are considered. For each mini-grid,
the average daily consumption per customer Egrid,v is computed as:

Egrid,v =
1
C

∑

g∈D

Eg (4)

where D is the set of considered customers in grid v, and C is the
number of customers in D. The error when grid j is used to predict
grid k is:

egrid,j,k = Egrid,j − Egrid,k. (5)

The actual consumption is based on the one-year period end-
ing 29 Nov. 2016. The results are provided in Table 9. The mean
error and mean of the absolute errors are provided in the last two

1 Assumptions were needed for appliances without nameplate ratings, and for load-
ing percentages, as detailed in the Appendix. These assumption introduce error aside
from estimations of duration of use.

columns. This approach offers a clear improvement in accuracy over
the energy-use survey approach, with average errors ranging from
−146 Wh to 67 Wh per customer. It must be noted that in this
exploratory analysis the data sets overlap in time, which would
be impossible in a real-world application. Nonetheless, the results
offer insight into the potential of data-driven proxy consumption
prediction approaches.

There are important implications of this result. If data sets are
widely available, these results suggest that mini-grid developers can
use them to better predict consumption than the common survey
approach.

This approach can likely be improved upon, for example, by
weighting the results based on the customer make-up — number
of businesses, households or other establishments connected to the
grid. However, this is beyond the scope of this work.

Hourly load profile analysis

While previous sections have addressed total daily usage at the
individual customer and aggregatemini-grid levels, it is equally valu-
able to consider the impact of energy-use-surveying as an input to
constructing hourly consumption profiles.

Computer-aided mini-grid design programs such as HOMER
require predictions of load profiles on an hour-by-hour basis as well
as parameters indicating the variability of consumption. Construct-
ing such a load profile should be more challenging and error-prone
than predicting the daily average alone because the timing of the
consumption must be specified. Methods and tools have been pro-
posed to construct load profiles based on appliance inventory and
ratings (Boait et al., 2015; Mandelli et al., 2016b). In these meth-
ods, random variables are used to model the likelihood that an
appliance will be used during any given time throughout the day.
Reasonable results can be obtained if the predictions of the appliance
inventory and power ratings are accurate, which can be a question-
able assumption, as shown in this paper. In addition, the designer
must have some knowledge of the distribution of the random vari-
ables used in the methods. Nonetheless, these methods are able to
construct load profiles which contain information related to peak
power demand and time-of-use consumption, which is missing from
a blanket daily average estimation.

Prototypical profiles

The hourly load profiles for 42 customers in Entesopia and Barsa-
loi were constructed based on the consumption from themost recent
31 days prior to the appliance audit. The load profiles were classified
into three groups based on time of consumption. In order to mean-
ingfully combine load profiles from customers whose average daily
consumption are different, the hourly data are normalized for each
user by dividing the hourly consumption by that user’s average total
daily consumption across all 31 days, that is:

E∗
hr,g[h] = Ehr,g[h]

∑D
d=1 Eday,g[d]

D
(6)

where E∗
hr,g[h] is the normalized hourly consumption of the gth cus-

tomer during hour h, Ehr,g[h] is the customer’s hourly consumption
on the hth hour, Eday,g[d] is the customer’s daily consumption on the
dth day, and D is the number of days considered. The normalized val-
ues for a given group and hour are treated as samples from the same
population and their statistics are computed for that hour, resulting
in a load profile. The statistical moments and select quantiles of the
load profiles for all groups are provided in the Appendix.

The first group, “Night Users”, consumed more than 75% of their
daily energy on average from 18:00 to 6:00. This corresponds to the
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Table 9

Per customer error of proxy method.

Predictor error (Wh/customer) Avg. Avg.

BAR ENK ENT MAR MER NAM OLE OPI egrid |egrid|

BAR – 25 172 39 42 −15 65 24 50 55
ENK −25 – 147 14 17 −40 40 −1 22 40
ENT −172 −147 – −133 −130 −187 −107 −148 −146 146
MAR −39 −14 133 – 3 −54 26 −15 6 40
MER −42 −17 130 −3 – −57 23 −17 3 41
NAM 15 40 187 54 57 – 80 39 67 67
OLE −65 −40 107 −26 −23 −80 – −41 −24 55
OPI −24 1 148 15 17 −39 41 – 22 41

hours in which solar input is generally not available, and so is sig-
nificant from a design perspective, as batteries are among the most
costly components of a mini-grid. A total of 18 (43%) customers are
in this group.

The corresponding load profile is shown in Fig. 9. A modified box
plot is generated for each hour, where the thick green line is the
mean value, the thin red line is themedian value, the “+” correspond
to the maximum and minimum values, and the whiskers extend to
the 5th and 95th quantiles. A prototypical Night User consumes the
majority of their energy in the six-hour window from 18:00 to 23:00,
but there is wide variation of usage during these hours.

The next group of users consumed more than 50% of their energy
between 6:00 and 18:00, and are referred to as “Day Users.” The

Time of Day (h)

4 8 12 16 20 24

P
er

. 
o
f 

A
v
g
. 
D

ai
ly

 C
o
n
su

m
p
ti

o
n
 (

%
)

0

20

40

60

80

100

Fig. 9. Prototypical load profile for Night User group. (For interpretation of the ref-
erences to color in this figure, the reader is referred to the web version of this
article.)
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Fig. 10. Prototypical load profile for Day User group.

load profile for this group is in Fig. 10. Only seven (17%) customers
are in this group. Many in this group were businesses or mixed
business/household customers. Day Users spread their consumption
over many hours, from 8:00 to 18:00. The peak occurs around 12:00.
Note that the ordinate has been truncated at 120% of average daily
consumption to better show the detail of the mean values. The max-
imum values can be found in the Appendix. During several daytime
hours, the maximum measured values exceeded 200% of the daily
average. This is indicative of intermittent energy-intensive activities
that can occur in businesses.

The remaining 17 (40%) customers are “Mixed Users”, with asso-
ciated load profile shown in Fig. 11. Like Night Users, Mixed Users
have a concentration of usage in the few hours following 18:00, but
unlike Night Users, they also consume during the day.

The load profiles could be used a starting point for a data-driven
load profile synthesis program. Although beyond the scope of the
present work, the statistical characteristics for each hour could be
used to model the distribution of consumption for each hour of the
day. A Monte Carlo approach could be used to draw samples for each
hour of interest, creating a time series of values. The values would be
multiplied by the an estimate or prediction of the customer’s average
daily consumption to produce a time series whose units are watts.
Such a method would be a compromise between top-down and
bottom-up approaches as detailed knowledge of appliances, ratings
and windows and probabilities of usage need not be explicitly mod-
eled. Rather, each customer would need to be classified as belonging
to one of the three groups and their average daily consumption pre-
dicted either by a proxy approach or surveys. Of course, this does
not escape the error in predicting the average daily consumption,
but it is a method for converting daily predictions into hourly val-
ues, which can then be used in mini-grid design programs such as
HOMER.
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Fig. 11. Prototypical load profile for Mixed User group.
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Table 10

Case studies audit data.

Appliance Quantity Rating
(W)

Duration
(h/day)

Est.
(Wh/day)

Actual
(Wh/day)

Case I 400 266
TV 1 80 5
Case II 3658 1995
CFL 3 11 3
Mobile phone 4 3.7 4
Hair dryer 1 900 2
Blow dryer 1 1700 1
Case III 81 391
CFL 2 11 3
Mobile phone 2 3.7 2

Case studies

Although proto-typical load profiles are useful understanding the
hourly consumption of a group of similar users, insight is also gained
from examining individual users as is done in the following three
brief case studies. The results from the appliance audit for these cases
is provided in Table 10. These case studies provide a micro-level
glance at some of the errors which may contribute to the inaccuracy
of load estimation.

Case I

The first case is a customer in Entesopia that is classified as a
Night User, with load profile in Fig. 12. The appliance audit shows
that only a television is powered by the mini-grid (a separate
solar home system is used for lighting). It is notable that the con-
sumption often exceeded the television’s rated power from 18:00
to 20:00. There are several possible explanations for this: allow-
ing neighbors to plug in additional appliances, inaccurate rating
or variable power consumption of the television, and appliances
not reported during the audit or a change in appliances owned.
Hourly consumption in excess of the sum of a customer’s appliance
ratings was observed in several customers. The inability of a sur-
vey or audit to capture this characteristic contributes to prediction
errors, and should be included in bottom-up load profile construction
methods.

The customer’s estimate of hours of usage reflects the window in
which the TV was primarily used, from 17:00 to 21:00, but not the
actual average hours of usage. If customers tend to estimate win-
dows of use, instead of duration of use, then it would explain the
tendency to overestimate consumption. Finally, even with this single
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Fig. 12. Load profile of Case I Night User.
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Fig. 13. Load profile of Case II Day User.

appliance, the range of hourly consumption varied considerably
during their peak hours of usage.

Case II

The second case is a Day User in Entesopia with load profile
in Fig. 13. This customer primarily uses electricity for high-power
appliances in their hair salon business. These appliances are likely
used intermittently throughout the daytime. As a result, the daytime
hourly distributions are non-Gaussian, exhibiting strong positive
skewness. Indeed, the median value is near zero even during late
morning and late afternoon hours, presumably when the business is
open. Non-Gaussian characteristics were observed formost hours for
most customers, independent of group.

This case highlights the special challenge of predicting consump-
tion of service-based businesses in which appliance use is dependent
on an intermittent, irregular flow of customers. Predicting or esti-
mating the cumulative daily duration of use of an appliance that
is used intermittently is likely more error-prone than of an appli-
ance that is only turned on and off once per day such as a light
or television. Models of hourly consumption would need to based
customer flow, which requires additional modeling and introduces
error. Methods that construct hourly load profiles using a bottom
up approach would need to incorporate in their formulations the
exclusions or dependencies of appliance use. For example, is it pos-
sible for the hair dryer and blow dryer to be used simultaneously?
Are the hair dryer and blow dryer used one after another as part of a
process?
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Fig. 14. Load profile of Case III Mixed User.
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Fig. 15. Aggregate hourly load profile for 19 customers in Entesopia.

Case III

The third case is a Mixed User in Barsaloi. From Table 10, the
audit showed only two CFLs and two mobile phones, yet their
actual consumption is five times what is estimated from the appli-
ance audit. There is no obvious explanation. It serves to highlight
that for some customers a survey or audit will not be reliable
input data for predicting average daily consumption or hourly load
profiles.

This customer’s profile, shown in Fig. 14, deviates from the pro-
totypical Mixed User. The customer’s mini-grid service is used to
power their business and home, which can explain the presence of
day and evening consumption. While the shapes of many customers’
individual load profiles generally correspond to the prototypical
profiles, some do not, as shown with this customer.

Aggregate profiles

When many customers are served by the same mini-grid, the
diversity of Night, Day and Mixed Users should reduce the observed
peak consumption and tend to flatten the aggregate load profile. The
aggregate profile for Entesopia and Barsaloi, are shown in Figs. 15
and 16. The profiles are based on the last 31 days of consump-
tion for the same 42 customers considered previously. Some days
within the 31-day window were censored because of missing hourly
data from one or more customers during this period. In Entesopia,
22 days are considered; in Barsaloi, 25 days are considered. Note
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Fig. 16. Aggregate hourly load profile for 23 customers in Barsaloi.

that the consumption data has not been normalized, as it is for the
prototypical load profiles.

The benefits of load diversification are apparent as the peak
loads from individual customers were not co-incidental. The sum
of the maximum customer hourly consumption for Entesopia is
3822 Wh/h, but the maximum aggregate demandwas 1507 Wh/h. In
Barsaloi, the diversification effect is less, but still meaningful, as the
sum of customer hourly maximums was 975 W/h but the maximum
hourly aggregate was 553 Wh/h.

Discussion

The energy-use surveying approach, from which the data were
drawn, followed the standard practice employed prior to installing
mini-grids in developing countries. Our primary conclusion is that
the prediction error derived from energy-use survey is unacceptably
high — alternative approaches are preferable such as the proxy-
method demonstrated herein or others mentioned in Alternative
prediction approaches section.

The preceding Sections showed that respondents over-estimated
their actual usage, with an average error of 3.3 times the actual
consumption. By querying historical use of appliances, the audit
removed the aspirational elements of the estimation – both for
ownership of appliances and in most cases, the power ratings of
the appliances – leaving only the time-of-use estimation uncer-
tain. Despite these advantages, audit-based estimations still erred by
286 Wh. The remaining error therefore seems likely to be heav-
ily influenced by the survey process itself and the respondent time
of use estimation. The hourly analysis suggested that respondents
might be fairly accurate at estimating the window of hours an appli-
ance might be used, but not the average hours of actual use in
that window. Further, estimating the average use of appliances used
intermittently was error-prone.

A proxy-method which assumes that the sample of customers
from one mini-grid can be drawn from the same population of the
customers of a mini-grid in planning yielded better results. Aver-
age unweighted absolute error of per customer prediction at one
village to another was 60.6 Wh. Exclusion of the one outlier mini-
grid, Entesopia, where a few large customers drove up per customer
usage, reduces the prediction error to 48.4 Wh. This method could
perhaps be combined with a proto-typical load profile to construct
an hourly time series of consumption.

Potential causes of error in energy use surveying

Sources of error within the survey process is well covered in
the literature. Specific examples are: interviewer bias (Freeman
and Butler, 1976; Kish, 1962), satisfying behavior (Krosnick, 1991),
respondent cognitive burden (Bradburn, 1978), evasive answer bias
(Warner, 1965), future estimation bias, cultural issues (Schwarz,
2003) and other forms of response bias. It is beyond the scope
of this paper to estimate the individual impacts these effects may
have had on energy use surveying. However, as respondent esti-
mation of time of use of appliances seems to be particularly
erroneous, it is worthwhile to start the discussion on how biases can
arise.

In the audit, there appeared to be a desire of the customer to
overstate their usage to accentuate the impression of a high cost bur-
den in hopes that this might influence the operator to reduce prices.
When asked during the follow-up audit the degree towhich the price
of electricity impacted usage, 68.4% and 51.2% of respondents at the
Barsaloi and Entesopia, respectively, responded that it had a high or
very high impact. It can be argued that at the time of the energy-
use survey, customers may have had difficulty when factoring in the
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Fig. 17. Consumption of an Entesopia customer with accurate 31-day estimation, but
poor long-term prediction of consumption.

price of energy in the estimate — effectively requiring an implicit
knowledge of their demand curve.

The time-perception issue when predicting appliance energy use
and ownership seemed problematic. In forward-looking surveys,
aspirational usage is meant to capture likely growth such that the
design will not immediately be overcome by a growing demand. A
yearly 8% growth over the first two years was shown for the mini-
grids in this study. Yet with a point estimate of future use, even if
perfectly accurate, will only be so for a short period in the future.
Thus, a design that planned for 16% on top of immediate consump-
tion will be over-designed for the first two years and under-designed
thereafter.

The audit demonstrated how some respondents grappled with
the time issue. Fig. 17 shows a customer who was quite accurate
in estimating their last 31-days of average consumption, but had
relatively poor prediction of consumption.

The energy prediction in (1), though conceptually simple and
widely employed, has several drawbacks. Appliance ratings can vary
widely among the same type of appliance. For example one study
found that depending on the specific model, DVD players consume
between 5 and 17 W (Lawrence Berkeley National Laboratory, 2017).
If the survey respondent does not already own the appliance, it is
challenging to know which value to select. It is also problematic
to assign a loading percent to certain appliances. For example, the
power consumed by music systems at least partially depends on the
volume and even the type of music played (JBL Corp., 2017), and
for other appliances there is no documented typical loading percent.
Stand-by consumption of appliances — the power they consumed
when turned off — further complicate and potentially add error to
this formulation (Lawrence Berkeley National Laboratory, 2017). The
hourly profiles showed that power consumption in excess of the total
power ratings were common, suggesting that the appliance power
draw is variable or inaccurate or that unreported appliances were
used.

Implications for future practices

Mini-grid design requires a reliable prediction of consumption in
order to size its critical components to be both reliable and econom-
ically viable. The use of energy-use surveys to predict consumption
has been shown to be prone to significant errors from within the
survey process itself, suspected to be from response and interviewer
biases.

Use of the proxy-method is a simple and preferable approach
where mini-grid load demand data sets can shared. When surveys
are used for design purposes, this research suggests added scrutiny

over the energy-use survey process itself and caution over the
results which, on an average consumption of 113 Wh, can error by
±426 Wh. Ensuring reliability of the system with these error bounds
suggest a roughly four-fold increase in sizes of themajor components
which is unlikely to be economically possible.

Improvements to the energy-use survey are needed to increase
its accuracy. Until more data sources are made widely available of
mini-grid operational data, energy-use surveying is likely to remain
the prevailing practice. Researchers and practitioners need to revisit
this approach to bemore aware of the cognitive challenge for respon-
dents of such a survey. Efforts to reduce the burden of responses
are needed, for example by clearly defining the terms of use in the
future such as likely expense levels and availability of the system.
Another approach would be to sensitize potential customers to the
functionality, limitations and costs of appliance ownership prior to
design. Furthermore, responses aimed at influencing the mini-grid
operator’s decisions may play a larger role in introducing error than
previously thought. Finally, identification and further vetting of cus-
tomers who are predicting relatively heavy consumption is needed
to reduce their error in prediction.

From a research perspective, and with sufficient scope to conduct
the analysis, this paper has argued that increased accuracy can be
achieved through the proxy-method. Practically, this is not always
possible for a project to undertake. Mini-grid designs which must
depend on energy-use surveys as primary load data can, as much
as possible, design for flexibility and modularity when up-/down-
scaling is needed after consumption is known.

Conclusions and future work

This paper evaluated the accuracy of the standard practice of con-
ducting energy-use surveys prior to implementation of mini-grid
projects in developing countries. These surveys provide a key input
to mini-grid design (a profile of demand) constructed by taking an
inventory of each household’s current and aspirational appliances:
the type, power rating, and expected time of use. Operational data
from eight mini-grids in Kenya covering over two years of data was
used to assess the prediction errors.

Predictions were poor, with error arguably most influenced
by duration of use estimations and the general survey approach.
Building a mini-grid system fit for the estimated demand, which had
a mean absolute error of 426 Wh on a mean consumption of 113 Wh
per day per customer, would nominally cost four-times the amount
when compared to a system built to meet actual demand. This excess
spend significantly affects the viability of the business model.

The use of a data-driven proxy village method, which used mean
customer consumption from eachmini-grid to predict customer con-
sumption from other mini-grids, was a more accurate approach,
reducing mean absolute error to 42.4 Wh. This discovery highlights
the importance of sector-wide sharing and aggregation of mini-grid
consumption data. Construction and analyses of hourly consumption
profiles, and comparison to predictions and appliance ownership
provided further insights: hourly consumption exceeding the total
rating of the appliances was common; and, for some customers, their
load profile could not be reconciled with their appliance audit or
estimated hours of use. Most, but not all, users exhibited one of
three prototypical load profiles, which could be used in conjunc-
tion with a prediction of daily average consumption to formulate
a load profile. The aggregate hourly profiles showed the impact of
diversification in reducing peak demand. This research has indicated
that caution is warranted when using energy-use survey results
for design activities. Furthermore, the energy-use errors reported
support the need for a renewed attention to reducing error from
energy-use surveying methods, as well as research into alternative
load prediction methods.
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Appendix A

Appliance-specific power ratings and assumed loading percentage for the appliances are provided in Table 11. The ratings shown under
the Survey heading are the assumed ratings inclusive of the loading percent adjustment, and were provided to authors along with the survey
results. The audit ratings are the appliance nameplate rating. Note that an “*” indicates that the nameplate power rating was not found for all
appliances for a given type; in these cases, the power rating was estimated. For some appliances, the loading percent is based on additional
information provided by the customer and so the values shown might not be generally representative. The appliances listed are those that
appeared in the energy-use survey responses of the 154 customers considered in Accuracy of energy-use production section or in the audit of
the 42 customers considered in Estimation of energy consumption section.

Table 11

Appliance ratings.

Appliance Survey
(W)

Audit Min.
(W)

Audit Avg.
(W)

Audit Max.
(W)

Audit Load
Per. (%)

Air pump – – 180* – 10
Blow dryer – 375 1369 1700 100
CFL 8 9 11 20 100
Cables 30 – – – –
Cooker 5000 – – – –
Desktop computer – 225 225 225 33
DVD player 15 10 21 25 100
Fan – – 20* – 100
Florescent tube light – 18 18 18 100
Freezer – – 19 – 100
Hair dryer 900 900 900 900 100
Hot air 375 375 375 375 100
Lamp 9 – – – –
Kettle 2000 – – – –
Laptop 80 60 60 60 40
LED light 5 5 7 20 100
Microwave 900 – – – 100
Music system 150 25 52.5 80 100
Phone charger 5 – 3.7* – 100
PA system w / mixer – – 300* – 100
Printer 150 – 65 – 100

Table 12

Appliance ratings continued.

Appliance Survey (W) Audit Min. (W) Audit Mean (W) Audit Max. (W) Load Per. (%)

Shaver 10 – – – –
Soldering iron – 40 40 40 100
Radio 10 18 26 50 100
Refrigerator 40 – – – –
Rolling kit (for hair) – 12 12 12 100
TV 35 36 61 92 100
TV decoder 25 18 19.5 20 100
Welding machine – – 3120 – 10
Woofer 50 15 22 30 100

The actual average daily consumption for the one year period 30 November 2016 to 29 November 2017, energy-use survey predicted and
audit-estimated consumption are provided in Tables 13–15. Only customers with energy-use survey responses are shown.
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Table 13

Data summary.

ID Grid Actual (Wh) Survey (Wh) Audit (Wh) ID Grid Actual (Wh) Survey (Wh) Audit (Wh)

1 BAR 192 530 308 27 BAR 52 96 213
2 BAR 53 169 148 28 BAR 69 1130 62
3 BAR 34 24 416 29 BAR 11 690 –
4 BAR 87 185 580 30 ENK 79 610 –
5 BAR 34 32 165 31 ENK 80 107 –
6 BAR 37 16 72 32 ENK 338 63 –
7 BAR 83 16 116 33 ENK 181 1023 –
8 BAR 35 1992 – 34 ENK 163 314 –
9 BAR 83 380 104 35 ENK 45 1013 –
10 BAR 27 80 88 36 ENK 18 48 –
11 BAR 34 80 61 37 ENK 101 58 –
12 BAR 103 32 349 38 ENK 23 1058 –
13 BAR 49 285 81 39 ENK 91 88 –
14 BAR 65 1070 – 40 ENK 14 1005 –
15 BAR 16 96 96 41 ENK 58 188 –
16 BAR 228 96 444 42 ENK 35 2008 –
17 BAR 26 225 141 43 ENK 3 100 –
18 BAR 46 64 – 44 ENK 20 63 –
19 BAR 43 2845 125 45 ENT 29 114 –
20 BAR 32 290 120 46 ENT 1068 139 808
21 BAR 27 80 – 47 ENT 121 32 586
22 BAR 42 192 339 48 ENT 373 118 1127
23 BAR 21 80 177 49 ENT 319 148 400
24 BAR 13 364 – 50 ENT 98 133 –
25 BAR 107 344 693 51 ENT 321 99.5 476
26 BAR 27 935 76 52 ENT 89 66 371

Table 14

Data summary continued.

ID Grid Actual (Wh) Survey (Wh) Audit (Wh) ID Grid Actual (Wh) Survey (Wh) Audit (Wh)

53 ENT 843 5242 602 79 MAR 19 1360 –
54 ENT 387 128 3658 80 MAR 4 244 –
55 ENT 608 375 521 81 MAR 56 244 –
56 ENT 40 51 – 82 MAR 79 300 –
57 ENT 135 67 – 83 MAR 7 588 –
58 ENT 92 210 191 84 MAR 34 295 –
59 ENT 132 16 665 85 MAR 58 244 –
60 ENT 186 98 – 86 MAR 94 244 –
61 ENT 71 156 – 87 MAR 71 446 –
62 ENT 0 32 26 88 MAR 98 94 –
63 ENT 84 157 – 89 MAR 34 320 –
64 ENT 211 48 – 90 MAR 132 280 –
65 ENT 188 83 970 91 MAR 149 240 –
66 ENT 724 9172 632 92 MAR 30 146 –
67 ENT 304 296 547 93 MAR 30 3712 –
68 ENT 32 276 260 94 MAR 55 728 –
69 ENT 31 193 29 95 MAR 61 225 –
70 ENT 43 193 210 96 MAR 29 225 –
71 ENT 58 193 90 97 MAR 355 225 –
72 ENT 37 555 362 98 MAR 596 374 –
73 ENT 0 424 29 99 MAR 106 366 –
74 ENT 59 424 – 100 MER 162 558 –
75 ENT 450 464 875 101 MER 10 558 –
76 MAR 22 241 – 102 MER 147 496 –
77 MAR 135 110 – 103 MER 47 32 –
78 MAR 72 110 – 104 MER 102 512 –

Table 15

Data summary continued 2.

ID Grid Actual (Wh) Survey (Wh) Audit (Wh) ID Grid Actual (Wh) Survey (Wh) Audit (Wh)

105 MER 25 48 – 130 OLE 99 21 –
106 MER 271 689 – 131 OLE 81 121 –
107 MER 8 482 – 132 OLE 759 261 –
108 MER 58 69 – 133 OLE 54 156 –
109 MER 54 16 – 134 OLE 5 261 –
110 MER 375 767 – 135 OLE 83 121 –
111 MER 41 528 – 136 OPI 83 48 –
112 MER 55 759 – 137 OPI 147 24 –
113 MER 19 5740 – 138 OPI 219 48 –
114 MER 1 32 – 139 OPI 58 220 –
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Table 15 (continued)

ID Grid Actual (Wh) Survey (Wh) Audit (Wh) ID Grid Actual (Wh) Survey (Wh) Audit (Wh)

115 MER 11 3022 – 140 OPI 77 16 –
116 MER 8 16 – 141 OPI 111 24 –
117 MER 402 352 – 142 OPI 70 32 –
118 NAM 24 64 – 143 OPI 11 64 –
119 NAM 26 64 – 144 OPI 409 126 –
120 NAM 161 514 – 145 OPI 40 114 –
121 NAM 2 214 – 146 OPI 71 238 –
122 NAM 42 64 – 147 OPI 65 16 –
123 NAM 35 208 – 148 OPI 86 16 –
124 NAM 12 264 149 OPI 20 391 –
125 OLE 117 356 – 150 OPI 55 348 –
126 OLE 5 21 – 151 OPI 2 16 –
127 OLE 47 166 – 152 OPI 16 46 –
128 OLE 86 921 – 153 OPI 2 656 –
129 OLE 15 121 – 154 OPI 24 94 –

The mean (l), standard deviation (s), skewness (c) and kurtosis (b) and quantiles for the load profiles are provided in Table 16 to Table 20.
The quantiles, denoted Q( • ), are computed by first constructing an empirical inverse cumulative distribution function, F−1(x), from the data
set and then evaluating F−1(0.05), F−1(0.25), F−1(0.50) (median), F−1(0.75), and F−1(0.95). The Night, Day and Mixed User data are expressed
in percent of average daily load.

Table 16

Hourly distribution statistics — night users (n = 18).

Hr Min. (%) Q(5) (%) Q(25) (%) Q(50) (%) Q(75) (%) Q(95) (%) Max (%) l (%) s (%) c b

1 0.0 0.0 0.0 0.0 0.0 11.1 32.0 1.2 3.6 3.81 20.1
2 0.0 0.0 0.0 0.0 0.0 6.2 38.7 0.9 3.1 5.61 49.1
3 0.0 0.0 0.0 0.0 0.0 5.3 18.2 0.7 2.5 4.50 23.9
4 0.0 0.0 0.0 0.0 0.0 2.8 18.1 0.6 2.3 5.13 30.2
5 0.0 0.0 0.0 0.0 0.0 4.3 33.4 0.6 2.5 7.65 81.9
6 0.0 0.0 0.0 0.0 0.0 8.3 34.6 1.3 4.3 4.77 28.2
7 0.0 0.0 0.0 0.0 0.7 7.4 47.7 1.3 3.9 6.08 54.9
8 0.0 0.0 0.0 0.0 0.7 8.3 35.4 1.5 4.2 4.89 32.3
9 0.0 0.0 0.0 0.0 0.3 6.7 23.5 1.1 2.9 3.73 19.8
10 0.0 0.0 0.0 0.0 0.0 8.0 39.6 1.3 3.9 5.11 37.0
11 0.0 0.0 0.0 0.0 0.3 10.6 189.1 2.1 10.0 13.58 234.4
12 0.0 0.0 0.0 0.0 0.3 8.2 86.9 1.5 5.2 9.60 136.8
13 0.0 0.0 0.0 0.0 0.2 7.4 57.5 1.4 4.3 6.70 67.9
14 0.0 0.0 0.0 0.0 0.0 6.7 36.1 1.1 3.3 5.04 38.2
15 0.0 0.0 0.0 0.0 0.0 7.1 70.9 1.4 5.0 8.49 97.3
16 0.0 0.0 0.0 0.0 0.0 6.0 22.9 1.0 2.7 4.12 24.7
17 0.0 0.0 0.0 0.0 1.2 8.4 56.1 1.6 4.6 6.06 54.2
18 0.0 0.0 0.0 4.9 12.6 34.7 84.2 8.8 11.8 2.21 9.6
19 0.0 0.0 5.7 17.6 31.2 42.4 94.9 19.1 16.1 1.04 5.1
20 0.0 0.0 6.9 19.0 30.2 45.9 97.6 19.9 16.6 1.30 6.4
21 0.0 0.0 0.0 11.2 24.8 43.9 80.5 14.8 14.7 0.98 3.7
22 0.0 0.0 0.0 3.3 14.3 33.3 96.0 8.8 12.1 2.00 9.0
23 0.0 0.0 0.0 0.0 6.6 24.7 84.8 4.6 9.0 3.24 19.3
24 0.0 0.0 0.0 0.0 1.0 14.8 38.8 2.4 5.6 2.94 12.9

Table 17

Hourly distribution statistics — day users (n = 7).

Hr Min. (%) Q(5) (%) Q(25) (%) Q(50) (%) Q(75) (%) Q(95) (%) Max (%) l (%) s (%) c b

1 0.0 0.0 0.0 0.0 0.0 0.8 24.0 0.6 3.3 6.07 39.1
2 0.0 0.0 0.0 0.0 0.0 0.3 21.7 0.5 2.9 6.13 39.9
3 0.0 0.0 0.0 0.0 0.0 0.5 20.4 0.3 2.1 7.37 59.9
4 0.0 0.0 0.0 0.0 0.0 0.5 10.8 0.2 0.9 8.90 93.1
5 0.0 0.0 0.0 0.0 0.0 0.1 12.5 0.1 0.9 12.26 163.4
6 0.0 0.0 0.0 0.0 0.0 3.1 9.4 0.3 1.1 4.85 30.1
7 0.0 0.0 0.0 0.0 0.0 12.5 34.9 1.5 4.5 4.07 22.4
8 0.0 0.0 0.0 0.0 2.7 25.5 220.2 4.4 16.8 10.32 130.0
9 0.0 0.0 0.0 0.0 3.7 34.4 213.3 6.6 19.3 6.70 65.1
10 0.0 0.0 0.0 0.0 4.9 43.7 103.2 6.9 15.3 3.08 13.9
11 0.0 0.0 0.0 0.0 9.4 38.2 96.3 8.2 16.4 2.93 12.6
12 0.0 0.0 0.0 0.0 10.1 39.3 195.4 9.2 23.0 5.39 39.6
13 0.0 0.0 0.0 0.0 6.9 34.6 168.3 8.1 18.9 4.69 32.9
14 0.0 0.0 0.0 0.0 6.2 32.5 251.5 7.7 22.6 7.33 72.0
15 0.0 0.0 0.0 0.0 3.9 30.0 96.3 5.1 12.8 4.16 24.5

(continued on next page)
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Table 17 (continued)

Hr Min. (%) Q(5) (%) Q(25) (%) Q(50) (%) Q(75) (%) Q(95) (%) Max (%) l (%) s (%) c b

16 0.0 0.0 0.0 0.0 3.1 28.0 264.9 6.4 25.3 7.60 68.8
17 0.0 0.0 0.0 0.0 3.2 25.0 230.5 5.2 18.9 8.74 98.1
18 0.0 0.0 0.0 0.0 3.8 50.9 182.4 7.1 20.3 4.88 33.2
19 0.0 0.0 0.0 0.0 4.4 40.5 76.8 7.0 15.9 2.90 11.0
20 0.0 0.0 0.0 0.0 2.8 37.4 59.9 5.8 12.7 2.31 7.5
21 0.0 0.0 0.0 0.0 0.2 31.3 54.2 4.6 11.1 2.44 8.0
22 0.0 0.0 0.0 0.0 0.0 26.2 34.7 2.4 7.4 3.13 11.4
23 0.0 0.0 0.0 0.0 0.0 2.7 28.6 1.0 4.7 5.16 28.5
24 0.0 0.0 0.0 0.0 0.0 1.7 27.6 0.7 4.0 5.87 36.8

Table 18

Hourly distribution statistics — mixed users (n = 17).

Hr Min. (%) Q(5) (%) Q(25) (%) Q(50) (%) Q(75) (%) Q(95) (%) Max (%) l (%) s (%) c b

1 0.0 0.0 0.0 0.0 0.0 2.8 28.6 0.5 2.6 6.22 47.9
2 0.0 0.0 0.0 0.0 0.0 0.6 32.7 0.4 2.5 7.99 79.4
3 0.0 0.0 0.0 0.0 0.0 0.0 16.4 0.3 1.8 6.99 54.4
4 0.0 0.0 0.0 0.0 0.0 0.5 20.4 0.3 1.9 8.03 75.2
5 0.0 0.0 0.0 0.0 0.0 3.0 16.4 0.5 2.0 5.60 37.7
6 0.0 0.0 0.0 0.0 1.1 8.6 31.6 1.3 3.2 3.65 22.4
7 0.0 0.0 0.0 0.0 1.2 8.5 37.9 1.4 3.5 4.48 33.3
8 0.0 0.0 0.0 0.0 3.1 12.8 36.3 2.5 4.9 3.01 14.0
9 0.0 0.0 0.0 0.0 3.5 16.2 82.8 3.2 6.5 4.96 48.2
10 0.0 0.0 0.0 0.0 4.2 18.8 61.6 3.5 6.7 3.11 17.3
11 0.0 0.0 0.0 0.0 5.0 17.3 51.5 3.7 6.9 2.83 13.5
12 0.0 0.0 0.0 0.0 4.9 16.5 76.1 3.8 7.3 3.71 25.3
13 0.0 0.0 0.0 0.0 5.8 16.3 80.6 4.0 7.7 4.27 31.6
14 0.0 0.0 0.0 0.0 4.7 18.1 54.8 3.5 6.6 3.00 14.7
15 0.0 0.0 0.0 0.0 3.5 15.0 66.9 3.3 6.9 4.27 28.6
16 0.0 0.0 0.0 0.0 3.6 14.8 74.6 3.1 6.7 4.43 33.6
17 0.0 0.0 0.0 0.0 4.1 14.6 34.1 3.1 5.3 2.43 10.1
18 0.0 0.0 0.0 3.8 10.8 34.9 87.7 8.2 12.2 2.63 11.7
19 0.0 0.0 2.1 14.3 21.5 40.6 109.6 16.3 16.8 2.37 11.9
20 0.0 0.0 0.5 14.5 20.8 49.1 109.6 16.5 17.8 2.37 11.1
21 0.0 0.0 0.0 6.8 15.4 40.0 98.6 10.8 15.5 2.71 12.2
22 0.0 0.0 0.0 0.0 5.4 21.1 87.7 5.2 12.2 4.30 25.2
23 0.0 0.0 0.0 0.0 0.0 15.6 82.1 2.6 8.8 6.11 48.8
24 0.0 0.0 0.0 0.0 0.0 7.4 62.4 1.1 4.9 7.31 73.3

Table 19

Hourly aggregate distribution statistics — Entesopia.

Hr Min. (Wh) Q(5) (Wh) Q(25) (Wh) Q(50) (Wh) Q(75) (Wh) Q(95) (Wh) Max (Wh) l (Wh) s (Wh) c b

1 7.0 14.8 30.0 68.5 119.0 223.0 223.0 83.6 66.0 0.89 2.7
2 0.0 7.2 18.0 60.5 99.0 250.6 388.0 75.5 84.0 2.44 9.8
3 4.0 7.0 14.0 28.3 69.3 152.6 158.0 47.2 45.4 1.33 3.7
4 9.0 9.6 11.0 19.0 27.0 59.8 97.0 22.9 18.7 2.92 12.3
5 0.0 0.6 7.0 15.0 21.0 61.8 78.0 19.1 18.1 1.81 6.3
6 0.0 0.0 11.0 18.5 35.0 143.4 174.0 31.1 41.0 2.52 8.7
7 8.0 8.6 26.0 65.0 133.0 567.8 848.0 126.0 185.5 2.94 11.7
8 3.0 6.0 69.0 99.5 269.0 640.2 717.0 180.9 190.8 1.53 4.5
9 2.0 5.0 79.3 160.5 224.0 630.8 635.0 205.7 193.6 1.27 3.4
10 6.0 19.2 106.0 173.5 346.0 938.8 1162.0 278.7 294.2 1.62 4.9
11 57.0 75.6 146.0 296.5 755.0 1163.8 1231.0 410.8 344.2 1.08 3.0
12 59.0 80.6 186.0 367.5 632.0 1240.0 1507.0 448.7 361.4 1.42 4.6
13 93.0 148.8 233.0 409.0 528.0 971.8 1018.0 436.3 268.7 1.01 2.8
14 11.0 69.8 223.0 376.5 689.0 1081.6 1294.0 471.2 324.4 0.79 2.9
15 17.0 39.8 203.0 285.0 529.0 993.8 1211.0 374.0 285.7 1.31 4.5
16 129.0 134.4 206.0 355.5 469.0 907.6 1015.0 391.1 233.9 1.04 3.6
17 25.0 119.8 246.0 366.5 438.0 664.0 706.0 363.8 154.6 0.20 3.2
18 115.0 308.8 627.0 669.5 815.0 1279.8 1326.0 731.5 263.4 0.40 4.0
19 190.0 425.8 609.0 749.5 808.0 925.0 928.0 717.0 162.3 −1.44 6.0
20 175.0 178.6 516.0 608.5 723.0 978.2 1031.0 589.5 237.5 −0.19 2.4
21 181.0 181.0 243.0 404.0 548.0 757.8 792.0 423.0 192.5 0.30 1.9
22 96.0 114.0 153.0 238.0 385.0 572.8 583.0 285.1 156.8 0.67 2.1
23 35.0 56.6 100.0 148.0 253.0 382.6 412.0 179.0 105.0 0.73 2.4
24 17.0 21.2 57.0 98.0 128.0 321.4 358.0 119.3 90.7 1.40 4.1
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Table 20

Hourly aggregate distribution statistics — Barsaloi.

Hr Min. (Wh) Q(5) (Wh) Q(25) (Wh) Q(50) (Wh) Q(75) (Wh) Q(95) (Wh) Max (Wh) l (Wh) s (Wh) c b

1 0.0 0.0 2.0 8.0 21.0 52.5 66.0 14.4 17.0 1.60 4.9
2 0.0 0.0 1.5 5.0 9.0 18.3 25.0 6.3 6.1 1.23 4.5
3 0.0 0.0 0.0 2.0 6.3 11.3 15.0 3.7 4.5 0.89 2.7
4 0.0 0.0 0.0 2.0 6.3 15.3 16.0 3.9 4.9 1.26 3.5
5 0.0 0.0 2.0 7.0 16.3 33.3 37.0 10.3 11.0 1.18 3.2
6 12.0 12.8 20.5 29.0 49.5 65.3 66.0 34.2 17.1 0.51 1.9
7 8.0 10.3 20.0 31.0 49.8 74.8 77.0 33.9 19.9 0.78 2.6
8 14.0 14.8 38.8 54.0 77.7 131.7 158.0 61.0 34.9 0.90 3.7
9 17.0 27.5 36.3 63.0 102.0 166.0 229.0 73.6 47.3 1.50 5.6
10 26.0 26.8 40.8 73.0 99.5 155.5 241.0 77.5 45.3 1.83 7.8
11 27.0 31.5 46.0 75.0 104.5 170.5 235.0 81.0 45.1 1.58 6.5
12 25.0 26.5 45.8 67.0 96.0 151.3 182.0 74.6 36.9 1.07 4.1
13 16.0 22.8 48.0 59.0 83.0 158.3 240.0 71.2 45.0 2.24 9.0
14 13.0 13.0 22.5 43.0 64.2 135.3 193.0 49.8 38.9 2.16 8.5
15 15.0 15.8 22.0 37.0 61.0 132.8 156.0 47.7 36.2 1.54 4.7
16 11.0 11.0 27.3 39.0 74.2 123.0 126.0 49.4 32.6 0.90 3.0
17 14.0 14.0 24.0 36.0 53.5 96.5 119.0 43.2 26.1 1.19 4.0
18 46.0 46.8 65.8 102.0 152.5 208.0 214.0 110.7 51.2 0.58 2.2
19 234.0 245.6 301.3 353.0 390.0 478.0 484.0 354.6 68.3 0.12 2.4
20 287.0 296.0 391.5 414.0 479.0 550.0 553.0 419.8 71.3 0.03 2.5
21 215.0 221.8 294.0 357.0 385.8 432.2 457.0 339.7 65.4 −0.24 2.2
22 95.0 105.5 159.3 198.0 219.0 266.8 281.0 190.3 48.4 −0.19 2.4
23 15.0 31.5 61.5 90.0 125.3 184.0 286.0 97.9 52.7 1.70 7.6
24 4.0 4.8 16.3 32.0 65.3 102.3 148.0 42.4 33.5 1.28 4.9
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