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Abstract 

Zinc oxide nano-wires (ZnO NWs) are synthesized reproducibly with high yield via a low 

temperature hydrothermal technique. The influence of the growth duration time, growth 

temperature, zinc precursor and base concentration of Na2CO3 on the morphology of NWs is 

investigated. The growth products are characterised using scanning electron microscopy 

(SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray 

photoelectron spectroscopy (XPS) and photoluminescence (PL). SEM analysis shows that the 

optimum growth temperature is 140 °C and finds that length and diameter of ZnO NWs have 

a relationship with growth duration time and base concentrations of Na2CO3. In addition, it is 

reported that a high (~ 90%) yield of ZnO NWs can be synthesised via using any of three 

different precursors: zinc chloride, zinc acetate and zinc nitrate. TEM and XRD results 

indicate the high purity and the single crystalline nature of the ZnO NWs. XPS confirms the 

absence of sodium contaminants on the surface and indicates a near flat band surface 

condition.  PL shows a large visible band in the yellow part of the spectrum, and a small 



  

 

exciton emission peak, indicating a large defect concentration, which is reduced after 

annealing in air.  

Keywords Semiconducting materials; Nanomaterials; Hydrothermal crystal growth; 

Characterization; X-ray diffraction; Defects.  

1. Introduction 

Low cost, high yield and controlled fabrication are key factors to realizing the potential of 

nanomaterials band gap [1, 2], and a high exciton binding energy of 60 meV at room 

temperature [3-5]. ZnO nanostructures such as nanowires and nanorods are ideal building 

blocks for many applications due to the unique properties of ZnO, their large surface area to 

volume ratio [4], and the ability to grow several single crystal geometries. 

In recent years, different methods have been used to synthesis ZnO nanowires including 

vapour liquid solid (VLS) growth [6, 7], metal organic chemical vapour deposition 

(MOCVD) [7, 8], microemulsion synthesis [9], solvothermal [10] and hydrothermal methods 

[3]. Amongst all of these methods, hydrothermal growth has attracted a lot of interest because 

of its many advantages including low cost, low temperature, high yield [3], scalability, and 

ease of handling. A plethora of nano ZnO shapes have been fabricated using hydrothermal 

methods including nanobelts, nanowires, nanoflowers and nanoparticles. Hierarchical 

structures are of particular interest because of their very high surface to volume ratio which 

has been shown to significantly increase the power conversion efficiency of solar cell [11-

13]. 

ZnO NWs has been grown hydrothermally either in a colloidal form [3, 14] or from a seed 

layer on various substrates[15-19]. Various studies have found that the growth parameters 

such as growth duration time [18, 20, 21], growth temperature [22]and precursor 

concentration [23], have a huge impact on the aspect ratio [3], nanoparticle size [24] and 

nanowire density [15]. Recent hydrothermal methods have been developed to directly grow 

NWs at a specific location by localized heat source or using seed patterning. For localized 

heat, two main process have been used including focused energy field synthesis which relies 

on Joule heating [25, 26] and laser-induced hydrothermal growth [27-31]. For the seed 

patterning, methods include microcontact printing of seed nanoparticles [32], inkjet-printed 

seed patterning [33] and inkjet-printed zinc precursor [34]. These novel methods do not 



  

 

require expensive photolithography or vacuum deposition and their development widens the 

range of ZnO NW applications due to their low-temperature synthesis, low cost, 

environmentally friendly, and simple process setup. Therefore, they can be applied to 

different types of substrates and can be scaled up for mass production. However, the growth 

of NWs in a colloidal form is still essential for more versatile applications. 

The ZnO NWs studied in this paper are grown using a simple colloidal growth technique first 

published by Hu et al [3]. In their paper they use a supersaturated solution of Na2CO3 to 

fabricate NWs over 12 h at 140°C using zinc chloride as precursor.  In this paper, we 

demonstrate the reproducibility of the method and explore the parameter space further, 

highlighting the high yield of the technique and therefore its potential for scaling up NW 

fabrication to commercial level. The parameters investigated include the concentration of 

Na2CO3, growth duration time, the growth temperature and zinc precursors. Additionally, we 

show that ZnO NWs can be synthesized not only using zinc chloride as precursor salt but also 

using zinc acetate dihydrate and zinc nitrate hexahydrate. The effect of annealing the grown 

NWs in air is also studied using characterization techniques not employed in the original 

paper such as x-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy 

(PL). 

2. Experimental procedure 

Zinc chloride (ZnCl₂), zinc nitrate hexahydrate (Zn(NO3)2 ·  6H2O), zinc acetate dihydrate 

(Zn(CH3COO)2 ·  2H2O)) and sodium carbonate (Na2CO3) were purchased from Sigma 

Aldrich and used without further purification. The filter paper was purchased from Merck 

Millipore. In a typical experiment, 0.267 g ZnCl₂ (∼ 0.032 M), and 26.67 g Na2CO3 

(∼4.193 M) were added to a beaker and topped up to 60 mL with deionized water (DI) and 

stirred at room temperature for 10 minutes. The solution was transferred into a 125 mL 

Teflon vessel, which was then sealed in an autoclave. The autoclave was placed in an oven 

and heated to 140 °C for 3 to 26 hours and then cooled down to room temperature naturally. 

The resulting white products were washed with 8 L of DI water and vacuum filtered using a 

hydrophilic nylon membrane with a 1.2 µm pore size. Finally, the filtered white products 

were dried in a desiccator jar for several hours. To obtain a suspension the dried powder 

sample was sonicated in DI water in an ultrasonic bath for 10 minutes. The experimental 

procedure using the other precursor salts is identical, keeping the molarity constant at 

∼0.032 M. The morphology and size of the ZnO products were characterised using a 

Hitachi model S-4800 II field-emission scanning electron microscope (FE SEM). To 



  

 

measure the length and diameter of NWs several images were taken by SEM at the same 

magnification (5k for length measurements and 100k for diameter). 100 NWs were chosen 

randomly from each sample and measured using Image J. Averages, standard deviation and 

error bars were then calculated (the error bars are 2 standard errors wide). The ZnO NWs 

crystallinity was examined via a Bruker D8 Discover X-ray diffraction (XRD) system. High 

resolution Transmission Electron Microscopy (HRTEM) was used to observe the 

morphology and lattice spacing of the ZnO NWs. The surface chemistry and surface band 

bending was investigated using a Kratos Supra XPS and the photoluminescence spectra 

recorded using an Ocean optics USB2000+ spectrometer and a Melles-Griot 325 nm He-Cd 

laser as the excitation source. 

3. Results and discussion  

3.1. X-ray diffraction and Transmission electron microscopy results 

The crystal structure of ZnO NWs was analysed by powder XRD and TEM. A typical XRD 

pattern is shown in Fig1. The strongest peaks observed at 2θ values of 31.7, 34.4, 36.2, 47.5, 

56.5, 62.8, 66.3, 67.9 and 69.1 are corresponding to the lattice planes of (100), (002), (101), 

(102), (110), (103), (200), (112) and (201) respectively. All of these diffraction peaks are 

assigned to a ZnO hexagonal wurtzite structure and are matched with reported data for ZnO 

(a = 3.249A°, c = 5.205A° JCPDS File, 5-664) [3, 35-37]. Furthermore, no diffraction peaks 

from Zn or other impurities are observed in the pattern which indicates the high purity of 

ZnO NWs. High resolution TEM images of a single ZnO NWs are shown in Fig 2. Fig 2(b) 

shows that the average distance between the lattice planes is 0.26 nm which corresponds to 

the (0002) plane [38, 39] and therefore a c-axis growth direction. 

3.2. Effect of Temperature  

The effect of temperature was not reported in the original paper. Here we fixed the 

concentration of Na2CO3 at 4.193 M, the growth time at 6 hours and kept ZnCl₂ as the 

precursor salt. Separate growth runs were conducted at 120°C, 140°C and 160°C, and the 

corresponding SEM images of the growth products are shown in Fig 3. Nanowires with 

diameter of approximately 50 nm and length in excess of 1 µm are only obtained during the 

140°C growth. At 120°C, larger crystals with diameter greater than 400 nm and length of 1-2 

µm with rough surfaces are produced whilst 160°C yielded predominantly multipod type 

structures with several large crystals, again with diameter greater than 400 nm, growing out 

of a common nucleation site. The difference in size of the growth products between 120°C 

and 140°C is illustrated by the photographs in the insets of Fig3 (a, b) showing that 



  

 

sedimentation of the suspended growth products 15 mins after suspension is much less at 

140°C than at 120°C.  

 

3.3. Effect of growth duration time 

NWs were successfully grown at different duration times of 3, 6, 9, 12,16 and 26 h with all 

other parameters remaining constant (140°C with 4.193 M Na2CO3 and 0.032 M ZnCl₂). 

Detailed analysis of the SEM measurements is shown in Fig 4(a). The average ZnO NWs 

length increases with growth duration time from 1.1 µm (3h) to 3.3 µm (26h), whilst the 

average diameter of the ZnO NWs remains statistically constant at around 41 nm. The length 

of the NWs obtained after 26 h was not statistically different than the length of the 16 h NWs. 

This could be explained by the fact that all the free  Zn2+ in the solution have been consumed. 

However , the fact that the yield approaches 100% after 6h indicates that the free Zn
2+

 ions 

supply is already running out after 6 h. Therefore the continuing increase in length with time 

could be attributed to an Ostwald ripening process where small NWs dissolve and larger 

NWs keep growing until the process reaches equilibrium after 16 h. The same trend with 

growth duration time was observed for another set of samples prepared with a lower 

concentration of 3.145 M Na2CO3 and a temperature of 140 °C (not shown). These results 

suggest that the growth occurs almost exclusively along the c axis once the initial nucleation 

has occurred. The main reason is likely to be the very high concentration of Na2CO3.  We 

have shown that there is a clear link between increasing Na2CO3 concentration and 

decreasing NW diameter. This is possibly a consequence of the alkaline condition induced by 

the Na2CO3 (pH of 11.5). Joo et al [40] have shown that at pH 11, the (1120) side facets of 

the ZnO NWs become positively charged and the (0001) end facets become negatively 

charged, resulting in the suppression of lateral growth. It is likely that this mechanism is also 

responsible for our observations. 

3.4. Effect of base concentration (Na2CO3) 

Na2CO3 supersaturation of the solution is an important factor for the nucleation and growth of 

ZnO NWs [3]. The role of Na2CO3 is still unclear but it acts as a weak base which slowly 

hydrolyses in the water solution and gradually produces OH
- 
[3]. We attempted growth using 

the following Na2CO3 concentrations including 2.044 M, 2.673 M, 3.145 M, 4.193 M and 

4.717 M keeping all other parameters constant (140 °C and 6 h). At the lowest concentration 

of 2.044 M, NWs are not fabricated and only micrometre size crystals are forming, as shown 



  

 

in Fig 5 (a). When the concentration increases to 2.673 M a mix of NWs and large crystal are 

obtained as shown in Fig 5 (b). At 3.145 M, 4.193 M and 4.717 M, NWs are successfully 

fabricated as shown in Fig 5 (c, d and f) respectively. Since the solubility of Na2CO3 at 140 

°C is 28.1% by mass [41], the lowest concentration of 2.044 M is below the saturation 

conditions (21.6% by mass). 2.673 M corresponds to the saturation level with 28.3% by mass 

and other concentrations including 3.145 M, 4.193 M and 4.717 M are supersaturation 

solutions with 33.3 % by mass, 44.45 % by mass and 50 % by mass respectively. Based on 

the above analysis, any concentration below 2.673 M is not able to form ZnO NWs, any 

concentration above 2.673 M results in supersaturation and hence NWs are synthesized. This 

is in good agreement with the original paper by Hu et al. However, unlike Hu et al., the 

formation of nanobelts are not observed. Additionally, our results show that the aspect ratio 

of the NWs produced is dependent on the base concentration. Fig 4(b) shows that the average 

length of the NWs increased, whilst the average diameter decreased as the concentration of 

Na2CO3 increased from 2.673 M to 4.717 M. The length increased from 1.7 µm (2.673 M) up 

to 2.7 µm (4.717 M), while the diameter decreased from 60.7nm (2.673 M) down to 40.9 nm 

(4.717 M). Further addition of Na2CO3 (i.e. above 4.717 M ), does not dissolve in the solution 

and therefore has no effect on the NWs. As mentioned earlier we attribute the decrease in 

diameter to the increased pH , causing the side facets to become positively charged and 

suppressing lateral growth. 

3.5. Effect of zinc salt precursor 

The effect of altering the zinc precursor was also investigated by replacing zinc chloride with 

zinc nitrate hexahydrate, and zinc acetate dehydrate. All other growth conditions were kept 

constant: concentration of Na2CO3 at 4.193 M, the growth time at 6 h, the growth temperature 

at 140 °C and concentration of zinc precursors kept at the same molarity of 0.032 M.  The 

corresponding SEM images of the growth products are shown in Fig 6 (a, b and c).  SEM 

images show that NWs are obtained with all three zinc precursor used. Analysis of the SEM 

measurement is shown in Fig 6. It can be seen that NWs have approximately the same length 

and diameter which means that the zinc salt precursors do not have a significant impact on 

the aspect ratio or morphology of NWs. 

3.6. ZnO nanowires yield 

Fig 5(f) shows a digital photograph of the nanowires lifted off the filtration membrane after 

washing, filtration and drying in a desiccator.  The filtered products for three identical growth 

runs (3.145 M Na2CO3, 0.032 M ZnCl₂, 140 °C and 6 h) were weighed and an average 



  

 

weight of 142.8 mg of ZnO nanowires was obtained, which correspond to an atomic yield of 

nearly 90%; i.e. 9 out of 10 zinc atoms provided by the precursor were used to produce ZnO 

nanowires. This remarkable high yield, associated with the low cost of the chemicals and the 

ease of fabrication, makes this method very favourable for scale up operations. 

 

 

 

 

3.7. X-ray photoelectron spectroscopy results 

The XPS survey scan in Fig 7 showed the expected Zn, O and C peaks and demonstrates the 

purity of the sample after rinsing and filtering as no Na peak is present in spite of the high 

concentration of Na2CO3 during the growth. Percentage composition of the O1s core level, 

Zn 2p and C 1s as a function of annealing temperatures in air are shown in table 1, extracted 

from the curve fitting of each core level. The O1s core level peak shape is shown in Fig 8 and 

fitted with two components. The first peak at 530.7 eV is attributed to O
2−

 oxidation state 

bound with Zn in the crystal lattice and the high binding energy peak at 532 eV corresponds 

to surface oxygen species such as OH- ions[42-45]. Table 1 indicates that there is a 

significant reduction in surface carbon and surface oxygen with temperature. The zinc to 

lattice oxygen ratio decreased from 1.145 to almost 1 following the last anneal indicating that 

annealing resulted in a reduction of oxygen vacancies. In addition, XPS valence band spectra 

shown on Fig 9 reveal a near flat band condition with the valence band edge 3.1eV below the 

Fermi level, which was unaffected by the anneals. 

3.8. Photoluminescence results 

The PL spectra of NWs grown for 3, 6, 9, and 12 h are shown in Fig 10, as well as the 

spectrum of the 3h NWs after annealing at 400 °C. The spectra were normalized to the 

excitonic, near band edge (NBE) peak at 376 nm in the main graph and to the deep level 

emission (DLE) band in the inset. The DLE band is thought to originate from several 

radiative transitions between the band edges and deep levels caused by oxygen vacancies and 

interstitials[46-50]. The main graph shows that the DLE peaks increase in intensity compared 

to the NBE peak with growth duration time but there is no change in the shape of either peak. 

This suggests that the efficiency of radiative recombination through deep levels appears to 

increase with growth duration time, compared to exciton recombination.  The shape of the 



  

 

DLE band, with an intensity maximum near 600nm is also very similar to previously reported 

results on vertical ZnO NWs arrays [51]. Annealing the 3h sample at 400°C (inset of Fig 10) 

increases the intensity of the NBE peak relative to the DLE band by a factor of 4. The anneal 

also causes the DLE band shape to change, with the peak maximum shifting from 600 nm to 

640 nm, indicating that the lowest wavelength defect assisted transition is decreased by the 

anneal compared to the other contributions to the DLE. The shape of the DLE band after 

annealing at 400°C is also very similar to that observed on ZnO nanosheets produced by 

annealing zinc acetate at 400°C in air [47, 52], indicating that the effect of this anneal are 

reproducible on different ZnO nanomaterials. Both the increase in NBE emission and the 

change in shape of the DLE band  were also observed on the 12h sample following annealing 

at 400°C (not shown). It can be concluded that the anneal removes defects, improving 

crystallinity. This is in good agreement with the XPS showing a reduction in oxygen 

vacancies.  

4. Conclusion  

The growth parameters (temperature, duration time and base concentration) of a low 

temperature hydrothermal method for producing ZnO NWs with controllable length and 

diameter have been investigated. The optimum growth temperature was found to be centred 

around 140°C. Increasing the growth duration time increases the length of the grown ZnO 

NWs but does not have a significant impact on the NWs diameter. Increasing the base 

concentration increases the aspect ratio of the NWs. Three different salt precursors were used 

with no significant difference in the growth products. The yield was measured at around 90%. 

XPS investigation shows effective removal of surface contamination of ZnO NWs annealed 

in air up to 400°C and a reduction in oxygen lattice vacancies. XPS also indicated near flat 

band conditions at the surface, unaffected by air annealing. Finally, PL shows that the 400°C 

anneal removes defects, improving the intrinsic optical properties of the material. This 

method is simple, low cost, requires no harmful chemicals and possesses a very high yield 

and so could offer a viable route for the scaled up production of ZnO NWs with controllable 

aspect ratios. 
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Table 1: Percentage composition of the O1s core level, Zn and C 1s as a function of 

annealing temperatures in air 

Annealing 

Temperature 

°C 

Oxygen 

lattice 

Oxygen 

surface 

Zinc  Carbon  Zinc/ lattice 

Oxygen 

70 

200 
300 

400 

20.54 

24.90 
28.84 

31.38 

25.99 

21.55 
19.92 

20.19 

23.52 

26.85 
29.71 

31.50 

29.95 

26.7 
21.54 

16.92 

1.145 

1.078 
1.030 

1.003 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

Fig. 1 XRD patterns recorded from the ZnO nanowires 

 

 

 

Fig 2. (a) HRTEM image of a ZnO NW. The inset shows the location of the image 

acquisition. (b) high magnification HRTEM image taken from the area indicated in (a) and  

showing  the distance between the (0002) planes. 



  

 

 

Fig. 3 ZnO NWs grown at (a) 120 °C, (b) 140 °C and (c) 160°C. All other parameters are 

identical and the three images are recorded at the same magnification. The insets in (a) and 

(b) show supsension of the rinsed growth products 15 mins after sonication, highlighting the 

difference in sedimentation rate 

 

Fig. 4(a) ZnO NWs length and diameter versus growth duration time. NWs are grown at 

140°C using a base concentration of 4.193 M. 4(b) ZnO NWs length and diameter versus 

base (Na2CO3) concentration. NWs are grown at the same temperature of 140 °C and for 6 h. 

Error bars are 2 standard errors wide 



  

 

 

Fig. 5 SEM Images of the ZnO NWs grown at 140 °C for 6 h with base concentrations of 

Na2CO3 of (a) 2.044 M, (b) 2.673 M, (c) 3.145 M, (d) 4.193 and (e) 4.717 M. Images are 

taken at the same magnification. (g)  Filtered and dried ZnO NWs produced from 0.032 M 

ZnCl2 

 

Fig. 6 ZnO NWs SEM images, length and diameter for the three zinc precursors studied. 

Growth conditions are the same apart from the zinc salt: 140°C, 6 h, 4.193 M Na2CO3 and 

0.032 M zinc salt.  



  

 

 

Fig. 7 XPS survey scan of the ZnO NWs 

 

Fig. 8 XPS spectra of the O 1s core level from the as grown NWs. The raw data was fitted 

with two components and a Shirley background. The two components correspond to the 

oxygen crystal lattice and the surface oxygen 



  

 

 

Fig. 9 XPS valence band spectra of ZnO NWs as grown, and annealed at 200, 300 and 400 

°C  

  

3.8. Photoluminescence results 

 

Fig. 10 PL of ZnO NWs grown for 3, 6, 9 and 12 h, and NWs grown for 3 h and subsequently 

annealed at 400°C. The spectra are normalized to the near band edge peak at 376 nm. The 

inset shows the spectra of the 3 h NWs, before and after annealing, and are normalised to the 

deep level band (DLE) intensity to highlight the change in the shape of the DLE band. 

 

 


