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Abstract—Ultra-dense cloud radio access networks (C-RANs)
is one of the architectures that will be critical components of
the next-generation wireless systems. In a C-RAN architecture,
an amorphous cellular framework, where each user connects to
a few nearby remote radio heads (RRHs) to form its own cell,
appears to be promising. In this paper, we study the ergodic
capacity of such amorphous cellular networks at high signal-to-
noise ratios (SNRs) where we model the distribution of the RRHs
by a Poisson point process. We derive tractable approximations
of the ergodic capacity at high-SNRs for arbitrary antenna
configurations, and tight lower bounds for the ergodic capacity
when the numbers of antennas are the same at both ends of the
link. In contrast to prior works on distributed antenna systems,
our results are derived based on random matrix theory and
involve only standard functions which can be much more easier
evaluated. The impact of the system parameters on the ergodic
capacity is investigated. By leveraging our analytical results, we
propose two efficient scheduling algorithms for RRH selection for
energy-efficient transmission. Our algorithms offer a substantial
improvement in energy efficiency compared to the strategy of
connecting a fixed number of RRHs to each user.

Index Terms—Dense cloud radio access network, ergodic
capacity, MIMO.

I. INTRODUCTION

Mobile data traffic continues to rise with an extraordinary
rate and a 1000× increase is very much expected by 2020
[1]. Yet, conventional cellular networks find it difficult to
catch up with these unprecedented demands and will need a
serious upgrade. In 5G, one crucial technology is ultra-dense
networks (UDNs), which promises to provide a massive boost
to regional capacity [2–4]. Although the conventional cellular
network topologies have been well suited for providing wide
area coverage, they are unable to scale up regional capacity
to meet users’ data needs.

Dense cloud radio access network (C-RAN) is an emerging
network architecture which is recognized as the enabling
technology to meet these mobile traffic demands since it avails
of the reduced distance between users and remote radio head
(RRH) units [5]. In C-RANs, RRHs operate as soft relays by
receiving the signals from mobile users and forward them to

J. Yuan, S. Jin, W. Xu and W. Tan are with the National Mobile
Communications Research Laboratory, Southeast University, Nanjing 210096,
P. R. China (e-mail: {yuanjide, jinshi,wxu,wqtan}@seu.edu.cn).

M. Matthaiou is with the Institute of Electronics, Communications and
Information Technology (ECIT), Queen’s University Belfast, Belfast, BT3
9DT, U.K. (e-mail: m.matthaiou@qub.ac.uk).

K. K. Wong is with the Department of Electronic and Electrical
Engineering, University College London, London WC1E 7JE, United
Kingdom (e-mail: kai-kit.wong@ucl.ac.uk).

a centralized baseband unit (BBU) [6, 7]. The performance of
distributed antenna arrays and best base station (BS) selection
schemes in C-RANs was assessed in [8], where both the
users and RRHs are equipped with a single antenna. In [9],
the authors investigated the sum-rate maximization problem
subject to a BS backhaul constraint in a downlink C-RAN for
both dynamic and static BS clustering over different time-
frequency slots. However, single access point schemes are
incapable of supporting enough mobile traffic due to the low
power of deployed RRHs. Undoubtedly, if we intend to catch
up with the traffic demands, multi-access point schemes are
inevitable in C-RANs because of the substantial improvement
in spectral efficiency offered by multiple-input multiple-output
(MIMO) antenna topologies.

With dense RRH deployments, the BS-centric MIMO
systems may not be suitable when both the users and
BSs are scattered geographically due to the poor support
for cell-edge users [10]. Instead, a user-centric structure,
namely, amorphous cellular, is far more appropriate, and
the interference coordination becomes much more feasible
[11–13]. Under this structure, the user in C-RAN chooses
its own serving RRH set as its amorphous cell, while the
BBU schedules time-frequency recourse centrally. The authors
of [14] investigated the optimal sizes of amorphous cell
topologies for single-user transmission, where the locations
of RRHs were modeled by a Poisson point process (PPP) to
capture the irregularity of BSs [15, 16]. Then in [17], closed-
form ergodic capacity expressions were presented for the
N -nearest PPP distributed RRH association strategies when
the path loss exponent was four. The uplink ergodic sum
capacity of amorphous cellular systems was presented in [18],
where the RRHs were either co-located at the cell center or
uniformly distributed within each cell. As an extension of
[18], the authors further investigated the downlink amorphous
cellular with a large number of users randomly distributed in
the system and examined the effect of cellular size on the
average user rate in [10]. Note that the above results were
limited to single-antenna users, and hardly provided closed-
form achievable rate expressions because of the intractability
of the large-scale fading (LSF) effect, especially when users
are equipped with multiple antennas. However, the use of
multiple antennas has been the standard practice in concurrent
wireless networks, which motivates us to characterize the
capacity performance of MIMO-operated C-RAN systems.

Refer to the MIMO systems, most works applied random
matrix theory to pursue an analytical characterization of
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MIMO systems, and insightful results were obtained under
semi-correlated channels. The authors of [19] considered the
outage capacity performance of a MIMO system in correlated
environments and derived exact distribution functions for the
capacity with a small number of antennas. In [20], a closed-
form expression for the characteristic function of the MIMO
system capacity with arbitrary correlation among transmit
(receive) antennas was derived. The authors of [21] analyzed
the capacity and corresponding optimal input density of a
correlated MIMO channel, where the channel was assumed to
have a (Kronecker) correlated normal structure. All the above
studies provided closed-form or integral expressions for the
capacity for the cases in which channel correlation is present
at one of the two ends of the link. However, we note that
most of prior work assumed MIMO links between a user
and one multi-antenna BS, and the perspective of a network
with multiple BSs is missing. A crucial difference between
the two assumptions is whether LSF is taken into account in
the capacity analysis, since it an intrinsic model parameter
in distributed MIMO systems [22]. Dense C-RAN, a kind of
distributed MIMO systems, belongs to the latter one. Utilizing
random matrix theory, the effect of LSF on capacity can be
formulated by regarding the LSF matrix as a correlation matrix
at one end of the link. To the best of our knowledge, there is no
analytical expression available for the ergodic capacity which
applies for distributed MIMO systems with both arbitrary path-
loss exponent and number of antennas, especially when the
locations of RRHs are deployed randomly, e.g., as a PPP.

In this paper, the uplink capacity of amorphous cellular
in ultra-dense C-RAN at high signal-to-noise ratio (SNRs) is
investigated, where the locations of RRHs follow a PPP. We
first derive an approximation of the ergodic capacity for an
arbitrary number of antennas when LSF is taken into account.
Moreover, a tight high-SNR lower bound of capacity is derived
when the numbers of antennas are the same at both ends
of the link. Based on the proposed results, the impact of
the number of antennas is characterized. In contrast to prior
results, our expressions involve only standard functions which
can be easily and efficiently evaluated, and they illustrate
the effects of path-loss exponent and the RRH intensity on
the ergodic capacity. On the premise of guaranteeing the
quality-of-service (QoS), two RRH scheduling algorithms on
forming the amorphous cellular are proposed, namely, user-
optimal scheme (UOS) and RRH-optimal scheme (ROS), to
achieve energy efficient transmission for MIMO orthogonal
frequency division multiple (OFDM) systems when both the
transmit and receive power consumption are considered. Both
algorithms are developed on the basis of our capacity analysis
results, and demonstrate excellent performance for arbitrary
QoS requirements.

The rest of this paper is organized as follows: Section
II presents the system model of an amorphous cellular in
dense C-RANs. Section III presents the capacity analysis
at high SNRs. In Section IV, two scheduling algorithms
developed from our analytical results are proposed. Section
V summarizes the main observations and proofs are relegated
to appendices.

Notations—Throughout this paper, vectors and matrices
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user
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R

Fig. 1. The system model of amorphous cellular in the ultra-dense C-RANs
uplink, where each user connects to the n-nearest RRHs to form its own cell.
All RRHs belong to one BBU.

are denoted in bold lowercase letters a and bold uppercase
letters A, respectively. The notation det (A) stands for the
determinant, and the (i, j)th entry of A is denoted as {A}i,j .
The complex and real number fields are represented by C
and R, respectively. The superscripts (·)† denotes conjugate-
transpose operation, and E [·] evaluates the expectation of the
input random entity. Additionally, Γ(·) and Γ(·, ·) are the
gamma function and upper incomplete gamma function [23,
Eq. (6.1.5), Eq. (6.5.3)] respectively, and ψ (·) is the digamma
function [24, Eq. (8.360.1)].

II. SYSTEM MODEL

Consider a dense C-RAN, depicted in Fig. 1, in which
each RRH has a single antenna, collecting the signals from
a user who has m antennas for processing in the BBU. The
overall system constitutes a distributed MIMO system. We
assume a user-centric network under the framework of MIMO-
OFDM where the user connects to n nearest RRHs to form its
own cell. In the context of interference control with efficient
resource reuse, we assume that only a single user is supported
in each subcarrier of the OFDM system [25, 26]. The locations
of RRHs are assumed to be modeled as a two-dimensional
PPP having intensity λ in a plane whose radius is R. As it is
a user-centric cell, the desired user is located at the origin of
the plane. Thus, the whole number of RRHs, N , in this plane is
a random variable with probability distribution function (pdf)
[27]

fN (N) =

(
λπR2

)N
N !

e−λπR
2

. (1)

We consider the uplink from the user to the RRHs. Assuming
that user connects with the n-nearest neighboring RRHs, the
n-dimensional coordinated received signal in the BBU can be
written as [28, 29]

r = Gs + n, (2)

where s is the m-dimensional transmitted signal vector with
the total transmission power E

[
s†s
]

= Pt. The entries of the



3

additive noise n are modeled as zero-mean circular-symmetric
complex Gaussian with variance σ2

n. In this paper, the channel
is mathematically modeled by the n ×m random matrix G,
defined by

G = B
1
2 H, (3)

where H ∈ Cn×m is the small-scale fast fading channel matrix
with complex elements {hi,j} ∼ CN (0, 1), and B ∈ Rn×n
is a diagonal matrix accounting for the LSF consisted of
shadowing and path loss fading, whose ith diagonal element
is given by

{B}ii = βi = 10−
c0+σzi

10 · d−αi , (4)

where c0 is a constant value (in dB), 10−
σzi
10 represents the

shadowing with the standard deviation σ and zi ∼ N (0, 1),
di is the distance between the user and the ith nearest RRH,
and α stands for the path-loss exponent with typical values
α ∈ [2, 4] [30].

In this paper, we consider the uplink scenarios in which the
user (i.e., the transmitter side) has no channel state information
(CSI) while the BBU (i.e., the receiver side) has perfect CSI.1

In this case, the transmitter typically uses a uniform power
allocation across all spatial subchannels, and, therefore, the
ergodic capacity (in bit/s/Hz) is written as2

Cm,n = E
[
log2 det

(
I +

ρ

m
W
)]
, (5)

where ρ = Pt
/
σ2 is the transmit SNR, and

W =

{
BHH†, n 6 m,
H†BH, n > m.

(6)

The capacity can also be written in terms of the nonzero
eigenvalues of W. Let λ|B = [λ1|B, . . . , λq|B]

T denote
the nonzero eigenvalues of the matrix W, conditioned on B,
with q = min {n,m}. Then, the ergodic capacity in (5) can
alternatively be written as [28]

Cm,n =

∫
B

∫
λ

q∑
i=1

log2

(
1 +

ρ

m
λi

)
× fλi|BfB (β1 < . . . < βn) dλdB, (7)

where fλi|B is the marginal pdf of the ordered eigenvalues λi
conditioned on B, fB (·) represents the ordered joint pdf of
B. We note that the conditional unordered eigenvalue pdf has
been investigated in [32, Eq. (95)]. The ordered eigenvalue pdf
can be easily derived by considering all the possible matrix
patterns of B which consist of the same entries but in different
orders, as given in

fλi|B (λi) =
Γ (q)∏p

i<j (βj − βi)

×
p∑

s=p−q+1

λs+q−p−1
i

Γ (s+ q − p)
det
(
Ξ̃s

)
, (8)

1CSI can be obtained at RRHs through uplink training, especially when no
interference is introduced by other users [7]. We consider that perfect CSI is
acquired in this work and leave the channel estimation to future work.

2Although the log det (·) in (5) achieves capacity only under some strict
assumptions [28], we call our results as ”capacity” for the sake of consistency
with the vast body of MIMO literature (see [19–21, 31]).

where Ξ̃s is a p× p matrix whose entries are given by{
Ξ̃s

}
i,j

=

{
βj−1
i , i = 1, . . . , n, j 6= s,

βp−q+1
i e

−λiβi , i = 1, . . . , n, j = s,
(9)

with p = max {n,m}. To remove the condition on B, we need
to integrate βi=1,...,n term-by-term. By doing so, this yields

f (λi) = Γ (q)

p∑
s=p−q+1

λs+q−p−1
i

Γ (s+ q − p)

×
∫
B

det
(
Ξ̃s

)
fB (β1 < · · · < βn)∏p
i<j (βj − βi)

dB. (10)

This integration has proved to be too complex, if not
impossible, to be evaluated due to the fact that each entry
of B has its own pdf, and with a Vandermonde determinant
in the integrand. Thus, we resort to analyzing the capacity in
the high-SNR regime, and obtain some interesting insights.

III. HIGH SNR ANALYSIS

In this section, we derive approximations of the ergodic
capacity for amorphous cellular at high SNRs, and characterize
the impact of the number of antennas on the capacity
performance. We also provide tight lower bounds on the
capacity when both ends of the link have the same number of
antennas. According to our results, we reveal some insightful
observations on the system parameters, such as the intensity
of RRHs, etc.

A. High-SNR Approximation

In the high-SNR regime, we evaluate the approximation of
capacity with an arbitrary number of antennas. It is obvious
that the capacity is lower bounded by

Cm,n > E
[
log2

(
det
( ρ
m

W
))]

. (11)

Note that (11) coincides with the ergodic capacity at high-
SNRs, and will be more and more accurate as the SNR
grows. To be more specific, we provide the constraint of
transmit SNR for our results to hold in Theorem 1. Then,
utilizing the Jensen’s inequality, we now provide the following
approximation to the ergodic capacity

Ca
m,n = log2

(
E
[
det
( ρ
m

W
)])

. (12)

The tightness of the approximation, which is obtained by the
adoption of the Jensen’s bounds, has been discussed in [33].
According to the results in [33], the offset of (12) converges to
a certain value as ρ grows, while decreases with the maximum
dimension of W, and increases with the minimum dimension
of W. In practice, the minimum dimension of the matrix
typically corresponds to the number of user antennas which
normally varies from 1 to 4. Thus, the approximation in (12) is
considerably tight in most of the scenarios. We now investigate
the expected determinant of W in the following lemma.

Lemma 1: The expected determinant of W, where the
entries of B follow the distribution given in Lemma 2, is given
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by

E [det (W)] =


Γ(m+1)

Γ(m−n+1)

n∏
i=1

κξλ (i), n 6 m,

Γ (m+ 1)
∑
Bm,n

∏
i∈Bm,n

κξλ (i), n > m,

(13)
where Bm,n is the length-m subset of {1, 2, . . . , n}, κ =

10
1
10

(
σ2 ln 10

20 −c0
)

, and

ξλ (i) =
(λπ)

α
2

Γ (i)
Γ̄
(
i− α

2

)
, (14)

where

Γ̄ (t) =

{
Γ (t, dth), t is nonpositive integer,
Γ (t), otherwise. (15)

where dth is a small constant.
Proof: See Appendix A.

The results are valid for arbitrary antenna configurations.
We find that the expression is easy to evaluate for the case
of n 6 m, while the complexity of evaluation can be rather
high when n is large for the case of n > m, since the number
of the combinations of Bm,n depends on m and n. Note that
if the argument of Γ (t) in (14) is a negative integer, we will
run into a singularity. This is because of the inaccuracy of
the LSF model when the user is close to the RRH. This can
be easily avoided by introducing a small perturbation term
dth. Having established Lemma 1, we are ready to derive the
approximation of the ergodic capacity.

Theorem 1: For dense C-RAN systems where the RRHs are
distributed according to a stationary PPP with intensity λ, the
high-SNR approximation of the capacity with n nearest RRHs
can be expressed as in (16) at the top of next page. Moreover,
ρ must satisfy the SNR constraint

ρ� 1

κξλ (n)
. (17)

Proof: The result in (16) directly follows by applying
Lemma 1 to the approximation of the capacity in (12).
However, we should be careful that the result only holds for the
high-SNR cases, i.e., the SNR of the received signals should
be considerably larger than 1 under the effect of LSF. For this
reason, we evaluate ρ for the weakest subchannel under LSF,
given by [35]

min
i

{
E
[ ρ
m
βih
†
ihi

]}
= min

i
{ρE [βi]} � 1, (18)

where hi is the ith column of H. The expected value of
βi can be evaluated in the same way as in (14). Noting
that ξλ (i) is a decreasing function against i, we prove the
relationship between ρ and the number of associated RRH by
using min

i
{E [βi]} = κξλ (n).

It is important to note that the result in (16) holds
for arbitrary numbers of antennas. The result illustrates
the combined impact of various factors on the capacity
approximation, e.g., intensity λ, path-loss exponent α and
number of associated RRHs n. By establishing the constraint
of SNR, we note that when n grows large, a higher
SNR is required for (16) to hold. Figure 2 compares the
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Fig. 2. Comparison of Monte-Carlo simulations with the approximate
expressions of the ergodic capacity against ρ. The different antenna
configurations are denoted as m × n. Results are shown for c0 = 41.1 dB,
σ2 = 5 dB, α = 2.09, σ2

n = −70 dBm, and λ = 10−3m2 [30, 34].

approximations Ca
m,n (λ) with the Monte-Carlo simulations

versus ρ. All the dotted curves are generated using (16).
We confirm that the results are rather tight for both cases
where the number of transmit antennas is larger or smaller
than the number of associated RRHs. Moreover, we note
the very limited capacity enhancement with adding antennas
at the side with more antennas, indicating that the capacity
performance is mainly affected by the minimum number of
antennas. Additionally, we see that the tightness of bounds
looses as the minimum number of antennas grows while the

m
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Fig. 3. Comparison of Monte-Carlo simulations with the approximate
expressions of the ergodic capacity against m. Results are shown for n =
2, 3, 4 with α = 2.09, c0 = 41.1 dB, σ2 = 5 dB, σ2

n = −70 dBm,
λ = 10−3m2, and ρ = 90 dB.
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Ca
m,n (λ) =


log2

Γ(m+1)
mnΓ(m−n+1) +

n∑
i=1

log2 (ρκξλ (i)), n 6 m,

log2
Γ(m+1)
mm + log2

( ∑
Bm,n

∏
i∈Bm,n

ρκξλ (i)

)
, n > m.

(16)

n
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Fig. 4. Comparison of Monte-Carlo simulation with the analytical
approximations on the ergodic capacity against n. Results are shown for
m = 2, 3, 4 with α = 2.09, c0 = 41.1 dB, σ2 = 5 dB, σ2

n = −70 dBm,
λ = 10−3m2, and ρ = 90 dB.

tightness of the bound improves when the maximum number
of antennas grows, which is consistent with the analysis of
[33].

To gain more insights, we further examine the following
cases.
• For n < m, adding one additional RRH, while not

altering m, would give

Ca
m,n+1(λ)=Ca

m,n(λ)+
m−n
m

log2 (ρκξλ (n+ 1)) ,

(19)
yielding a steady improvement with growing n because
of the additional power captured by every new RRH.

• For n 6 m, as m → ∞, the approximation of (16)
reduces to

lim
m→∞

Ca
m,n (λ) ≈

n∑
i=1

log2 (ρκξλ (i)). (20)

The result is obtained by using the Stirling’s formula
approximation, and the proof is presented in Appendix
B. The expression shows the upper limit of the capacity
with fixed n RRHs, which also reveals the impact of each
associated RRH on the capacity.

Figure 3 compares the analytical approximations based on
(16) with Monte-Carlo results for the cases of n = 2, 3, 4
against m. We note that the tightness of approximations
becomes slightly worse with more antennas as also observed
in Fig. 2. Moreover, the lines of all approximations increase

sharply with increasing m when m < n, but remain nearly
constant when m > n. Noting the fact that the ergodic capacity
is mainly affected by min {n,m}, this result is also manifested
through a slight offset between the approximation of m→∞
and the approximation of m = n in the figure.

Figure 4 gives the analytical approximations based on (16)
and Monte-Carlo results for the cases of m = 2, 3, 4 against
n, in which the locations of RRHs are modeled as a PPP.
We note that the approximation of the capacity curves show a
similar trend as already seen in the results in Fig. 3. Since the
number of transmit antennas is generally constant, the result
indicates that it is not cost-effective to associate more RRHs,
i,e., expand the size of the cell, when the number of them is
already greater than the number of transmit antennas.

B. Lower bound with m = n

We use CL
m,n to represent the lower bounds of the ergodic

capacity. Thus, the conditional expectation of CL
m,n can be

expressed as

E
[
CL
m,n

∣∣B] = E
[
log2 det

( ρ
m

W|B
)]
. (21)

To derive the expression of CL
m,n, it is necessary to obtain

the expected log-determinant of W. Note that the conditional
expected log-determinant has been investigated in [32, Lemma
4]. Utilizing this result, (21) can be rewritten as

E
[
CL
m,n

∣∣B] = mlog2

ρ

m

+
1

ln 2

 q∑
k=1

ψ (m− q + k) +

n∑
k=n−q+1

det
(
Ξ̃k

)
∏n
i<j (βj − βi)

 , (22)

where Ξ̃k is an n× n matrix with entries{
Ξ̃k

}
i,j

=

{
βj−1
i , j 6= k,

βj−1
i lnβi, j = k.

(23)

Then, by using (36), the lower bound can be obtained by
integration of (22) over βi term-by-term, as given below

CL
m,n = mlog2

ρ

m
+

∑q
k=1 ψ (m− q + k)

ln 2

+

(
2(λπ)

(n+1)/2
)n

ln 2

∫ ∞
0

· · ·
∫ ∞

0

n∑
k=n−q+1

det
(
Ξ̃k

)
∏n
i<j (βj − βi)

×
∏n

i=1

β2i+1
i e−λπβ

2
i

(i− 1)!
dβ1 · · · dβn. (24)

The integrand above is extremely difficult to evaluate due
to the Vandermonde determinant. In order to alleviate this
difficulty, we derive the lower bound for the special case of
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m = n, i.e., the number of RRHs is equal to the number
of transmit antennas, and investigate the impact of path loss
exponent α on the capacity.

Theorem 2: For dense C-RAN systems where the RRHs are
distributed according to a stationary PPP with intensity λ, the
lower bound of the capacity with m = n is given by

CL
m,m = mlog2

ρ

mε

(
πλ
)α

2

+

(
1− α

2

)
ln 2

m∑
k=1

ψ (k) (25)

with ε = 10
c0
10 . When the transmit signal satisfies the power

constraint given in (17), the lower bound is extremely tight to
capacity.

Proof: See Appendix C.
Our result in Theorem 2 gives a very tractable mathematical

relationship for the lower bound of the capacity in the arbitrary
SNR regime, when n = m. Note the fact that since the result is
derived by removing the identity matrix in (5), the lower bound
in (25) will be more and more accurate as ρ increases, which
is also consistent with the power constraint of Theroem 1.
More importantly, the result shows that the capacity increases
logarithmically with the intensity of RRH λ when taking LSF
into account.

Corollary 1: The approximate expression of the lower
bound of the capacity is given as

C̄L
m,m ≈ mlog2

ρ

mε

(
πλ
)α

2

+
(

1− α

2

)
log2Γ (m+ 1) . (26)

Proof: Utilizing ψ (m) = lnm+O
(

1
m

)
in (25) and after

some basic operations yields the result, which completes the
proof.

Note that the approximation used in the proof becomes
exact when m is infinity. The result involves only standard
functions which can be easily evaluated. Moreover, we note
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that the capacity decreases with increasing α by taking
the partial derivative of α on (26). In order to get more
computational insights, we further investigate the approximate
expression of capacity for the following cases:

• Adding one antenna at both ends of link, while not
altering other parameters, the capacity expression is
reduced to

C̄L
m+1,m+1 = C̄L

m,m +mlog2

m

m+ 1

− α

2
log2

(
πλ

m+ 1

)
+ log2

ρ

ε
. (27)

The result indicates that the capacity enhancement is a
decreasing function of m. Besides, for a certain ρ and
m, the enhancement of capacity grows faster with larger
α since πλ is generally smaller than m+ 1.

• Letting α = 2, (25) can be reduced to

CL
m,m = mlog2

ρπλ

mε
. (28)

We note that the expression is really simple in the case
of α = 2, which happens in a scenario produced by little
blockage and clear ground [36]. It intuitively shows the
joint impact of m, ρ, and λ on the capacity, specifically,
the increase with growing λ and the number of associated
RRHs.

Figure 5 compares the analytical lower bound of capacity
in (25), approximate lower bound in (26), and Monte-Carlo
simulated curves with four different antenna configurations. As
shown in Fig. 5, we note that both the exact lower bound and
the approximate lower bound match precisely the simulation
result in the high SNR regimes, as expected in Theorem 2.
Moreover, the approximate expression is very close to the
capacity even for the case that m = 1, which indicates that
the approximation in (26) can be applied to arbitrary number



7

of antennas as long as m = n, and the analysis on the
approximate expression in (27) and (28) is highly accurate.

The joint impact of intensity λ and path loss exponent α
on the ergodic capacity is illustrated in Fig. 6. We note that
the blue lines representing the approximate lower bounds in
(26) converge very fast to the simulation results in the cases
of α = 2, 2.5, while are tight only in the regime of high λ
in the cases of α = 3, 3.5. The reason is that with high α in
the low λ cases, meaning smaller numbers of RRHs and more
intense signal attenuation, the analytical expression can hardly
characterize the exact capacity due to the SNR constraint.
Moreover, we find that the offsets between different α decrease
with increasing λ, and the capacity grows logarithmically with
increasing λ when the signal power satisfies (17), as predicted
by (26).

We again emphasize that the obtained results are derived for
OFDM system so that no interference is considered. However,
for some extreme cases, such as the heavily-loaded scenarios,
the spectrum resource may not enough to support users, the
interference is hence inevitable. For practical reference, a
more general system model which has considered interference
should be introduced. Note that the performance of the new
system model becomes even difficult to analyze. However, we
are able to approximate the system behaviors by applying
[37, Lemma. 1]. Since the applied lemma has employed
more approximations, the tightness of the results should be
comprehensive justified, and we will go through this model in
our future work.

IV. RRH SELECTION AND POWER ALLOCATION

Here, the optimal number of associated RRHs is derived
for achieving energy efficient transmission in the amorphous
cellular. We then propose two scheduling algorithms, namely,
UOS and ROS, for multiuser scenarios based on our capacity
results earlier. With the help of our analytical approximation,
a large amount of calculations can be avoided and replaced by
simply offline searching. In the following section, we provide
the analysis and the corresponding scheduling algorithms for
one subcarrier. Note that the power consumed by signal
transmission and reception are taken into account.

A. Energy Efficiency

We consider one subcarrier in OFDM dense C-RAN
system where each single-antenna RRH is serving a single
user3 in a time resource unit. The user establishes its own
cell by connecting to neighboring RRHs, and we assume
full coordination among them in the cell. Without loss of
generality, we suppose that the locations of users on one
subcarrier are also modeled as a two-dimensional PPP having
intensity λu with λu � λ.

In order to reveal the optimal number of associated RRHs,
it is necessary to investigate the energy efficiency (EE) for
efficient transmission. We consider the power consumption for
signal transmission and reception, and the EE can be defined

3The assumption can be relaxed to cope with multiuser scenarios when
orthogonal multiple access approach is adopted. We aim to show the efficiency
of our scheme and leave the RRH scheduling to future work.

TABLE I
SYSTEM PARAMETERS.

Path loss exponent α 2.09

Number of antenna per user m 4

Maximum number of RRH nmax 10

RRH intensity λ 10−3 m2

User intensity4 λu 10−4 m2

Protect distance dth 1 m
Minimum transmit power Pmin 5 dBm
Maximum transmit power Pmax 23 dBm
Thermal noise −70 dBm
Capacity margin ∆r 3 bit/s/Hz

as the ratio of the sum spectral efficiency to the sum of the
consumed power, described as

ηmu =

∑
k Cmk,nk∑

k nkPr +
∑
k Ptk

bit/J/Hz, (29)

where Cmk,nk represents the total uplink spectral efficiency
for the kth user; Ptk denotes the signal transmission power
consumed by the user k; mk and nk are the number of
antennas of the user k and the number of RRHs which
are associated to user k respectively; and Pr is defined
as the power consumption at receiver including both the
power consumed by signal processing and power required
for supporting RRH. For simplicity, we assume that the same
Pr for every activated RRHs while the Ptk is adjustable for
optimizing ηmu.

In contrast to prior works, nk is allowed to vary according
to user requirements. In general, an exhaustive search for
the optimal result requires an extremely high complexity and
a large amount of overhead, which will be prohibitive for
practical applications. Thus, to reduce the complexity, we
choose to evaluate the optimal numbers of associated RRHs
for a single user according to different demands rth, and save
the simulation results for future indexing of the multiuser
scenarios.

We see that the expression of EE for a single user can be
described as

ηsu =
Cm,n

nPr + Pt
. (30)

We here use the approximation in (16) to represent capacity
for offline simulations. In what follows, the approximate EE
can be expressed as

η̂su,λ =
Ca
m,n (λ)

nPr + Pt
. (31)

We are interested in finding the optimal n and Pt that
maximize η̂su,λ, i.e.,

max
n,Pt

η̂su,λ (32)

4The user intensity is reasonable since, in OFDM systems, users are
arranged to hundreds of orthogonal subcarriers, i.e., users on one subcarrier
are separated to the others [38]. As a consequence, the co-channel users are
geographically separated.
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TABLE II
JOINT OPTIMAL SOLUTIONS OF (n, Pt)

rth m = 2 m = 4 rth m = 2 m = 4 rth m = 2 m = 4 rth m = 2 m = 4

5 (1, 5) (1, 5) 13 (2, 14) (2, 13) 21 (3, 17) 29 (4, 20)

6 (1, 7) (1, 7) 14 (2, 15) (2, 14) 22 (4, 15) 30 (5, 20)

7 (1, 10) (1, 10) 15 (2, 17) (3, 11) 23 (4, 16) 31 (5, 21)

8 (1, 13) (1, 13) 16 (2, 18) (3, 12) 24 (4, 17) 32 (5, 21)

9 (1, 17) (2, 7) 17 (2, 20) (3, 13) 25 (4, 17) 33 (5, 22)

10 (2, 9) (2, 8) 18 (2, 21) (3, 14) 26 (4, 18) 34 (6, 22)

11 (2, 11) (2, 10) 19 (3, 21) (3, 15) 27 (4, 19) 35 (6, 23)

12 (2, 12) (2, 11) 20 (3, 23) (3, 16) 28 (4, 20) 36 (6, 24)

where n ∈ [1, nmax] with nmax being a tunable parameter
representing the maximum number of associating RRHs. The
parameter Pt ∈ [Pmin, Pmax] where Pmin and Pmax stand
for minimum transmit power and maximum transmit power
respectively. The optimal solution of nk for the above problem
can be obtained through exhaustive search. The parameters of
simulations can be found in Table I, and the results of joint
configurations of n and Pt (in dBm) for a single user are
shown in Table II. Based on Table II, the optimal size of the
cell can be determined by the number of associated RRHs
according to user’s demands. Therefore, with the help of Table
II, we are able to propose RRH scheduling algorithms with
much lower complexity for multiuser scenarios.

Algorithm 1 UOS
Initialization:

Set N = {1, . . . , N}, M = {1, . . . ,M}, rk=1,...,N
th ,

mk=1,...,N , nk=1,...,N = 0,
Rk=1,...,N = ∅, Fk = 0, lk = 0

Step 1: Determining the nk=1,...,N and Ptk=1,...,N
.

for k = 1 to N do
rk = rkth + ∆r,
Search nk=1,...,N and Ptk=1,...,N

in Table II with known
rk and mk.

end for
Step 2: Select first nk RRHs with strongest uplinks for each

user.
while if Fk=1,...,N = 0 do

for k = 1 to N do
if Fk = 0 then
n∗ = arg max

i∈M

{
d−αik

}
, Rk = Rk ∪ n∗, M =

M/ {n∗}, lk = lk + 1
if lk = nk then
Fk = 1

end if
end if

end for
end while

Step 3: Power control for achieving the optimal EE.

Algorithm 2 ROS
Initialization: : Same as initialization in UOS
Step 1: Same as Step 1 in UOS
Step 2: Select first nk RRHs with strongest uplinks for each

user.
while if Fk=1,...,N = 0 do
n∗ = arg max

i∈M,k∈N

{
d−αik

}
, Rk = Rk ∪ n∗, M =M/ {n∗},

lk = lk + 1
if lk = nk then
N/ {k}, Fk = 1

end if
end while

Step 3: Same as Step 1 in UOS.

B. UOS and ROS

We propose two effective schemes, namely, UOS and ROS,
to form user’s amorphous cells on the basis of offline EE
results. In UOS, the algorithm selects the required RRHs
with the strongest links for each user from all the remaining
candidates. On the other hand, the ROS scheme establishes
the cell by optimizing the links in the system, i.e., selecting
the strongest link from all the remaining users to RRHs and
scheduling the RRH to its corresponding user. Note that both
algorithms contain three steps and both Step 1 and Step 3
in two algorithms are identical. We first introduce into detail
the steps in UOS, and then provide the differences of ROS
compared with UOS.

In the initialization stage, we identify the number of users
N in the system and the QoS rkth (in bit/s/Hz) of user k. We
useM to represent the set of the whole RRHs M in the area;
N denotes the set of users N in the system.

In Step 1 of UOS, we evaluate the optimal number of
associated RRH nk for the kth user by referring to Table II.
Since our approximate capacity expression is slightly larger
than real capacity, we add a margin of the spectral efficiency
∆r to each rkth to ensure that the algorithm can always meet
the user’s demand. Note that nk can be determined by offline
simulation since the intensity of the RRHs λ is determined.
Thus, the optimal number of associated RRHs can be selected
via Table II according to their demands while avoiding a
significant amount of computations.
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In Step 2 of UOS, we use Rk to represent the RRHs set
selected for the kth user; d−αik is the LSF between the ith
RRH and the kth user; the variable lk is used as a counter to
determine if nk RRHs have been selected for the kth user; the
variable Fk is a flag and Fk = 1 in Step 2 means that RRH
selection for kth user is completed. In the algorithm, for each
round of selection, each user is scheduled one RRH with the
strongest link from all the remaining candidates. The algorithm
ends until all nk are satisfied. This step ensures that each
selected RRH is the optimal choice for its corresponding user
from the remaining candidates, which guarantees the fairness
of the scheme. In Step 3 of UOS, we adjust the transmit
power to achieve optimized transmission, which is simple and
straightforward; Cmk,nk (Rk, Ptk) represents the capacity of
the kth user with associate RRHs Rk and transmission power
Ptk . Here, we provide one alternative scheme, ROS, as a
control group, and introduce the difference between the two
schemes in Step 2.

In Step 2 of ROS, instead of searching RRHs for the user,
we search for the strongest link from all the possible links
of the remaining users and the remaining RRHs, and then
schedule the RRH to its corresponding user until all the users
meet nk. In contrast to UOS, the selected RRHs in ROS are
guaranteed to serve their optimal users. We note that Step 1
and Step 3 are rather simple, and therefore, the complexity of
both algorithms is dominated by Step 2. As N and M grow
large, the worst-case complexity of Step 2 in UOS and ROS
are compared in Table III. As seen, the complexity of ROS
is higher than UOS, because searching for the strongest link
from all possible links requires more calculations than just
searching the strongest link for each user.

The EE against the user requirement with the simulation
parameters shown in Table I is illustrated in Fig. 7. For
convenience, we assume that all users have four antennas and
equal QoS demand (i.e., mk=1,...,N = 4 and r1

th = · · · = rNth ).
We also provide the results for a fixed number of associated

TABLE III
WORST-CASE COMPLEXITY COMPARISON.

Proposed Algorithms UOS ROS

Worst Case Complexity O (M
∑
k nk) O (MN

∑
k nk)

RRHs scheme (FRS). In FRS, the scheme does not change
the number of the associated RRH according to the user’s
demands. Here, we set nk=1,...,N = 2, 3, 4. We first note
that the EE with fewer number of RRHs performs better
for low user requirements (i.e., n = 2 below 19 bit/s/Hz)
because of less consumption of transmission power and fewer
associated RRHs. Moveover, we observe the exact same trend
from the results with Pr = 0.25 W and that with Pr = 1 W,
which indicates that the optimal configurations for various
requirements are non-changing with different Pr. Furthermore,
the lines representing the results for the fixed nk first increase
and then reduce with rkth due to the exponential increase of
transmission power. In contrast to them, UOS and ROS, by
applying the results of our capacity analysis in Section III,
show significant advantages in EE performance, i.e., both of
which yield the best average EE among all lines. Note that
there is no significant difference between UOS and ROS in
the regime of low user requirement. However, when rth grows
large, the ROS scheme is superior by a narrow margin over
the UOS scheme, which implies that selecting the users for the
RRH is a better strategy compared with selecting the RRHs
for the user for user-centric system. Although the worst-case
complexity of the ROS is N -times that UOS has, ROS still
has an advantage over UOS since N is not a big number
considering that λu � λ.

C. λ/λu
For a certain number of users, the throughput of the OFDM

dense C-RAN system always grows with an increasing number
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Fig. 8. Energy efficiency for UOS, ROS and FRS versus K for low/medium/high QoS requirements with fixed λu. (a) rkth = 10 bit/s/Hz. (b) rkth = 20
bit/s/Hz. (c) rkth = 30 bit/s/Hz. Results are shown for Pr = 0.25W, α = 3 and λu = 10−4m2.

of RRHs due to the reduced TX-RX distance and the multiuser
gain. When the intensity of the RRHs grows, the EE always
increases correspondingly because of the reduced distance
between the user and the RRH. However, considering the cost
of the RRH, deploying an excessive number of RRHs without
bound is meaningless and not cost-effective.

Proposition 1: Consider the optimal configuration (n∗, P ∗t )
for UOS and ROS having approximate high-SNR capacity
Ca
m,n∗ (λ). When K = λ/λu is large, to achieve the same EE

performance by utilizing a FRS associated with n′ RRHs, the
RRH intensity λ′ can be given as the solution of the equation

Ca
m,n′ (λ

′) =
n′Pr + P ∗t
n∗Pr + P ∗t

Ca
m,n∗ (λ) . (33)

Proof: The result can be simply obtained by solving the
equation η̂su,λ′ = η̂su,λ.

Note that the result holds for λ � λu. The reason is
that our algorithms schedule RRHs by avoiding any of them
been selected multiple times, i.e., some of users may not be
serviced by their n-nearest RRHs for small K. Moreover, the
result varies according to the system parameters, such as, the
intensity of the RRHs λ, rate requirement rth (i.e., Ca

m,n∗ (λ)),
number of the antenna per user m and the power consumption
for supporting RRHs Pr, and the RRH deployment can then
be optimized based on the result.

In general, the intensity of the RRHs, λ, is fixed in a
deployment, while the intensity of the users, λu, is the actual
variable. With the goal of optimizing the deployment of the
RRH, it is important to reveal the trend of the EE with respect
to the ratio of λ and λu. In this subsection, we consider a
system in the plane whose radius R = 500 m. The parameters
of simulations can also be found in Table I except λ and λu.
For convenience, we suppose all users have same user QoS
demand (i.e., r1

th = · · · = rNth ). The simulations are shown for
both fixed λu and λ respectively in the low/medium/high QoS
requirement scenarios.

The EE against the ratio K with fixed λu is shown in Fig. 8.
Intuitively, the EE always increases with growing K among
three user QoS demand scenarios but with different speed.
We find that the FRS with n = 4 performs poorly in the
low QoS and medium demand cases as well as the FRS with
n = 2 in the high QoS demand cases. Moreover, we see that
the curves for the UOS, ROS and FRS with n = 4 increase
sharply when K < 25, but grow smoothly when K > 25 in
both medium and high QoS demand scenarios. The reason is
that the distance between the associated RRH and the user
can be hardly reduced when K is large, which means that
the signal strength cannot be effectively enhanced, i.e., the
deployment of RRH is already too ”crowded” for the users.
More importantly, the figures show that UOS and ROS can
work effectively and keep a significant advantage in various
scenarios. This is important since by applying an appropriate
scheduling algorithm, the number of the deployed RRH can
be sharply reduced (e.g., the number of RRH can be reduced
by half in Fig. 8a and even more in the medium and high QoS
demand scenarios).

Fig. 9 shows the EE against the ratio K with fixed intensity
of RRH λ. This simulation corresponds to the scenarios with a
given number of RRHs and very few users. The figures show
that even with just a small number of users in the system, the
EE can be substantially improved by applying UOS and ROS
(e.g., about 10 bit/J/Hz and 15 bit/J/Hz in low and medium QoS
demand cases). In Fig. 9c, the users with high QoS demands
experience very poor EE if they only connect with the two
nearest RRHs. We also note that the curves remain constant
when K grows large, which implies that to achieve an energy-
efficient transmission, many of the RRHs should not activated
based on the scheduling algorithms when the number of the
users is small.

In summary, both the proposed schemes offer a substantial
improvement in EE performance. By applying appropriate
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Fig. 9. Energy efficiency for UOS, ROS and FRS versus K for low/medium/high QoS requirements with fixed λ. (a) rkth = 10 bit/s/Hz. (b) rkth = 20
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scheduling schemes, we can not only achieve energy-efficient
communication but also optimize the RRH deployment.

V. CONCLUSION

In this paper, we investigated amorphous cellular which
is based on user-centric topologies for ultra-dense C-RANs.
An approximation of the uplink capacity at high SNRs has
been presented, as well as, a very tight lower bound when
the number of user antennas is equal to that of associated
RRHs. Based on results, we characterized the impact of path
loss exponent, RRH intensity and antenna configuration on the
ergodic capacity. Moreover, the optimal number of associate
RRHs for single user was derived when the transmission and
reception power consumption are taken into account. These
results were subsequently used in two scheduling algorithms,
namely UOS and ROS, to obtain energy efficient transmission.
Both of the scheduling algorithms induce very low-complexity
and offer a substantial improvement in EE for arbitrary QoS
requirements. More importantly, according to the analytical
and simulation results, a large number of deployed RRHs
can be waived while still maintaining a desirable EE level
by applying our scheduling algorithms.

APPENDIX A
PROOF OF LEMMA 1

To prove this lemma, it is convenient to give separate
treatments for two cases.

1) n 6 m Case: In this case, the expected determinant of
W, conditioned on B, is given by

E [det (W)|B] = E
[
det
(
BHH†

)∣∣B]
= E

[
det (B) det

(
HH†

)∣∣B]
(a)
= E [det (B)] E

[
det
(
HH†

)]
, (34)

where (a) is obtained due to the independence of B and H.
Applying the result in [31, Eq. (A.7.1)], (34) can be further
represented as

E [det (W)|B] = E [det (B)]
Γ (m+ 1)

Γ (m− n+ 1)
. (35)

To evaluate the integral of B, we quote the marginal
distribution of di in [39, Eq. (21)], given in following lemma.

Lemma 2: For a two-dimensional PPP of particles in the
plane with intensity λ, the pdf of di, which is the distance
between the origin to the ith nearest particle, is given by

fdi (x) =
2(λπ)

i

(i− 1)!
x2i−1e−λπx

2

. (36)

Note that the expression (36) is the marginal distribution of
di which has removed the correlation across the distances
between user and RRHs by considering all the possibility of
(i− 1) RRHs are nearer than the ith nearest RRHs, while the
rest of them are farther than ith nearest RRHs. Therefore, the
fdi=1,...,N

(x) are mutual independent.
Thus, utilizing Lemma 2, the closed-form expression of the

expected determinant of B can be further evaluated as

E [det (B)]
(b)
=

n∏
i=1

E [βi]

=

n∏
i=1

10−
c0
10 Ezi

[
10−

σzi
10

]
Edi

[
d−αi

]
(c)
=

n∏
i=1

κ(λπ)
α
2

Γ (i)
Γ
(
i− α

2

)
, (37)

where (b) is derived by noting that B is a diagonal matrix
whose entries are mutual independent, and (c) is obtained
from [24, Eq. (3.323.2)] and [23, Eq. (6.1.5)]. We note that
Γ
(
i− α

2

)
will run to infinity when i− α

2 is a non-positive
integer. This is because of the inaccuracy of the LSF model
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in (4) at point of origin. Thus, we introduce a small constant
dth as a guard distance, and the integrand will be evaluated as∫ ∞

dth

d2i−1−α
i e−λπd

2
i dd =

(λπ)
α
2−i

2
Γ
(
i− α

2
, dth

)
. (38)

Combining (37) and (38), we obtain the results.
2) n > m Case: For this case, utilizing the Cauchy-Binet

formula [40], the expected determinant of W, conditioned on
B, is given by

E [det (W)|B]=E

 ∑
Bm,n

det
(
H†B

)
Bm,n

det (H)Bm,n

∣∣∣∣∣∣B
 .

(39)
Note that (·)Bm,n is an m×m matrix. Thus, by utilizing the
commutativity of matrix multiplication and changing the order
of the matrices in (39), we can further obtain

E [det (W)|B]

= E
[
det
(
H†Bm,nHBm,n

)] ∑
Bm,n

E
[
det (B)Bm,n

]
= Γ (m+ 1)

∑
Bm,n

E
[
det (B)Bm,n

]
. (40)

We then evaluate the integral of (40) as in (37) to yield the
result.

APPENDIX B
PROOF OF (20)

Utilizing the Stirling’s formula

Γ (k + 1) ≈
√

2kπ

(
k

e

)k
, (41)

the approximation in (16) with n 6 m can be approximately
rewritten as

Ca
m,k≈ log2

√
2mπ

(
m
e

)m
mk
√

2 (m−k)π
(
m−k
e

)m−k +

k∑
i=1

log2 (ρκξλ (i))

=log2

1

ek

(
m

m− k

)m−k+
1
2

+

k∑
i=1

log2 (ρκξλ (i)). (42)

According to the definition of natural constant e, we have

lim
m→∞

(
m

m− k

)m−k+
1
2

= ek. (43)

Substituting (43) into (42) and after some basic operations, we
conclude the proof.

APPENDIX C
PROOF OF THEOREM 2

We first rewrite the conditional lower bound of ergodic
capacity

E
[
CL
m,n

∣∣D] = mlog2

ρ

m

+
1

ln 2

 q∑
k=1

ψ (m− q + k) +

n∑
k=n−q+1

det
(
Ξ̃k

)
∏n
i<j

(
d−αj − d−αi

)
 , (44)

When m = n, the sum of the determinants is reduced to
p∑
k=1

det
(
Ξ̃k

)
(d)
=

p∑
k=1

∑
σ

sgn (σ)

p∏
i=1

βi−1
σ(i) lnβσ(k)

=
∑
σ

sgn (σ)

p∏
i=1

βi−1
σ(i)

p∑
k=1

lnβσ(k)

=

p∑
i=1

lnβi
∏p

i<j
(βj − βi), (45)

where (d) is derived by the Leibniz formula [41], and
the second summation is over all permutations σ =
{σ (1) , . . . , σ (p)} of the set {1, . . . , p}, with sgn (σ)
representing the sign of the permutation. By substituting (45)
into (44), we can rewrite the expression as

E
[
CL
m,n

∣∣B]=mlog2

ρ

m
+

1

ln 2

(
m∑
k=1

ψ (k)+

m∑
i=1

lnβi

)
.

(46)
Using Lemma 2 and (46), the lower bound of the ergodic
capacity can be simplified as

CL
m,m =

∫
B

E
[

log2 det
( ρ
m

W
)∣∣∣B] fBdB

= mlog2

ρ

m
+

∑m
k=1 ψ (k)

ln 2
+

1

ln 2

m∑
i=1

E [lnβi]. (47)

The integral in (47) can be further evaluated as
m∑
i=1

E [lnβi]

= −

(
mc0 ln 10

10
+
σ ln 10

10

m∑
i=1

Ezi [zi]+α

m∑
i=1

Edi [ln di]

)
(e)
= m

(
α

2

(
c+ lnπλ+−κ (m)

m

)
− c0 ln 10

10

)
, (48)

where (e) is obtained from [24, Eq. (4.331.1)] and [24, Eq.
(4.352.2)], c is the Euler constant, and

κ (m) =


0, m = 1,
m∑
i=2

i−1∑
j=1

j−1, m > 1.
(49)

Thus, by substituting (49) into (48), the expression can be
rewritten as

CL
m,m = mlog2

ρ

m
+

∑m
k=1 ψ (k)

ln 2

+
αm

2 ln 2

(
c+ lnπλ− κ (m)

m

)
+
mc0
10

log210. (50)

Note that we are using a property of digamma function by
[35, Eq. (2.14)]

ψ (k) = −c+

k−1∑
j=1

j−1. (51)

Substituting (51) into (50) and after some basic operations, we
complete the proof.
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