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Abstract: A dispersive model of a gradient refractive index (GRIN) lens
is introduced based on the idea of iso-dispersive contours. These contours
have constant Abbe number and their shape is related to iso-indicial
contours of the monochromatic geometry-invariant GRIN lens (GIGL)
model. The chromatic GIGL model predicts the dispersion throughout
the GRIN structure by using the dispersion curves of the surface and the
center of the lens. The analytical approach for paraxial ray tracing and
the monochromatic aberration calculations used in the GIGL model is
employed here to derive closed-form expressions for the axial and lateral
color coefficients of the lens. Expressions for equivalent refractive index
and the equivalent Abbe number of the homogeneous equivalent lens are
also presented and new aspects of the chromatic aberration change due to
aging are discussed. The key derivations and explanations of the GRIN lens
optical properties are accompanied with numerical examples for the human
and animal eye GRIN lenses.
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1. Introduction

The experimental studies have shown a spatial change in chromatic dispersion of the gradient
index (GRIN) eye lens. In spite of a noticeable variety in human GRIN lens models, modeling
the dispersion of the GRIN lens has been considered only in two studies, [1] and [2]. However,
the existing chromatic models of the GRIN lens do not have enough flexibility to be consistent
with the experimental data that shows different amount of dispersion at the surface and the
center of the GRIN lens. To understand the origin of chromatic effects in the GRIN lens and
the corresponding aberrations arising from the spatial change of dispersion within the lens,
one should consider the chromatic contribution of different layers in the GRIN structure. For
doing this, we need at least to develop a paraxial ray tracing method (preferably analytical) for
predicting the ray path within GRIN structure at different wavelengths. The paraxial ray-tracing
will be the basis for calculating chromatic aberration of the GRIN structure, provided that the
dispersion model for the surface and the center of the GRIN lens is given by experimental
measurements.

In this paper we employ the geometry-invariant GRIN lens (GIGL) monochromatic model
[3] and introduce wavelength dependence of the refractive index. This allows us to obtain a
chromatic model matching experimental data on dispersion of the GRIN lens as well as to
retain all properties of the GIGL mode including the analytical description for paraxial ray-
tracing. Figure 1 depicts the GIGL geometry and its interior geometry-invariant iso-indicial
contours, where R is the external radius of curvature and k is the external conic constant of
the lens surfaces and subscripts ‘a’ and ‘p’ designate the anterior and the posterior surfaces,
respectively, so that Ta and Tp are the axial thicknesses of the anterior and the posterior hemi-
spheres, respectively. The sign convention used here is such that the radii and thicknesses are
considered to be always positive as in our previous work [3]; however to be consistent with the
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Fig. 1. The invariant-geometry GRIN lens and its interior iso-indicial contours [3].

optical design sign convention, we introduce ‘−’ in front of Ta and Rp.

2. Dispersion model

2.1. Characteristics of dispersive GRIN lens

In the geometry-invariant GRIN lens model, the refractive index distribution is based on the
power law profile, which was originally proposed by Pierscionek [4] and later supported by
several studies [5–9]. In the GIGL model [3], this GRIN profile is presented as:

n(ζ ) = nc +(ns −nc)(ζ 2)p; (1)

where the parameter p in the exponent is employed to account for age-related dependence of
the GRIN lens, ζ is the normalized distance from the center of the lens, and nc and ns are the
refractive indices at the center and at the surface of the GRIN lens, respectively. Here, ζ varies
between −1 to +1 to cover both anterior and posterior hemispheres of the lens. Note that the
exponent p is not limited to integer numbers, so to avoid complex numbers we use the form
(ζ 2)p. In monochromatic aberration studies, nc and ns are measured at a certain wavelength
(typically at λm = 555 nm) for which the eye shows its highest sensitivity. It is well known that
the GRIN lens is a dispersive medium with different dispersion characteristics at the center and
at the surface [10,11]. In other words, the GRIN refractive index profile is different at different
wavelengths along the Z axis. We assume that these axial GRIN distribution profiles follow
the power law with their own wavelength specific nc(λ ), ns(λ ) and p(λ ). In view of the well-
known concept of iso-indicial contours in the GRIN lens, we propose the idea of iso-dispersive
contours. We consider the lens structure consisting of very thin shells whit a constant chromatic
dispersion (constant Abbe number). An iso-dispersive contour is the interface between the two
adjacent shells.
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There are several papers on suggesting theoretically sound equations for chromatic disper-
sion. Atchison et al. [12] have studied and reviewed experimental and theoretical data on ocular
media dispersion and found the Cauchy’s equation as the best fit:

n(λ ) = A+
B
λ 2 +

C
λ 4 +

D
λ 6 + . . . . (2)

We use a modified representation of the Cauchy’s equation as

n(λ ) = nm +nλ2

(
1

λ 2 − 1
λ 2

m

)
+nλ4

(
1

λ 4 − 1
λ 4

m

)
, (3)

where λm is the main wavelength and nm is the refractive index at λm. nm, nλ2 and nλ4 could
be found by fitting Eq. (3) to a given dispersion data. Considering the experimental error in one
of the dispersion measurements (Ref. [10]) used in the present paper, having only three terms
in Eq. (3) provides an acceptable fit. In our experience, employing higher terms of Cauchy’s
equation gives the fitted curve a freedom to follow the noise in the data and even to develop a
minimum, which does not correspond to a theoretically valid dispersion function.

Equation (1) can be rewritten to describe a dispersive GRIN medium as

n(ζ ,λ ) = ncenter(λ )+
(
nsur f ace(λ )−ncenter(λ )

)
(ζ 2)p(λ ), (4)

where

ncenter(λ ) = nc +ncλ2

(
1

λ 2 − 1
λ 2

m

)
+ncλ4

(
1

λ 4 − 1
λ 4

m

)
, (5)

and

nsur f ace(λ ) = ns +nsλ2

(
1

λ 2 − 1
λ 2

m

)
+nsλ4

(
1

λ 4 − 1
λ 4

m

)
. (6)

nc and ns are respectively the refractive indices at the center and at the surface of the GRIN lens
at the main wavelength λm, since Eq. (4) would be reduced to Eq. (1) where λ = λm. Therefore
any characteristic of the lens (e.g. the optical power equations and the third-order aberration
representations) defined for the monochromatic GIGL model [3, 13] will remain unchanged
when using this representation.

To our knowledge this is the first attempt to represent the dispersive nature of the GRIN lens
structure in terms of wavelength-dependent ncenter(λ ), nsur f ace(λ ), and p(λ ). In the following
section we show two numerical examples that emphasize the advantage of using this model
when experimental dispersion data for the center and the surface of the lens is available.

2.2. Numerical examples

Equation (4) describes the gradual change in dispersion from the surface to the center of the
lens. There are not so many published experimental data on the spatial change in dispersion of
the GRIN lens in the human. These available data are limited to the dispersion curves at the
center and the surface of the lens. This does not provide enough information to determine the
rate of change in GRIN profile at any specific wavelength, which corresponds to the exponent
p(λ ). Due to the lack of experimental data on wavelength dependence of the exponent p(λ ), for
now, we limit our examples to the case of constant p. However the presented model is capable
of taking into account the wavelength dependence of p(λ ) when more complete data become
available. In the following, two sets of data are used to determine all the coefficients in the
dispersive GRIN structure given by Eq. (4).

Palmer and Sivak [10] have done a series of measurements on a 70 year old eye for the
wavelength range from 410 nm to 680 nm. It is worth mentioning that Palmer and Sivak have
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Fig. 2. The fit of the dispersion curves at the center and the surface of the lens to the
dispersion data from Palmer and Sivak for a 70 year old eye [10].

stated that the material of the lens has not been altogether homogeneous and there have been
inclusions of lower refractive index. Due to this, their data may not be as reliable as other data
from human lenses. Figure 2 depicts their data and the least square fit using Eqs. (5) and (6).
The fitting equations are

ncenter(λ ) = 1.39879+6241.59

(
1

λ 2 − 1
5552

)
−2.10368×108

(
1

λ 4 − 1
5554

)
, (7)

and

nsur f ace(λ ) = 1.37555−7994.17

(
1

λ 2 − 1
5552

)
+1.58549×109

(
1

λ 4 − 1
5554

)
. (8)

In another work, Sivak and Mandelman [11] measured the GRIN lens dispersion of several
subjects from 16-year old to 78-year old. They have provided averaged data for the dispersion
curves of the center and the surface of the lens. Figure 3 shows the dispersion curves from
the least square fit using Eqs. (5) and (6) to Sivak and Mandelman’s data averaged over 6 to 9
separate eyes given by

ncenter(λ ) = 1.40395+7256.06

(
1

λ 2 − 1
5552

)
−1.54846×108

(
1

λ 4 − 1
5554

)
, (9)

and

nsur f ace(λ ) = 1.37763+9260.03

(
1

λ 2 − 1
5552

)
−3.12554×108

(
1

λ 4 − 1
5554

)
. (10)

In addition to this, Fig. 4 demonstrates the dispersion curves across the lens provided by
Eq. (4) for p equal to 2.0 and 5.0. This range is chosen in relation to the fitting results by
Navarro et al. [8], where the case p = 2.0 could be considered as an extreme minimum for the
refractive index profile of a very young healthy eye, whereas p = 5.0 corresponds to an aged
eye. The intermediate curves between the lens center and surface show internal dispersion of
the lens material predicted by Eq. (4) for ζ equal to 0.1, 0.2, . . . , 0.9. The spacing between
these curves indicates the power profile of the GRIN structure (characterized by exponent p).

Another way of distinguishing two cases (p= 2.0 and p= 5.0) is examining the refractive in-
dex profiles along the lens optical axis; these profiles are shown in Fig. 5. Figure 5 illustrates an
age-related alteration originally suggested by Pierscionek [4] in the lens paradox explanation.
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Fig. 3. The fit of the dispersion curves at the center and the surface of the lens to the
dispersion data from Sivak and Mandelman [11].
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Fig. 4. The fit of the dispersion curves at the center and the surface of the lens to the dis-
persion data from Sivak and Mandelman [11], and our calculated dispersion curves across
the lens employing Eq. (4) for (a) p = 2.0 and (b) p = 5.0.
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Fig. 5. The refractive index profiles across the lens for λF = 486.1 nm, λd = 587.6 nm, and
λC = 656.3 nm using Eq. (4) for (a) p = 2.0 and (b) p = 5.0 fit to the dispersion data from
Sivak and Mandelman [11].

3. Chromatic aberration

3.1. Chromatic coefficients

Using the idea of thin, iso-dispersive shells, we shall describe the chromatic effects occurring
within the bulk of the lens. For this we need to revisit the definition of the axial and transverse
chromatic aberrations in terms of paraxial optics.

The axial color coefficient for a single refractive surface CL [14] is given by

CL = ndy
(y

r
+u

)(nd −1
ndVd

− n′d −1
n′dV ′

d

)
, (11)

where nd is the refractive index of the medium at the spectral line d (λd = 587.6 nm) before the
surface, y and u are the height and the angle of the incident ray at the surface, respectively, r is
the surface radius of curvature, and Vd and V ′

d are the Abbe numbers of the media respectively
before and after the surface. The Abbe number is defined as

Vd =
nd −1
nF −nc

, (12)
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where nF and nc are the refractive indices of the medium at the spectral line F (λF = 486.1 nm)
and the spectral line C (λC = 656.3 nm), respectively.

By adding the CL coefficients of all surfaces in an optical system the total axial color coeffi-
cient is obtained. Using this coefficient, the axial distance between the image position at F and
C wavelengths can be calculated as longitudinal axial chromatic aberration δAX ,

δAX =
1

ndiu2
i

CL, (13)

where ndi is the refractive index at d line in the last medium and ui is the refracted ray angle at
the image plane.

In a similar way, the lateral color coefficient CT is given by

CT = ndy
(yc

r
+uc

)(nd −1
ndVd

− n′d −1
n′dV ′

d

)
, (14)

where yc and uc are the height and the angle of the incident chief (principal) ray at a refractive
surface, respectively. The total coefficient CT can be used in calculating the transverse lateral
chromatic aberration δTLC, which corresponds to the vertical distance between the images at F
and C wavelengths:

δTLC =
1

ndiui
CT . (15)

The total axial and lateral color coefficients of a GRIN lens are the key to understanding
its chromatic behavior in the eye. Using the paraxial ray tracing as in our derivation of the
monochromatic aberrations in the GIGL model [3], the total chromatic coefficients can be ob-
tained for the dispersive GRIN structure. Following the analytical ray tracing through the GIGL
model, we shall derive the expressions for the axial and lateral color coefficients. First we define
the Abbe number of the iso-dispersive shells Using Eq. (4)

Vd(ζ ) =
n(ζ ,λd)−1

n(ζ ,λF)−n(ζ ,λC)
, (16)

In general ζ corresponds to the normalized distance from the lens center to any point in the
lens. The distance ζ along the optical axis is simply z/Ta and z/Tp for the anterior and posterior
hemispheres, respectively. For a constant Abbe number Vd Eq. (16) defines the corresponding
constant ζ of the iso-dispersive contour.

Equation (16) can be described in terms of axial distance z for paraxial ray tracing. Employ-
ing Eqs. (11), (4), and (16) we find the contribution of a thin layer with the thickness of δ z
within the GRIN structure in the total axial color coefficient of the lens as

δCL = n
( z

T
,λd

)
y(z)

(
y(z)
−Rz

+
y′(z)

T

)[
∂n
∂ z

( z
T
,λd

)(
n
( z

T
,λF

)
−n

( z
T
,λC

))
−

−n
( z

T
,λd

)(∂n
∂ z

( z
T
,λF

)
− ∂n

∂ z

( z
T
,λC

))]
/n2

( z
T
,λd

)
δ z, (17)

where y(z) is the height of the ray inside the GRIN lens and R is the radius of curvature of
the surface; the analytical expression for y(z) in the GIGL model is derived in Ref. [3]. By
summing up the contributions from all infinitely thin layers in the GRIN structure (where R
equals to Ra and Rp in the anterior and posterior hemispheres, respectively) and including the
contributions from the external surfaces of the lens we find the total axial color coefficient of
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the lens,

∑CL = naquy0

(
y0

Ra
+ua

)(
naqu −1
naquVaqu

− n(−1,λd)−1
n(−1,λd)Vd(−1)

)
+

+
∫ Tp

−Ta

dCL +n(1,λd)y(Tp)

(
y(Tp)

−Rp
+u(Tp)

)(
n(1,λd)−1

n(1,λd)Vd(1)
− nvit −1

nvitVvit

)
, (18)

where y0 and ua are respectively the height and angle of the marginal ray at the anterior surface,
y(Tp) and u(Tp) are respectively the height and the angle of the marginal ray just before the
posterior surface, naqu and Vaqu are respectively the refractive index and the Abbe number of
the medium before the lens at the d line, and nvit and Vvit correspond to the medium after the
lens. It is worth noticing that the ray tracing for these calculations should be done at the d line.

Similarly the coefficients for the lateral color of the lens is given by

δCT = n
( z

T
,λd

)
y(z)

(
yc(z)
−Rz

+
y′c(z)

T

)[
∂n
∂ z

( z
T
,λd

)(
n
( z

T
,λF

)
−n

( z
T
,λC

))
−

−n
( z

T
,λd

)(∂n
∂ z

( z
T
,λF

)
− ∂n

∂ z

( z
T
,λC

))]
/n2

( z
T
,λd

)
δ z, (19)

where yc(z) is the chief ray height inside the lens. Assuming the aperture stop is located at the
anterior surface of the lens we obtain the total lateral color coefficient of the lens

∑CT = naquy0uca

(
naqu −1
naquVaqu

− n(−1,λd)−1
n(−1,λd)Vd(−1)

)
+

+
∫ Tp

−Ta

dCT +n(1,λd)y(Tp)

(
yc(Tp)

−Rp
+uc(Tp)

)(
n(1,λd)−1

n(1,λd)Vd(1)
− nvit −1

nvitVvit

)
, (20)

where uca is the angle of the chief ray at the anterior surface, and yc(Tp) and uc(Tp) are respec-
tively the height and the angle of the chief ray just before the posterior surface of the lens.

At this stage we have all equations ready for analysis of chromatic effects in the GRIN lens.

3.2. Numerical example

Using Eqs. (18) and (20) we can calculate the chromatic effects arising from a typical GRIN
lens. To use these two equations, one needs the dispersion data for the GRIN lens as well as the
dispersion data for the medium surrounding the lens. For the media before and after the lens,
the aqueous and vitreous, respectively, we have used combined data provided by Atchison and
Smith in terms of coefficients for Cauchy equation presented in Table 5 in Ref. [12].

3.2.1. Sivak and Mandelman’s experimental data

As an example, Table 1 presents a typical GRIN lens geometry and its surrounding media
with dispersive characteristics. Since the eye GRIN lens receives a converging beam we shall
take into account its convergence by assuming a typical corneal shape with the anterior and
posterior radii of curvature of 7.8 mm and 6.7 mm, respectively, the corneal thickness of 0.5
mm, and the 3.5 mm axial distance to the GRIN lens. This corresponds to the marginal ray
angle ua =−0.036352 rad at the pupil such that y0 = 1 mm. The aperture stop (iris) is located
just before the anterior surface of the lens, so the height of the chief ray at the anterior surface
of the lens is zero. For the object located at infinity and the full field of view of 2 deg the chief
ray angle at the anterior surface of the lens is uca = 0.015000 rad.

Table 2 presents the chromatic coefficients of this typical GRIN lens for each part of the lens
using the dispersion data from Sivak and Mandelman [11] in Eqs. (9) and (10). Here to describe
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the dispersive GRIN medium in accordance with Eq. (11) we assumed p = 4.0, which impacts
the magnitude of the coefficients CL and CT for the GRIN structure.

Axial color coefficients in Table 2 show an interesting compensation effect in axial chromatic
aberration of the lens. The negative CL arising from the peripheral surfaces is to some extent
corrected by the positive CL originating from the GRIN structure of the lens. To understand the
origin of the sign in coefficient CL we revisit Eq. (11). Assuming u � y/r and noting that 0 < y,
it is clear that the radius of curvature r and the variation of the quantity (nd − 1)/(ndVd) play
the main role in establishing the sign of the axial color coefficient.

Figure 6 illustrates the variation of the quantity (nd −1)/(ndVd) inside the lens is positive for
the anterior hemisphere and negative for the posterior hemisphere. On the other hand, the radius
of curvature r for the iso-indicial contours in the GRIN structure is also positive in the anterior
and negative in the posterior hemispheres, thus the overall sign of the axial color coefficient of
the GRIN structure is positive in both hemispheres.

In contrast, the quantity (nd −1)/(ndVd) in the medium before and after the lens (0.004979
and 0.004888 respectively) is less than that of the surface of the lens (0.010015). This leads to
the negative axial color coefficients at both anterior and posterior lens surfaces, see Table 2. A
similar approach could be used to understand the change of sign in lateral color coefficients of
the lens, although for the posterior surface we have an additional contribution to the coefficient
from the non-zero height of the chief ray.

Table 1. A typical GRIN lens geometry and the dispersive characteristics of the surrounding
media at the d line. (∗using Table 5 in Ref. [12].)

Lens geometry (mm) Surrounding medium∗

Ta 2.10 naqu 1.3347
Tp 1.40 Vaqu 50.37
Ra 11.00 nvit 1.3347
Rp 7.50 Vvit 51.30

Table 2. The chromatic coefficients of a typical GRIN lens defined in Table 1 with the
dispersion data from Sivak and Mandelman [11] described by Eqs. (9) and (10).

Axial color coefficients

CL from the anterior surface -0.000367
CL from the GRIN structure +0.000450
CL from the posterior surface -0.000958
∑CL -0.000875

Lateral color coefficients

CT from the anterior surface -0.000101
CT from the GRIN structure +0.000018
CT from the posterior surface +0.000047
∑CT -0.000036

To get a feeling about the magnitude of calculated axial color coefficient, we also calculate
the axial chromatic aberration δAX in the whole eye using this typical lens. We assume that the
lens in the eye is not tilted and then the total axial color coefficient of the eye is the sum of the
axial color coefficients of the cornea and the GRIN lens. We assume that the optical power of
an average eye is 60 D and the corneal refractive index and Abbe number are nd = 1.3677 and
Vd = 55.48 [12], which corresponds to the axial color coefficient of −0.000843 for the cornea.
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Fig. 6. The quantity (nd −1)/(ndVd) as a function of ζ (the normalized distance from the
lens center) using the dispersion data from Sivak and Mandelman [11] for p = 4.0.

The sum of the axial coefficients of the cornea and the lens is −0.001718, and from Eq. (13)
we find that the axial chromatic aberration of this eye is 2.09 D. This amount of chromatic
aberration is within the expected range of 1.87± 0.26 D found in the study by Gilmartin and
Hogan [15], which used a similar spectral range of 488 nm and 633 nm.

In addition to the lens dispersion data, Sivak and Mandelman have also provided the disper-
sion of the capsule of the lens. To study the effect of the lens capsule dispersion on the lens axial
color coefficient we have performed a numerical fit to Sivak and Mandelmans measurements
using Eq. (3) for the capsule

ncapsule(λ ) = 1.37108+2617.71

(
1

λ 2 − 1
5552

)
+2.5783×108

(
1

λ 4 − 1
5554

)
. (21)

Table 3 provides the lens axial color coefficients using Eq. (21) and (11), which takes into
account the chromatic effect of the lens capsule. For the anterior and the posterior layers of
the lens capsule we have assumed a typical axial thickness of 0.015 mm and 0.002 mm, re-
spectively [16]. A comparison of Tables 2 and 3 shows that the effect of the capsule is only

Table 3. The chromatic coefficients of a typical GRIN lens defined in Table 1 with the dis-
persion data from Sivak and Mandelman [11] on the eye lens capsule described by Eq. (21).

Axial color coefficients

CL from the anterior surface of the capsule -0.000075
CL from the anterior surface of the lens -0.000292
CL from the GRIN structure +0.000450
CL from the posterior surface of the lens -0.000749
CL from the posterior surface of the capsule -0.000208
∑CL -0.000874

0.1 percent of the total axial color coefficient and thus can be ignored. A closer look at Ta-
bles 2 and 3 reveals that the lens capsule does not change the magnitude of the chromatic effect
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Fig. 7. The quantity (nd −1)/(ndVd) as a function of ζ (the normalized distance from the
lens center) using the dispersion data from Palmer and Sivak [10] for p = 5.5.

at the anterior and posterior surfaces of the lens. This is due to a very small thickness of the
capsule, which means the radii of curvature of the capsule is very close to those of the lens,
leading to a cancellation effect of the capsule contribution to the axial color coefficients.

3.2.2. Palmer and Sivak’s experimental data

Employing the same lens geometry and the same dispersive characteristics of the surrounding
media, we shall calculate the axial color coefficients of the lens using the dispersion data from
the study by Palmer and Sivak of a 70 year old eye [10]. In this study the age of the eye is well
defined, so we consider the exponent p = 5.5 based on the equation suggested by Navarro et
al. [8] for connecting the exponent p to the age of the eye. Table 4 presents the color coefficients
of the lens and Fig. 7 depicts the quantity (nd − 1)/(ndVd) as a function of the normalized
distance ζ from the lens center.

Table 4. The chromatic coefficients of a typical GRIN lens defined in Table 1 with the
dispersion data from Palmer and Sivak [10] described by Eqs. (7) and (8).

Axial color coefficients

CL from the anterior surface +0.000120
CL from the GRIN structure -0.000948
CL from the posterior surface +0.000290
∑CL -0.000537

Lateral color coefficients

CT from the anterior surface +0.000033
CT from the GRIN structure -0.000038
CT from the posterior surface -0.000014
∑CT -0.000019

In this example we can also see the compensation of chromatic aberrations in the lens, how-
ever in comparison to Table 2 the compensation happens in a different way. Table 4 indicates
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that the GRIN structure of the lens produces a negative axial color coefficient, while the axial
color coefficients of the external surfaces are positive. This is due to the different rate of growth
of the quantity (nd − 1)/(ndVd) presented in Fig. 7, and also due to the different amount of
the quantity (nd − 1)/(ndVd) at the lens surface, 0.003328, which is less than the surrounding
media. As a result, the total axial color coefficient of the lens is still negative (−0.000537) in
comparison with Table 2, but its absolute value is reduced by 20%. Using the same character-
istics for the cornea, as in Section 3.2.1, the chromatic aberration of the whole eye becomes
1.68 D. This amount of chromatic aberration is within the expected range of 1.87± 0.26 D
found in the study by Gilmartin and Hogan [15] using a similar spectral range.

3.2.3. Theoretical equations

In addition to the experimental data used in our two examples, it is worth revisiting the lens
dispersion equations suggested by Atchison and Smith (Table 5 in Ref. [12]), which is based
on the combined theoretical data from Le Grand [17] and Navarro et al. [18]. One can notice
that the two equations describing the center and the surface dispersion can be reduced to the
simple expression ncenter(λ ) � nsur f ace(λ )×1.014430. For such a simple connection between
the center and the surface dispersion curves, the quantity (nd −1)/(ndVd) becomes independent
of ζ terms and remains constant (0.006127) inside the GRIN lens. This becomes clear when we
rewrite the quantity (nd −1)/(ndVd) as (nF −nc)/nd . The significance of the constancy of the
quantity (nd − 1)/(ndVd) is that the GRIN structure is free from both chromatic effects (axial
and lateral color) and only the external surfaces of the lens contribute to the chromatic aberra-
tions. Table 5 shows this fact numerically under the same conditions considered in Table 1.

We would like to emphasize that for a non-dispersive GRIN structure as well as for a homo-
geneous refractive index lens (featuring in Le Grand [17] and Navarro et al. [18] models) one
has only to worry about the dispersion description of the external surfaces of the lens. However
the experimental data [10, 11] suggest that the chromatic contribution of the GRIN structure
is comparable to that of the external surfaces, and furthermore plays an important role in the
chromatic aberration compensation of the whole eye.

Table 5. The chromatic coefficients of a typical GRIN lens defined by Table 1 using the
dispersion data from Atchison and Smith (Table 5 in Ref. [12]).

Axial color coefficients

CL from the anterior surface -0.000084
CL from the GRIN structure +0.000000
CL from the posterior surface -0.000232
∑CL -0.000315

Lateral color coefficients

CT from the anterior surface -0.000023
CT from the GRIN structure +0.000000
CT from the posterior surface +0.000011
∑CT -0.000012

It is worth mentioning that for achieving an achromatic lens (i.e. ∑CL = 0), the axial color of
the external surfaces is to be compensated by that from the GRIN structure, so the latter should
not be zero. As an example of such aberration balancing, the lens in Section 3.2 can be made
achromatic simply by adjusting one of the center dispersion coefficients, ncλ2, in Eq. (9) from
7256.06 to 5098.80. This corresponds to the change in the Abbe number of the lens center from
33.71 to 51.51, using Eq. (4). The example illustrates that the proposed dispersion model can
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also help in developing bio-inspired lens designs, where the achromatic correction in individual
components is needed.

4. Equivalent Abbe number approximation

It is a common practice, in the reduced eye models, to replace the GRIN lens by a simple lens
providing spatially constant refractive index and Abbe number. Typically the characteristics of
the eye lens in the reduced eye models are defined based on the optical power and axial chro-
matic aberration of the whole eye. In this section a different approach is proposed to calculate
the equivalent Abbe number of the lens just using the experimental dispersion curves of the sur-
face layer (cortex) and the center (core) of the GRIN lens. This approach may help in improving
the reconstruction methods of a subject-specific GRIN lens.

The GIGL model provides a convenient equation for the optical power of the lens derived
from a thin lens approximation as

Fthin =
ns −naqu

Ra
+

2p
2p−1

(nc −ns)

(
1
Ra

+
1

Rp

)
+

nvit −ns

−Rp
. (22)

For the crystalline lens Eq. (22) gives less than 1.4% error compared with the exact power
calculations, and then can be a useful tool in the ocular calculations. The equivalent optical
power of the lens defined as

Feqv =
neqv −naqu

Ra
+

nvit −neqv

−Rp
, (23)

where the equivalent refractive index neqv provides the equivalent optical power for the lens.
Equating the right hand sides of Eqs. (22) and (23) and solving for neqv result

neqv =
2 p nc −ns

2 p−1
. (24)

The definition of neqv by Eq. (24) is not limited to the main wavelength and can be expanded
to the equivalent powers of other wavelengths as

neqv(λ ) =
2 p(λ ) ncenter(λ )−nsur f ace(λ )

2 p(λ )−1
. (25)

Substituting Eq. (24) in Eq. (12) leads to the equivalent Abbe number of the equivalent lens. If
the change in p with wavelength λ is negligible the equivalent Abbe number can be rewritten
as

Veqv(λ ) =
VdcVds [ns −1−2 p (nc −1)]
Vdc (ns −1)−2 pVds (nc −1)

, (26)

where Vdc and Vds are the Abbe numbers of the center and the surface of the GRIN lens, respec-
tively. As an example, Table 1 presents the calculated lens equivalent refractive index neqv and
the equivalent Abbe number Veqv using the dispersion data from Sivak and Mandelman [11],
and Palmer and Sivak [10] for p = 3.0 (representing a 34-year old eye according to the study
by Navarro et al. [8]).

Employing the equivalent refractive indices and Abbe numbers listed in Table 6, one can
calculate the axial and lateral color coefficients of the equivalent lens. These coefficients are
approximate, while the exact color coefficients derived in Eqs. (18) and (20). The comparison
between the axial and lateral color of a typical GRIN lens and its equivalent refractive index lens
is presented in Table 7. Here, the angles and the height of the incident rays, and the geometry
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Table 6. The calculated quantities neqv and Veqv using the dispersion data from Sivak and
Mandelman [11], and Palmer and Sivak [10] for a typical p = 3.0.

Data set nc ns neqv Vdc Vds Veqv

Sivak and Mandelman 1.4018 1.3751 1.4071 33.71 27.23 35.25
Palmer and Sivak 1.3968 1.3750 1.4011 42.73 81.95 39.22

Table 7. A comparison between the exact and equivalent color coefficients calculated re-
spectively for a typical GRIN lens and its equivalent refractive index lens.

Data set Equivalent Exact Equivalent Exact
∑CL ∑CL ∑CT ∑CT

Sivak and Mandelman -0.000856 -0.000852 -0.000034 -0.000035
Palmer and Sivak -0.000618 -0.000626 -0.000024 -0.000022

of the lens and its surrounding media are the same as in the previous numerical examples (See
Section 3.2.1), except for the exponent p, here p = 3.0.

Table 7 demonstrate a good agreement between the exact and equivalent color coefficients,
which indicates practical advantages of this approach in finding the exact equivalent optical
characteristics. However, replacing a complicated GRIN structure with a homogeneous mate-
rial will not transfer all optical characteristics of the lens simultaneously. Here, the equivalent
refractive index calculation aims at preserving the optical power of the lens, yet other optical
characteristics of the lens need their own equivalent refractive index. As an example, we con-
sider the optical path length (OPL) in the GRIN lens. The axial OPL in GIGL [3] is derived
as

OPL = (Ta +Tp)
2nc p+ns

2p+1
, (27)

which defines the quantity (2nc p+ ns)/(2p+ 1) as the equivalent refractive index in the OPL
calculation of the lens. This OPL equivalent refractive index known as the average refractive
index [19] is different from the one calculated in Eq. (24).

5. Axial Chromatic aberration and aging

There are two independent studies, which found no significant changes in the magnitude of
chromatic aberration with age [20, 21], but some earlier studies claim that the magnitude of
chromatic aberration decreases with age [22, 23]. Considering the growth of the GRIN lens, it
is well known that for an unaccommodated lens, the external surfaces become more curved with
aging [24]. The lens considered in Section 3.2.2 shows positive axial color coefficients at its
surfaces (Table 4). Aging lens increases the optical power of its surfaces, thus this lens surfaces
will show larger positive axial color coefficients, see Eq. (11). In addition to this, the chromatic
effect arising from the GRIN structure should be taken into account. To examine the role of the
GRIN structure in the age-related chromatic effect individually, we keep the geometry of the
lens in Section 3.2.2 unchanged, only adjust the age-related exponent p to three different age
groups. Following the study by Navarro et al. [8] we selected three age groups (20, 40, and 60
year old) with corresponding value for p and calculated the resultant axial color coefficients for
each group in Table 8.

Table 8 indicates that the magnitude of the axial color coefficient originated from the GRIN
structure of the lens decreases due to an increase in the exponent p. Looking at the sign of the
coefficients of the lens surfaces, it is evident that the total axial color coefficient of the lens
goes toward zero or even positive amounts. As mentioned in Section 3.2.1, a typical cornea
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Table 8. The axial color coefficients from the GRIN structure for three age groups (20, 40,
and 60 year old) using the dispersion data provided by Palmer and Sivak [10].

Age (year) p CL from the GRIN structure

20 2.87 -0.001046
40 3.13 -0.001028
60 4.28 -0.000977

shows a negative axial color coefficient. Due to aging, the surfaces of the cornea get slightly
more curved [25], which increases the magnitude of this negative corneal axial color coefficient.
Considering these two effects for the GRIN lens and the cornea, one could argue that the eye,
as a whole, might show a constant or a better chromatic performance with aging.

It is worth mentioning that employing the Sivak and Mandelman’s data in the same approach
provides an increase in the total axial color coefficient, which does not support the argument
above. Since the dispersion data from Sivak and Mandelman is averaged over 6 to 9 subjects
with different ages, some valuable information of each individual lens might be missing. This
highlights the need of more chromatic measurements on the GRIN lens and its surrounding
media for a more confident conclusion.

6. Discussion and conclusion

In this study the potential of the existing GIGL monochromatic model [3] has been realized and
demonstrated by introducing a flexible chromatic GRIN lens model. The model is examined
with different data fittings to gain better understanding of the GRIN lens chromatic aberration
behavior of the lens. The advantages of the provided equations are not limited to this data fitting
only, since the model can also be used to help explaining other chromatic characteristics of the
eye for example spherochromatism. The latter can be calculated using the spherical aberration
coefficients for different color wavelength.

We would like to emphasize that the provided model should be regarded as a tool, which can
be employed in experimental data fitting and further analysis for better understanding of the
chromatic nature of the eye. The scope of the chromatic model is not limited to the human eye
and can be applied to animal GRIN lenses, where unusual chromatic behavior might happen
(e.g. [26,27]). Table 9 provides the axial color coefficients of a semi-spherical octopus eye lens
calculated based on the measurements from Jagger and Sands [27].

Table 9. The chromatic coefficients of a typical octopus GRIN lens using the dispersion
data from Jagger and Sands [27].

Axial color coefficients

CL from the anterior surface -0.000779
CL from the GRIN structure -0.003499
CL from the posterior surface -0.000629
∑CL -0.004909

The proposed dispersive GIGL model completes the description of the monochromatic GIGL
model. The concept of iso-dispersive contours introduced in this paper is a unique feature of
the dispersive GIGL model. The optically-friendly geometry of the GIGL model featuring iso-
dispersive contours (constant Abbe number Vd) supports the calculations for the contribution
of the individual layers to the total chromatic effects of the lens. Thus the model gives a new
insight in the derivation of the equivalent Abbe number based on experimental dispersion curves
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for the center and the surface of the lens. The proposed model offers easy analysis of equivalent
refractive index and OPL equivalent index. One could use the model to investigate chromatic
aberration evolution in the aging human eye, in particular the effect of the power constant p on
the color coefficients. The model also predicts the amount of induced defocus (change in optical
power with wavelength) when using different wavelengths, e.g. adaptive optic system with
wavefront sensor operating at one wavelength and the retinal imaging at another wavelength,
although retinal absorption effects still have to be included in this case.
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