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Turbocharging Matched Molecular Pair Analysis: 

Optimizing the Identification and Analysis of Pairs 
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��������� We have applied the two most commonly used methods for automatic matched pair 

identification and obtained the optimum settings and discovered that the two methods are 

synergistic. A turbocharging approach to matched pair analysis is advocated in which a first 

round (a conservative categorical approach which uses an analogy with coin flips; heads 

corresponding to an increase in a measured property, tails a decrease and a biased coin to a 

structural change which reliably causes a change in that property) provides the settings for a 

second round (which uses the magnitude of the change in properties). Increased chemical 

specificity allows reliable knowledge to be extracted from smaller sets of pairs and an assay=
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 2

specific upper limit can be placed on the number of pairs required before adequate sampling of 

variability has been achieved. 

	
��������
��Since the beginning of rational drug design, compound designers have faced the 

same question: “What to make next?” With the increased availability and applicability of high 

throughput techniques from around the mid 1990s, the amount of data and the diversity of 

compounds for which data exists have both increased incredibly. Despite this, the vast majority 

of compounds entering clinical trials fail to reach the market.
1
 It is therefore imperative that drug 

discoverers find better ways to use the vast repository of data already available to improve their 

chances of success in the future. �

 

One of the ways to decide what to make next is to analyze all of the molecules that differ only 

by a well=defined structural transformation and to use the effect of the structural change in the 

past to estimate its likely effect if applied again.  This is matched molecular pair analysis, 

MMPA.
2
 One of the hypotheses that underpin this approach is that the effect on pharmaceutical 

properties of a small structural change is more easily predicted than the absolute value of those 

properties for each molecule alone.
2,3

 MMPA has been successfully applied in a range of ways: 

suggesting what to make next, predicting the properties of a new compound, identifying cases 

where a structural change has a minimal effect on key properties (like bioisosteres), or simply to 

increase our understanding of the links between biology and chemistry.
3
 The output of MMPA 

can be the average size of the change in property caused by a change in structure or the 

proportion of cases that have seen the property change in a particular direction (which can be 

interpreted as similar to the probability that applying the structural change again will cause the 

same direction of change in activity).
4
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 3

 

Recent advances in MMPA have focused on exploiting the context within which the matched 

pairs are found.  This includes the context of the protein binding site and the context of larger 

sets of matched molecules (matched molecular series).
5–8

 The chemical structure that is shared 

between a pair of molecules also provides a context for the structural change and can influence 

the effect of the structural change.
4,9,10

 For instance, changing Ar=Me to Ar=F has a different 

effect on hERG blocking potency when the group that is changing is ortho to a CH2N group 

(where the N is basic) compared to other contexts.
9
 This suggests that sets of matched molecular 

pairs may be more useful when split into structurally specific sets of pairs.  A key challenge for 

MMPA is that large sets of matched molecular pairs are required in order to achieve statistical 

significance but dividing these sets according to the different chemically defined contexts will 

reduce the size of the sets.   

 

One way to address this dichotomy is to create much larger source datasets within which to 

identify matched molecular pairs.  With this aim in mind, a consortium of pharmaceutical 

companies has recently been formed to create the SALT (Statistical Analysis of Large pharma 

daTasets) database.
11,12

 These companies use one MMPA algorithm to analyze their corporate 

databases and to create a standardized encoding of the matched molecular pairs using the change 

in structure and the change in properties. Neither the complete structure of the molecules in the 

pairs nor their properties are required.  These MMPA encodings are freely exchangeable because 

they do not contain any proprietary information.  When these sets of matched molecular pairs are 

brought together, the effect of structural changes upon the same properties measured in different 

companies are merged and can be either positively or negatively cooperative.  The details of this 
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 4

process are described elsewhere.
12

 A by=product of this merging is that a large set of data is 

available that can be used to address how best to perform this MMPA.   

 

������ �� The pair of molecules A and B and the fixed and changing parts identified by the 

MCSS and F+I methods. 

There are two common approaches to identifying matched molecular pairs in an automated 

fashion. These are the maximum common substructure (MCSS) method and the fragment and 

index (F+I) method. The first identifies the maximum common substructure that is shared 

between two molecules (Figure 1). This defines the “fixed” part while the remainder of each 

molecule defines the “changing” part. This is the basis of the WizePairZ algorithm.
13

 The 

alternative F+I method identifies acyclic single bonds and cleaves them in a combinatorial 

fashion (often there can be very many such bonds and a limit needs to be placed on how many 

Molecule�A���� Molecule�B����

Fixed�part� Changing�part� Fixed�part� Changing�part�

Maximum�common��

substructure�

Fragment�and�Index�

Nfix

e

d�=�15� Nfix

e

d�=�15�Nchanging�=�2� Nchanging�=�1�

Nfix

e

d�=�10� Nfix

e

d�=�10�Nchanging�=�7� Nchanging�=�6�

Nmolecule�=�17� Nmolecule�=�16�
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 5

are broken at once). Once each molecule is broken down into all its possible fragmentations, 

simple text searching can identify fragments that are shared between two molecules and this 

defines the “fixed” part with the remaining fragment(s) of each molecule being the “changing” 

part. Such algorithms were popularized by Hussain and Rea.
14

 Both approaches find matched 

molecular pairs in an unsupervised fashion and have been implemented in software entitled 

MCPairs.
15

 As shown in Figure 1, the fixed and changing parts that are identified by the two 

methods can be quite different.  

 

With both methods, molecules are grouped into pairs if the changing and fixed parts satisfy 

certain criteria.  In the MCSS method, the fixed part must account for at least a certain fraction of 

the total molecule.  This is usually assessed according to the number of heavy atoms in the fixed 

part and in the whole molecule such that Nfixed/Nmolecule (where N is the number of heavy atoms 

contained in the indicated fragment), must be less than the cutoff styled fMCSS.  Thus, for the 

example in Figure 1, Nfixed is 15. Similarly, Nmolecule is 17 for A and 16 for B and the ratio is 0.88 

and 0.94 for the two molecules respectively.  In the F+I method, an upper limit on Nchanging/Nfixed 

is sometimes used to define the molecules to pair.
14

 This ratio is not bounded and therefore is not 

easily analysed.  A similar effect can be achieved by requiring the fraction of the molecule 

represented by the changing part Nchanging/Nmolecule to be below a selected limit, called fF+I; this is 

the approach taken in the work reported below.  In both methods, the size of the changing part, 

Nchanging, can also be restricted to avoid having very large changes in structure (which would 

otherwise be allowed in larger molecules).
14,16–22

 The most commonly applied such limit is that 

Nchanging should be less than 10 but 12 and 13 have also been proposed.  A few reports suggest 
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 6

that the change in the number of heavy atoms between the two molecules in a pair should also be 

limited.
9,23

 

 

In the WizePairZ approach,
13

 the chemical environment (the context) adjacent to any structural 

changes is encoded and this has been adopted in the work described below for matched pairs 

identified by both the MCSS and F+I methods. The simplest environment is the first atom at 

each attachment point to the changing part (context level 1), and the largest environment 

encompasses up to 4 atoms (level 4) from each attachment point (Figure 2).   

 

Figure 2. The definition of chemical context for a matched molecular pair. 

 

During the course of the development of the SALT database, it became clear that although the 

two algorithms have been adopted quite widely, optimal settings have not been reported. 

Previous work has suggested settings that seem reasonable (such as Nchanging/Nmolecule should be 

less than 0.5 or 0.33)
9,17–21,23

 but they have not been verified. These settings have an impact upon 

the output that is obtained and as such, they are worth optimizing.  It became clear that the best 

way to investigate these settings would be to systematically vary them and probe the effect upon 

the output.  The ChEMBL database of publicly available data has been used to obtain the 
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 7

optimum settings described below, this permits the data to be presented in full but yields the 

same conclusions as the analysis of the SALT database.
24

 

 

A positive mean change for a set of matched pairs has previously been found for a small 

number of pairs that, when expanded by the preparation and testing of further examples, actually 

has a negative mean change.
3
 This suggests that the mean that was obtained might have been 

positive only because of the sets of pairs that happen to have been made and tested first.  To 

minimize this problem, it is useful to consider that matched molecular pairs are analogous to coin 

flips where a coin landing heads means that the structural change caused an improvement in the 

measured property, whereas the coin landing tails means the measured property changed in the 

undesired direction (Figure 3). When matched pairs are considered as coin flips, the number of 

actual successes (coin landing heads) can be evaluated for signs of bias. If the coin consistently 

lands higher or lower than would be expected due to chance, then after a large number of coin 

flips, there will come a point where the probability of an observed outcome is sufficiently small 

for an unbiased coin that the observed results are evidence for bias. In the matched pairs analogy, 

a bias corresponds to a real effect caused by the structural change: a mechanism exists linking 

the structural change to a property change. This can be viewed as proposing the null hypothesis 

that a particular structural change has no observable effect, and in order to reject the null 

hypothesis at a 95% confidence level, the outcome is compared with a series of random coin 

flips. The 95% CI defines a range of values that has a 95% likelihood of containing the 

population mean.  If the CI contained 0.5, which would be a true mean for a fair coin, the null 

hypothesis cannot be rejected, or else, if 0.5 was outside the 95% CI, it can be rejected (at that 

level of confidence) and a real effect has likely been detected.  
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 8

 

A great advantage of viewing matched pairs as coin flips is that it readily permits out of range 

data to be incorporated into the analysis. If one compound is measured as being highly active and 

out of the range of the assay while its paired compound is less active but in the range of the 

assay, this is valuable information; similarly if one of the compounds is sufficiently inactive to 

fall outside the assay.  Such examples are highly informative and might include some of those 

pairs sometimes classed as activity cliffs.
25–27

 The smallest number of coin flips for which 0.5 is 

outside the 95% CI is 6 when all 6 are heads or all 6 are tails (Table 1). This means that in order 

to make confident assumptions about whether a structural change is indeed changing a property 

of interest, at least 6 MMPs are required and in all 6 pairs the value of the measured property has 

to change in the same direction.  

 

 

 

�������. Matched pairs viewed as coin flips. 

 

�������� All possible outcomes for flipping a coin 6 times, together with the 95% CI boundaries.  

pSol�=�0.6�

(Solubility�=�0.25�M)�

pSol�=�1.3�

(Solubility�=�0.05�M)���

pSol�=�1.3�

(Solubility�=�0.05�M)�
pSol�=�2.2�

(Solubility�=�0.006�M)�

HEADS�=�Property�gets�be er�

TAILS�=�Property�gets�worse�

�

�
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Number of 

heads 

Fraction of 

heads 

Lower 95% 

confidence 

bound 

Upper 95% 

confidence 

bound 

Reject the null 

hypothesis? 

'� '�''� '� '�()*� +���

1 0.15 0.004 0.641 No  

2 0.33 0.043 0.777 No  

3 0.50 0.118 0.881 No  

4 0.66 0.222 0.956 No  

5 0.83 0.358 0.995 No  

,� -�''� '�)('� -� +���

 

The coin flip analogy is useful because it reduces the likelihood of incorrectly assigning the 

direction in which a property is most likely to change for any given change in structure. 

However, it relates only to the direction of change in a property and does not differentiate 

transformations causing small effects from those causing larger changes in property.  

 

In the following, we describe our findings concerning how best to identify MMPs with the 

MCSS and F+I methods and show how the two can be combined effectively.  Then we describe 

how best to analyze the output from MMPA and how to use this to extract increased value with a 

round of further analysis; a turbocharging effect.  Previous work by Willett and co=workers in the 

area of similarity searching has introduced the idea of using the output of one round of analysis 

to improve subsequent analyses (in their case clustering).
28,29

 They used the term “turbo” to 

describe this approach and we have applied a similar mechanism to improve MMPA.  We show 

how an analysis using the conservative coin flip approach can provide insights that allow the 

magnitude of change information to be used with increased confidence and that chemically more 

specific sets of matched pairs can be more reliable guides than more general sets.   
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 10

 

������� 

The SALT database includes MMP data from AstraZeneca, Roche and Genentech.  The 

processing of this data is described elsewhere.
12

 For analysis involving ChEMBL data,
24

 the 

molecular weight of compounds was limited to be less than 500 Da. Matched pairs were found 

using the MCpairs software.
15

 This provides an implementation of the MCSS pair finding 

algorithm described by Warner et al. and of the F+I method described by Hussain and Rea.
13,14

 

The MCSS identified in MCpairs is limited to contiguous atoms (no disconnected substructures 

are identified). The structural change linking pairs of molecules is encoded by SMIRKS and 

these are modified to include differing levels of chemical context.  The procedure for the logistic 

regression analysis is provided in section S4 in supporting information. Statistical analysis was 

performed in R, confidence interval ranges for binomial probabilities used the exact method and 

graphs were prepared in ggplot2 and in Vortex.
30–32

 

The data that were obtained in the preparation of the SALT database were used to identify 

improved ways to analyze the matched pairs output. In this case, the pairs were identified using 

the MCSS approach with settings as described by Warner et al.
13

 The number of experimental 

results included in the MMPA and the resulting number of unique structural transformations that 

were identified in each set of data is given in Table S1 in the supporting information.  “hERG” 

refers to block of the hERG=encoded potassium ion channel, reported as a pIC50.
33

 These data are 

referred to as hERG throughout. Human hepatocytes are used to measure the metabolic intrinsic 

clearance rate, reported as the volume of solution (of a fixed concentration of the substrate) that 

can be cleared per minute by a million cells.
34,35

 This value is transformed to give log10(Clint).  

Compounds with higher values are metabolized more quickly. The human hepatocyte data are 
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 11

referred to as “heps” throughout.  Human microsomes are also used to study the metabolic 

intrinsic clearance rate but not in a whole=cell system.
36,37

 These measurements are of the volume 

of solution (of a fixed concentration of the substrate) that can be cleared per minute by a 

milligram of the microsomes.  This value is transformed to give log10(Clint) and referred to as 

“mics”.  Compounds with higher values are metabolized more quickly. The logD is for 

partitioning between 1=octanol and water buffered to pH 7.4.
38

 Equilibrium solubility is the 

solubility in M measured when starting from a solid sample.
4,39,40

 The kinetic solubility is the 

concentration in aqueous solution after a solution of the compound in DMSO has been added and 

stirred for a fixed period of time.
41,42

 Both solubility measurements are transformed to their 

log10(1/(solubility)) values and referred to as “pSol” (equilibrium solubility) and “kin=sol” 

(kinetic solubility) throughout. Lower values of both correspond to higher solubility. Inhibition 

of the 2D6 isoform of the cytochrome P450 enzymes is reported as a pIC50 and referred to as 

“2D6”.
43 

For several properties, measurements made at different companies have been included 

in the database.  Here, the assays have been analyzed separately and the different companies are 

indicated with a number in parentheses after the property.  The numbers are specific to each 

property: the company designated as (1) for the logD measurements is not the same as that 

designated (1) for mics.
 

 

��������
����������
�

 

In this section, we first describe optimized settings for MCSS and F+I methods and show how 

the two methods produce complementary output. Subsequently, we describe how the effect of 

making a particular structural change can be very variable and show that this variability is 
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 12

reduced if the set of pairs is more chemically specific.  Finally, we use logistic regression to 

show how a second round of analysis can use information about set size and chemical specificity 

to extract more useful insights from the dataset. 

 

. ��/�0�1�/���!���/��������� ��������1�

�

Both the MCSS and F+I methods have been applied to three datasets from the ChEMBL 

database representing an enzyme (EGFR), a receptor (the dopamine D1 receptor) and an ion 

channel (Cav 3.2).
24

 These comprised 1006, 903 and 792 individual compounds respectively. 

Thus, the total number of possible pairings (if each molecule were paired with every other 

molecule in the set) would be approximately 1 x 10
6
, 8 x 10

5
 and 6 x 10

5
 for each of these sets in 

order. 

 

The first step was to compare which molecules are paired by each method and to compute the 

number of individual pairs. The F+I method can link pairs of molecules according to more than 

one structural transformation whereas the MCSS method finds a single description for each pair. 

By identifying unique pairs of molecules according to their Chembl identifiers, the two methods 

can be compared fairly; each pairing is only counted once. The number of pairs produced by the 

two methods with different values of fMCSS and fF+I is shown in Figure 4. The number of 

molecular pairs produced for each setting is plotted on a logarithmic scale and the number of 

pairs alters over several orders of magnitude as the two parameters are changed. In addition to 

pairs of molecules, it is also of interest to investigate how many structural differences are 
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 13

identified. These are shown in Figure 4 as red circles and are close to the number of pairs found; 

most structural changes are represented by only one pair.
14 

 

 

���������The number of molecules that are found as pairs (crosses) and the number of unique 

changes in chemical structure (circles) by the MCSS method (left) and fragment and index 

method (right) for different settings of fMCSS and fF+I. EGF, D1 and Cav 3.2 are colored blue, 

green and red respectively. 

 

The number of molecules that are unique to each method and the number that are found in 

common has been computed for each method with the same settings as used to generate Figure 4.  

From this, the percentage of pairs that are in common between the two methods can be 

computed.  This is indicated by the red segments in the pie charts in Figure 5. The pie charts 

have sizes that depend on the number of pairs that are found. There is least commonality when 

either fF+I and fMCSS are both high or both low. The number of pairs found in common is the 

biggest proportion of the set when high values of fF+I are paired with low values of fMCSS or vice 
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 14

versa.  In general, the ridge of maximum commonality sees fF+I = 1.1 – fMCSS. The number of 

pairs found by both methods represents the greatest proportion of all the pairs found when fF+I ~ 

0.4 and fMCSS ~ 0.7. However, even in the case of the highest degree of commonality, the overlap 

only represents about half of all pairs found.  There remain pairs of molecules that can only be 

found by one method or another.   

 

 

�������� The number of pairs found when both the MCSS and F+I method are applied, with the 

range of values of fMCSS and fF+I shown and sampled in increments of 0.1.  Pie charts are colored 

as: yellow = pairs found by MCSS only, green – pairs found by F+I only and red – pairs found by 

both methods.  

 

In order to explore whether this is of chemical significance or not, the set for Cav3.2 in which 

fF+I = 0.4 and fMCSS = 0.7 has been examined and one example pair is provided that was found 

only by MCSS and one pair only found by F+I. The first example (compounds � and �) shows 

that when molecules are smaller, they often fail to satisfy the requirements applied for one 

method or another.  In this case (Figure 6), the fixed part and changing part identified by the two 

methods are different. For the first molecule, the MCSS represents 15 out of 20 heavy atoms 

(Nfixed/Nmolecule = 0.75) and for the second 15 out of 21 heavy atoms (Nfixed/Nmolecule = 0.71); in 

EGF� D1� Cav3.2�
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fMCSS�

0.1�

0.9�
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 15

both cases Nfixed/Nmolecule  is above fMCSS  (0.7) and so this is an allowed pair. Meanwhile, when 

the F+I approach is applied, thanks to the differing substitution pattern around the aniline ring, 

the changing part accounts for 11 of 20 (Nchanging/Nmolecule = 0.55) heavy atoms for the first 

molecule and 12 out of 21 (Nchanging/Nmolecule = 0.57) for the second molecule and both values of 

Nchanging/Nmolecule are above fF+I (0.4) and therefore not allowed.  

 

���������Example of a pair that is only identified by the MCSS method.  The fixed part that is 

found by each method for the pair is highlighted. 

 

In the second example pair (Figure 7), compounds � and �, found by the F+I method but not 

the MCSS method, the maximum common substructure (which must be contiguous in the present 

implementation) is 15 of the 32 heavy atoms (Nfixed/Nmolecule = 0.47) and therefore below the 

fMCSS cutoff of 0.7. When F+I is applied, the changing part is the central moiety and accounts for 

11 out of 32 heavy atoms (Nchanging/Nmolecule = 0.34) in both molecules in the pair, which is below 

the fF+I limit of 0.4 and so they are considered a pair.  In this case, the difference in behavior is 

linked to the details of how pairs are identified and how the two cutoff values interact with the 
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method; the effect of the cutoff is sensitive to the size of the molecules involved. Neither of these 

pairs (�+� or �+�) is chemically unreasonable and so it must be concluded that using both 

methods is likely to increase the chances of finding all pairs worth considering. 

 

 

 

�������� Example of a pair that is only identified by the F+I method.  The fixed part that is 

found by each method for the pair is highlighted. 

 

An extra limit can be imposed based on the number of heavy atoms in the changing part. This 

limit, Nchanging is often set to 10 and this value has been applied in the present work.
14,16,17

 In 

order to visualize the effect of this limit, the proportion of pairs that are found by each method is 

represented as an array of pie charts like those in Figure 5 in section S2 in the supporting 

information. When the size of the changing part is limited to 10 heavy atoms for the MCSS 

method, the F+I method contributes most pairs; the overlap is still maximized in the same 
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 17

regions of the plot as when there are no heavy atom constraints.  In an analogous fashion, when a 

heavy atom limit is applied to the F+I method,
14,16–22

 pairs are almost exclusively found by the 

MCSS method. When both methods are subject to a heavy atom count limit for the changing 

part, red is a more prominent color suggesting that the two methods behave more similarly.  This 

indicates that many of the transformations that are found only by one of the methods involve 

large changing parts. As discussed below, MMPA relies on casting the net widely and so 

imposing a limit of Nchanging is likely to be detrimental. 

 

There is an alternative way of comparing the methods, according to the number of structural 

changes that are identified.  The MCpairs program encodes structural changes found by the two 

methods in an identical fashion (as SMIRKS
44,45

) and as such, the transformations found by the 

two methods can be compared.  These are shown in Section S3 in the supporting information. 

The overlap is smaller than when considering pairs of molecules.  This highlights that the two 

methods will pair the same molecules for different reasons: the F+I method can find changes of 

large groups (such as substituted phenyl rings) whereas the MCSS method localizes the 

structural change to the smallest part of the structure that is different between the two molecules 

in the pair.  The two methods are complementary, which suggests that it is advantageous to apply 

both methods. 

 

The biological data were then added to each pair in order to identify “rules” – the structural 

changes that exert a real influence. In this case, rules are determined to be statistically significant 

by treating matched pairs as if they were coin flips.  A rule is a set of pairs that support a real 

effect (the null hypothesis, described above, can be rejected) and the number of rules identified 

with each of the different settings is depicted in Figure 8. The F+I method produces more rules 
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than the MCSS method, and the number of rules increases monotonically as fF+I increases. The 

MCSS method is less sensitive to the value of fMCSS that is selected. The number of rules is 

maximum when fMCSS is lowest.  If each structural change that is identified is a candidate to 

become a rule then it is clear that for both methods, when more candidates are considered, more 

rules are found. This suggests that some of the rules might arise simply by chance.  To test this 

possibility, the datasets were reanalyzed but instead of assigning each matched pair as an 

increase or decrease according to the data for the two compounds, it was instead assigned 

randomly – treating each pair as an unbiased coin flip.  The number of rules that are produced in 

this instance was computed and then the process repeated three times and the average of these 

three sets of random outcomes computed. These are shown in hatched bars for the MCSS and 

F+I method. More rules are found with random data for settings that produce more rules when 

the real data is used but in all cases, many fewer rules are found using the random approach. In 

general, the number of rules in the random data is about 20% of the number of rules produced 

with the real data for both methods.  On average, the random set produces a number of rules that 

is the smallest proportion of the real rules when fMCSS is 0.3 (11.3 %) or when fF+I is 0.9 (8.6 %).  

 

The effect of combining output from the MCSS and F+I methods was also investigated. The 

number of rules found for each combination is shown in the bottom half of Figure 8.  These 

broadly follow the trends shown for the individual methods but the number of rules found when 

the two methods are combined has a maximum value that is higher than the sum of the number 

of rules found by each method alone. The two methods can contribute extra examples (when 

their output is encoded in a consistent fashion) and by so doing permit statistically significant 

rules to be found that cannot be found by either method alone. The analysis of random outcomes 
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shows the same trends as for individual methods. When the three datasets are compared, the 

proportion of random rules is consistently lowest (below 10 %) when fMCSS is 0.4 and fF+I is 0.9, 

close to the values for each method alone.  These are notably different from the settings that 

maximize the commonality between the compounds found as pairs by the two methods (see 

above, where fMCSS = 0.7 and fF+I = 0.4).  This suggests that the methods work best together when 

they identify complementary but different pairs. 

 

Increasing the number of rules that are considered requires more computational resources.  The 

F+I approach can rapidly require very large storage as the number of compounds increases, 

particularly if many fragmentations are permitted; a combinatorial explosion can occur. By 

contrast, the MCSS method can take substantially longer thanks to having to perform many more 

maximum common subgraph identifications (the number of comparisons scales as ~N
2
).   

 

 

������ � The number of rules found when applying the MCSS (yellow) or F+I (green) methods 

alone (top) using either real data (solid bars) or random coin flips (hatched bars).  The number of 
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rules found when applying both methods is shown (bottom) for different combinations of fMCSS 

and fF+I. 

%%2����� ��3������4����#����!����������������4#��� ����������������������!�1��

 

Turning to how best to analyze the output of MMPA, two aspects have been examined: the 

magnitude of the change in properties and the level of chemical specificity.  In this section, sets 

of pairs were identified using the default MCSS settings described by Warner et al.
13

 When a 

pair is identified, the change in property, referred to as the delta value (∆) is computed.  For 

example, this might be the pSol difference for each of the pairs shown in Figure 3: =0.7 (top row, 

heads) and +0.9 (bottom row, tails).   

 

The SD describes how wide the distribution of ∆ values for any given structural change is. 

When the variation of the standard deviation with number of pairs is plotted, as in Figure 9, it 

becomes clear that the standard deviation is not constant: it increases steadily for small sets of 

pairs before leveling off to a plateau. After this point the variability has been sampled and adding 

more pairs (performing more experiments) is likely redundant. For instance, for solubility (pSol), 

the average standard deviation for a set of pairs levels off at 0.7 log units once approximately 20 

pairs are in the set. The values of the plateau and the point at which this is reached have been 

estimated and are shown in Table 2.
46

 Others have shown the value of resampling to obtain a 

better description of the distribution of ∆ values,
47

 and the SD has been emphasized as a useful 

statistic previously.
4
 Elsewhere, it has been asserted that the SD should decrease as more pairs 

are added such that the mean value of ∆ divided by SD would be a useful statistic to emphasize 

influential, consistent sets of pairs but this is in contrast to our findings on a much larger dataset 
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(Figure 9) which see the SD increase or remain the same as pairs are added.
48,49

 The importance 

of a careful consideration of the contributors to SD, including experimental variation and dataset 

heterogeneity, has also been highlighted and such considerations are doubtless at play in our 

observations.
50

 

 

 

������!� Standard deviation plotted against number of pairs 

The SD in a set of matched molecular pairs represents the unavoidable variation in the effect 

that a structural change exerts.  This variation arises for several reasons including the 

experimental uncertainty in each measurement and the influence of the changing chemical 

context. This would suggest that more structurally specific groups should have a lower SD.  This 

has been investigated for each of the properties and equivalent plots to those in Figure 9 are 

shown for different levels of chemical context specification for each property in Figure 10.  For 

all properties, as the chemical context becomes better specified, the plateau for the SD is at 
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progressively lower values but the number of pairs required to achieve the plateau remains 

approximately constant. Experimental variation and the residual chemical variation ensure that 

even when the context is defined at level 4 there remains a significant SD; even chemically well=

defined sets have a width that limits how reliable any prediction can be. The properties that see 

the biggest proportional reduction in SD upon going from context level 1 to context level 4 are 

logD(1) and mics(1) while mics(3) sees little change.  

 

������ �� The level at which SD for each property reaches a plateau and the corresponding 

number of pairs. 

Property Plateau value for SD Number of pairs to reach plateau 

hERG 0.31 25 

heps(1) 0.31 15 

heps(2) 0.40 10 

mics(1) 0.34 24 

mics(2) 0.41 32 

mics(3) 0.84 29 

logD(1) 0.43 62 

logD(2) 0.69 66 

pSol 0.69 21 

kin-sol 0.64 12 

2D6(2) 0.49 27 

2D6(3) 0.38 65 
 

 

%%2����� ��3���1��������1������� �������������1�������!�������#����������������/���!��� �����

 

Chemical specificity brings the benefit of reduced variation but the penalty of smaller set sizes.  

This trade=off was investigated using logistic regression. The analysis was first performed on the 

hERG dataset and this is used to explain the process before results from other properties are 

provided. The matched pairs from the hERG dataset were first analyzed using the coin flip 
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approach. Those sets causing an increase or decrease in inhibition are styled INC or DEC 

respectively. The remaining sets were assigned to the class No Effect Determined (NED); this 

includes structural changes that cause no change in hERG inhibition and those that do change the 

property but for which there are not yet enough data.  

 

 

�������"��The variation of SD with the number of pairs when subset according to the level of 

specification of the chemical context.  The darkest colored points are for context level 1, the 

lightest for context level 4 (as defined in Figure 2). 
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�

�
 

��������� The probability that a set of N pairs with mean value µ will evolve into a set of pairs 

classified as INC (blue), DEC (green) or NED (red). In the plot at the top groups are subset 

according to the number of pairs included, the coloring starts dark for N=2 and becomes 

progressively lighter as N increases to 20.  In the plot at the bottom groups all have N=5 and are 

subset according to the chemical context definition, the coloring starts dark for context level 1 

and becomes lighter as it increases to 4. 
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Having assigned each set to one of three classes (INC, DEC, NED), the measured difference ∆ 

for each pair of molecules in the set was examined. The variation in the average of ∆ as pairs are 

added to a set tracks how sets of matched pairs evolve. If the sequence is ∆1, ∆2, ∆3…∆N, then 

the mean of ∆1 and ∆2 is µ2, the mean of ∆1, ∆2 and ∆3 is µ3. The ordering of pairs in this 

database is arbitrary (in real datasets it is governed by the order in which compounds are made 

and tested). Hence, in each set the order of ∆s was scrambled and µ1 to µN recomputed.  The 

scrambling is repeated 50 times and the average for each µ computed to give μ����, μ����…μ�����. For 

each set of pairs, this tracks how the mean value evolves as more pairs are added.  These are then 

averaged over all sets of pairs to give μ����, μ����…μ�����. The evolution along this series corresponds to 

what happens (on average) for sets of pairs in each class (INC, DEC and NED) as more pairs are 

added. 

 

Logistic regression analysis links µ with the likelihood of that set ultimately becoming INC, 

DEC or NED when more pairs are added. These probabilities are plotted against values of μ���� to 

μ������ in the upper plot of Figure 11.  This shows that high values of µi are most likely to 

correspond to INC, low values to DEC and intermediate values to any of the three classes. In the 

following, we focus upon mean changes that are positive but symmetrical arguments concerning 

negative mean values would hold. There are three distinct zones highlighted: 1) the ‘Comfort 

Zone’, where the probability of INC is more than 95%, 2) the ‘Twilight Zone’ where both INC 

and NED are equally probable and 3) the ‘Danger Zone’ in which there remains a likelihood 

above 5% that the set of pairs will ultimately be in the DEC class. When the number of pairs is 

low, the Comfort Zone is only reached for sets of pairs in which the mean change is very high – 

it is effectively never reached when there are only two pairs in the set. As the number of pairs in 
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the set increases, the Comfort Zone expands such that sets with lower mean values are 

increasingly likely to fall into it.  However, this converges such that by the time there are 20 

pairs, adding more does not provide a marked benefit; a mean change above 0.31 for a set of 20 

or more pairs indicates a structural change that is highly likely to increase hERG binding. The 

twilight zone varies in a similar fashion: a large mean change is required for sets with few pairs 

before they become most likely to belong to the INC class. For sets with two pairs, the mean 

change in pIC50 has to be above 0.48 before INC is the most likely class for the set to belong to. 

There is convergence as the set size increases to 20 pairs, such that mean values of ∆ above 0.15 

correspond to INC being the most likely class.  Finally, the danger zone extends out to 0.12 when 

there are two pairs in the set and contracts to 0.01 by the time there are 20 pairs.  

 

 

Turning to the importance of chemistry, the sets can be subdivided according to the different 

levels of description of their chemical environment. The values of μ���� (the average value of delta 

for sets of five pairs) are shown in the lower plot of Figure 11 where the sets are divided 

according to the level of context definition (see Supplementary Video S1 for μ���� to μ������). The four 

context levels are clearly distinct, supporting an advantage for sets with increased chemical 

specification: sets of pairs with lower ∆ values are more able to reach the comfort zone, avoid the 

danger zone and pass through the twilight zone if they are at context level 4 than at level 1.  
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��������� The evolution of the average of the upper edge of the danger zone (left), the center of 

the twilight zone (center) and the lower edge of the comfort zone (right) as more pairs are added 

to the set.  Points are color coded from dark blue for context level 1 to light blue for context level 

4. Each point represents the average of ten samples; when the set of values for two different 

levels of context definition are not statistically distinct according to a Student’s t=test, the points 

are merged and represented by an average of all the contributing points; merged points are 

shown in purple. 

 

The analysis of the hERG data is summarized by the evolution of the distributions as more 

pairs are added to the set and according to the level of definition of the chemical context, shown 

in Figure 12. In the plot on the left, the edge of the danger zone is shown.  If a set of pairs has an 

average mean delta below the value shown, there is a higher than 5% chance that the sign of the 

mean change is misleading.  This shows that as more pairs are added, the danger zone drops 

from being 0.17 for context 1 with 2 pairs to less than 0.025 once there are 15 pairs. Also, the 

better defined the chemical context, the lower the risk of falling into the danger zone; even with 

only two pairs, the edge of the danger zone is at 0.09 if the context is defined at level 4. The 

lower edge of the comfort zone is shown in the right hand plot and could not be found for sets of 

2 or 3 pairs when context is defined only at level 1. The better defined the chemical context or 
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the more pairs in the set, the lower the comfort zone extends but as more and more pairs are 

added, the difference between the different chemical contexts decreases. Levels 3 and 4 are 

indistinguishable when there are 5 or more pairs in a set.  Similar trends are observed for the 

twilight zone, which is shown in the central plot.  

 

These results are illustrated by an analysis of the ChEMBL database hERG IC50 values (full set 

of pairs is provided as supporting information).  Plots similar to those shown in Figure 11 were 

generated from a set comprising 7347 compounds forming 733 matched pairs of which 259, 241, 

161 and 72 were assigned to context levels 1=4 respectively.  An illustrative set with context 

level 4 is provided in Figure 13. Exchanging the highlighted fluorine atom with a methyl group 

increases the hERG binding in all seven cases. This corresponds to molecules bearing a p=

fluorophenyl group.  When the set is structurally less well=defined, larger sets of pairs are 

obtained: 18 at context level 2 and 51 at level 1. These larger but less chemically specific sets 

don’t statistically support a real underlying effect. This suggests that while the general effect of 

exchanging fluorine and methyl is too small to measure easily, it is larger for p=fluorophenyl 

groups.  
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��������� A set of 7 compounds grouped at context level 4 where exchanging the highlighted F 

for Me increases hERG potency.  

 

It is important to know whether the accuracy of predictions based on sets of matched pairs 

follow the same trends.  This has been tested on the same set of ChEMBL hERG data (Figure 

13) by excluding one pair from each set and using all of the remaining pairs in the set to predict 

the pIC50 for the methyl containing compound using the activity of the fluorine containing 

compound.  This was repeated for all pairs and the average error computed. For context level 4 

(and 3) the 7 predictions have root=mean squared error (RMSE) of 0.16.  The 18 context level 2 

pairs give predictions with an RMSE of 0.28 and the 51 context level 1 pairs an RMSE of 0.43.  

When predicting the outcome for just the 7 context level 4 pairs, the context level 2 set give an 

RMSE of 0.22 and the context level 1 set an RMSE of 0.30; these are larger errors than for 

context level 3 or 4 predictions despite being based on more examples. The more chemically 
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relevant the set of matched pairs used to make predictions is, the smaller the error in the 

prediction is likely to be. The analysis exemplified for hERG has also been applied to all of the 

other properties.  These are summarized in the supporting information.  

 

#�
�����
��� The various analyses described above lead to a set of recommendations to 

improve how MMPA is performed. The two most prevalent methods (MCSS and F+I) for 

automated identification of MMPs are most effective at finding rules when combined.  No matter 

what settings are employed, neither method alone can find all pairs or rules. The optimum 

settings see fMCSS set to 0.4 and fF+I set to 0.9. A heavy atom limit on the size of the changing 

part increases the commonality between the methods but excludes pairs that are worth 

considering.  The first round of analysis for MMPs should use the conservative coin flip 

approach.  This assigns each group of pairs to either increase, decrease or NED (no effect 

determined).  Logistic regression analysis can link the average value of delta with the probability 

of belonging to each class.  This can generate a value for the edge of the comfort zone (95 % 

chance of belonging to the increase class for positive means or decrease class for negative 

means) for all combinations of set size (N) and chemical context definition level.  The set of 

pairs can then be reanalyzed. Any set of pairs that exceeds the comfort zone limit corresponding 

to its N and context level values can be added to the set of rules.  Notably, the evaluation of 

accurate means precludes the use of out of range data but they can be added back in in this 

reanalysis which only defines lower limits. This turbo charging is particularly important because 

the number of pairs that represents each structural change follows a Zipfian distribution: small 

set sizes dominate and any that have less than 6 pairs can not satisfy the coin flip requirements.  

Analysis of how the standard deviation in delta values varies with set size can identify the innate 
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level of variability that is to be expected and can identify the number of pairs that are required 

for good sampling of this variability; making and testing compounds to expand the dataset 

should avoid expanding sets of MMPs that have already reached this level. 

 

��$
�%����&�
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��*�������+ Numbers of experimental measurements contributing to 

the SALT database, variation in findings when Nchanging limit is imposed, variation in number of 

structural variations found with different methods, example procedure for logistic regression 
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material is available free of charge via the Internet at http://pubs.acs.orh. 
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