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Abstract—Emerging cellular technologies such as those pro-
posed for use in 5G communications will accommodate a wide
range of usage scenarios with diverse link requirements. This will
include the necessity to operate over a versatile set of wireless
channels ranging from indoor to outdoor, from line-of-sight
(LOS) to non-LOS, and from circularly symmetric scattering
to environments which promote the clustering of scattered
multipath waves. Unfortunately, many of the conventional fading
models lack the flexibility to account for such disparate signal
propagation mechanisms. To bridge the gap between theory and
practical channels, we consider κ-µ shadowed fading, which
contains as special cases the majority of the linear fading models
proposed in the open literature. In particular, we propose an
analytic framework to evaluate the average of an arbitrary
function of the signal-to-noise-plus-interference ratio (SINR) over
κ-µ shadowed fading channels by using a simplified orthogonal
expression with tools from stochastic geometry. Using the pro-
posed method, we evaluate the spectral efficiency, moments of the
SINR, and outage probability of a K-tier HetNet with K classes
of BSs, differing in terms of the transmit power, BS density,
shadowing and fading. Building upon these results, we provide
important new insights into the network performance of these
emerging wireless applications while considering a diverse range
of fading conditions and link qualities.

Index Terms—Stochastic geometry, Poisson point process,
Composite fading, HetNets, κ-µ shadowed.
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I. INTRODUCTION

To meet the ever-increasing demand for data on the move,
telecommunications industries, as well as global standardiza-
tion entities, are actively driving the research and development
of the fifth generation (5G) of wireless communications. It
is forecast that this new networking paradigm will provide
1000 fold gains in capacity over the next decade and data
rates exceeding 10 Gigabit/s while achieving latencies of
less than 1 millisecond [1], [2]. To make this possible, 5G
communications will utilize densely deployed small cells to
achieve high spectral efficiency while harnessing all avail-
able spectrum resources, including opportunities offered by
millimeter-wave frequencies. Key to the successful operation
of 5G communications will be the unification of dissimilar
networking technologies. This will create a diverse range of
link requirements and the necessity for wireless devices to
operate over a versatile set of channels ranging from indoor
to outdoor, from line-of-sight (LOS) to non-LOS (NLOS), and
from homogeneous diffuse scattering to those which promote
the clustering of scattered multipath waves.

A range of tools developed within the framework of
stochastic geometry have been used to capture the irregularity
and heterogeneity of 5G wireless networks with considerable
success. Specifically, stochastic geometry assumes that the
locations of all wireless nodes are endowed with a spatial
point process [3]. Such an approach captures the topological
randomness in the network geometry, allows the use of well-
established mathematical tools, offers high analytical flexibil-
ity and achieves an accurate performance evaluation [4]. A
common assumption made within this scheme is that the nodes
are distributed according to a Poisson point process (PPP).
Using this supposition, the probability density function (PDF)
of the aggregate interference and the outage probability were
analyzed for cellular networks in [5], [6], which were then
generalized to the case of heterogeneous cellular networks
(HetNets) in [7]–[11]1.

Much of the existing published work on stochastic geometry
has focused on the Rayleigh distribution as the de facto small-
scale fading model, owing to its simplicity and tractability.

1The aforementioned results represent only a subset of the related studies in
stochastic geometry. The interested reader is directed to the work presented in
[12]–[14] and the references therein for a more detailed overview of stochastic
geometry.
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Several approaches have been proposed to derive the signal-to-
noise-plus-interference ratio (SINR) distributions for general
fading environments. For instance, in [15]–[19] the conversion
method, which is based on displacement theorem, was used.
This method treats the channel randomness as a perturbation in
the location of the transmitter and transforms the original net-
work with arbitrary fading into an equivalent network without
fading. Although the conversion method can be applied to any
fading distribution, it is more tractable for handling large-scale
shadowing effects. Specifically, if one applies the conversion
method to small-scale fading, the resulting equivalent model
will have no fading, thereby the Laplace transform-based ap-
proach can not be utilized. An alternative approach to address
general fading scenarios uses the series representation method
[20], [21]. This approach expresses the interference functionals
as an infinite series of higher order derivative terms given
by the Laplace transform of the interference power. While
the series representation method provides a tractable alternate
for handling general fading, it often leads to situations where
it is difficult to derive closed form expressions. Numerically
evaluating a higher order derivative is also complex and prone
to floating-point rounding errors [22].

Aside from the small-scale fading, random shadowing due
to obstacles in the local environment or human body move-
ments (in the case of user equipments) can impact link
performance by causing fluctuations in the received signal.
Shadowing affects the transmission performance, which will
be especially pertinent in a dense network or millimeter-wave
links. Hence, the combined effect of small-scale and shadowed
fading needs to be properly addressed in 5G communications
design. In this respect, composite channel models have been
proposed in [23]–[27]. In [23], the shadowed Nakagami fading
distribution was first proposed by combining Nakagami-m
multipath fading and lognormal distributed shadowing. Later,
[24] introduced the generalized-K model by approximating
the shadowing model in [23] using the gamma distribution to
improve analytical tractability. Traditional composite channel
models (referred to as multiplicative shadow fading models)
assume that the shadowing affects the dominant components
and the scattered waves equally, whereas, in practice, the shad-
owing often only occurs on the dominant components, which
gives rise to a different kind of composite model, often referred
to as a LOS shadow fading model. To model shadowing in
LOS channels, [25] proposed the Rician shadowed fading
model by assuming a Rician distribution for the multipath
fading and Nakagami-m distribution for the LOS shadowing.
More recently, [26], [27] proposed κ-µ shadowed fading model
by assuming κ-µ multipath fading with shadowing of the
dominant component.

The κ-µ shadowed fading model is an attractive proposition,
not just due to its excellent fit to the fading observed in a
range of real-world applications (e.g. device-to-device [27],
underwater acoustic [28], body-centric fading channels [29],
etc.) but also its extreme versatility. More precisely, it is able
to account for most of the popular fading distributions utilized
in the literature. Motivated by the comprehensive nature of the
κ-µ shadowed fading model, we use it along with a stochastic
geometric framework to derive the downlink SINR distribution

of a typical user in a K-tier HetNet with K classes of BSs,
differing in terms of the transmit power, BS density, shadowing
and fading characteristics. We evaluate the average of an
arbitrary function of the SINR, which can be easily applied
to other network models. For instance, it may be utilized to
evaluate any performance measure that can be represented
as a function of SINR, e.g., the spectral efficiency, outage
probability, moments of the SINR, and error probability.

The main contributions of this paper may be summarized
as follows.

1) The main difficulty with incorporating generalized fading
models into stochastic geometry frameworks is the lack
of tractability in expressing the PDF of the interfer-
ence. In general, it is more convenient to express the
metrics of interest in terms of the Laplace transform
of the interference. Nonetheless, this presents significant
challenges when extending the analyses from Rayleigh
fading to the more general fading models. We overcome
this problem by analyzing the Laplace transform of the
interference over κ-µ shadowed channels to characterize
the distribution of the interference from cellular user
equipment (UE). It is worth highlighting that this model
encompasses as special cases, the majority of the fading
models proposed in the literature, including Rayleigh,
Rician, Nakagami-m, Nakagami-q, One-sided Gaussian,
κ-µ, η-µ, and Rician shadowed distribution to name but
a few.

2) We use tools from stochastic geometry to evaluate the
distribution of the SINR, coverage probability and av-
erage rate for κ-µ shadowed fading. We also propose a
numerically efficient method to calculate the average of
an arbitrary function of the SINR.

3) We present numerical simulation results which provide
useful insights into the performance of cellular networks
for different fading conditions. In particular, we observe
the trade-off relation between the rate and average SINR
based on the channel parameters, such as the intensity of
dominant signal components, the number of scattering
clusters, and shadowing effect. This information will
be of paramount importance to those responsible for
designing future 5G network infrastructure to ensure that
adequate service can be provided.

This paper is organized as follows. In Section II, the system
model and assumptions are introduced. We then apply an
orthogonal expansion to κ-µ shadowed PDF in Section III,
characterize the interference distribution in Section IV, and
introduce a novel analytical framework in Section V. Following
this, in Section VI, we present both numerical and simulated
results to validate the analysis. Finally, Section VII concludes
this paper.

II. SYSTEM MODEL

A. Network Model

We consider the downlink of a K-tier HetNet where ran-
domly distributed small-cell BSs, such as pico or femtocell
BSs, are overlaid on a network of macrocell BSs. The BSs
of each tier may differ in terms of transmit power, spatial
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density and cell-selection bias. The locations of the k-th tier
BSs are modeled by an independent, homogeneous PPP Φk

with density λk and the union of K point processes constitutes
the K-tier HetNet Φ = ∪

k∈K
Φk where K = {1, 2, . . . ,K}. The

locations of the UEs are modeled by a homogeneous PPP
Φ(u) with density λ(u) that is independent of Φ. Orthogonal
multiple access is employed at each cell by allocating mutually
orthogonal resource blocks to each UE, implying no intra-
cell interference within a cell. Without loss of generality, we
assume that a typical UE is located at the origin and each BS
has an infinitely backlogged queue. The received power at a
typical UE from a k-th tier BS xk ∈ Φk

2 is given by

Pxk = PkHxk (τ‖xk ‖
−α) = Pkhxk χxk (τ‖xk ‖

−α) , (1)

where a multiplicative channel model Hxk = hxk χxk with
large-scale shadowing χ and small-scale fading h is utilized
in the second equality, Pk is the transmit power of the k-th tier
BS, α is the path-loss exponent (α > 2) and τ is the path-loss
intercept at a link-length ‖x‖ = 1.

B. Cell Association Policy

We assume a general cell association model where all BSs
allow open access and each UE connects to the BS that
provides the highest long-term biased received power (LRP)3

without small-scale fading as written below

Typical UE associates to a k-th tier BS x∗k ∈ Φk

↔ x∗k = arg max
j∈K, x∈Φ j

BjPj χj ‖x‖−α

= arg max
j∈K, y∈Φ

(e)
j

BjPj ‖y‖
−α,

(2)

where Bj is the bias connecting to the j-th tier BS (Bj > 0)

and a change of variable, i.e., y = χ
− 1
α

j x, is applied in the
last equality. For a single tier network, (2) is equivalent to
connecting with the closest BS.

Due to the displacement theorem [18, Lemma 1], the map-
ping between x and y converts a PPP Φj = {x} with density
λj into a new homogeneous PPP Φ(e)j = {y} with density

λ
(e)
j = λjE[χ

δ
j ] where δ = 2

α . Thereby, the original network
model Φ with large-scale shadowing χ can be equivalently
expressed as the network Φ(e) = ∪

j∈K
Φ
(e)
j without large-scale

shadowing where the effect of large-scale shadowing is now
incorporated through an appropriate scaling in the density
λj → λ

(e)
j . Given that the serving BS belongs to the k-th

tier, the SINR at a typical UE can be formulated as follows

SINRk =
Pk χx∗

k
hx∗

k
‖x∗

k
‖−α

N +
∑

j∈K

∑
x∈Φ j \{x

∗
k
} Pj χxhx ‖x‖−α

d
=

hy∗
k
‖y∗

k
‖−α

N̂ +
∑

j∈K

∑
y∈Φ

(e)
j \{y

∗
k
}

P̂jhy ‖y‖−α
,

(3)

2xk denotes both the node and the coordinates of the BS.
3The interested reader is referred to [7], [18], [19] for a detailed description

of the long-term association scheme.

where d
= denotes equivalence in distribution, which follows

from [18, Lemma 1], x∗
k

represents the location of the as-
sociated k-tier BS, Φ\{x∗

k
} denote the set of interfering BSs,

P̂j =
Pj

Pk
represents the ratio between the transmit power of the

interfering and serving BS and N̂ = N
Pk
=

N0W
τPk

is determined
by the noise power spectral density N0, bandwidth W , transmit
power of the associated BS Pk , and the reference path-loss
τ at a unit distance. Similarly, we denote B̂j =

B j

Bk
as the

ratio between the bias factor of the interfering and serving
BS and I ,

∑
j∈K

∑
y∈Φ

(e)
j \{y

∗
k
}

P̂jhy ‖y‖−α as the aggregate
interference normalized by the transmit power of the serving
BS. Since the cell association policy in (2) is independent
of the small-scale fading distribution h, the probability that a
typical UE connects to the k-th tier BS, denoted as Pk , and
the PDF of the link length ‖y∗

k
‖ can be evaluated as below

Pk =
λkE

[
χδ
k

]∑
j∈K λjE

[
χδj

]
P̂δj B̂δj

,

f‖y∗
k
‖(r) =

2πλkE
[
χδ
k

]
Pk

r exp ©«−
∑
j∈K

πr2λjE
[
χδj

]
P̂δj B̂δj

ª®¬ ,
(4)

where δ = 2
α and (4) follows directly from [7, Lemma 1] and

[18, Lemma 2].

C. Channel Model

Due to the wide range of use cases provisioned for 5G
communications, conventional cellular channel models which
typically only consider a single source of shadowing (e.g.
large-scale shadowing) are unlikely to be general enough. In
reality, it is probable that cellular applications will encounter
multiple independent types of shadowing which may or may
not occur concurrently. For example in the downlink scenario,
the signal transmitted from the BS to the UE will undergo
two key types of shadowing, the first of which is large-
scale shadowing, denoted here by χ, which is induced due
to large terrestrial objects e.g. buildings or hills, which can
cause a random fluctuation in the total signal power. In cellular
networks, the BSs are usually positioned in elevated locations
and are typically free from surrounding clutter. However, UEs
are most often operated at lower levels and the LOS signal
path is often obscured by local obstacles including the user’s
body itself. Therefore we consider a second type of shadowing
which affects (i.e. randomly fluctuates) the dominant signal
component. In this contribution, this LOS shadowed small-
scale fading is denoted as h and is modeled as a κ-µ shadowed
random variable [26], [27]. Together, these two independent
random processes create an extremely versatile channel model,
H = hχ, which can incorporate a wide range of shadowing
and fading scenarios.

1) Large-Scale Shadowing: The analysis presented in this
paper is valid for any finite distribution of the large-scale
shadowing χ and we summarized the three most commonly
used large-scale shadowing distributions, namely the lognor-
mal, gamma, and inverse-Gaussian distributions [30], with the
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TABLE I: Special Cases of the κ-µ Shadowed Fading Model.

κ-µ fading η-µ fading κ-µ shadowed fading

Rayleigh κ → 0, µ = 1 η = 1, µ = 0.5 κ → 0, µ = 1 or
m = 1, µ = 1

Nakagami-m κ → 0, µ = m
η = 1, µ = m/2 or
η → 0, µ = m

κ → 0, µ = m or
m→ m, µ = m

Nakagami-n (Rice) µ = 1 κ = K, µ = 1,m→∞
Nakagami-q (Hoyt) µ = 0.5 κ = (1 − q2)/2q2, µ = 1,m = 0.5

One-sided Gaussian κ → 0, µ = 0.5 η → 0, µ = 0.5 or
η →∞, µ = 0.5

κ → 0, µ = 0.5 or
m = 0.5, µ = 0.5

κ-µ fading κ, µ κ → κ, µ → µ,m→∞
η-µ fading η, µ κ = (1 − η)/2η, µ → 2µ,m = µ
Rician shadowed κ = K, µ = 1,m = m

(a) (b)

Fig. 1: (a) Physical meaning of the channel parameters (κ, µ,m), (b) Versatility of the proposed channel model H = h · χ with
κ-µ shadowed fading h and large-scale shadowing χ.

fractional moment for each distributions below, where l is a
positive real number.
(a) Lognormal Shadowing: χ ∼ LN(µln, σ2

ln
) with mean µln

and standard deviation σln,

E
[
χl

]
= exp

[
lµln
ε0
+

1
2

(
lσln

ε0

)2
]
, ε0 =

10
ln(10)

. (5)

(b) Gamma Shadowing: χ ∼ Gamma(kg, θg) with shape
parameter kg and scale parameter θg,

E
[
χl

]
=
Γ(l + kg)θlg
Γ(kg)

. (6)

(c) Inverse Gaussian Shadowing: χ ∼ IG(µig, λig) with mean
µig and shape parameter λig,

E
[
χl

]
= e

λig
µig

√
2λig
π

µ
l− 1

2
ig K 1

2−l

(
λig

µig

)
, (7)

where Kn(z) is a modified Bessel function of the second kind.
2) Small-Scale Fading and LOS Shadowing: The κ-µ shad-

owed distribution is a very flexible model which contains
as special cases the majority of the linear fading models
proposed in the open literature, including Rayleigh, Rice
(Nakagami-n), Nakagami-m, Hoyt (Nakagami-q), One-Sided
Gaussian, κ-µ, η-µ and Rician shadowed to name a few [31]

(See Table I). Because of this generality, the κ-µ shadowed
fading model can be used to account for small-scale fading
which originates due to LOS or non-LOS conditions, multipath
clustering with circularly symmetric or elliptical scattering,
and power imbalance between the in-phase and quadrature
signal components.

The channel coefficient h of a κ-µ shadowed fading channel
can be expressed in terms of the in-phase and quadrature
components of the fading signal as follows

h =
µ∑
i=1

[
(Xi + ξpi)2 + (Yi + ξqi)2

]
, (8)

where µ is the number of the multipath clusters4, ξ is a
Nakagami-m distributed random variable with E

[
ξ2] = 1, Xi

and Yi are mutually independent Gaussian random variables
with

E [Xi] = E [Yi] = 0, E
[
X2
i

]
= E

[
Y2
i

]
= σ2, (9)

pi and qi are real numbers and d2 =
∑µ

i=1
(
p2
i + q2

i

)
is the

power of the dominant components.

4Note that µ is initially assumed to be a natural number, however this
restriction is relaxed to allow µ to assume any positive real value.
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In the following, we summarize the key statistics of the κ-
µ shadowed fading model which will be used in the network
performance analysis conducted here.

Lemma 1. The PDF, fractional moment, and Laplace trans-
form of h for a κ-µ shadowed channel are respectively given
by

fh(x) =
θ
m−µ
1 xµ−1

θm2 Γ(µ)
exp

(
−

x
θ1

)
1F1

[
m
µ

���� θ2 − θ1
θ1θ2

x
]
,

E
[
hl

]
=
θ
m−µ
1 Γ (µ + l)

θ
m−µ−l
2 Γ (µ)

2F1

[
µ − m, µ + l

µ

���� − µκ

m

]
,

Lh(s) = E [exp (−sh)] = (1 + θ1s)m−µ (1 + θ2s)−m ,

(10)

where h̄ = E[h], θ1 =
h̄

µ(1+κ) , θ2 =
(µκ+m)h̄
µ(1+κ)m , κ, µ, m and l are

positive real-valued constants, Γ(t) is the gamma function and
1F1

[
a
b

�� x
]

is the confluent hypergeometric function.

Proof. A detailed derivation of the PDF and Laplace transform
expression are provided in [26]. The fractional moment of h
can be derived as follows

E
[
hl

]
=

∫ ∞

0
tl fh(t)dt

=
θ
m−µ
1 Γ (µ + l)

θ
m−µ−l
2 Γ (µ)

2F1

[
µ − m, µ + l

µ

���� − µκ

m

]
,

(11)

where the PDF fh(x) from (10) is substituted in the first
equality, a change of variables, i.e., t ← θ2−θ1

θ1θ2
x, and (46)

is applied to the last equality. �

Physically, κ = d2

2µσ2 represents the ratio between the
total power of the dominant components and the total power
of the scattered waves, µ denotes the real-valued extension
of the number of multipath clusters, and m indicates the
amount of shadowed perturbation in the dominant component
as illustrated in Fig. 1 (a). Since the Laplace transform of
the Nakagami-m distribution converges to limm→∞ Lh(s) =
limm→∞(1 + sh̄/m)−m = e−sh̄ , the dominant component be-
comes increasingly deterministic as m → ∞. Hence, a κ-
µ shadowed fading channel where m → ∞ has a constant
dominant power and is therefore equivalent to a κ-µ faded
channel.

3) Combined Large-Scale Shadowing, Small-Scale Fading
and LOS Shadowing: Since the κ-µ shadowed fading model
includes small-scale fading and LOS shadowed fading as
special cases, the proposed channel model H = hχ can be
used to represent four different classes of fading environment
as illustrated in Fig. 1 (b); namely 1) small-scale fading only
if χ is constant, 2) small-scale fading with LOS shadowed
fading only if h is either Rician shadowed or κ-µ shadowed
and χ is constant, 3) traditional composite fading/shadowing
if h is the result of small-scale fading only with randomly
distributed χ, and 4) double shadowed fading conditions if h
is the result of small-scale and LOS shadowed fading and χ
is a random variable.

Remark 1. Multiple Antenna Systems: If the BS is equipped
with Nc antennas and communicating with a single-antenna
UE with zero-force beamforming, the corresponding channel

between the BS and a UE can be represented as a sum-
mation of Nc i.i.d. κ-µ shadowed random variables, which
is a κ-µ shadowed random variable with fading parameters
(κ, Ncµ, Ncm) [26], [31]. Thereby, the theoretical analysis
presented in this paper can be directly applied to multiple-
antenna diversity systems.

III. LAGUERRE POLYNOMIAL SERIES EXPANSION OF THE
κ-µ SHADOWED DISTRIBUTION

As we can see from (10), the κ-µ shadowed distribution
includes the hypergeometric function which often leads to a
computationally complex performance evaluation. Due to the
inherent mathematical intractability, limited work has been
conducted which considers κ-µ shadowed fading in the context
of stochastic geometry. Most notably, in [32], the author
approximated a κ-µ shadowed random variable using a gamma
distributed random variable based on second-order moment
matching, but the accuracy of this approximation can not
be guaranteed for all fading parameters. In [33], the authors
analyzed a cellular network over κ-µ shadowed fading where
they represented the confluent hypergeometric function by its
truncated series form, i.e., 1F1

[
a
b

�� x
]
'

∑N
n=0

Γ(a+n)Γ(b)xn

Γ(a)Γ(b+n)n! .
Although the series representation converges locally, it is
valid only for integer-valued parameters a and b, the ra-
dius of convergence diverges over different combinations of
parameters, and is computationally complex to evaluate. As
illustrated in Fig. 2, there are noticeable discrepancies between
the approximation methods proposed in [32] and [33] and the
exact PDF for several cases, limiting their application5.

To overcome this problem, we adopt the generalized La-
guerre polynomial expansion proposed in [34], [35] that is
analogous to the Fourier series: As a Fourier series can
represent any PDF in terms of harmonic bases, we use a
generalized Laguerre polynomial as an orthogonal base and
simplify the PDF and CDF of the κ-µ shadowed fading model
as given below.

Lemma 2. The PDF and CDF of the channel coefficient h
for the κ-µ shadowed fading model can be expressed in series
expression form as follows

fh(x) =
∞∑
n=0

n!CnLµ−1
n (x)

Γ(n + µ)
xµ−1 exp (−x)

=

∞∑
n=0

n∑
i=0

ci,n xµ+i−1 exp (−x) ,

(12)

Fh(x) =
∫ x

0
fh(t)dt

=

∞∑
n=0

n∑
i=0

bi,n xµ+i exp (−x) +
γ(µ, x)
Γ(µ)

,

(13)

where κ, µ and m are positive real-valued parameters, Lµ−1
n (x)

is the generalized Laguerre polynomial of degree n and order
µ−1 at x, 0 ≤ x < ∞, γ(µ, x) is the lower incomplete gamma

5The approximation accuracy of [33] depends on N . For a larger N , [33]
may accurately approximate the exact PDF. In contrast, the proposed approach
in (12) converges rapidly to the exact PDF even with a small number of terms
N ≤ 50.
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Fig. 2: Numerical evaluation of the κ-µ shadowed fading distribution using the PDFs given in (10), (12), [32], and [33]; (a)
(κ, µ,m) = (2, 3, 1) and (b) (κ, µ,m) = (20, 2, 3) case, respectively.

function, the coefficients Cn, ci,n, and bi,n are calculated as
written below

Cn =

n∑
j=0

(−1)j

j!

(
n + µ − 1

n − j

)
E

[
h j

]
,

ci,n =
(−1)iCn

Γ(µ + i)

(
n
i

)
, bi,n =

(−1)iCn+1
Γ(µ + i + 1)

(
n
i

)
,

(14)

and E
[
h j

]
can be obtained from (11) by substituting non-

negative integer index j to the index l.

Proof. See Appendix II. �

Remark 2. If µ and m are positive integers, then by using
[36, Theorem 1], the expression in (12) can be simplified to a
single summation with finite terms as follows.

fh(x) =



µ−m∑
j=1

A1j xµ−m−je
− x
θ1

Γ(µ − m − j + 1)θµ−m−j+1
1

+

m∑
j=1

A2j xm−je
− x
θ2

Γ(m − j + 1)θm−j+1
2

for m < µ

m−µ∑
j=0

Bj xm−j−1e−
x
θ2

Γ(m − j)θm−j2

for m ≥ µ

, (15)

where A1j , A2j , Bj are given in [36, eq (6)]. (12) and (15)
imply that κ-µ shadowed fading is the result of a linear combi-
nation of Gamma distributed random variables, which follows
a gamma mixture distribution. To represent κ-µ shadowed
fading as a gamma mixture model, a double summation with
infinite terms are required for real valued µ and m, whereas
for integer valued µ and m, only a single summation with finite
terms are necessary.

IV. DISTRIBUTION OF THE AGGREGATE INTERFERENCE

In this section, we calculate the Laplace transform of the
aggregate interference for the κ-µ shadowed fading channel

and characterize the distribution of the interference. As shall
be seen in Section V, the Laplace transform of the aggregate
interference is a crucial measure for evaluating network per-
formance in stochastic geometry based analyses.

Lemma 3. Given that a typical UE is associated to the BS
y∗
k

located at ‖y∗
k
‖ = r (or equivalently expressed as x∗

k
using

x = χ
1
α

j y), the Laplace transform of the aggregate interference
over a multiplicative channel with κ-µ shadowed fading and
large-scale shadowing is calculated as

LI (s) = E [exp(−sI)]

= E

exp
©«−s

∑
j∈K

∑
y∈Φ

(e)
j \{y

∗
k
}

P̂jhy ‖y‖−α
ª®®¬


= exp
−

∑
j∈K

πr2λjE
[
χδj

]
P̂δj B̂δjWj(z)

 ,
(16)

where the subindex j ∈ K = {1, 2, . . . ,K} represents the
parameters for the j-th tier, P̂j =

Pj

Pk
, E

[
χδj

]
is given by

(5)-(7), Wj(z) denotes the following expression

Wj(z) =
µ θ1z
1 − δ

(
θ1
θ2

)m F2 (µ + 1; m, 1; µ, 2 − δ; A, B)

(1 + θ1z)µ+1

−

[
1 −
(1 + θ1z)m−µ

(1 + θ2z)m

]
,

(17)

for z = sr−α, A = 1−θ1/θ2
1+θ1z

, B = θ1z
1+θ1z

, θ1 =
h̄

µ(1+κ) and θ2 =
(µκ+m)h̄
µ(1+κ)m . F2 (•) is the Appell Hypergeometric function which is
defined in (53), Appendix I [37].

Proof. See Appendix III. Some comments on the numerical
computation of the Appell’s function F2 (•) are presented in
Appendix IV. �



1536-1276 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2734080, IEEE
Transactions on Wireless Communications

7

By using a change of variable, i.e., sz−1 = rα, the Laplace
transform of the interference can be expressed as

LI (s) = exp
−

∑
j∈K

πλjE
[
χδj

] (
P̂j z−1

)δ
Wj(z)sδ

 ,
which indicates that the aggregate interference is distributed
by a Stable distribution as described below. Note that the
exclusion zone in the interference field is considered in (16)
based on the condition ‖y∗

k
‖ = r .

Lemma 4. The aggregate interference over a multiplicative
channel of κ-µ shadowed fading and large-scale shadowing
is distributed by a Stable distribution [3] with four param-
eters; namely, stability δ, skew = 1, drift = 0, dispersion =
sec

(
π
2 δ

) ∑
j∈K πλjE

[
χδj

]
P̂δj B̂δj z−δWj(z) withWj(z) defined

in (17). The fractional moment of the aggregate interference
is given by

E
[
Il
]
=

Γ

(
1 − l

δ

)
Γ (1 − l) cos

(
π
2 δ

) l
δ


∑
j∈K

πr2λjE
[
χδj

]
z−δj W(zj)


δ
l

,

(18)

for 0 < l < 2
α . Any moment with order above l > 2

α is
undefined, i.e., becomes infinity.

Using (54), the Appell’s function reduces to a Gauss hyper-
geometric function if one of the parameters is zero. Hence the
expressions in (16) and (17) can be simplified as below.

Lemma 5. For the following fading distributions, Wj(z) in
(17) can be simplified as follows
Rayleigh:

h̄δz
1 − δ 2F1

[
1, 1 − δ
2 − δ

���� − h̄z
]

(19)

Nakagami-m:

h̄z
1 − δ 2F1

[
m + 1, 1 − δ

2 − δ

���� − h̄z
m

]
−

[
1 +

(
1 +

h̄z
m

)−m]
(20)

One-Sided Gaussian:

h̄z
1 − δ 2F1

[
1.5, 1 − δ

2 − δ

���� − 2h̄z
]
−

[
1 −

1√
1 + 2h̄z

]
(21)

κ-µ fading:

µθ1z
(1 − δ)eµκ 2F1

[
µ + 1, 1 − δ

2 − δ

���� − θ1z
]
−

1 −
e
−

µκ

1+(θ1z)−1

(1 + θ1z)µ

 (22)

Rician:

θ1z
(1 − δ)eK 2F1

[
2, 1 − δ
2 − δ

���� − θ1z
]
−

1 −
e
− K

1+(θ1z)−1

1 + θ1z

 (23)

Proof. See Appendix V. �

V. THEORETICAL ANALYSIS OF THE PERFORMANCE
MEASURES

In this section, we propose a novel method to compute
E [g (γ)] for an arbitrary function of the SINR g(γ) using
stochastic geometry. The original idea was proposed by Hamdi
in [38] for Nakagami-m fading, and later in [39] for κ-µ and
η-µ fading, which we further extend it to κ-µ shadowed fading
in this paper. By using the proposed method, one can evaluate
any performance measures that are represented as a function
of SINR (or SIR). For instance, the spectral efficiency, outage
probability, moments of the SINR, and error probability can be
expressed as an average of g(x) = log(1+ x), g(x) = I(x ≤ x0),
g(x) = xn, and g(x) = Q (x), respectively.

A. General Case and Main Result

Theorem 1. For the K-tier HetNet with κ-µ shadowed fading,
E [g (SINR)] is given by

E [g (SINR)] =
K∑
k=1
PkE [g (SINRk)] ,

E [g (SINRk)] =

∞∑
n=0

Cn

n∑
i=0
(−1)i

(
n
i

)
ξi,

(24)

where Pk is derived in (4), SINRk represents the SINR when
a typical UE is associated to the k-th tier BS y∗

k
, Cn is defined

in (14), and ξi represents the following integral

ξi ,

∫ ∞

0
gµ+i(z) Er

[
e−r

α N̂zLI (rαz)
]

dz, (25)

the distribution f‖y∗
k
‖(r) is given by (4) and LI (s) is derived

in (16). gµ+i(z) is defined as

gµ+i(z) =
1

Γ(µ + i)
dµ+i

dzµ+i
zµ+i−1g(z)

=

µ+i−1∑
n=0

(
µ + i

n

)
zµ+i−1−n

Γ(µ + i − n)
dµ+i−n

dxµ+i−n
g(z),

(26)

where we used the general Leibniz rule in the last equality.

Proof. See Appendix VI. �

Theorem 1 is the most general result in this paper that
evaluates arbitrary performance measures for a K-tier HetNet,
considering noise, interference, per-tier BS density, and inde-
pendent fading and shadowing across each tier. The analytic
function g(z) and gµ+i(z) for various performance measure are
summarized in Table II6. We also note that E [g (SINRk)] in
(24) is computationally efficient; the computational complexity
of (24) is same as a single summation expression since ξi is
independent of the index n.

Remark 3. If µ and m are positive integers, (15) can be
utilized to achieve an expression analogous to Theorem 1, in

6The detailed proof of Table II is given in [38], [39].
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TABLE II: Theoretical framework for evaluating various system measures.

g(x) and gµ+i (x) for various system measures

Measure g(x) gµ+i (x) =
1

Γ(µ+i)
dµ+i

dzµ+i x
µ+i−1g(x)

Rate log(1 + x) 1
x

(
1 − 1

(1+x)µ+i

)
Higher order moments xl

Γ(µ+i+l)
Γ(µ+i)Γ(l) x

l−1

Outage probability I(x ≤ x0) '
1

1+e−ε (x−x0)
∑µ+i−1

k=0
(µ+i

k

) zµ+i−1−k
Γ(µ+i−k)

dµ+i−k
dxµ+i−k

I(x ≤ x0)

Er

[
e−rα N̂ zLI (r

αz)
]

for various scenarios

α = 4, i.i.d. fading
√
πΘ

1+W(z) exp
(
Θ2

)
erfc (Θ), Θ =

πλ0
2
√

N̂ z
(1 +W(z))

Interference-limited, i.i.d. fading 1
1+W(z)

Noise-limited, i.i.d. fading
√
πΘ exp

(
Θ2

)
erfc (Θ), Θ =

πλ0
2
√

N̂ z

Main result

κ-µ shadowed fading E [g (SINRk )] =
∑∞

n=0 Cn
∑n

i=0(−1)i
(n
i

) ∫ ∞
0 gµ+i (z)E

[
e−rα N̂ zLI (r

αz)
]

dz

Rayleigh fading E [g (SINRk )] =
∫ ∞

0
∂g(z)
∂z E

[
e−rα N̂ zLI (r

αz)
]

dz

terms of a single summation with finite terms as described
below

E [g (SINRk)] =



µ−m∑
j=1

A1jζµ−m−j+1(θ1)

+

m∑
j=1

A2jζm−j+1(θ2) for m < µ

m−µ∑
j=0

Bjζm−j(θ2) for m ≥ µ

, (27)

where ζj(θ) =
∫ ∞

0 gj(z) Er
[
e− rα

θ N̂zLI

(
rα

θ z
)]

dz and the
coefficients A1j , A2j , Bj are derived in [36, eq (6)]. The proof
of (27) is omitted since it is analogous to Theorem 1.

B. Special Cases

Theorem 1 and Er
[
e−rα N̂zLI (rαz)

]
can be further simpli-

fied for some special cases, such as a noise-limited scenario,
an interference-limited scenario, or identical fading and shad-
owing parameters on all tiers, which are described below.

Lemma 6. Fixed path-loss (α = 4): If α = 4, the term
Er

[
e−r4 N̂zLI

(
r4z

) ]
in (25) can be simplified as

π
3
2
∑

j∈K λjE

[
χ

1
2
j

]
P̂

1
2
j B̂

1
2
j

2
√

N̂ z
exp

(
Θ

2
)

erfc (Θ) , (28)

where Θ denotes the following expression

Θ ,
π

2
√

N̂ z

∑
j∈K

(
λjE

[
χ

1
2
j

]
P̂

1
2
j B̂

1
2
j

(
1 +Wj(z)

) )
,

andWj(z) is defined in (17). If all tiers have identical fading
parameters (κ, µ,m), then W(z) =Wj(z) for any j ∈ K and
(28) can be further simplified as

Θ =
πλ0

2
√

N̂ z
(1 +W(z)) , λ0 ,

∑
j∈K

λjE

[
χ

1
2
j

]
P̂

1
2
j B̂

1
2
j ,

Er

[
e−r

4 N̂zLI

(
r4z

)]
=

√
πΘ

1 +W(z)
exp

(
Θ

2
)

erfc (Θ) .
(29)

Lemma 7. Interference-limited scenario: If I � N̂ , the term
Er

[
e−rα N̂zLI (rαz)

]
in (25) can be simplified as∑
j∈K λjE

[
χδj

]
P̂δj B̂δj∑

j∈K λjE
[
χδj

]
P̂δj B̂δj

(
1 +Wj(z)

) . (30)

If all tiers have identical fading characteristics, then (30)
reduces to a succinct form as

Er

[
e−r

α N̂zLI (rαz)
]
= [1 +W(z)]−1 . (31)

Lemma 8. Noise-limited scenario with fixed path-loss (α =
4): If I � N̂ and α = 4, then Er

[
e−r4 N̂zLI

(
r4z

) ]
can be

simplified as

√
πΘ exp ©«

(
πλ0

2
√

N̂ z

)2ª®¬ erfc

(
πλ0

2
√

N̂ z

)
. (32)

Proof. The proof of Lemmas 6, 7 and 8 are given in Appendix
VII. �

Remark 4. If all tiers have identical fading characteristics
and are interference-limited only, the performance measure
E [g (SINR)] can be expressed by using Lemma 5 as follows

E [g (SINR)] =
∞∑
n=0

Cn

n∑
i=0
(−1)i

(
n
i

) ∫ ∞

0

gµ+i(z)
1 +W(z)

dz, (33)

where Cn, gµ+i(z) and W(z) are independent of the PPP
density λj . (33) provides an important insight into the sys-
tem performance of a PPP-distributed cellular network with
κ-µ shadowed fading and arbitrary large-scale shadowing.
Specifically, any performance measure of a PPP-distributed
HetNet that can be represented as a function of SINR, is
independent to the BS transmit power Pk , BS density λk , and
the number of tiers K . This invariance property was originally
introduced in [6], [7], [9] for Rayleigh fading. (33) generalizes
this argument by proving that the invariance property holds for
any linear small-scale fading and finite large-scale shadowing
distribution.
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Next, we apply Theorem 1, Lemmas 5, 6 and 7 to evaluate
various performance measures.

C. Performance Measure 1: Spectral Efficiency
Spectral efficiency is defined in [7] as

R =

K∑
k=1
Pk E [ln (1 + SINRk)] ,

where Pk is the tier association probability to the k-th tier
evaluated by (3) and SINRk is the received SINR from the k-th
tier BS. E [ln (1 + SINRk)] can be evaluated by using Theorem
1 with g(z) = ln(1 + z) and gµ+i(z) as follows [38]

gµ+i(z) =
1

Γ(µ + i)
dµ+i

dzµ+i
zµ+i−1g(z)

=
1
z

(
1 −

1
(1 + z)µ+i

)
.

(34)

Given identical channel characteristics across each tier, the
spectral efficiency reduces to

R = E [ln (1 + SINRk)]

=

∞∑
n=0

Cn

n∑
i=0
(−1)i

(
n
i

) ∫ ∞

0

K(z)
z

(
1 −

1
(1 + z)µ+i

)
dz,

(35)

where Cn is given by (12), W(z) is derived in (17), Θ is
defined in (28) and K(z) denotes

K(z) =


√
πΘ

1 +W(z)
exp

(
Θ

2
)

erfc (Θ) for α = 4,

1
1 +W(z)

for I � N̂
. (36)

Remark 5. Theorem 1 can be applied to Rayleigh fading by
letting µ = 1.0, C0 = 1 and Cn = 0 for n > 0 in (24). Then
(35) can be further simplified as follows

R =

∫ ∞

0

1
(1 + z)(1 +W(z))

dz

=

∫ ∞

0

1
(1 +W(et − 1))

dt,
(37)

by using a change of variable, i.e., x = et − 1. As expected,
the above expression is identical to [7, Eq.(27)].

D. Performance Measure 2: Moments of the SINR
Higher order moments of the SINR are a crucial perfor-

mance measure which have an important role in the determi-
nation of network performance. E

[
SINRl

]
can be evaluated

by using Theorem 1 with g(z) = zl and gµ+i(z) as

gµ+i(z) =
1

Γ(µ + i)
dµ+i

dzµ+i
zµ+i−1g(z) =

Γ(µ + i + l)
Γ(l)Γ(µ + i)

zl−1. (38)

For the case when we have identical channel characteristics
across each tier, the fractional moment is simplified to

E
[
SINRl

]
=

∞∑
n=0

Cn

n∑
i=0
(−1)i

(
n
i

)
(µ + i)l
Γ(l)

∫ ∞

0
zl−1K(z)dz,

(39)

where (x)n =
Γ(x+n)
Γ(x) is the Pochhammer symbol, the index l

is a positive real-valued constant and K(z) is defined in (36).

E. Performance Measure 3: Outage Probability

The outage probability is defined in [6] as

Po(T) = P (SINR < T) =
K∑
k=1
PkP (SINRk < T) , (40)

for a predefined threshold T . Theoretically, one can use Theo-
rem 1 to calculate (40) by approximating the step function with
a smooth sigmoid function, i.e., g(z) = I(z < To) '

1
1+e−ε (z−To ) ,

where ε controls the sharpness. However, even with a smooth
function, gµ+i(z) behaves like an impulse signal for a large
derivation order µ + i [40]. Hence, most numerical software
will present a precision overflow while evaluating (25).

Instead of using Theorem 1, it appears more convenient to
use the Gil-Pelaez’s inversion based approach [41] as follows.
Step 1) P (SINRk < T) in (40) can be represented in terms of
the interference distribution as follows

P (SINRk < T) = 1 − E
[
P

(
hy∗

k
r−α > T(I + N̂)

)]
= 1 − E

[
P

(
I <

hy∗
k
r−α

T
− N̂

)]
,

(41)

where the expectation in (41) average over the link length
r and the channel coefficient h. Step 2) The CDF of the
interference can be derived using the Gil-Pelaez’s inversion
as follows

P (I < x) =
1
2
+

1
π

∫ ∞

0

Im{eitxLI (it)}
2t

dt, i =
√
−1, (42)

where Im(z) represents the imaginary part of a complex
number z. Step 3) (41) can be further simplified if each tier
has identical fading parameters as follows

P (I < x) =
1
2
+

∫ ∞

0
Im


(
1 + iθ1x

T

)m−µ(
1 + iθ2x

T

)m φ(x)


dx
x
,

φ(x) ,
∫ ∞

0
exp

[
iN̂λ

− 1
δ

0 xt
1
δ − πtϕ(ix)

]
dt,

ϕ(z) = Eh

[
1F1

[
−δ

1 − δ

���� zh
] ]
,

(43)

where we applied [41, Eq. 4] to (41) and (42). If the noise
can be neglected, i.e., N̂ → 0, then φ(x) = 1

πϕ(ix) and
P (SINRk < T) can be simplified as follows

1
2
+

1
π

∫ ∞

0

Im
{(

1 + iθ1x
T

)m−µ (
1 + iθ2x

T

)−m}
xϕ(ix)

dx. (44)

VI. NUMERICAL RESULTS

In this section, we present numerical evaluations of the
theoretical results and compare them with Monte-Carlo sim-
ulations. All of the numerical results presented in this paper
were obtained by using the Julia language which provides fast
computation times and a straight-forward syntax that is similar
to Matlab [42]. The analytical results are plotted as lined
curves without markers, whereas the simulation results are
represented by markers without a line. Both Fig. 3 and 4 show
that the numerical results accurately match the simulation
results in every scenario. In our analysis, we considered a
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results
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results

Numerical 
results

Simulation 
results

Fig. 3: Spectral efficiency of a two-tier HetNet over various channel parameters assuming interference-limited scenario
environment with λ1 =

1
π5002 , P1 = 53 dBm, h̄ = 1; (a) m = 1.0, (b) m = 20.0, (c) µ = 0.5 and (d) µ = 1.6 case,

respectively.

Numerical 
results

Simulation 
results

Numerical 
results

Simulation 
results

Fig. 4: Spectral efficiency and average SINR of a two-tier HetNet over various channel parameters with P1 = 53 dBm, h̄ = 1;
(a) κ = 2, µ = 1, SNR = −5 dB, (b) κ = 2, µ = 1, SNR = 10 dB, (c) m = 1, λ1 =

1
π5002 , N̂ → 0 and (d) m = 20, λ1 =

1
π5002

and N̂ → 0, respectively.
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two-tier HetNet with BS intensity λ1 = 2λ2, transmit power
P2 = P1 − 20 dBm, a path-loss exponent α = 4 and lognormal
distributed χ with (µl, σl) = (0, 4). We assumed identical
fading and shadowing parameters for both tiers.

Fig. 3 compares the spectral efficiency across a wide range
of channel parameters within an interference-limited envi-
ronment. We observed the following patterns in the spectral
efficiency.

1) Strong dominant components or weak scattered compo-
nents (large κ) achieve a higher rate.

2) Rich scattering with a large number of multipath clusters
(large µ) achieves a higher rate.

3) Strong LOS shadowing (small m) achieves a higher rate
if µ ≤ 1 and vice versa.

Large κ and µ parameters indicate strong LOS link and
rich multipath components, respectively, both collectively con-
tribute toward increasing the average rate, as illustrated in
Figs 3 (a)-(b). On the contrary, the average rate does not
show a monotonic behavior for changes in the m parameter.
A small value of m implies strong random fluctuation of the
dominant component, which decreases not only the received
signal power but also the interference level. Based on Figs 3
(c)-(d), it can be observed that the average rate is an increasing
function of m if and only if µ > 1 and κ > 16, where the actual
threshold values are determined by the network configuration.
Otherwise, the rate is a decreasing function of m. If either the
dominant LOS component is weak (small κ) or the number of
multipath clusters is small (small µ), LOS shadowing subsides
as m increases, which increases the interference power, thus
deteriorating the received SINR as well as the average rate.

Figs 4 (a)-(b) compare the spectral efficiency versus the
macro BS intensity λ1. As conjectured in Remark 4, the
spectral efficiency becomes invariant for a large BS intensity
λ1. In a dense network with a large BS intensity, the aggregate
interference becomes significantly larger than the noise power,
achieving an interference-limited condition. Additionally we
observe that the BS intensity required to reach the rate
asymptote is inversely proportional to the operating SNR
level. For a high SNR regime, the average rate reaches the
asymptote around λ1 = 10−2, whereas in a low SNR regime,
a large number of BSs (λ1 ≥ 10−1) are required to obtain
sufficiently larger interference power than the noise. In a
sparse network with small BS intensity λ1, different fading
parameters, such as m, do not affect the spectral efficiency
significantly. However, in a dense network with a large BS
intensity λ1, different fading parameters have a notable effect
on the rate, as illustrated in Figs 4 (a)-(b). This pattern is
due to Θ(z) in (29), which is proportional to λ0 (1 +W(z))
and W(z) is a function of the channel parameters. If λ0 (or
λj) is large, any difference in the channel parameters will be
emphasized, affecting the spectral efficiency via Θ(z). How-
ever, if λ0 is small, any difference in the channel parameters
will be unnoticed due to λ0 (1 +W(z)), thus achieving nearly
identical network performance. Figs 4 (c)-(d) compare the
average SINR across a range of channel parameters assuming
an interference-limited environment. We observe that large κ
and µ parameters jointly achieve a higher rate similar to Fig. 3.

We also notice that for large κ (κ ≥ 15) and weak shadowing
(large m), a higher SINR level is achieved.

VII. CONCLUSION

In this paper, we have considered a cellular network in
which the signal fluctuation is the result of large-scale and
LOS shadowing to encapsulate the diverse range of channel
conditions that can occur in 5G communications. We applied
a Laguerre polynomial series expansion to represent the κ-µ
shadowed fading distribution as a simplified series expression.
Based on the series expressions, we then proposed a novel
stochastic geometric method to evaluate the average of an
arbitrary function of the SINR over κ-µ shadowed fading
channels. The proposed method is numerically efficient, can
be easily applied to other network models, and can evaluate
any performance measure that can be represented as a function
of SINR. Using the proposed method, we have evaluated the
spectral efficiency, moments of the SINR, bit error probability
and outage probability of a K-tier HetNet with K classes of
BSs, differing in terms of the transmit power, BS density,
shadowing characteristics and small-scale fading. Furthermore,
we provided numerical results and investigated the perfor-
mance over a range of channel parameters and observed
that a dominant LOS component (large κ), rich scattering
environment (large µ) and weak shadowing condition (large
m) collectively provides high spectral efficiency. Finally, it
is worth remarking that the analytical framework proposed
in this paper can be applied to practical use cases of 5G
communications, where Rayleigh fading fails to fully capture
the diverse nature of the underlying channel.

APPENDIX I

In this appendix, we summarize the operational equalities
of the special functions, which are used in this paper7. First,
the generalized Laguerre polynomial of degree n and order β
has the following functional identities

Lβn (t) =
n∑
i=0
(−1)i

(
n + β
n − i

)
ti

i!
, (45)

tβ exp (−t) Lβn (t)dt =
1
n

d
[
tβ+1 exp (−t) Lβ+1

n−1 (t)
]
. (46)

The following properties of hypergeometric function hold for
real constants a, b and c

1F1

[ a
b

��� t] = et1F1

[
b − a

b

���� − t
]
,

2F1

[
a, b
c

���� z
]
= (1 − z)−a2F1

[
a, c − b

c

���� z
z − 1

]
,

(47)

∫ ∞

0
tα−1e−ct1F1

[ a
b

��� − t
]
dt = c−αΓ(α)2F1

[
a, α

b

��� − 1
c

]
for α > 0 and c > 0,

(48)

7Most of the expressions in Appendix I were introduced in [43], except for
(53) and (54), which were proved in [37].
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((a − b)z + c − 2a) 2F1

[
a, b
c

���� z
]

= (c − a) 2F1

[
a − 1, b

c

���� z
]
+ a (z − 1) 2F1

[
a + 1, b

c

���� z
]
,

(49)

∫ ∞

0
e−(ax

2+bx)dx =
1
2

√
π

α
exp

(
b2

4a

)
erfc

(
b

2
√

a

)
for a > 0 and b > 0.

(50)

The lower incomplete gamma function γ(s, x) =
∫ x

0 ts−1e−tdt
has the following series representation and functional identity
for arbitrary positive real constant s

γ(s, x)
Γ(s)

=

∞∑
n=0

xs+ne−x

Γ(s + n + 1)
,

γ(s, x) = s−1xse−x1F1

[
1

1 + s

���� x
]
.

(51)

The binomial coefficient can be defined for real constants
x, y using the gamma function as(

x
y

)
=

Γ(x + 1)
Γ(y + 1)Γ(x − y + 1)

, Γ(t) =
∫ ∞

0
xt−1e−xdx. (52)

Appell’s function F2 (•) is defined via the Pochhammer symbol
(x)n =

Γ(x+n)
Γ(x) as follows

F2 (α; β, β′; γ, γ′; x, y) =
∞∑

m=0

∞∑
n=0

(α)m+n (β)m (β
′)n

m! n! (γ)m (γ′)n
xmyn.

(53)

Appell’s function can be reduced to the hypergeometric func-
tion using the following properties

F2 (d; a, a′; c, c′; 0, y) = 2F1

[
d, a′

c′

���� y],
F2 (d; a, a′; c, c′; x, 0) = 2F1

[
d, a
c

���� x
]
.

(54)

The following integration holds under the following con-
straints d > 0 and |k | + |k |′ < |h|∫ ∞

0
td−1e−ht1F1

[ a
b

��� kt
]

1F1

[
a′

b′

���� k ′t
]
dt

= h−dΓ(d)F2

(
d; a, a′; b, b′;

k
h
,

k ′

h

)
.

(55)

Gauss-Laguerre quadratures can be used to evaluate the fol-
lowing integral for a given analytic function g(x) as∫ ∞

0
e−xg(x)dx =

N∑
n=1

wn f (xn) + RN, (56)

where xn and wn are the n-th abscissa and weight of the N-th
order Laguerre polynomial.

APPENDIX II

In this appendix, we provide a proof of Lemma 2. The PDF
of h for κ-µ shadowed fading in (10) can be represented in
the orthogonal series expansion form as

fh(x) =
∞∑
n=0

Cn

(
n! Lµ−1

n (x)
Γ(n + µ)

)
xµ−1e−x, 0 ≤ x < ∞, (57)

where we applied the Laguerre polynomial series expansion in
[34, eq.9] and the coefficient Cn is evaluated by substituting
(10) as follows [34, eq.8]

Cn =

∫ ∞

0
Lµ−1
n (x) fh(x)dx =

θ
m−µ
1

θm2 Γ(µ)

×

∫ ∞

0
xµ−1e−

x
θ1 Lµ−1

n (x)1F1

[
m
µ

���� θ2 − θ1
θ1θ2

x
]
dx︸                                                    ︷︷                                                    ︸

I1

.
(58)

The integral I1 can be simplified by using the series represen-
tation of Lµ−1

n (x) in (45) as follows

I1 =

n∑
i=0

(−1)i

i!

(
n + µ − 1

n − i

)
θm2 Γ(µ)

θ
m−µ
1

E
[
hi

]
, (59)

where we used (10) to express the integral as the PDF of the
κ-µ shadowed fading in the last equality. Then, by substituting
(59) into (58), the coefficient Cn in (14) can be derived after
algebraic manipulation. The series expansion form in (57) can
be further simplified by using (45) and (52) as follows

fh(x) = xµ−1e−x
∞∑
n=0

n∑
i=0

n! Cn(−1)i

Γ(n + µ)

(
n + µ − 1

n − i

)
xi

i!

=

∞∑
n=0

n∑
i=0

(−1)i Cn

Γ(µ + i)

(
n
i

)
xµ+i−1e−x

(60)

which achieves (12).
The CDF of h can be evaluated as follows

Fh(x) =
∫ x

0
fh(t)dt

=

∞∑
n=0

n! Cn

Γ(n + µ)

∫ x

0
tµ−1e−tLµ−1

n (t)dt

=

∞∑
n=1

Cn

(n)µ
xµe−xLµ

n−1(x) +
C0
Γ(µ)

∫ x

0
tµ−1e−tLµ−1

0 (t)dt

=

∞∑
n=0

n∑
i=0

(−1)iCn+1
i! (n + 1)µ

(
n + µ
n − i

)
xµ+ie−x +

γ(µ, x)
Γ(µ)

,

(61)

where we used (57) in the second equality, utilized (46) in
the third equality, applied a change of variable, i.e., n′ ←
n − 1, C0 = 1, Lµ−1

0 (t) = 1 and (45) in the last equality. The
coefficient bi,n can be simplified by using (52) as

bi,n =
(−1)iΓ(n + 1)Cn+1

i! Γ(n + µ + 1)

(
n + µ
n − i

)
=
(−1)iCn+1
Γ(µ + i + 1)

(
n
i

)
, (62)

then the CDF in (13) can be subsequently obtained. This
completes the proof.

APPENDIX III
In this appendix, we provide a proof of Lemma 3. Due to

(2), all interfering BS within the j-th tier are located further
than P̂

1
α

j B̂
1
α

j ‖y
∗
k
‖ where y∗

k
denote the associated k-th tier BS

and P̂j =
Pj

Pk
is the transmit power ratio between the interfering

and serving BS

BjPj ‖y‖
−α < BkPk ‖y

∗
k ‖
−α for any y ∈ Φ

(e)
j \{y

∗
k}

⇔ ‖y‖ > B̂
1
α

j P̂
1
α

j ‖y
∗
k ‖.

(63)
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LIj (s) = E

exp
©«−s

∑
y∈Φ

(e)
j \{y

∗
k
}

P̂jhy ‖y‖−α
ª®®¬
 = exp

[
−2πλjE[χδj ]

∫ ∞

B̂
1
α
j P̂

1
α
j r

(
1 − Eh

[
exp

(
−sP̂jhl−α

)] )
ldl

]
= exp

[
−πλjE[χ

δ
j ]B̂

δ
j P̂δj Eh

{
(sh)δ

∫ shr−α

0
δt−δ−1(1 − e−t )dt

}]
= exp

[
−πr2λjE[χ

δ
j ]B̂

δ
j P̂δj Eh

{
(shr−α)δ γ(1 − δ, shr−α) −

(
1 − e−shr

−α
)}]

,

(64)

Eh
[
(shr−α)δ γ(1 − δ, shr−α)

]
=
(sθ1r−α)δ

Γ(µ)

(
θ1
θ2

)m ∫ ∞

0
tδ+µ−1e−t1F1

[
m
µ

���� µκ

µκ + m
t
]
γ(1 − δ, sθ1r−αt)dt

=
sθ1r−α (θ1/θ2)

m

(1 − δ)Γ(µ)

∫ ∞

0
tµe−(1+sθ1r

−α )t
1F1

[
m
µ

���� µκ

µκ + m
t
]

1F1

[
1

2 − δ

���� sθ1r−αt
]
dt

=
µ

(1 − δ)
sθ1r−α

(1 + sθ1r−α)µ+1

(
θ1
θ2

)m
F2 (µ + 1; m, 1; µ, 2 − δ; A, B) ,

(65)

Wj(z) =
(sθ1r−α)δ

Γ(µ)

(
θ1
θ2

)m ∫ ∞

0
tδ+µ−1e−t1F1

[
m
µ

���� µκ

µκ + m
t
]
γ(1 − δ, sθ1r−αt)dt − (1 − (1 + θ1z)m−µ(1 + θ2z)−m)

≈
(θ1z)δ

Γ(µ)

(
θ1
θ2

)m N∑
n=1

wn f (xn) − (1 − (1 + θ1z)m−µ(1 + θ2z)−m) .
(66)

The Laplace transform of the interference from the j-th tier
is derived in (64), where we represented the distance to the
serving BS as ‖y∗

k
‖ = r in the second equality, applied a

change of variable, i.e., sP̂j B̂jhl−α = t, in the third equality,
then used integration by parts. The first part of the expectation
term in (64) is evaluated by (65), where we used the PDF of
κ-µ shadowed fading with a change of variable, i.e., h

θ1
= t in

the first equality, applied (51) to the second equality, utilized
the integration (55) in the last equality [37], A = 1−θ1/θ2

1+θ1sr−α

and B = θ1sr
−α

1+θ1sr−α
. The second part of the expectation term in

(64) follows directly by using the Laplace transform of κ-µ
shadowed channel coefficient (10). By denoting sr−α = z, (16)
and (17) can be achieved. This completes the proof.

APPENDIX IV

All numerical results provided in this paper are obtained by
using Julia language [42] and we used appellf2 function
in SymPy package [44] to evaluate the Appell’s function in
(17). However, if one needs to use MATLAB, where a native
Appell’s function library do not exist yet,Wj(z) can be accu-
rately approximated by using the Gauss-Laguerre Quadrature
as (66), where f (x) = xδ+µ−1

1F1

[
m
µ

��� µκ
µκ+m x

]
γ(1 − δ, θ1zx),

xn and wn are the n-th abscissa and weight of the N-th order
Laguerre polynomial. Since the approximation error converges
rapidly to zero [43], (66) provides a numerically accurate and
efficient approximation to Wj(z).

APPENDIX V

In this appendix, we provide a proof of Lemma 5. First, we
consider Nakagami-m fading which corresponds to the case
when κ → 0, µ = m in Table 1. Then θ1 = θ2 =

h̄
m and

A = 1−θ1/θ2
1+θ1z

→ 0. By applying (54) and (47), (17) can be
simplified to the following form

F2 (µ + 1; m, 1; µ, 2 − δ; A, B)

= (1 + θ1z)µ+1
2F1

[
µ + 1, 1 − δ

2 − δ

���� − θ1z
]
.

(67)

Wj(z) for Nakagami-m fading can be obtained by substituting
(67) in (17) with κ → 0, µ = m. For One-sided Gaussian
fading, (21) is obtained by substituting µ = 0.5 in (20).Wj(z)
for Rayleigh fading in (19) can be obtained by substituting
µ = 1 in (20), then applying (49) and 2F1

[
0,b
c

��� x
]
= 1, which

achieves an identical result to [7, eq. (44)].
Next, we show that κ-µ fading corresponds to the case of

m→∞ with the following limit

lim
m→∞

(
θ1
θ2

)m
= lim

m→∞

(
1 +

µκ

m

)−m
= e−µκ

lim
m→∞

(
1 + θ1s
1 + θ2s

)m
= lim

m→∞

(
1 +

µκs
m(s + θ−1

1 )

)−m
= exp

(
−

µκs
s + θ−1

1

)
.

(68)

By utilizing (68) and (67) in (17), (22) can be derived for m→
∞. Wj(z) for Rician fading readily follows by substituting
κ = K and µ = 1 in (22). This completes the proof.

APPENDIX VI

In this appendix, we provide a proof of Theorem 1. The
average of an arbitrary function of the SINR

hx0 ‖x0 ‖
−α

I+N is
evaluated in (69), where (12) is used in the second equality,
a change of variable, i.e., xr−α

I+N = z, is utilized in the third
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E

[
g

(
hx0r−α

I + N

)���� I, ‖x0‖ = r
]
=

∫ ∞

0
g

(
xr−α

I + N

)
fh(x)dx =

∞∑
n=0

n∑
i=0

ci,n

∫ ∞

0
xµ+i−1e−xg

(
xr−α

I + N

)
dx

=

∞∑
n=0

n∑
i=0

ci,n

∫ ∞

0
zµ+i−1g(z)(rα(I + N))µ+ie−r

α (I+N )zdz

=

∞∑
n=0

Cn

n∑
i=0
(−1)i

(
n
i

) ∫ ∞

0

zµ+i−1g(z)
Γ(µ + i)

(rα(I + N))µ+ie−r
α (I+N )zdz,

(69)

E

[
g

(
hx0 ‖x0‖

−α

I + N

)]
= E

[
E

[
g

(
hx0r−α

I + N

)���� ‖x0‖ = r
] ]

=

∞∑
n=0

Cn

n∑
i=0
(−1)i

(
n
i

) ∫ ∞

0
gµ+i(z)e−r

αNzLI (rαz) f‖x0 ‖(r)dr,
(70)

Er

[
e−r

α N̂zLI (rαz)
]
=

∫ ∞

0
e−r

α N̂zLI (rαz) f‖y∗
k
‖(r)dr

=
2πλkE

[
χδ
k

]
Pk

∫ ∞

0
r e−r

α N̂z exp
−

∑
j∈K

πr2λjE
[
χδj

]
P̂δj B̂δj

(
1 +Wj(z)

) dr

=
λkE

[
χδ
k

]
Pk

∫ ∞

0
exp

−t
1
δ

N̂ z

π
α
2
− t ©«

∑
j∈K

λjE
[
χδj

]
P̂δj B̂δj

(
1 +Wj(z)

)ª®¬
 dr .

(71)

equality, and (14) is employed in the last equality. (69) can be
evaluated as follows∫ ∞

0

zµ+i−1

Γ(µ + i)
g (z)︸          ︷︷          ︸

u

bµ+ie−bz︸    ︷︷    ︸
v′

dx

= −

µ+i−1∑
k=0

gk(z)bµ+i−k−1e−bz
�����
∞

0

+

∫ ∞

0
gµ+i(z)e−bzdz,

(72)

where we denoted b = rα(I +N), applied integration by parts,
defined gk(z) in (26), and

gk(0) =

{
0, for k < µ + i − 1
g(0), for k = µ + i − 1

. (73)

Then, the average of an arbitrary function of the SINR is
given by (70), where we used

∑n
i=0(−1)i

(n
i

)
= 0 in the second

equality. This completes the proof.

APPENDIX VII

In this appendix, we provide proof of Lemmas 6, 7 and
8. By substituting (4) and (16) to (25), the expectation term
Er

[
e−rα N̂zLI (rαz)

]
can be evaluated as (71), where we used

a change of variable, i.e., t = πr2 in the last equality. If
α = 4, then (28) can be achieved by applying (50). Given
an interference-limited condition, (71) reduces to

λkE
[
χδ
k

]
Pk

∫ ∞

0
e−t

(∑
j∈K λ jE

[
χδj

]
P̂δj B̂

δ
j (1+Wj (z))

)
dr

=
λkE

[
χδ
k

]
/Pk∑

j∈K λjE
[
χδj

]
P̂δj B̂δj

(
1 +Wj(z)

) , (74)

whereas for noise-limited condition, (71) can be written as

λkE
[
χδ
k

]
Pk

∫ ∞

0
exp

−t
1
δ

N̂ z

π
α
2
− t

∑
j∈K

λjE
[
χδj

]
P̂δj B̂δj

 dr .

(75)

(32) readily follows by substituting Wj(z) → 0 and α = 4 in
(28). This completes the proof.
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