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a b s t r a c t

We consider asymmetric winner-reimbursed contests. It turns out that such contests (Sad-Loser) have
multiple internal pure-strategy equilibria (where at least twoplayers are active).Wedescribe all equilibria
and discuss their properties. In particular, we find (1) that an active player is indifferent among all her
non-negative choices and her expected payoff is zero in any internal equilibrium, (2) that a higher-value
(stronger) player always spends less than a lower-value (weaker) player and therefore always has a lower
chance to win a Sad-Loser contest in any internal equilibrium, and (3) a sufficient condition for a net total
spending to be higher in a Sad-Loser contest than in the corresponding asymmetric contest.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

A contest is an allocation mechanism where players strategi-
cally allocate costly efforts in order to win a prize. In this paper, we
consider asymmetric winner-reimbursed contests. In fact, these
types of contests (which we call Sad-Loser contests1) can be found
in politics, R&D, and industrial organization (see Kaplan et al., 2002,
Matros and Armanios, 2009). For example, Research & Develop-
ment (R&D) Tax Credits (signed into law by President Bush on
October 3, 20082) require that ‘‘The activity must result in a new or
improved . . .product . . . ’’ which means that an R&Dwinner not only
obtains a new product (wins the prize) but also gets R&D Tax Cred-
its (gets reimbursed for her expenses). It is a common practice in
elections that a qualified candidate is entitled to at least a partial
reimbursement of election expenses. In order to qualify for a reim-
bursement, a candidate must either be elected, or, if not elected,
must exceed a pre-specified number of valid votes. For example,
Germany, Canada, and Ireland provide reimbursement of election
campaign costs.

The paper proceeds as follows. First, we analyze the existence
and uniqueness of equilibria in Sad-Loser contests. It turns out
that a player’s best-reply correspondence is not continuous even
for positive opponents’ spending. Therefore, fixed-point theorems
cannot help to establish equilibrium existence in our model.

∗ Correspondence to: Department of Economics, Lancaster University, Manage-
ment School, Lancaster LA1 4YX, United Kingdom. Tel.: +44 1524 5 93865.

E-mail address: alexander.matros@gmail.com.
1 The name comes from Riley and Samuelson’s (1981) example of Sad-Loser

Auction.
2 Seehttp://www.freedmaxick.com/research_development_r_d_tax_credits.php.
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However, using the best-reply correspondences, we find all pure-
strategy equilibria in Sad-Loser contests. We show that the
model always has multiple equilibria. Such an observation is
rare in the contest literature. The few exceptions are Cornes and
Hartley (2005), Cohen and Sela (2005), Yamazaki (2008), and
Chowdhury and Sheremeta (2011). Cornes and Hartley (2005) and
Yamazaki (2008) find multiple equilibria in contests when the
contest success function is determined by a production function
with increasing returns for each contestant. Cohen and Sela
(2005) and Chowdhury and Sheremeta (2011) discuss multiplicity
of equilibria in contests with reimbursements. We show that
equilibria in our model can be of two types: an i-type and an
internal type. i-type equilibria are such that only player i spends
a positive amount and all other players spend nothing. Internal-
type equilibria are such that at least two players are active (spend
positive amounts).3 Moreover, the number of internal equilibria
increases with the number of players in Sad-Loser contests.4

Second, we discuss the properties of internal equilibria. It turns
out that equilibrium behavior in a Sad-Loser contest is drastically
different from that in an asymmetric contest.5 We demonstrate
that an indifference property has to be satisfied in any internal

3 Some Sad-Loser contests can have an internal equilibriumwhere all players are
active.
4 The number of equilibria can also increasewith the number of players in all-pay

auctions. See Baye et al. (1996).
5 The classic Tullock’s (1980) contest where all players have the same valuations

is called standard in the contest literature. A contest where players have different
prize valuations is typically called asymmetric. Players can have different prize
valuations in a Sad-Loser contest, but to simplify our notation we will call them
Sad-Loser contests instead of asymmetric Sad-Loser contests.
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equilibrium: an active player is indifferent among all her non-
negative choices. Since an active player is indifferent between
zero and a positive choice, her expected equilibrium payoff has
to be zero in an internal equilibrium. This observation is in
contrast to the standard result in the contest literature, in which
expected individual payoffs are positive in an equilibrium.We also
demonstrate a counter intuitive result that the reverse monotonic
property holds for the active players: a higher-value (stronger)
player always spends less than a lower-value (weaker) player and
therefore always has a lower chance to win the Sad-Loser contest
in an internal equilibrium. This result can also be explained by
the indifference property. An active player is indifferent among
all her non-negative choices if her opponents spend exactly her
prize value. In an internal equilibrium, active players exert effort
in such a way as to keep other players indifferent. Therefore, it
requires higher spending to keep a higher-value player indifferent
and lower spending to keep a lower-value player indifferent. Since
active players are indifferent among their choices in an internal
equilibrium, lower-value active players have to spend more than
higher-value active players.6

Third, we find conditions under which the expected net total
spending in an internal equilibrium increases or decreases with
the addition of another active player. This finding helps to rank
internal equilibria in terms of the expected profit for the designer.
We demonstrate that the expected profit is higher with a higher
mean of the prize values of active players and with a lower
variance of these prize values. Therefore, the highest expected
profit is achieved in the internal equilibriumwhen the set of active
players is limited to the two highest-value players. This finding is
consistent with numerous examples of contest designers selecting
a small – typically two – number of competitors. (See Taylor,
1995, Fullerton and McAfee, 1999, Che and Gale, 2003, Menicucci,
2006.) Moreover, the highest expected profit is higher than the
total spending in the standard asymmetric contest. In addition,
we discover a sufficient condition for the expected designer profit
(net total spending) in any internal equilibrium to be higher than
total spending in an asymmetric contest. This condition is simple:
if all players are active in an asymmetric contest (see Hillman and
Riley, 1989, Stein, 2002, Matros, 2006), then the expected profit
in any internal equilibrium in the Sad-Loser contest is higher than
total spending (designer profit) in the asymmetric contest.7 This
result can be important for different applications of the Sad-Loser
contest, as it is for public goods provision, for example.

The Sad-Loser contest is easy to imagine and implement. The
Sad-Loser contest designer has to announce the following rules:

1. Each player is eligible to submit as his contest bid any positive
real number.

2. The contest winner receives the prize and retains her bid.8

3. All other players lose their bids.

6 In the literature on electoral competition a number of studies have consistently
found at least some evidence of a positive relationship between candidate spending
and electoral performance (seeNice, 1987, Pattie et al., 1995).We can speculate that
an incumbent is more likely to value the office higher than a challenger. However,
most papers in this literature (see, for example, Moon, 2006), support the Paradox
of Less Effective Incumbent spending. This paradox has a flavor of our reverse
monotonic result.
7 Hillman and Riley (1989) show that the asymmetric contest has a set

of active high-value players in the unique equilibrium. Stein (2002) describes
equilibrium spending of the active players. Fang (2002) proves the uniqueness of
this equilibrium.
8 Since the winner has to be reimbursed by the designer, we assume that the

designer can observe individual effort. This assumption is not required in standard
contests.
There are a few papers on contests with reimbursements.
Matros and Armanios (2009) analyze contests with reimburse-
ments where all prize values are the same V1 = · · · = Vn. In
this paper, we take the next step and consider asymmetric n-player
Sad-Loser contests. Our paper is also a generalization of Cohen and
Sela’s (2005) two-player asymmetric Sad-Loser contest to n-player
case. They show that in the two-player case there exists a unique
internal equilibrium where the weak contestant wins with higher
probability than the stronger one. Cohen and Sela (2005) analyze
the general n-player case bymeans of the n = 3 case. They describe
only internal equilibria with two active players.

Baye et al. (2005) is an important complement to our paper.
They use an all-pay auction framework in order to compare
different litigation systems. There are three main differences
between our models. First, they consider a game with incomplete
information: their players have private values. Second, they
examine an all-pay auction. Finally, the reimbursements are made
by players in their model.

The rest of the paper is organized as follows. Section 2 presents
theModel. Properties of internal equilibria are studied in Section 3.
Section 4makes a comparison between the Sad-Loser contests and
the standard asymmetric contests. Concluding remarks are given
in Section 5.

2. The model

Consider an n-player winner-take-all contest where the winner
gets reimbursed for her effort. We assume that n risk-neutral
players spend resources simultaneously in order to win one prize.
Player i’s valuation for the prize is Vi. Players’ valuations are
common knowledge and:

V1 ≥ V2 ≥ · · · ≥ Vn > 0. (1)

Formally, player i exerts effort xi in order tomaximize the following
expression:

max
xi≥0

xi
n

j=1
xj

(Vi + xi) − xi, (2)

where the first term in (2) is the probability of winning the contest,
xin
j=1 xj

≥ 0, times the prize for player i, Vi, and the winner’s

reimbursement, xi, and the last term is the cost of effort.9 The
maximization problem (2) can be rewritten as

max
xi≥0


Vi −


j≠i

xj


xi
n

j=1
xj

. (3)

Since xin
j=1 xj

is a monotonically increasing function of xi, the

optimal xi depends on the sign of the expression

Vi −


j≠i xj


.

If

Vi −


j≠i xj


> 0, then the optimal xi is not defined (unless

j≠i xj = 0) because there is no budget constraint in the problem
and player i wants to spend as much as possible. If the total
spending of all other players is zero,


j≠i xj = 0, then player i

maximizes her utility by choosing any positive xi > 0, because
her effort as the winner is reimbursed and any positive spending
makes player i the winner. If


Vi −


j≠i xj


< 0, then the optimal

xi = 0. Finally, if

Vi −


j≠i xj


= 0, then player i is indifferent

9 We assume that if x1 = · · · = xn = 0, then nobody wins the prize.
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among all her choices. Formally, the first order conditions of the
maximization problem (3) are:


Vi −


j≠i

xj

 
j≠i

xj




n
j=1

xj

2 ≤ 0. (4)

Note that (4) is equal to zero only if (i)


j≠i xj = 0, or (ii)
Vi −


j≠i xj


= 0. These two cases correspond to two types of

equilibria: case (i) describes all i-equilibria where only player i is
active and case (ii) characterizes all internal equilibria where at
least two players are active. We will call player i active if xi >
0. Suppose that player i is active in an equilibrium. Then either
condition (i) or condition (ii) holds. If condition (i) is satisfied, then
the strong indifference property holds: an active player is indifferent
among all her positive choices in an i-equilibrium. If condition (ii)
holds, then the indifference property is satisfied: an active player
is indifferent among all her non-negative choices in an internal
equilibrium.

Given the opponents’ spending


j≠i xj ≥ 0, it is easy to find the
best-reply correspondence for player i:

BRi (x1, . . . , xn) =



(0, +∞) , if

j≠i

xj = 0,

+∞, if 0 <

j≠i

xj < Vi,

[0, +∞) , if

j≠i

xj = Vi,

0, if

j≠i

xj > Vi.

(5)

The best-reply correspondence summarizes intuitive observations.
If opponents of player i spend zero resources, she wins with any
positive effort and her effort is reimbursed. If the total opponents’
effort is positive but less than the prize value of player i, then the
best-reply correspondence is not defined because player iwants to
spend asmuch as possible: her utility is amonotonically increasing
function in this case. We use the symbol +∞ to emphasize that. If
the total opponents’ effort is equal to the prize value of player i,
then she is indifferent among all her choices: her expected payoff
is always zero. Finally, if the total opponents’ effort exceeds the
prize value for player i, her unique best reply is zero, because
otherwise she obtains a negative expected payoff. The best-reply
correspondence (5) will help to find all Nash equilibria in the
model. In order to illustrate our approach, we start from the n = 2
player case.

2.1. n = 2

If n = 2, then the best-reply correspondences (5) become

BR1 (x1, x2) =


(0, +∞) , if x2 = 0,
+∞, if 0 < x2 < V1,
[0, +∞) , if x2 = V1,
0, if x2 > V1,

(6)

and

BR2 (x1, x2) =


(0, +∞) , if x1 = 0,
+∞, if 0 < x1 < V2,
[0, +∞) , if x1 = V2,
0, if x1 > V2.

(7)

Fig. 1 illustrates the best-reply correspondences (6) and (7).
Fig. 1. Best-reply correspondences. Green (solid) – player 1. Red (dots) – player 2.
This illustrates all Nash equilibria. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 1 shows that there are two types of equilibria: with one
or two active players. If only player i is active, then she wins with
any amount of positive effort and gets reimbursed. In order to
keep the other player j inactive, the active player i has to be very
aggressive: her effort should be at least equal to the prize value
of her opponent, xi ≥ Vj. Such high effort of player i leads to a
non-positive expected payoff for player j and she stays out of the
contest. There is only one possibility to have two active players in
the equilibrium: each player has to make her opponent indifferent
among all her choices: itmust be that xi = Vj in this case. Of course,
such an equilibrium is unique. This equilibrium has a property of
a mixed-strategy equilibrium: each player makes her opponent
indifferent. Cohen and Sela (2005) find the described equilibria
analytically.

2.2. General case, n > 2

Case n = 2 provides the intuition and illustration for the
general case, n > 2. Again we can have two types of equilibria:
with one or several active players. We will call equilibria with
one active player i – i-equilibria and with several active players –
internal equilibria.

If only player i is active, then she wins with any positive effort
and gets reimbursed. In order to keep the other players inactive,
the active player i has to be very aggressive: her effort should be
at least equal to the prize value of her highest-value opponent,
xi ≥ max {V1, . . . , Vi−1, Vi+1, . . . , Vn}, which follows from the
best-reply correspondence (5). Such high effort of player i leads to
a non-positive expected payoff for any other player and as a result,
all other players stay out of the contest.

Proposition 1. (0, . . . , 0, xi, 0, . . . , 0) is an i-equilibrium, if

xi ≥


V1, if i > 1,
V2, if i = 1. (8)

In i-type equilibria, only one player has (very) high spending
and the other players have zero spending. Since the winner gets
reimbursed, player i spends so much that she discourages all other
players from participation in the Sad-Loser contest, because they
have negative expected payoffs for any positive spending level.
i-type equilibria are similar to i-type equilibria in the second-price
seal-bid auctions where just one bidder – bidder i – places a (very)
high bid and all other bidders bid zero.

There are multiple possibilities to have several active players
in an internal equilibrium. In each equilibrium with several active
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players the indifference property must hold: each active player i
has to be indifferent among all her choices, or it must be that
j≠i

xj = Vi, (9)

for any active player i. Summing (9) over k ≥ 2 active players,
ik

i=i1


j≠i

xj =

ik
i=i1

Vi.

Denote total spending of k active players i1, . . . , ik by

s (i1, . . . , ik) =

ik
i=i1

xi.

Then, total spending of active players i1, . . . , ik is

s (i1, . . . , ik) =
1

(k − 1)

ik
j=i1

Vj. (10)

From (9) and (10), we get

xi = s (i1, . . . , ik) − Vi =
1

(k − 1)

ik
i=i1

Vi − Vi. (11)

Expression (11) describes all internal equilibria.

Proposition 2. Suppose that there exists an internal equilibrium
(x1, . . . , xn) with k active players, i1, . . . , ik. Then there exists a
unique internal equilibrium with active players i1, . . . , ik and each
active player exerts effort according to formula (11).

In each internal equilibrium there exists a set of active players.
Active players’ spending is uniquely described by expression (11),
which means that there exists a unique internal equilibrium with
a particular set of active players. Moreover, all players might be
active in an internal equilibrium. If an equilibrium with all active
players exists, then it is unique. Propositions 1 and 2 characterize
all equilibria in the Sad-Loser contest. The following example
illustrates the n = 3 case.

Example 1. Suppose that n = 3 and V1 ≥ V2 ≥ V3 > 0. Then,
from Proposition 1, there are i-type equilibria in pure strategies:
• 1-type: (x1, 0, 0), where x1 ≥ V2;
• 2-type: (0, x2, 0), where x2 ≥ V1;
• 3-type: (0, 0, x3), where x3 ≥ V1.

From Proposition 2, there are at least 2 internal equilibria in
pure strategies:
• (V2, V1, 0);
• (V3, 0, V1).

If V1 ≤ V2 + V3, then from Proposition 2 there are 2 other
internal equilibria: One with two active players:
• (0, V3, V2)

and another with all three active players:
•
 1
2 [V2 + V3 − V1] , 1

2 [V1 + V3 − V2] , 1
2 [V1 + V2 − V3]


.

Cohen and Sela (2005) analyze the general n > 2 case bymeans
of an example when n = 3. They find i-type equilibria and only
mention internal equilibria with two active players.

2.3. Expected equilibrium payoffs

What can be said about players’ expected equilibrium payoffs?
It is obvious that the expected equilibriumpayoff of any non-active
player is zero. We also know that the indifference property must
hold for all active players in an internal equilibrium. Since players
are indifferent among all non-negative choices including zero, it
is intuitive that each active player should also have expected zero
payoff in an internal equilibrium.

Proposition 3. The expected payoff of
(i) active player i in an i-equilibrium is Vi;
(ii) each player in any internal equilibrium is zero.

Proposition 3 gives intuition for why the Sad-Loser contest can
generate a higher net total spending than the standard contest:
the players’ expected payoffs are zero; hence, the designer should
obtain all expected profit. This result is in contrast to the standard
observation in the contest literaturewhere the expected individual
payoffs are usually positive (see for example, Tullock, 1980, Nitzan,
1994, Congleton et al., 2008, Konrad, 2009).

3. Internal equilibria

As we saw above there are multiple internal equilibria if n > 2.
Wediscuss the properties of internal equilibria in this section. First,
we show that a higher-value (stronger) active player always exerts
less effort than a lower-value (weaker) active player and therefore
has a lower chance to win the Sad-Loser contest in an internal
equilibrium. Next, the expected net total spending is analyzed.

3.1. Weaker players win more often

Now we show how players’ prize valuations affect their
spending in an internal equilibrium. Denote pil as the probability
that player il wins the Sad-Loser contest.

Theorem 1. Consider an internal equilibrium with active players
i1, . . . , ik. Then,

xi1 ≤ · · · ≤ xik
and

pi1 ≤ · · · ≤ pik
if and only if

Vi1 ≥ · · · ≥ Vik .

Theorem 1 leads to the following surprising conclusion: in an
internal equilibrium, an active higher-value player always has a
lower chance to win than a lower-value active player.

Corollary 1. Suppose that Vi > Vj. Consider an internal equilibrium
where both players i and j are active. Then pi < pj.

So far, a monotonic relationship has been identified in the
contest literature: higher value leads to active participation and
more aggressive equilibrium spending which, as a result, leads
to higher winning chances (see, for example, Hillman and Riley,
1989, Nti, 1999). The Sad-Loser contest gives the opposite result.
Why does such a contrast result arise?10 Consider again the n =

2 case.11 In the unique internal equilibrium each player makes
the opponent indifferent among all her choices: the indifference
property holds. In order to make player i indifferent, her opponent
has to spend Vi. This means that the lower-value player has to
spend more than the higher-value player in order to keep the
higher-value player indifferent. The lower-value player can do it
because she is also indifferent among all her non-negative choices.
It is therefore not surprising that both players obtain zero expected
payoff in an internal equilibrium.

10 Cohen and Sela (2008) show that the designer can influence contestants’
winning probabilities by choosing the number of prizes in the all-pay auctions.
11 Cohen and Sela (2005) notice this effect in the case of two players. They also
point out (Proposition 2) that ‘‘in the n player contest . . .underdogsmaywin with the
highest probability’’. We prove that this effect holds in any internal equilibrium.
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3.2. Expected net total spending

Consider the expected net total spending in an internal equilib-
rium with i1, . . . , ik active players. Since net total spending is the
designer’s profit, we will call the expected net total spending the
expected profit. The expected profit is then

π (i1, . . . , ik) =
xi1

s (i1, . . . , ik)


s (i1, . . . , ik) − xi1


+ · · · +

xik
s (i1, . . . , ik)


s (i1, . . . , ik) − xik


. (12)

From (11),

π (i1, . . . , ik) =
s (i1, . . . , ik) − Vi1

s (i1, . . . , ik)
Vi1

+ · · · +
s (i1, . . . , ik) − Vik

s (i1, . . . , ik)
Vik ,

or

π (i1, . . . , ik) =

ik
i=i1

Vi − (k − 1)

ik
i=i1

V 2
i

ik
i=i1

Vi

. (13)

Eq. (13) can be rewritten as

π (i1, . . . , ik) = V k −
Var V k

V k
, (14)

where

V k ≡
1

(k − 1)

ik
j=i1

Vj, Var V k
=

ik
j=i1


V k − Vj

2
.

It is easy to see from (14) that π (i1, . . . , ik) is increasing in V k and
decreasing in Var V k. In other words, the expected profit is higher
with a higher mean of the prize values of active players and with
a lower variance of these prize values. Therefore, the highest ex-
pected profit should be obtained if only the top two players are
active, because it gives the highest mean and the lowest variance.
However, if all prize values are the same, the expected profit is the
same in all internal equilibria.

Proposition 4. Suppose that

V1 = V2 = · · · = Vn = V .

Then, there are2n
−(n + 1) internal equilibria. Expected profit is equal

to V in any internal equilibrium.

If players have different prize values, then we can rank internal
equilibria in terms of their expected profits. Our next result shows
how the expected profit changes with the addition of an active
player.

Theorem 2. Consider two internal equilibria with i1, . . . , ik and
i1, . . . , ik, ik+1 active players. Then,

π (i1, . . . , ik) > π (i1, . . . , ik, ik+1) ,

if
ik

j=i1

Vj

Vj − Vik+1


> 0,

π (i1, . . . , ik) < π (i1, . . . , ik, ik+1) ,

if
ik

j=i1

Vj

Vj − Vik+1


< 0.

(15)
It follows from Theorem 2 that addition of the lowest-value
player to the set of active players can only reduce the expected
profit.

Corollary 2a. Consider two internal equilibria with i1, . . . , ik and
i1, . . . , ik, ik+1 active players. Suppose that

min

Vi1 , . . . , Vik


> Vik+1 > 0. (16)

Then,

π (i1, . . . , ik) > π (i1, . . . , ik, ik+1) .

However, the addition of the highest-value player to the set of
active players can only increase the expected profit.

Corollary 2b. Consider two internal equilibria with i1, . . . , ik and
i1, . . . , ik, ik+1 active players. Suppose that

Vik+1 > max

Vi1 , . . . , Vik


> 0. (17)

Then,

π (i1, . . . , ik) < π (i1, . . . , ik, ik+1) .

Using Theorem 2 and Corollaries 2a and 2b we can characterize
the range of the expected profits in the Sad-Loser contest. In
particular, we find internal equilibria with the lowest and the
highest expected profits. The following proposition confirms our
observation in (14) that the highest expected profit is reached in
the internal equilibrium with the top two active players.

Proposition 5. (i) The lowest expected profit is achieved in the
internal equilibrium with the two lowest-value active players.
This expected profit is 2Vn−1Vn

Vn−1+Vn
.

(ii) The highest expected profit is achieved in the internal equilibrium
with the two highest-value active players. This expected profit is
2V1V2
V1+V2

.

(iii) The expected profit is at least 2Vn−1Vn
Vn−1+Vn

and at most 2V1V2
V1+V2

in an
internal equilibrium.

4. Asymmetric vs. Sad-Loser contests

The contest designer is typically assumed to maximize her
profit. So, in this section, we compare net total spending (the
expected profit) in a Sad-Loser contest with total spending in an
asymmetric contest. First, we describe total equilibrium spending
in an asymmetric contest. Next, total spending in an asymmetric
contest is compared with net total spending in the corresponding
Sad-Loser contest. We will consider only internal equilibria in the
Sad-Loser contest in this section.

4.1. Asymmetric contest

Hillman and Riley (1989) identify the set of active players in an
asymmetric rent-seeking contest and total equilibrium spending.
Stein (2002) follows Hillman and Riley (1989) and describes the
players’ equilibrium strategies.

Consider an asymmetric contest among n risk-neutral players
where (1) holds. Players exert effort simultaneously in order to
win one prize. In particular, player i spends bi ≥ 0 in order to win
prize Vi. The players’ valuations are commonly known among the
players. Player i obtains the prize with probability bin

i=1 bi
, if bi > 0.

Each player i has to solve the following maximization problem:

max
bi≥0

bi
n

j=1
bj
Vi − bi.
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Hillman and Riley (1989) demonstrate that the top 1, 2, . . . ,n
players are active in an asymmetric contest and total spending in
the unique equilibrium12 is

T (n) =
(n − 1)

n
Vn,

whereVn is the harmonic mean of the highest n players’ prizesVn ≡
n

n
j=1

1
Vj

and a non-active player (n + 1) has prize value such that

Vn+1 ≤
(n − 1)

n
Vn. (18)

Note that higher-value players spend more than lower-value
players and have a higher chance to win an asymmetric contest.
Moreover, each active player has a positive expected payoff.

4.2. Net total spending

Sad-Loser contests have multiple internal equilibria if n >
2. Therefore, we first select an internal equilibrium in a Sad-
Loser contest and then compare the expected profit in this
equilibrium with total spending in the corresponding asymmetric
contest. Proposition 5 ranks internal equilibria in terms of their
expected profits. We consider the internal equilibrium with the
highest expected profit and compare it with total spending in the
corresponding asymmetric contest. It turns out that the expected
profit in the internal equilibriumwith the two highest-value active
players is always higher than total spending in the asymmetric
contest.

Proposition 6. The expected profit in the internal equilibrium
(V2, V1, 0, . . . , 0) is higher than total spending in an asymmetric
contest.

Theorem 3 provides the sufficient condition for the expected
profit in any internal equilibrium to be higher than total spending
in an asymmetric contest. This condition is very natural: all players
have to be active in an asymmetric contest. If all players are active
in an asymmetric contest, then total spending must be below the
lowest prize value, because all players obtain expected positive
payoffs in the unique equilibrium. Consider now the Sad-Loser
contest. Proposition 5 describes an internal equilibrium with the
lowest profit. There are two lowest-value active players in that
equilibrium. Since the players have to keep each other indifferent,
their total spending is Vn−1 + Vn and their net total spending is
higher than the lowest prize value, Vn. Therefore, the expected
profit in any internal equilibrium in the Sad-Loser contest is higher
than total spending in an asymmetric contest in this case.

Theorem 3. Suppose that all players are active in an asymmetric
contest, or

Vn >
n − 2
n − 1

Vn−1. (19)

Then, the expected profit in any internal equilibrium in the Sad-Loser
contest is higher than total spending in an asymmetric contest.

Theorem 3 suggests when the designer should run the Sad-
Loser contest instead of an asymmetric contest. There are several
corollaries from this theorem.

12 Fang (2002) shows that there exists a unique equilibrium in the asymmetric
contest.
Table 1
Sad-Loser contest.

Values eq’m (1,2) eq’m (1,3) eq’m (2,3) eq’m (1,2,3)

10 10 5 0 2.5
10 10 0 5 2.5
5 0 10 10 7.5

Expected profit 10 6.67 6.67 7

Table 2
Sad-Loser contest.

Values eq’m (1,2) eq’m (1,3) eq’m (2,3) eq’m (1,2,3)

10 10 1 0 0.5
10 10 0 1 0.5
1 0 10 10 9.5

Expected profit 10 1.818 1.818 1.857

Corollary 3. If n = 2, or all prize values are the same,

V1 = V2 = · · · = Vn > 0, (20)

then the expected profit in an internal equilibrium is higher than total
spending in an asymmetric contest.
Proof. If n = 2, or condition (20) is satisfied, then condition (19)
holds.13 �

The following example shows that Theorem 3 provides a
sufficient condition. In this example, condition (19) does not hold,
but the expected profits in all internal equilibria are higher than
total spending in an asymmetric contest.

Example 2. Suppose that n = 3 and V1 = V2 = 10, V3 = 5. Then,
total spending in the asymmetric contest (see Hillman and Riley,
1989, Stein, 2002) is T (3) = 5. In Example 1, all internal equilibria
in the 3-player Sad-Loser contest are calculated. See Table 1.
Table 1 shows that the expected profits in all internal equilibria
in the Sad-Loser contest are higher than total spending in the
asymmetric contest.

However, if condition (19) does not hold, the expected profits
in all but one of the internal equilibria in the Sad-Loser contest
can be lower than total spending in an asymmetric contest. This
is illustrated in the following example.

Example 3. Suppose that n = 3 and V1 = V2 = 10, V3 = 1.
Then, total spending in the asymmetric contest is T (3) = 5. Based
on Example 1, all internal equilibria in the Sad-Loser contest are
calculated in Table 2.
Total spending in the asymmetric contest is higher than the
expected profits in all but one internal equilibrium in the Sad-Loser
contest.

5. Conclusion

This paper considers Sad-Loser contests. All equilibria in pure
strategies are found and their properties are discussed. There are
several natural extensions of this paper. It will be interesting to test
the results in the experimental laboratory and in the field.We have
already started an experimental investigation of the Sad-Loser
contests. In particular, the counter-intuitive aggressive spending of
weak players in equilibrium will be tested. Another direction is an
application of Sad-Loser contests to public goods provision. Since,
as Morgan (2000) and Duncan (2002) show, lotteries increase the
provision of public goods, a Sad-Loser contest might be an even
better tool for determining higher public good provision than a
lottery.

13 We can see the same result in the following way. Proposition 4 shows that the
expected profit in any internal equilibrium is V . Tullock (1980) demonstrates that
total spending is equal to n−1

n V in the symmetric n-player contest.
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Appendix

Proof of Theorem 1. Consider an internal equilibrium with k
active players i1, . . . , ik. Suppose that players i1 and i2 are active
in this equilibrium and

Vi1 ≥ Vi2 .

It follows from condition (11) that

xi1 = s (i1, . . . , ik) − Vi1 ≤ s (i1, . . . , ik) − Vi2 = xi2 .

Note that

pi1 =
xi1

s (i1, . . . , ik)
≤

xi2
s (i1, . . . , ik)

= pi2 . �

Proof of Proposition 4. Note that there are exactly n!
(n−k)!k! possi-

bilities to have k active players in the Sad-Loser contest. Active
player equilibrium spending is uniquely determined by expression
(11). Therefore, there are at most

n
k=2

n!
(n−k)!k! = 2n

− (n + 1) in-
ternal equilibria. Since the indifference property holds in any inter-
nal equilibrium and all prize values are the same, there are exactly
2n

− (n + 1) internal equilibria.
Consider an internal equilibrium (x1, . . . , xn) with i1, . . . , ik

active players. From (14), we get

π (i1, . . . , ik) =
k

k − 1
V −

k
 k
k−1V − V

2
k

k−1V
= V . �

Proof of Theorem 2. Consider an internal equilibrium (x1, . . . , xn)
with i1, . . . , ik active players. Suppose that an active player ik+1 is
added. Then, from (13),

π (i1, . . . , ik) − π (i1, . . . , ik, ik+1)

=

k


ik

j=i1

V 2
j + V 2

ik+1


ik

j=i1

Vj


− (k − 1)


ik

j=i1

V 2
j


ik

j=i1

Vj + Vik+1




ik
j=i1

Vj + Vik+1


ik

j=i1

Vj



−

Vik+1


ik

j=i1

Vj + Vik+1


ik

j=i1

Vj




ik
j=i1

Vj + Vik+1


ik

j=i1

Vj

 .

Note that

k


ik

j=i1

V 2
j + V 2

ik+1


ik

j=i1

Vj


− (k − 1)


ik

j=i1

V 2
j



×


ik

j=i1

Vj + Vik+1


− Vik+1


ik

j=i1

Vj + Vik+1


ik

j=i1

Vj



=


ik

j=i1

Vj


ik

j=i1

Vj

Vj − Vik+1



+ (k − 1)


ik

j=i1

V 2
j + V 2

ik+1


ik

j=i1

Vj


−


ik

j=i1

V 2
j



×


ik

j=i1

Vj + Vik+1


. (21)
Since
ik

j=i1

V 2
j + V 2

ik+1


ik

j=i1

Vj


−


ik

j=i1

V 2
j


ik

j=i1

Vj + Vik+1



= Vik+1


ik

j=i1

Vj

Vik+1 − Vj


,

(21) becomes
ik

j=i1

Vj


ik

j=i1

Vj

Vj − Vik+1



− (k − 1) Vik+1


ik

j=i1

Vj

Vj − Vik+1



= (k − 1)


ik

j=i1

Vj

Vj − Vik+1

 1
k − 1


ik

j=i1

Vj


− Vik+1


.

The statement of the proposition follows from expression (10) and
assumption (15). �

Proof of Proposition 5. (i) Consider an internal equilibrium with
i1, . . . , ik active players where 2 ≤ k ≤ n and

Vi1 ≥ · · · ≥ Vik .

There are four cases.
Case 1. Suppose that

Vi1 ≥ · · · ≥ Vik > Vn−1 ≥ Vn.

Then, from Theorem 2,

π (n − 1, n) < π (ik, n − 1, n) < · · · < π (i1, . . . , ik, n − 1, n)
< π (i1, . . . , ik, n − 1) < π (i1, . . . , ik) .

Case 2. Suppose that

Vi1 ≥ · · · ≥ Vik = Vn−1 ≥ Vn.

Then, from Theorem 2,

π (n − 1, n) < π (ik−1, ik, n) < · · · < π (i1, . . . , ik, n)
< π (i1, . . . , ik) .

Case 3. Suppose that

Vi1 ≥ · · · ≥ Vik−1 = Vn−1 ≥ Vik = Vn.

Then, from Theorem 2,

π (n − 1, n) < π (ik−2, ik−1, ik) < · · · < π (i1, . . . , ik) .

Case 4. Suppose that

Vi1 ≥ · · · ≥ Vik−1 > Vn−1 ≥ Vik = Vn.

First, we show that

π (n − 1, n) ≤ π (k, n) , for any 1 ≤ k ≤ n − 1. (22)

Note that (22) holds if and only if

2
Vn−1Vn

Vn−1 + Vn
≤ 2

VkVn

Vk + Vn
⇐⇒ Vk ≥ Vn−1.

Therefore, from (22) and Theorem 2,

π (n − 1, n) < π (ik−1, n)
< π (ik−2, ik−1, ik) < · · · < π (i1, . . . , ik) .
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Hence, the lowest expected profit is reached in the equilibrium
with the two lowest-value players. Players spend Vn and Vn−1 in
this equilibrium. Hence,

min
k

π(k) = min
i1,i2

π (i1, i2) =
2Vn−1Vn

Vn−1 + Vn
.

(ii) can be proven in a way similar to part (i).
(iii) follows from (i) and (ii). �

Proof of Proposition 6. The expected profit in the internal equi-
librium (V2, V1, 0, . . . , 0) is 2V1V2

V1+V2
≥ V2. Player 2 is always active

in an asymmetric contest and obtains positive payoff. This means
that T (n) < V2. �

Proof of Theorem 3. Proposition 5 shows that the minimal ex-
pected profit is achieved in the internal equilibrium with the two
lowest-value active players (n − 1) and n. This expected profit is
equal to 2Vn−1Vn

Vn−1+Vn
≥ Vn. The total spending in an asymmetric contest

with all n active players must be smaller than a prize value of any
player, including the lowest value player n. Therefore, the expected
profit in any internal equilibrium is higher than total spending in
an asymmetric contest. �
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