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Abstract The field of solid-state quantum computation is expanding rapidly initi-
ated by our original charge qubit demonstrations. Various types of solid-state qubits are
being studied, and their coherent properties are improving. The goal of this review is to
summarize achievements on Josephson charge qubits. We cover the results obtained in
our joint group of NEC Nano Electronics Research Laboratories and RIKEN Advanced
Science Institute, also referring to the works done by other groups. Starting from a short
introduction, we describe the principle of the Josephson charge qubit, its manipulation
and readout. We proceed with coupling of two charge qubits and implementation of a
logic gate. We also discuss decoherence issues. Finally, we show how a charge qubit
can be used as an artificial atom coupled to a resonator to demonstrate lasing action.
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1 Introduction

By holding a promise of solving certain computational problems exponentially faster
in comparison to the classical computers, the idea of quantum information process-
ing [1] is pushing research on various physical quantum objects that can be used as
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quantum bits, or qubits. From a purely mathematical discipline a few years ago, quan-
tum computation has turned into an active research field of modern physics attracting
efforts of experimentalists from various areas [2]. A number of physical objects have
been suggested as potential implementations of qubits. However, solid-state circuits,
and superconducting circuits in particular [3,4], are of great interest as they offer
scalability, i.e., a possibility of making circuits with a larger number of interacting
qubits. Within the past few years, there has been substantial experimental progress
with single solid-state qubits in which coherent manipulation of quantum states has
been performed [5–14]. Superconducting qubits utilize charge [5–7] or flux [8] degrees
of freedom, or energy levels quantization in a single current-biased Josephson junction
[9,10]. Inter-qubit coupling [15–20] and also quantum logic gates [21–23] have been
reported later. Further progress in the field slowed down due to obvious decoherence
issues that are still to be overcome in order to implement a working quantum computer.

In this review, we focus on charge qubits. The logical qubit states correspond to dif-
ferent charge states that can be manipulated by means of external electrical signals and
then measured by a properly coupled detector. Besides a superconducting version of the
charge qubit, there is a semiconducting version [11], also based on the charge degree
of freedom. However, it is not in the scope of this review and will not be discussed. In
what follows, only Josephson, or superconducting, charge qubits will be described.

The Josephson charge qubit circuits satisfy basically all the criteria for the imple-
mentation of quantum computation put forward by DiVincenzo [24]. They offer single
qubits, i.e., structures that can be approximated as quantum two-level systems. Such
systems possess coherence, can be initialized and read out. Finally, logic gates can be
constructed and gate operation can be implemented.

Fabrication of charge qubits is a rather matured technology. They are fabricated
using the so-called angle deposition technique through a suspended mask [25], that
was first introduced for photolithography and then applied to electron beam lithography
to produce submicron-size tunnel junction with superb control of junction parameters
and excellent reproducibility. The most common qubit material is aluminum, a super-
conductor with a bulk transition temperature of 1.2 K. It oxidizes to form a tunnel
barrier with a low leakage when exposed to oxygen.

2 Josephson charge qubit—the first solid-state qubit

The Josephson charge qubit is based on a Cooper pair box [26,27]: a nanometer-scale
superconducting island, which is connected via a Josephson junction to a large elec-
trode, called a reservoir. With typical island dimensions 1000 nm × 50 nm × 20 nm
(length × width × thickness), the number of conduction electrons is equal to 107–
108. Because of superconductivity, they all form Cooper pairs and condense to a single
macroscopic ground state, with a superconducting energy gap� opened in the density
of states. The superconducting ground state is thus separated by� from the quasipar-
ticle excitations, which is favorable for the coherence of the system. Besides Cooper
pairs, the island can also contain quasiparticles. However, if the temperature is low,
kB T � �, then the thermal excitation of quasiparticles is strongly suppressed. Here
kB is the Boltzmann constant. The number of Cooper pairs in the box can be changed
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by the voltage Vg applied to the gate coupled to the box through the gate capacitor
Cg . Because of the Josephson coupling E J between the box and the reservoir, Coo-
per pairs can tunnel into or out of the box. These charges are transferred one by one
due to Coulomb blockade as the charging energy Ec ≡ e2/2C exceeds kB T . The
Hamiltonian of the system can be written as

H =
∑

n

4Ec
(
ng − n

)2 |n〉〈n| − E J

2

∑

n

(|n〉〈n + 1| + |n + 1〉〈n|) (1)

where ng = CgVg/2e is the normalized gate induced charge, e is the electron charge,
n is an integer number of Cooper pairs. In the absence of the Josephson coupling
between the Cooper pair box and the reservoir, Eq. 1 describes the electrostatic energy
of the system represented by a set of parabolas each corresponding to a certain charge
number state. Theoretically, there is an infinite number of charge states at a certain
gate voltage corresponding to a different number of Cooper pairs in the box. The
neighboring parabolas intersect at ng = 1/2, 3/2, . . . where the electrostatic energy
of two charge states differing by one Cooper pair is equal. When E J is switched on,
Josephson tunneling couples charge states, the degeneracy is lifted and an energy gap
opens in the energy spectrum. The energy bands are similar to those calculated for a
current-biased small Josephson junction [28]. Because the whole energy spectrum is
periodic in the gate induced charge, one can just work in the vicinity of one degen-
eracy point reducing the Hilbert space just to two states, |0〉 and |1〉. In this case the
Hamiltonian of the system, after linearization, takes the form

H = −1

2
δE(ng)σz − 1

2
E Jσx , (2)

where δE(ng) ≡ 4Ec(ng − 1/2) is the difference of the electrostatic energy between
the states |0〉 and |1〉 and σz and σx are Pauli matrices. As was pointed out in Ref.
[27], the Cooper pair box is completely analogous to a spin-1/2 particle in a fictitious
magnetic field [E J , 0,−δE(ng)]. The two eigenstates of the Hamiltonian (2) are

|g〉 = sin θ/2 |0〉 + cos θ/2 |1〉
|e〉 = cos θ/2 |0〉 − sin θ/2 |1〉 , (3)

where |g〉 and |e〉 denote the ground and excited states, respectively, and

θ = arctan
(
E J /δE(ng)

)
, (4)

One can see that at the degeneracy point
(
δE

(
ng

) = 0
)
, |g〉 = 1√

2
(|0〉 + |1〉) and

|e〉 = 1√
2
(|0〉 − |1〉). If the system is shifted away from the degeneracy (

∣∣δE
(
ng

)∣∣ �
E J ) then the eigenstates approach the charge states. The eigenstates get closer to the
charge states for larger ratio Ec/E J and larger gate offset from the degeneracy point
within the range 0 < ng < 1. The gap between the ground and excited states changes

as �E =
√
δE(ng)2 + E2

J being minimal at the degeneracy.
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The ground-state properties of the Cooper pair box were studied in Ref. [27] using
an electrometer as a readout device for charge state measurements, and a coherent
superposition of charge states was observed.

The energy gap of the Cooper pair box was revealed in the spectroscopy measure-
ments [29] by irradiating a device by microwaves and tracing the peak position of
a photon-assisted Josephson-quasiparticle (JQP) current [30,31] as a function of the
microwave frequency. In order to do transport measurement through the Cooper pair
box, a high-resistance probe junction was attached to it and biased such that the JQP
cycle becomes possible. The resistance of the probe junction is typically about 10 M�
or higher so that the quasiparticle tunneling rate �qp � E J /h̄, where h̄ is the Planck’s
constant h divided by 2π .

The device described in Refs. [27,29] was a prototype for solid-state qubits, and
those experimental demonstrations laid the groundwork for the many subsequent
experimental demonstrations of the coherent properties of the Cooper pair box. More
details on coherent properties of the Cooper pair box can be found elsewhere [32].

The breakthrough in the solid-state quantum computation was the demonstration
of coherent oscillations in a Cooper pair box [5]. For this, a circuit similar to the
one described in Ref. [29] was utilized. Manipulation of charge states |0〉 and |1〉
was done by means of nonadiabatic pulses applied to the Cooper pair box. The qubit
schematics are shown in Fig. 1. In addition to the dc-bias gate, a pulse gate with
capacitance Cp is added to the Cooper pair box. The normalized gate-induced charge
is then ng = (CgVg +C pVp)/2e. A high-frequency coaxial line and a sample package
were designed [33] to deliver pulses with a length as short as 80 ps provided by the
pulse-pattern generator.

The coherent quantum state manipulation is done in the following way. First,
the system is prepared in state |0〉 by choosing a gate voltage to the left (negative
detuning) of the degeneracy point. Then, a sharp pulse is applied that shifts the system
nonadiabatically to the degeneracy point. Because |0〉 is no longer an eigenstate at
degeneracy, the system starts to evolve during the pulse duration time�t according to

|ψ(t)〉 = exp [−iH�t/h̄] |0〉 , (5)

where H is defined by Eq. 2 with δE(ng) = 0. After the pulse is terminated, the system

stays in the superposed state cos
(

E J�t
2h̄

)
|0〉 + i sin

(
E J�t

2h̄

)
|1〉. The probability for

Fig. 1 Schematic diagram of a
Josephson charge qubit. Black
bar denotes a Cooper pair box
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the system to be in state |1〉 after time �t is equal to p(1) = 1
2

[
1 − cos

(
E J�t

h̄

)]

oscillating between 0 and 1 with a period h/E J . Similarly, the probability p(0) of
being in state |0〉 oscillates with the same period but opposite phase. After the pulse,
the state |1〉 is an excited state and should relax to the ground state. The readout process
must be done before the relaxation takes place. Alternatively, this relaxation process
itself can be used for the final state readout as this relaxation contains information
about the final state. Our readout scheme is based on this relaxation process.

For the readout, we attach an additional electrode, called a probe, to the box through
a tunnel junction. The probe is voltage-biased with an appropriate bias voltage Vb, so
that two quasiparticles tunnel out sequentially only when there is one excess Cooper
pair in the box. The bias voltage is chosen such that it supplies sufficient energy for the
first and second quasiparticle to tunnel into the probe but not a third one [34]. Because
of the charging effect, in the |0〉 state, the quasiparticle tunneling is Coulomb-block-
aded. Therefore, by using this quasiparticle tunneling process, we can distinguish the
two charge states. Also, this process initializes the qubit state to |0〉 after the read-
out. The Cooper pair tunneling during the pulse duration time �t and the subsequent
quasiparticle relaxation constitute the well known Josephson-quasiparticle cycle of
the single-electron transistor, however, the pulse-induced JQP peak is shifted to the
left from the dc JQP peak by C pVp/2e. Thus, the readout process is extremely sim-
ple. Alternative readout schemes include the switching of a large Josephson junction
[6], a radio-frequency SET [7], dispersive measurements [35,36], as well as quantum
capacitance readout [37,38].

One JQP cycle produces two electrons in the probe and the resulting current must
be measured by an appropriate detector. Detecting just two electrons seems a very
challenging task. Instead, we use an ensemble-averaged measurement. An array of
identical pulses is sent to the Cooper box with a repetition time Tr > (�qp1�qp2)

−1.
The repeated manipulation and relaxation processes give rise to a pulse-induced JQP
current ideally equal to 2e/Tr . For a typical repetition time of 16–64 ns the resulting
current of 5–20 pA is relatively easy to measure. Thus, we map the oscillation of p(1)
onto the oscillation of the pulse induced current.

For the quantum-state control, one can also use an ac gate-voltage pulse producing
Rabi oscillations, the technique commonly used in atomic physics and NMR physics.
When the ac driving frequency matches the energy gap between the two eigenstates,
coherent quantum-state evolution between the two states takes place involving the pho-
ton energy of the driving field. Due to technical reasons, we used in our experiments
a pulse composed of continuous-wave microwaves and a dc pulse. The dc pulse shifts
the bias point from off-resonance to on-resonance with the microwave frequency. The
observed Rabi oscillation frequency depends, as expected, on the power of the ac
driving field, and Rabi oscillations involving multiple photons also take place [39].

3 Single-shot readout

In the experiments described above, charge qubit states are measured by ensemble aver-
aging over many events. Various alternative schemes allowing single-shot readout were
tested by other groups [6,36]. We have developed and demonstrated experimentally a
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Fig. 2 a Scanning electron
micrograph of the qubit and a
single-shot readout circuit. Inset
shows sequence of pulses.
b Typical time trace of readout
pulses (upper panel) and the
SET current. “Ones” and “zeros”
correspond to the charged and
neutral trap, respectively
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readout scheme that allows performing efficient single-shot measurement with a weak
back-action on the qubit [40].

A scanning-electron micrograph of our circuit is shown in Fig. 2a. The device con-
sists of a charge qubit and a readout circuit. The qubit is a Cooper-pair box described
in Sect. 2 coupled to a reservoir through a Josephson junction. The reservoir is a big
island with a large capacitance to the ground plane and galvanically isolated from the
external environment. The readout part includes an electrometer, which is a conven-
tional low-frequency single-electron transistor, and a charge trap placed in between
the qubit and the SET. The trap is connected to the box through a high-resistance
tunnel junction and capacitively coupled to the SET. The use of the trap enables us
to separate in time coherent state manipulation and readout processes. Moreover, the
qubit appears effectively decoupled from the SET.

The operation of the circuit can be described in the following way. During the qubit
manipulation, the trap is kept unbiased prohibiting charge relaxation to the trap. Once
the control pulse is terminated, the readout pulse (see the inset of Fig. 2a) is applied
to the trap. The length and the amplitude of the readout pulse are adjusted (typically
300 ns, 3.5 e) so that if there is an extra Cooper pair in the box after the control pulse
termination, it escapes with a high probability to the trap through quasiparticle tun-
neling. After the charge is trapped, it remains in the trap for a long time (a reverse
trap-to-box charge relaxation is suppressed due to the superconducting energy gap
2�) and is measured by a low-frequency SET.

The qubit Hamiltonian is described by Eq. 2 and the manipulation is done in the
way described in Sect. 2.

The upper panel of Fig. 2b presents a sequence of readout pulses while the resulting
time trace of the SET current is shown below. Negative switches of the SET current
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Fig. 3 Intensity plot showing
coherent oscillations measured
by averaging over many
single-shot events
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panel occurring simultaneously with the readout pulses are counted as charge detected
events and marked as 1. The missed events when no negative pulse is produced by the
readout pulse are marked with 0. The lifetime of the trapped charge is about 300 µs,
and, therefore, the repetition time of 2 ms used in the experiment is sufficient for
practically complete trap resetting. Then we count the number of detected switches m
(number of ones) and the total number of shots ntot (equal to the number of ones and
zeros) and obtain the probability of charge detection as P = m/ntot.

An experimentally obtained P (normally, ntot = 327 is used per one experimen-
tally measured P) as a function of the control pulse length �t and amplitude �ng

(≡ CgVg/2e) is shown as an intensity plot in Fig. 3. We define the pulse with�ng =
0.42 and �t = 120 ps when P reaches a maximum value, as a π -pulse.

Next, we measure the qubit characteristic relaxation times. We apply a control
π -pulse to create state |1〉, but the readout pulse is applied with some delay, td . The
probability P is then measured as a function of td and tr . P decays exponentially with td
presumably via energetically feasible Cooper pair tunneling (1,0) → (0, 0), because
alternative quasiparticle relaxation to the trap through the high resistive junction is
blocked by 2� when the trap is not biased. The fit gives the relaxation rate to the
reservoir (220 ns)−1. When no delay is introduced (td ≈ 0), P grows exponentially
with tr . This process is mainly determined by the quasiparticle decay to the trap with
the rate (37 ns)−1 � (220 ns)−1. Additionally, we obtain the rate of “dark” switches
(false clicks) when the |0〉-state relaxes to the trap. These events can be presumably
described by the process (0, 0) → (–1, 1), with a slow relaxation rate (4100 ns)−1

derived from the fit to the experimental data.
Our analysis shows that the efficiency of this readout scheme for states |1〉 and |0〉

is equal to 87% and 93%, respectively.

4 Decoherence in charge qubits

Due to decoherence, the observed quantum coherent oscillations decay as a function
of the pulse width. The oscillations last up to about 5 ns at the degeneracy point but
are much shorter off-degeneracy indicating that the mechanisms of decoherence are
different. Generally, two processes are relevant for the observed decoherence: energy
relaxation and dephasing characterized by the corresponding time scales. We have
tried to look closer into both mechanisms.
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4.1 Free-induction decay and charge echo

We have measured coherent oscillations away from the degeneracy point (|δE | � E J )

[41]. For that purpose, we applied two short (�t = 80 ps) pulses with a delay time td
in between. �t and td were still much shorter than 1/�qp1. The height of the pulses
was adjusted so that each pulse acts as a (π/2)x -pulse, which rotates the pseudo spin
by 90 degrees around the x-axis. Starting from the ground state, the first (π/2)x -pulse
creates an equal superposition of the two charge states. During the delay time, the qubit
phase evolves because of the energy difference�E between the two eigenstates. Then
the second (π/2)x -pulse projects the phase information on the z-axis, i.e., the readout
axis. As a function of td , the z-component of the final state oscillates as cos(�Etd/h̄).
This is a direct analogy of the Ramsey interference experiments in atomic physics
or free-induction-decay experiments in NMR [42]. In this experiment, the oscillating
signal decays within a few-hundred picoseconds, much faster than that in the single-
pulse experiment at the degeneracy point. This fact can be explained by dephasing due
to charge fluctuations. Because of the energy-level anticrossing, �E is less sensitive
to the charge fluctuations at the degeneracy point than at the off-degeneracy point.
Thus, the dephasing due to the charge fluctuations is much weaker at the degeneracy
point.

In the charge echo experiment [41], three pulses are applied to the qubit. A third
pulse inserted between the two (π/2)x -pulses acts as a (π)x -pulse, which flips the sign
of the phase. As a result, the phase evolutions in the first (td1) and the second part (td2)

of the delay time cancel each other and the effect of the fluctuations is eliminated as
long as the fluctuation of the energy level is slow compared to the delay time. In fact,
the echo signal is observed only when the two parts of the delay time are almost equal,
and the echo signal survives up to about 5 ns when we change the delay time. The result
suggests that the low-frequency part of the energy-level fluctuations is dominant in
the qubit decoherence. This is not surprising because the qubit, like a single-electron
transistor, is a charge sensitive device and hence affected by the background charge
fluctuations.

As a source of the low-frequency energy-level fluctuations, the so-called back-
ground charge fluctuations are considered. 1/ f charge noise is very common in sin-
gle-electron devices and is usually attributed to random motion of charges either in
the substrate or the junction barrier, although the exact mechanism is still not known
[43–45]. Indeed, the sample studied here also showed 1/ f noise when the dc current
through the probe junction was measured. Because of the narrow bandwidth of the
measurement setup, the 1/ f noise spectrum could be measured only below 100 Hz.
However, here we assume that the 1/ f noise spectrum extends to infinite frequency
and estimate the dephasing of the qubit due to the noise. Under the assumption of
gaussian fluctuations, the dephasing factor as a function of the delay time (td = τ) in
the free-induction decay is given as

〈exp iϕ (τ)〉 = exp

⎡

⎣− 1

2h̄2

∞∫

ωm

dωS�E(ω)

(
sin (ωτ/2)

ω/2

)2
⎤

⎦ . (6)
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Here S�E(ω) = (4Ec/e)2 SQ(ω) is a power spectral density of the energy level fluctu-
ations caused by the 1/ f charge fluctuations with a power spectral density SQ(ω) ≡
α/ω and ωm is the low-frequency cutoff corresponding to the measurement time of
20 ms (which is actually the measurement time for one data point). Similarly, for the
echo experiment with td1 = td2 = τ/2 we obtain

〈exp iϕ (τ)〉 = exp

⎡

⎣− 1

2h̄2

∞∫

ωm

dωS�E(ω)

(
sin2 (ωτ/4)

ω/4

)2
⎤

⎦ . (7)

The charge echo technique partly eliminates the low-frequency contribution to the
free-induction decay making coherence time longer.

The value of α derived from the charge echo experiment, (0.64×10−3 e)2, is close
to α = (1.3 × 10−3 e)2 obtained from transport measurement. This supports the idea
that the background charge noise is the dominant source of dephasing at the qubit
off-degeneracy point.

4.2 Energy relaxation

Energy relaxation in a charge qubit is measured with the single-shot read-out scheme
described in Sect. 3.

Although decoherence of small Josephson circuits had been analyzed in a number
of theoretical papers [3,4] and relaxation of excited states of the charge qubits off
the degeneracy point had been reported earlier [46], systematic studies of decoher-
ence in charge qubits were missing. We should mention, however, that decoherence in
some versions of charge qubits, namely quantronium and transmon, has been studied
in greater detail [47–49]. We have measured the charge qubit energy relaxation in
a wide range of the qubit parameters and found that it is caused by quantum noise
with approximately linear frequency dependence. We propose a model in which the
quantum noise is caused by charge fluctuators, which give both the classical 1/f noise
and the quantum f noise.

The sample schematically shown in Fig. 4a consists of a qubit and a readout part
described in Sect. 3 and the qubit manipulation is performed by nonadiabatic pulsing
described in Sect. 2.

To measure energy relaxation dynamics of the excited state |e〉, we use a combina-
tion of the π -pulse and an additional adiabatic pulse (a pulse with slow rise and fall
times satisfying the condition of h̄|d(�E/dt | � E2

J ). The manipulation procedure,
schematically shown in Fig. 4b, includes three sequential steps: first, a π -pulse is
applied to the box to prepare excited state |1〉; second, an adiabatic pulse shifts the
box along the excited energy band to a point ng = ng0 + nga and keeps it there for a
time interval ta , where relaxation from the excited state |e〉 to the ground state |g〉 may
occur; and third, the adiabatic pulse brings the box to the initial position ng0 converting
the excited state |e〉 to the state |1〉 and the ground state |g〉 to state |0〉. After that the
readout pulse is applied to the trap. One can study relaxation dynamics at a desired
value of ng by measuring the probability of state |1〉 as a function of time ta .
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Fig. 4 a Schematics of the circuit to study energy relaxation. b Qubit energy bands and manipulation
diagram

Fig. 5 Energy relaxation rate
�1 and dephasing rate �2 as a
function of the gate-induced
charge ng . �2 was measured
only at ng > 0 where coherent
oscillations were observed
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First, we measure the probability P of the excited state |1〉 in the same way as
described in Sect. 3. This is done for various initial gate charges ng0. From the fit, we
obtain the energy relaxation rate �1 as a function of ng . Figure 5 shows �1 (closed
circles) as well as �2 (open circles) derived from the decay of coherent oscillations.

Denoting the spectral density of energy fluctuation as S�E (ω), we express the
relaxation rate as [50]

�1 = π

2h̄2 S�E (ω) sin2 θ. (8)

The overall behavior of �1 in Fig. 5 (�1 decreases off the degeneracy point) is
described by sin2 θ = E2

J /E2
J +δE2) characterizing the qubit coupling to the reservoir.

The experimentally measured �1 far from the degeneracy has a clear E2
J dependence

as predicted by Eq. 8 when �E � E J . At the degeneracy point, �1 = π S�E (ω =
E J /h̄)/2h̄2 directly reproduces the frequency dependence of S�E . We argue that in
our galvanically isolated device, the relaxation can not be explained by spontaneous
emission to the remote environment coupled to the qubit through the electrical leads.
Neither can it be explained by the effect of SET.
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Fig. 6 a Noise spectral density
derived from �1 for sample I
(solid circles) and sample II
(open circles and open
triangles). Dashed-dotted line
is 2e2 Rh̄ω ( f noise) with
R = 6�. Dashed line is
1/ f noise Eq. 9 with
α = (1.3 × 10−3 e)2 derived
from �2. Dotted line is a sum
of f and 1/ f noise

Let us now consider the effect of two-level fluctuators responsible for the low-fre-
quency noise in nanoscale charge devices on the qubit relaxation. The charge noise
produced by the fluctuators has a spectral density

Sq(ω) = α/(2 |ω|). (9)

Note that the 1/ f noise is defined for both positive and negative frequencies. The
parameter α has been obtained from the dc transport measurements for a device
with essentially same geometry and fabrication process, and has been found to be
α = (1.3 × 10−3e)2. This value is consistent with what was reported in other works
[43–45], and also with the value derived from T2.

Figure 6 summarizes the reduced noise spectrum S�E derived from the measured
�1 according to Eq. 8 for two measured samples. Despite some scattering, S�E exhib-
its a rise with ω. The dashed-dotted line is a linear dependence (as in the case of
some effective Ohmic environment), which we present in the form of 2Rh̄ωe2/h̄2

with R = 6�. The actual rise of the experimental data is not monotonic but has some
resonance-like peaks, for instance, at 7 and 30 GHz. This probably reflects coupling
to some resonances that can be either two-level oscillators or just geometrical reso-
nances in the sample package. �1 approaches the 1/ f noise at low frequencies shown
by the dashed line calculated with α = (1.3 × 10−3e)2 (see Eq. 9). Both 1/ f and f
dependencies cross at ωc = 2π × 2.6 GHz. This crossover frequency may formally
relate to the effective temperature Tc = h̄ωc/kB = 120 mK, close to the electron tem-
perature. This fact motivated us to propose the following model which may explain
the measured noise spectra.

It is generally accepted that the low-frequency 1/ f noise is produced by a bath of
two-level fluctuators at an effective temperature Tc and weakly coupled to the qubit.
We extend this concept to a higher frequency range also attributing the high-frequency
f noise to the bath of two-level fluctuators. In this model, pure dephasing is caused
by the fluctuators in thermal equilibrium, switching between the two levels and pro-
ducing the classical noise SC

E (S�E = (4Ec/e)2Sq). The energy relaxation is caused
by the fluctuators, which have larger energy separation, staying in the ground state.
Namely, the “hot” qubit (�E > kB Tc) can only release energy�E to the “cold” fluc-
tuator bath but cannot absorb energy from it. In other words, energy�E may activate
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fluctuators of the “cold” bath, that are “quiet” in equilibrium (do not contribute to SC
�E

but produce quantum noise SQ
�E . As we discussed above, SC

�E is expected to have 1/ f

dependence, while SQ
�E is roughly proportional to f according to our experimental

data, and is consistent with the “Ohmic” picture. Such a simple model was recently
supported by a more rigorous analysis [51].

Within this model one can predict the classical noise if the energy relaxation is
known. For instance, if the high-frequency (ω � ωc) f-part is SQ

q = βh̄ω, the 1/ f
classical noise can be found from the condition α/2ωc = βh̄ωc, where β is a temper-
ature independent parameter. The corresponding 1/ f noise is then

SC
q = β (kB Tc)

2

h̄ |ω| . (10)

As follows from Eq. 10, α = β(kTc)
2/h̄ is expected to be proportional to T 2

c because
of the scale invariance. Indeed, T 2-dependence was observed in later experiments
[52].

5 Coupled charge qubits

One of the key steps in constructing a quantum computer is to couple two qubits and
then scale the circuit to many qubits. Qubit-qubit coupling that can be switched on and
off on demand is required for making a quantum processor prototype. A few schemes
for controllable coupling were proposed [53–55] and implemented [56].

We have performed experiments demonstrating for the first time quantum coherent
dynamics of two solid-state qubits with constant coupling [15] as well as quantum
logic gate operation [21].

5.1 Coherent dynamics of two charge qubits

The circuit we study [15] is shown schematically in Fig. 7. It consists of two charge
qubits that are electrostatically coupled by an on-chip capacitor Cm . Both qubits have
a common pulse gate but separate dc gates, probes and reservoirs. The pulse gate has
nominally equal coupling to each box. In the experiment, both reservoirs are kept
grounded. External controls that we have in the circuit are the dc probe voltages Vb1
and Vb2, dc gate voltages Vg1 and Vg2, and pulse gate voltage Vp. The information on
the final states of the qubits after manipulation comes from the pulse-induced currents
measured in the probes. From the transport measurements we obtain the characteristic
energies: Cooper-pair charging energy of the first qubit Ec1 = 484 µeV (117 GHz in
frequency units), Cooper-pair charging energy of the second qubit Ec2 = 628 µeV
(152 GHz) and the coupling energy Em = 65 µeV (15.7 GHz). All these energies are
higher than the energy of thermal fluctuations kB T ∼ 3 µeV (0.7 GHz). The charging
and the coupling energies are defined as follows: Ec1,2 = 4e2C�2,1/2(C�1C�2−C2

m),
where C�1,2 are the sum of all capacitances connected to the corresponding Cooper
pair box including the coupling capacitance Cm , and Em = 4e2Cm/(C�1C�2 − C2

m).
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Fig. 7 Schematic diagram of
the two-coupled-qubit circuit.
Black bars denote Cooper pair
boxes

Vg1Vg2 Vp

Vb2 Vb1

Cg1Cg2

EJ2, CJ2

Cb2 Cb1

EJ1, CJ1

Cm

CpCp

The qubits’ Josephson energies E J1 and E J2 are determined from the period of coher-
ent oscillations described later in the text.

The Hamiltonian of the system in the charge representation can be written as:

H =
∑

n1,n2

[
Ec1

(
ng1 − n1

)2 + Ec2
(
ng2 − n2

)2 + Em
(
ng1 − n1

) (
ng2 − n2

)]

× |n1, n2〉 〈n1, n2| − E J1

2
[|n1, n2〉〈(n1 + 1), n2|

+ |n1, (n2 + 1)〉〈(n1 + 1)(n2 + 1)|] − E J2

2
[|n1, n2〉 〈n1, (n2 + 1)|

+ |(n1 + 1), n2〉〈(n1 + 1)(n2 + 1)|] . (11)

Here n1 and n2(n1, n2 = 0,±1,±2, . . .) are the numbers of excess Cooper pairs in
the first and the second Cooper pair boxes, and ng1,2 = (Cg1,2Vg1,2 + C pVp)/2e are
the normalized charges induced on the corresponding qubit by the dc and pulse gate
electrodes. The eigenenergies, Ek(ng1, ng2)(k = 0, 1, 2, . . .), of the Hamiltonian (1)
form 2e-periodic energy bands corresponding to the ground (k = 0), first excited
(k = 1), etc. states of the system. A contour plot of the ground-state energy band
around zero gate-induced charge is shown in Fig. 8. It consists of hexagonal cells
(shown partly) whose boundaries marked by the dashed lines delimit two neighboring
charge states with equal electrostatic energies. For example, points R and L corre-
spond to degeneracies between the states |00〉 and |10〉, and the states |00〉 and |01〉
that differ by one Cooper pair in the first (right) and the second (left) Cooper-pair
box, respectively. The band has minima in the middle of each cell and also maxima
in between (one of the maxima is marked by X). If we choose the dc gate charges ng1
and ng2 far from the boundaries but within the (0,0) cell, then because of the large
electrostatic energies we can assume that the system remains in the state |00〉. Strictly
speaking, this charge stability diagram [57] is only valid in the absence of Josephson
coupling; however, it also remains valid for small Josephson coupling, except at the
boundaries where the charge states become superposed. Since the pulse gate has equal
coupling to each qubit, the application of a pulse shifts the state of the system on this
diagram along the line tilted at 45 degrees (indicated by arrows in Fig. 8). When the
system is driven non-adiabatically to the point R or L, it behaves like a single qubit
oscillating between the degenerate states with a frequency ω1,2 = E J1,2/h̄. The final
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Fig. 8 Contour plot of the
ground state energy band as a
function of the normalized gate
charges ng1 and ng2. Dashed
lines are boundaries between
charge states (n1, n2) differing
by one Cooper pair. The three
thick arrows indicate
non-adiabatic pulses used
in the experiment

(0,0) (1,0)

(1,1)(0,1)

L

R

X

ng1
n g

2

states are measured as average probe currents resulting from the decay of the excited
states (|10〉 or |01〉). From their oscillation period, we obtain E J1 and E J2.

Now let us consider point X in Fig. 8 which is a peak in the ground energy band.
This point corresponds to two degeneracies: E00 = E11 and E10 = E01, and, therefore
we call this a double degeneracy point. If the circuit is fabricated to have the following
relation between the characteristic energies:EJ1,2 ∼ Em < Ec1,2, then we can use a
four-level approximation for the description of the system. The state of the system in
the vicinity of X can be described by the coherent superposition of the four charge
states |00〉, |10〉, |10〉 and |11〉 around ng1 = ng2 = 0.5 while other charge states are
separated by large energy gaps. These four charge states can be used as a new basis
and the Hamiltonian (11) can be simplified to the following form:

H =
∑

n1,n2=0,1

En1n2 |n1, n2〉 〈n1, n2| − E J1

2

∑

n2=0,1

(|0〉 〈1| + |1〉 〈0|) |n2〉〈n2|

− E J2

2

∑

n1=0,1

|n1〉 〈n1| (|0〉 〈1| + |1〉 〈0|), (12)

where En1n2 = Ec1(ng1 − ng1)
2 + Ec2(ng2 − n2)

2 + Em(ng1 − n1)(ng2 − n2) is the
total electrostatic energy of the system (n1, n2 = 0, 1). The cross-section of the energy
bands through the point X is presented in Fig. 9. Here the dynamics of the quantum
evolution becomes more complex (involving all four charge states) and reflects the
coupling between the qubits. Exactly at the double degeneracy point, the time evolu-
tion of the system can be described analytically for any initial state. First, we write
down the state of the system in general as:

|ψ(t)〉 = c1|00〉 + c2|10〉 + c3|01〉 + c4|11〉, (13)

where ci (i = 1, 2, 3, 4) are the time dependent probability amplitudes obeying the
normalization condition

∑4
i=1 |ci |2 = 1 [58]. In the experiment, we measure probe
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coherent evolution

00
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Fig. 9 Cross-sections of the energy bands through the point X in Fig. 8. Dashed lines: eigenenergies of
Hamiltonian (12). Solid lines: electrostatic energies E00, E10, E01, and E11. Solid arrow along E00 indi-
cates non-adiabatic pulse shift of the system. Quantum state evolution involving all four basis states takes
place at the gate voltages ng1 = ng2 = 0.5 corresponding to the double degeneracy point X in Fig. 8:
E00 = E11 and E10 = E01. Dotted lines on the left show qualitatively the decay of the excited states
(|11〉, |10〉 and |01〉) after the evolution (termination of the pulse). This decay gives rise to the pulse-induced
probe currents in both probes

currents I1,2 proportional to the probability p1,2(1) for each qubit to have a Cooper
pair on it, regardless of the state of the other qubit, i.e., I1 ∝ p1(1) ≡ |c2|2 +|c4|2 and
I2 ∝ p2(1) ≡ |c3|2 + |c4|2. Assuming the initial state at t = 0 is |00〉, we derive for
an ideal rectangular pulse shape of length�t the time evolution of these probabilities:

p1,2 (1) = (1/4) [2 − (1 − χ1,2)cos{(�+ ε)�t} − (1 + χ1,2)cos{(�− ε)�t}]
(14)

where� = ((E J1 + E J2)
2 +(Em/2)2)1/2/2h̄, ε = ((E J1 − E J2)

2 +(Em/2)2)1/2/2h̄
and χ1,2 = (E2

J2,1 − E2
J1,2 + E2

m/4)/(4h̄2�ε).
Unlike the single qubit case, there are two frequencies present in the oscillation

spectrum of the qubits: �+ ε and �− ε, both dependent on E J1, E J2 and Em . Note
that in the uncoupled situation (Em = 0), �± ε = E J1,2/h̄ and each qubit oscillates
with its own frequency ω1,2.

To measure coherent oscillations of coupled qubits, we drive the system to the
point X by an array of pulses and measure the pulse-induced currents I1 and I2. The
pulse (solid arrow in Fig. 9) brings the system to the double degeneracy point, and the
system evolves for the pulse duration time �t , producing a superposed state Eq. 13.
After the pulse terminates, the system remains in the superposed state until it decays
(dotted arrows in Fig. 9) to the ground state by emitting quasiparticles into the probe
junctions.

The results for the coupled qubits are shown in Fig. 10. The observed spectral
properties of the oscillations agree with the predictions of Eq. 14: there are two peaks
in the spectrum and the peak positions are close to the expected frequencies � + ε

and �− ε for the parameters E J1 = 13.4 GHz and E J2 = 9.1 GHz measured in the
single qubit experiments, and Em = 15.7 GHz estimated from the independent dc
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Fig. 10 Probe current oscillations in the first (a) and the second (b) qubit when the system is driven
non-adiabatically to the double degeneracy point X for the case E J1 = 9.1 GHz and E J2 = 13.4 GHz.
Right panels show the corresponding spectra obtained by Fourier transformation. Arrows and dashed lines
indicate a theoretically expected position of the peaks

current-voltage characteristics measurement. Positions of the �+ ε and �− ε peaks
expected from Eq. 14, are indicated by arrows and dashed lines. The decay time ∼0.6 ns
of the coupled oscillations is shorter compared to the case of independent oscillations
as should be expected, since qualitatively an extra decoherence channel is added to
each qubit after coupling to its neighbor. A quantitative analysis of decoherence in
coupled charge qubits is presented elsewhere [59].

Finally, we checked the dependence of the oscillation frequencies on E J1 controlled
by a weak magnetic field (up to 20 Gs). As expected, we observed an anticrossing
with a minimal gap at E J1 = E J2 equal to Em/2h. The observed dependence agrees
with the prediction of Eq. 14.

The observed quantum coherent dynamics of coupled qubits in the vicinity of the
double-degeneracy point is clear evidence for the interaction of two qubits. The fact
that the two qubits interact, in turn, implies also that they also become entangled during
the course of coupled oscillations, although direct measurement of the degree of entan-
glement was not possible in this experiment. We have done numerical simulations of
the entanglement evolution using different measures for the amount of entanglement:
negativity, concurrence and entropy of formation [60]. Analytical calculation of the
entropy of entanglement using a standard expression for the case of pure states [61]
is presented in Ref. [58]. It has an oscillatory behavior and reaches unity at about
0.2 ns. This means that the two qubits become maximally entangled at this instance.
Our numerical simulations show that the amount of entanglement does not decrease
significantly with a realistic pulse shape taken into account.

5.2 Quantum logic gate

The circuit described in Ref. [15], but with one more pulse gate, was also used for
the demonstration of conditional gate operation [21]. Having two pulse gates enables
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Fig. 11 Ground state stability
diagram of the coupled qubits.
Point A is the operation point,
and the white and black arrows
represent pulses for input
preparation and conditional gate
operation, respectively
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us to address each qubit individually. By utilizing the difference of the degeneracy
condition between two pairs of the charge states, namely, |00〉, |10〉 and |01〉, |11〉, we
can flip the state of the target qubit only when the control qubit is in the |0〉 state.

In the two-qubit charge basis |00〉, |10〉, |01〉 and |11〉, the Hamiltonian of the cou-
pled charge qubit system is given by Eq. 12 with the same notations except that the
pulse gate capacitances C p1 and C p2 contribute to the total capacitance of each Cooper
pair box.

Figure 11 shows schematically the stability diagram of the coupled charge qubit
system. Voltage pulses applied to pulse gates 1 and 2 move the system nonadiabatically
along ng1 and ng2 axes, respectively. In our previous experiment to demonstrate quan-
tum beating [15], we first set the operation point (point A) sufficiently far away from
the double degeneracy point (ng1, ng2) = (0.5, 0.5) and brought the system nonadia-
batically to the co-resonant point, where four eigenenergies become close with each
other, and let the system evolve freely. For the conditional gate, however, we fix ng1
and operate along the dashed line in the figure.

Figure 12 shows the energy bands of the system along the dashed line in Fig. 11.
Four energy bands can be regarded as two pairs of nearly independent single-qubit
energy bands. For the lower two bands, the first qubit (control qubit) is always in the
|0〉 state, while for the higher two bands, the first qubit is in the |1〉 state. Importantly,
the charging energies of each of the two-level systems are degenerate at different ng2.
This difference originates from the electrostatic coupling between the qubits and can
be utilized for the conditional gate operation.

For the conditional gate operation, we apply a voltage pulse to pulse gate 2 so
that it brings the system to the degeneracy point for the two lower bands (Fig. 12a).
Suppose we start from the |00〉 state. Application of this pulse induces the oscillation
between |00〉 and |01〉 states with maximum amplitude, as schematically shown by the
Bloch sphere in Fig. 12b. By properly tuning the length of the pulse, we can stop the
oscillation when the system is in the |01〉 state. By the same pulse, we obtain |00〉 state
from the input state of |01〉. On the other hand, when the initial state is |10〉 or |11〉,
the pulse induces oscillation between |10〉 and |11〉. However, because the system is
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Fig. 12 a Energy bands calculated from Eq. 12. Dashed lines are the eigenenergies and solid lines are
the charging energies of the states shown in the figure. They are plotted as functions of ng2, while ng1 is
fixed as 0.18. The rectangular-shape pulse represents the conditional gate operation. b, c Single qubit Bloch
sphere picture of the target qubit. When the control qubit is in state |0〉 (b), the operation pulse creates
a resonance for the target qubit, hence Bloch vector rotates around the x-axis with maximum amplitude.
When the control qubit is in state |1〉 (c), the operation pulse does not create a resonance, and there is a
finite fictitious magnetic field along the z-axis, which leads to the suppressed oscillation amplitude

not brought to the degeneracy point for |10〉 and |11〉 states, the oscillation amplitude
is suppressed due to the finite fictitious magnetic field along z axis (Fig. 12c). The
magnitude of this fictitious field is proportional to the coupling energy. Thus, for a
given state of the target qubit, this pulse performs the conditional gate operation, i.e.
the state of the target qubit is flipped only when the control qubit is in the |0〉 state.

In general, the input state α|00〉 + β|10〉 created by the first pulse applied to pulse
gate 1 is transformed into state α|01〉 + β|10〉 by the second pulse applied to pulse
gate 2. There are two ways to control coefficients α and β: either change E J1 by a
magnetic field keeping �t1 constant [21], or change �t1 keeping E J1 constant [62].
The latter case is technically more difficult as the length of the first pulse is changed
while the second pulse is fixed.

After we adjusted�t2 to have maximal I2, we perform conditional gate operation for
various input states and measure the output currents I1 ∝ |β|2 and I1 ∝ |α|2 = 1−|β|2
that are anti-correlated. Indeed, this anti-correlation between the two output currents
seen in Fig. 13a, b is consistent with this expectation. Quantitatively, the modulation
amplitude of the current of the target qubit agrees well with the result of the numer-
ical simulation, which takes into account the finite rise and fall time of the pulse
(∼40 ps) [21].

6 Single artificial-atom lasing

In this section we show how a charge qubit can be used as an artificial atom for the
generation of coherent CW microwave radiation [63]. Indeed, charge qubits, like other
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Fig. 13 Anti-correlation of the measured currents of the control and target qubits, as expected from the
CNOT operation. a Pulse-induced currents of the control and target qubits as a function of E J1. b Pulse-
induced currents of the control and target qubits as a function of �t1

types of qubits, behave like atoms: they have discrete energy levels and transitions may
take place between them. These artificial atoms have certain advantages over the nat-
ural ones: (i) they can be fabricated with desired properties (energy gap, for example);
(ii) their energy levels can be tuned in situ by external electrical or magnetic signals;
(iii) they have stronger coupling to the electrical or magnetic fields due to their size.
Such properties can be useful for various types of experiments, lasing being one of
them.

For constructing a laser, three key components are required: an active quantum
media, a resonator, and a mechanism of population inversion in the media. Our media
is an artificial atom based on the charge qubit. Our resonator is a piece of a super-
conducting strip placed in between two grounded electrodes—a coplanar waveguide
resonator. Finally, the population inversion in the artificial atom is created by the JQP
current, a dc current that acts as pumping. The striking difference between this device
and conventional lasers and masers is that its radiation is produced by one and the
same atom coupled to the resonator.

Previous experiments [64,65] with single natural atoms demonstrated the possi-
bility of lasing for the strong coupling regime when the atom-cavity interaction time
becomes shorter than the photon lifetime or the atom coherence time. Achieving this
regime with single natural atoms seems rather difficult. On the other hand, quantum
systems with artificial atoms allow one to easily make the interaction time much shorter
than the coherence time, as it has been demonstrated previously [66,67]. Furthermore,
controllable interaction with a single cavity mode together with a fast mechanism of
population inversion allows one to realize a lasing regime with many photons generated
by one and the same atom [65,68,69].

The artificial-atom maser consists of a resonator and a charge qubit coupled to it
(Fig. 14a). We fabricated a transmission-type half-wavelength coplanar-waveguide
resonator using a 200-nm thick Nb film. It has a bare resonance frequency ω0/2π =
9.889 GHz and a quality factor Q = 7.6 × 103. The corresponding photon lifetime
is τp = 1.2 × 10−7 s (the photon decay rate κ = τ−1

p , κ/2π = 1.3 MHz). The
qubit is placed close to the end of the resonator where the electric field is nearly
maximal.

Because quasiparticle states are also involved, it is convenient in this section to
use notations that are slightly different from those used in the previous sections. We
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Fig. 14 a Schematics of the
single artificial-atom maser.
b Qubit energy band diagram
and the lasing mechanism

denote Cooper pair states of the qubit as |0〉 and |2〉 and the normalized gate charge
ng = CgVg/e. The qubit is characterized by the Josephson energy E J and the single-
electron charging energy Ec. The electrostatic energy difference δE = 4Ec(ng − 1)
between the two states is controlled by the gate voltage Vg applied though the gate

capacitance Cg . The qubit eigenenergy follows�E =
√
δE2 + E2

J (top right panel of

Fig. 14b). As the qubit is coupled to the resonator through an electric field [∝ (a+a+)],
the Hamiltonian of the qubit-resonator system reads

H = −1

2
(δEσz + E Jσx )+ h̄ω0

(
a+a + 1

2

)
+ h̄g0

(
a + a+)

σz . (15)

The first, second and third terms describe the qubit; resonator and qubit-resonator
coupling; a+ and a are the photon creation and annihilation operators, respectively, and
g0 is the coupling strength. The value of g0/2π is found to be 80 MHz from the fitting
of the dispersion curve of transmission through the resonator when the qubit is biased
at δE = 0δ. This is consistent with the expectation g0/2π = (eV0/2π h̄)(Cr/C�),
where V0 = √

h̄ω0/C0 ∼ 1.8 µV is the zero-point fluctuation voltage of the resonator
with the total capacitance C0 = 2 pF. The observed anti-crossing demonstrates that
the qubit is indeed coherently coupled to the resonator [70].

To create population inversion in the qubit we introduce a drain electrode connected
to the island via a tunnel junction with the resistance Rb of 1.0 M� (Fig. 14a, b). The
drain electrode is voltage biased at a voltage Vb above (2�+ Ec)/e , which is required
to extract two electrons from the island by breaking a Cooper pair (�/h ≈ 55 GHz).
As a result, |2〉 decays into |0〉 via two sequential single-electron tunnelling events in
the incoherent process |2〉→|1〉→|0〉 (bottom left panel of Fig. 14b), and the ‘atom’
is pumped into |0〉 state. At δE = 0, a Cooper pair tunnels resonantly across the
Josephson junction from the reservoir to the island (|0〉→|2〉). Thus, the Josephson-
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quasiparticle cycle involving the three charge states continues and results in a pro-
nounced current peak. For δE � E J the upper eigenstate of the qubit is nearly |0〉
state, and the single-electron tunnelling process creates population inversion with an
effective rate γ ≈ Vb/2eRb ≈ 2 × 109 s−1 (γ /2π ≈ 320 MHz).

When �E is adjusted to h̄ω0 the photon number in the qubit-resonator system is
not conserved. The basis states of the system described by the Hamiltonian of Eq. 15
are represented as |n, N 〉, where n is the number of electrons and N is the number
of photons in the resonator. The energy quantum of the qubit is transferred into the
resonator as a photon, accompanied by a Cooper pair tunnelling across the Josephson
junction (|0, N 〉 → |2, N + 1〉, starting from N = 0). The cycle proceeds repeatedly,
and N in the resonator increases until it reaches the balance between the photon gener-
ation and loss. The qubit-resonator coupling grows with N as g0

√
N + 1. The photon

field stimulates the photon generation process, which is analogous to the stimulated
emission in conventional lasers. In contrast to conventional lasers with many atoms,
emission observed from the single atom coupled to the single-mode cavity immedi-
ately implies “thresholdless” lasing [65,68]. In our lasing mechanism, the photon flux
is related to the current flowing through the qubit. Therefore, an additional feature
related to lasing is expected in the dc current [71].

In Fig. 15, emission power spectral density from the resonator (upper panel) is
shown together with the current through the qubit (lower panel) as a function of
δE at Vb = 0.65 mV. The observed current peak is due to the JQP process. On the
right slope of the JQP peak (δE > 0; the emission side), two small current peaks
appear. At the same time, we observe strong emission shown as two “hot spots” in
the upper panel. The position of the first current peak and the hot spot corresponds to
δE/h ∼ 7 ± 2 GHz. Although the hot spot is rather broad, its position is consistent
with the condition �E = h̄ω0. One possible interpretation of the presence of the sec-
ond hot spot is the two-photon resonance [71]. Note that the emission takes place only

Fig. 15 Emission power
spectrum from the resonator
(upper panel) together with the
current I through the qubit
(lower panel) as a function of
δE and ng . Emission is seen as
two “hot spots”, and the
corresponding current peaks
appear on the right slope of the
JQP peak (δE > 0)
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Fig. 16 Output power spectrum
S (grayscale map in log scale) as
a function of the driving power
for the detuning frequency
δωdrive/2pi = −0.5 MHz. The
spectrum gets as narrow as the
measurement bandwidth
(100 kHz) when N∗>∼1
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when the drain electrode is biased in the range 0.57 mV ≤ Vb ≤ 0.71 mV where the
JQP current peak is observed.

At the hot spot, the emission peak is unstable, showing low-frequency fluctuations,
which can be naturally attributed to the low frequency charge noise. Nonetheless, the
average emission spectrum width 0.7 MHz is narrower than κ and γ , which strongly
supports lasing mechanism. The total emission power within the hot spot is estimated
to be W = 7 × 10−16 W corresponding to N = 2(W/h̄ω0)τp ≈ 30 photons in the
resonator (the factor 2 comes from the equal probability for the photons to escape
through each end of the resonator). This number may be an underestimate as the reso-
nator internal loss is not accounted for. The JQP current at its peak (I ∼ 0.4−0.2 nA)
generates less than I/2e ∼ 109 s−1 excited states, which is comparable to the photon
generation rate N/τp > 2.5×108 s−1. The high photon generation efficiency satisfies
the main criterion for “thresholdless” lasing.

Next we study the emission spectrum under the external microwave drive, expect-
ing “injection locking” effects [72]. Figure 16 shows the emission power spectrum as
a function at the driving power Pdrive and detuning δω. The emission peak is broad
at low driving power (Pdrive < −134 dBm). However, when Pdrive exceeds the level
of one photon in the resonator, the emission line shrinks to the drive frequency with
the width limited by the measurement bandwidth (100 kHz). The effect of frequency
stabilization and emission narrowing known in laser physics as “injection locking”
additionally proves lasing action.

7 Summary

In summary, we have performed a number of pioneering experiments demonstrating

a) quantum coherence in a solid-state qubit;
b) coherent dynamics of two coupled charge qubits;
c) quantum logic gate;
d) single-shot readout of a charge qubit
e) lasing effect in a single qubit coupled to a resonator.

We have also studied mechanisms of decoherence in charge qubits. Despite a decade
of intensive research, the quantum computer still remains a dream. Many hurdles
are to be overcome, decoherence being the major one. Nonetheless, even now the
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superconducting qubits have many potential applications including lasing, creation of
metamaterials, on-chip quantum optics, quantum-limited detectors to mention a few.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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