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Abstract 

This thesis describes the development of a microprocessor based control 

system for a parallel hybrid petrol/ electric vehicle. All the fundamental 

systems needed to produce an operational vehicle have been developed and 

tested using a full sized experimental rig in the laboratory. 

The work begins with a review of the history of hybrid vehicles, 

placing emphasis on the ability of the petrol electric design to considerably 

reduce the consumption of oil based fuels, by transferring some of the load 

to the broad base of fuels used to generate electricity. 

Efficient operation of a hybrid depends on the correct scheduling of 

load between engine and motor, and correct choice of gear ratio. To make 

this possible torque control systems using indirect measurements provided 

by cheap sensors, have been developed. Design of the control systems is 

based on a theoretical analysis of both the engine and the motor. Prior to 

final controller design, using the pole placement method, the transfer functions 

arising from the theory are identified using a digital model reference technique. 

The resulting closed loop systems exhibit well tuned behaviour which agrees 

well with simulation. 

To complete the component control structure, a pneumatic actuation 

system was added to a 'manual gearbox' bringing it under complete computer 

control. All aspects of component control have been brought together so 

that an operator can drive the system through simulated cycles. Transitions 

between modes of operation during a cycle are presently based on speed, but 

the software is structured so that efficiency based strategies may be readily 

incorporated in future. 

Consistent control over cycles has been ensured by the development 

of a computer speed controller, which takes the place of an operator. This 

system demonstrates satisfactory transition between all operating modes. 
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CHAPTER 1 

INTRODUCTION 

Conventional internal combustion (i.e.) engine vehicles, based on the 

Otto and Diesel cycles, have dominated road vehicle transport for the greater 

part of this century. Among their many advantages are unlimited range, ease 

of refuelling, good power characteristics and the low cost materials required for 

their construction [JPL, 1975 pp 3-2J[Unnewehr and Nasar, 1982 pp 214-217] 

Despite these facts conventional vehicles bring with them problems of air 

pollution and inefficient use of dwindling fuel resources, which at the present 

rates may be depleted early in the twenty-first century [Foley, 1976]. Although 

diminishing energy resources, and in particular depletion of fossil fuels, poses 

a problem to many areas of technology it is particularly pronounced in the 

transport sector where the choice of fuels is most restricted. This dependence 

on one type of fuel is illustrated by examining figures for total energy 

consumption in Britain over recent years. Energy consumption in Britain 

peaked in about 1973 [Bumby and Clarke, 1982] subsequently falling by 11% 

in the years up to 1981 as a result of price rises, conservation measures and 

recessiOn. Price rises were particularly great for oil based fuels and many 

non transport users switched to gas or coal over ·this time period. As a 

result of tlus switch over amongst more flexible users, the transport sector has 

become responsible for using a progressively greater proportion of the total 

amount of oil used in the U.K. Over the period 1973-1981 this proportion 

rose dramatically from 29% to 4 7%. Further analysis of the transport sector 

itself shows that most fuel is used by passenger cars. In 1978 such vehicles 

accounted for 63% of all fuel used in vehicles, whilst the public transport 

sector for example, including taxis, coaches and buses used only 4.4% of the 

total [Dept. of Energy, 1978]. Faced with this heavy dependence on oil, 

inspite of its likely exhaustion in the relatively near term, there has been 



increasing interest m possible alternative vehicle propulsion systems over the 

last twenty years. Amongst the many possible alternative power plants are 

the Stirling engine, the Brayton engine (gas turbine) the all electric vehicle 

and the hybrid vehicle [JPL, 1975]. Of these alternatives the hybrid power 

plant is the subject of the present study. A hybrid power plant maybe defined 

as one that is powered by two or more energy sources and as such there are 

a multitude of possible combinations. Examples of some which have been 

investigated are: 

Heat engine/battery electric 

Flywheel/battery electric 

Heat engine/flywheel/battery electric 

Pneumatic /battery electric 

Battery /battery 

The purpose of this study is to consider the control problems relating to the 

heat engine/battery electric power train in particular. As many authors have 

pointed out [Mitcham and Bumby, 1977][Unnewehr and Nassar, 1982] using 

two power plants adds considerably to the complexity and cost of the whole 

vehicle and hence the power train must offer other compensating factors 

such as lower running costs, reduced pollution and less noise in sensitive 

areas. Of the alternatives to conventional i.e. vehicles mentioned earlier, 

the electric vehicle would seem to offer all these advantages without the 

added complexity of a duel power source. Unfortunately, due to current 

battery technology, electric vehicles are basically 'energy deficient' [Unnewehr 

and Nassar, 1982]. Despite the fact that many types of advanced batteries 

have been the subject of much research and development, many people still 

feel that for the present, at least, the only practical storage battery for 

use in electric vehicles is the lead/acid type [van Niekerk et al, 1980][Dell, 

1984], which has an energy density of 40 Wh/kg as opposed to the energy 
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density of petroleum which is 12300 Wh/kg [Unnewehr and Nassar, 1982]. 

In addition the energy density of lead/ acid batteries falls at high discharge 

rates which always occur in vehicle applications during acceleration. As a 

consequence of these factors even advanced electric vehicles such as the ETV-

1, developed for the U.S. Department of Energy by Chrysler and General 

Electric, suffer from severe range limitations varying in this case from 160 km 

at 60 km/h down to 95 km at 90 km/h even under favourable steady 

cruise conditions [Kurtz et al, 1981]. One way of reducing the severe range 

restrictions of the straightforward all electric vehicle is to combine it with 

some secondary energy source in a hybrid design. As can be seen in the 

list of hybrid drives above, all incorporate an electrical system. Of these 

systems the flywheel/battery electric, the pneumatic battery/ electric and the 

battery /battery can be considered as primarily electric since the secondary 

energy storage device has very limited capacity. Nevertheless this secondary 

device can make a substantial improvement to the vehicle range simply by 

providing energy for short bursts of acceleration. For example flywheel 

systems, despite their modest energy storage capacity, can easily provide 

enough energy to accelerate a vehicle up to 30 mph once, thus protecting 

the batteries from the damaging high discharge rates which normally occur 

during such operation. In one such study simulations showed that electric 

vehicle range could be extended by 80% by using a flywheel of about 0.5 kWh 

capacity [Burrows et al, 1980]. 

On the other hand the hybrid heat engine/ battery electric is by no 

means primarily electric, with the power and stored energy capacity of the 

engine typically exceeding that of the electrical system. In this case the motor 

takes on a secondary role in shielding the engine from operating conditions 

which are particularly unfavourable to it. Typically this means that such 

a vehicle ·will operate electrically when the total power requirement is low. 
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Since low loading is typical of urban driving this vehicle has the potential to 

reduce pollution and noise in the urban environment whilst at the same time 

still offering the extended range capability characteristic of the engine. In 

general this system seeks to emphasise the particular strengths of each power 

source whilst playing down the disadvantages. 

When considering any type of hybrid electric vehicle two basic me­

chanical configurations form the basis of nearly all designs. These are the 

series and parallel configurations, which are illustrated by figures 1.1 and 

1.2 respectively. In the parallel hybrid both the engme and the motor are 

connected directly to the roadwheels. Provision is usually made for them 

to operate either independently or jointly in powering the vehicle. In the 

series hybrid however, only the motor is connected to the road wheels and 

must therefore be sized to meet all vehicle acceleration and top speed power 

requirements. In this case the engine supplies power indirectly via the gen­

erator battery combination. Although the series system has been considered 

for large bus applications [Brusaglino, 1982][Bader, 1981][Roan, 1976], on the 

grounds that it gives greater flexibilty in positioning components and ease 

of controlling the i.e. engine, the multiple energy conversions invariably lead 

to a low overall efficiency. Consequently almost all designs for passenger car 

applications have tended to favour the parallel configuration. As seen previ­

ously this latter application is most important because passenger cars offer the 

greatest potential fuel savings in the country as a whole. Clearly if hybrid 

vehicles could offer significant fuel savings in this transport sector, the benefit 

to society would be substantial. Before considering what potential the hybrid 

heat engine/electric has for making fuel savings in this sector it is important 

.to consider what it is competing against in terms of likely improvements to 

conventional vehicles and other alternative vehicle power systems. 
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1.1 Possible Kmproveme:nts or Alternatives to ][.C. E:ngine Vehicles 

It is important to recognise that any alternative to i.e. engine vehicles 

1s competing against a mature, established technology backed up by a large 

industrial research base. As a result conventional vehicles have shown a 

steady improvement over the years and seem likely to continue to do so. It is 

therefore pointless to compare possible economic and environmental advantages 

of a new vehicle technology against the i.e. engine vehicles which are being 

built today. A more realistic comparison is to judge the new technology 

against an estimate of what conventional vehicles will achieve 10-15 years 

from now. This 10-15 year period will then allow a reasonable time span for 

the new technology to be put into production on a worthwhile scale. Some 

of the likely improvements in i.e. engine design which might be made over 

the next few years are discussed by Blackmore and Thomas [Blackmore and 

Thomas, 1979]. This review suggests that major economy improvements could 

be achieved by using higher compression ratios coupled with leaner mixtures 

thus saving 20% of fuel use over all operating conditions. Lean mixtures 

must be used in conjunction with the higher compression ratios to avoid 

problems with knocking. Other savings can be achieved by improvements to 

cold starting ( saving 25% on short trips ), power modulation by variable 

mixture strength as opposed to the inefficient throttling method ( saving 20% 

on average ) and finally up to 10% can be saved by improving fuel and 

lubricants. Apart from changes to the engine itself further improvements 

can be made by altering vehicle aerodynamics and designing better tyres and 

gearboxes. 

Electronic engme control systems also offer substantial improvements 

m fuel economy. One major application for electronics is in optimising 

ignition timing. Standard mechanical distributors produce a crude variation 

in spark tinting on the basis of engine speed, as sensed by a centrifugal weight 
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system, and engine load, as determined indirectly by a vacuum diaphragm 

lever system connected to the inlet manifold. Load and speed are in fact 

the correct indicators needed to optimise ignition timing, but the mechanical 

system can never re-produce the complex function relating them to optimum 

spark advance. In contrast, in an electronic system, it is possible to store 

the best spark advance as a function of manifold depression and speed in a 

two dimensional look-up table. As described by Main [Main, 1986] Ford have 

produced a microprocessor system which not only controls spark timing but 

also controls a continuously variable transmission system (CVT). 

Unlike some proposed vehicle systems the hybrid heat engine/battery 

electric can incorporate all the changes mentioned above in its own engine 

and so its potential advantages remain undiminished. 

1.1.1 Novel Engines 

Apart from all electric and hybrid vehicles which may generally be 

considered as the electric alternative, whether partial or complete, there are 

two other major possibilities; alternative fuels and novel engines. Leading 

examples of alternative fuels are those based on agricultural products such as 

alcohol made from sugar. This has been successfully applied in Brazil with 95% 

alcohol by volume being used in cars with modified carburetters. According 

to the Jet Propulsion Laboratory ( JPL) [JPL, 1975] lesser concentrations, up 

to 28%, maybe used in ordinary cars without any such modifications. A 

second alternative is to produce synthetic petroleum from coal as has already 

been done in S. Africa. Neither of these alternatives are without drawbacks 

though, alcohol for example is particularly prone to absorb water in storage 

and the petrol from coal process is undesirable on both environmental and 

efficiency grounds [Mitcham and Bumby, 1977]. 

Amongst the most likely novel engines are the gas turbine, based on 
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the Joule Brayton cycle, and the Stirling engme. Gas turbines are already 

highly successful as aero-engines but need much development for small scale 

use m cars. In addition they use more expensive materials in order to 

withstand the high temperatures associated with a continuous combustion 

process [Bumby and Clarke, 1982]. External combustion engines such as the 

Stirling design promise a broader choice of fuels and the ability to optimise 

combustion conditions for better efficiency and reduced emissions. Despite 

improvements to heat exchangers however the Stirling engine still suffers from 

large thermal inertia. 

In their study of alternative vehicle power systems, JPL concluded 

that the Stirling engine and the gas turbine might achieve gains of 20% and 

30% respectively when compared with the conventional vehicles of the time 

(1975). \Vhen such improvements are viewed in the light of the predicted 

improvements to the conventional car itself, these figures are not outstanding, 

particularly when it is considered that in all cases the alternative engine costs 

more to produce. 

1.1.2 The Electric Vehicle 

Although of somewhat limited range the all electric vehicle must 

not be dismissed prematurely as a likely replacement means of transport, 

particularly in certain applications. Fleet trials of electric vehicles have shown 

them to be very useful in applications with a well defined use pattern and 

limited range requirement, such as the small delivery vehicle. Volkswagen 

[Altendorf et al, 1982] undertook one such trial with 40 electric vehicles 

beginning m 1978 and found them to be reliable and acceptable to their 

operators. Unfortunately this success will not be repeated in the car market 

until improved battery technology is widely available. Although many battery 

types such as nickel/zinc and nickel/iron offer considerable improvements in 
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energy storage capacity over lead-acids, they still do not g1ve an electrical 

vehicle comparable performance with a conventional vehicle. One possible 

battery technology which does promise large vehicle range, up to 200 km, is 

sodium/sulphur. Here the main problem is that battery operating temperature 

must be above 300°C. 

Assuming that some battery technology such as sodium/sulphur could 

provide vehicle performance that was acceptable to the consumer, a whole new 

problem is created when the infrastructure needed for refuelling is considered. 

To assess this problem Watson [Watson et al, 1986] carried out a computer 

simulation study to determine the cost of the vehicle refuelling infrastructure 

that would be needed for an all electric car fleet of 14 million vehicles; 

representing Britain's entire fleet in 1983. It was assumed that this fleet 

would follow the usage pattern established for British drivers by the 1978-79 

national travel survey. Several likely methods of charging were considered, each 

providing different proportions of the total refuelling need. Most important 

was recharging at the vehicle owner's premises, providing 80-85% of vehicle 

energy needs, followed by 10% at other charging locations and finally 5-10% 

at battery exchange stations. As a result the total cost to the nation was 

calculated to be between 205 and 4 78 million pounds depending on the 

predominant battery type used in the vehicles. . By far the greatest part 

of this cost is accounted for by the battery exchange stations. This fact 

explains the great dependence of the total cost on battery type, since battery 

exchange stations would have to be spaced according to the range of the 

electric vehicles. In this respect the hybrid has a definite advantage since 

the need for battery exchange stations might well be zero, due to the range 

provided by the engine and the ability to recharge from the engine itself 

should battery charge become dangerously low. As far as engine refuelling 

is concerned the hybrid vehicle could make use of the massive petroleum 

8 



distribution infrastructure already in existence. 

Any one of the above systems may one day play a role in road vehicle 

transport, however the main emphasis in this introduction must lie with the 

possible application of the hybrid heat engine/ battery electric power train. 

Such vehicles are by no means a new idea, and in the following section their 

history will be traced from its earliest beginnings to the present day. 

1.2 The History of Hybrid I.C. Engine/Electric Passenger Cars 

Hybrid i.e. engine/electric vehicles have a long history dating back 

to the early part of this century. At this time i.e. engine vehicles were 

underpowered and the hybrid, originally patented by Pieper in 1909 [Pieper, 

1909] was seen as one way of of achieving better performance. At the same 

time the all electric vehicle enjoyed a brief period of popularity since it offered 

greater reliability than the i.e engine. The peak period for electric vehicles 

carne in about 1915 when 4500 vehicles were produced annually in the U.S. 

[Kordesch, 1977]. However i.e. engine production had already passed the half 

million mark at_ this stage and its rapidly improving performance, coupled 

with cheap petrol, effectively stopped all interest in electric and hybrid cars 

by 1930. Specialist electric vehicles have however remained popular for certain 

applications, most notably as milk floats in the U.K. Away from such limited 

applications the use of i.e engine vehicles remained unquestioned until the late 

1960's when the staggering exhaust emission problems of some North American 

cities began to arouse public concern, forcing the U.S. government to enact 

strict emissions legislation. The scale of this pollution problem is illustrated 

by 1966 U.S. government statistics which showed that total air pollution from 

all sources amounted to 141 million tons per year, of which 61% came from 

motor vehicles [U.S. Dept. of Commerce, 1967]. It was for this reason that 

the U.S. Environmental Protection Agency (EPA) sponsored extensive studies 
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of hybrid vehicles of all types as a possible means of meeting the new emissions 

legislation which was due to come into force in 1976. Several organisations 

received contracts to carry out the studies amongst them Aerospace and 

TRW evaluated specifically heat engine/battery hybrids [Sampson and Killian, 

1972][TRW, 1972]. Both these studies concluded that any improvements in 

emissions or fuel economy would not justify the added complexity of the 

hybrid system. Vehicle manufacturers themselves showed renewed interest in 

hybrids and other alternative vehicle drive trains. This interest arouse from 

the manufacturers initial technical inability to meet the required emission 

standards; a fact they admitted to publicly. As one example Ford sponsored 

the design study carried out by the JPL [JPL, 1975], which covered a 

wide range of automobile power systems. Other manufacturers and research 

organisations went on to produce operational hybrid vehicles at this time 

[Minicars, 1972][Agarwal et al, 1969][EPA Office of Air and Waste Pollution 

Programs, 1975][Fersen, 1974][Wouk, 1976]. These vehicles were built mainly 

to reduce exhaust emissions, with little consideration paid to the fuel saving 

potential of hybrid vehicles. On the whole though car manufacturers were 

not seriously committed to hybrid vehicles and eventually they successfully 

concentrateJ Lheir efforts towards meeting emissions· regulations by modifying 

conventional i.e. engine vehicles. These efforts resulted in crude, inefficient, 

systems which absorbed a great deal of engine power. To maintain acceptable 

driveability and performance the manufacturers simply installed larger engines 

causing average fuel economy in the U.S. to reach a record low in 1975 [Roan, 

1984]. 

As mentioned previously the EPA study was concerned with the 

potential of hybrid vehicles of all types to reduce exhaust emissions. Most of 

the study groups involved concluded that hybrids could produce good results 

in this respect, however in the light of the cheap fuel prices at the time they 
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were not regarded as a cost effective solution. Almost as soon as these results 

were announced however the whole situation was changed by the Arab Oil 

Embargo and the subsequent steep rise in energy prices. New emphasis was 

now placed on fuel economy, which meant that manufacturers were faced with 
., 
' 

the duel problem of maintaining emission standards whilst at the same time 

reducing fuel consumption. As has been previously mentioned improvements 

in emissions had previously been obtained at the expense of fuel consumption. 

Such difficulties prompted Ford to re-examine the potentials of hybrid vehicles 

using a combination of computer studies and practical dynamometer trials 

[Unnewehr et al, 1976]. Although the dynamometer testing was rather 

limited in scope, it did establish the practicality of some important fuel saving 

measures useful for hybrid vehicles, in particular fuel of at idle was successfully 

used. In addition the researchers found that results from the dynamometer 

agreed very well with simulations of the same experiments on a computer. 

Encouraged by these consistent results the research went on to compare 

the simulated performance of experimental hybrid drive trains and control 

strategies with results obtained from production vehicles. All substitute drive 

trains were of parallel design and were sized to give approximate equivalent 

acceleration performance as the conventionai system they replaced. Operating 

strategy for the hybrid called for battery state of charge to be maintained 

in a narrow band around 75%, thus all energy ultimately came from the 

fuel tank, with no use of mains electricity. Large fuel economy gains were 

predicted for the hybrid when compared with two vans produced by Ford at 

the time, these gains ranged from 30-70%. Unfortunately these results are 

not quite as encouraging as they appear since the comparison vehicles had, 

by modern European standards, massively overrated engines. For example the 

larger of the two vans had a 142 kW (190 BHP) engine and an automatic 

transmission. This design was compared with a replacement combination 

11 



,ri 
of a 67 kW (90 BHP) engme and a 352 Nm (260 f9lb) motor, which 

I 

together achieved the largest quoted comparitive fuel saving over the Federal 

CVS-H cycle. Much less improvement was noted for the second van which 

had originally a 86 kW (115 BHP) engme. Despite the fact that these 

measurements of fuel saving are not applicable in a present day context, 

this work does establish some important principles of hybrid vehicle design. 

Firstly the hybrid drive outperforms its conventional counterpart by restricting 

engine operation to the high efficiency region of its characteristic. Further 

improvements accrue, particularly during urban operation, from the fuel off at 

idle strategy and energy reclaimed by regenerative braking. It was also shown 

that losses involved in turning the engine with fuel off could be reduced by 

collapsing the valves as an alternative to completely declutching the engine. 

Of equal importance to these res!lits was the demonstration that computer 

aided parameter studies could optimise component ratings for hybrid vehicle 

applications. For example varying the final drive ratio was shown to @ect 

both emissions and fuel economy. 

Despite these efforts by Ford and considerable further work carried 

out in Universities [Roan, 1978][Beachley et al, 1978] major advances in hybrid 

vehicle technology really had to wait until the 'Electric Vehicle Research and 

Developments Act' of 1975 in which the U.S. government provided $180M for 

research into electric and hybrid vehicles. This act resulted in a major project 

aiming to develop an operational hybrid vehicle which had the potential to be 

mass produced in the near term. Management of the project was undertaken 

by JPL on behalf of the U.S. Department of Energy. In phase 1, beginning 

in 1978 JPL, gave sub-contracts to four companies to perform initial design 

studies. All four companies reported back to JPL by 1979 with their design 

proposals [Burke and Somuah, 1980][Fiat, 1979][Schwarz, 1980][Minicars, 1980]. 

Interestingly all four design teams recommended the parallel hybrid design. 
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After considering each proposal JPL awarded the second phase of the project 

to General Electric, who were to proceed with building the vehicle which 

became known as the HTV -1. In their initial study General Electric had 

used two computer packages. A first stage investigation was carried out 

using a package called HYVELD which examined the economic potential 

of various driveline configurations and component ratings. Inputs to the 

HYVELD program included annual vehicle usage pattern, engine and motor 

efficiencies and various economic factors effecting the vehicle owner. From 

these inputs the program quickly established that the series hybrid design 

could not compete with the conventional vehicle in producing an acceptable 

power to weight ratio at a reasonable cost. This was essential to the second 

phase of the project because the hybrid vehicle had to match the performance 

and comfort of a reference vehicle, specifically a General Motors A-Body 

Malibu Century [Trummel and Burke, 1983]. Important vehicle requirements 

were 5 adult capacity fuelled by wall plug electricity and petroleum fuel, 

cruise speed of 56 mph and acceleration of 0-56 mph in 15 seconds or less, 

gradeabilty of 3% at 56 mph for 0.6 miles and compliance with 1981 emission 

standards. General Electric formed a team with three other contractors 

each with re:;pou:;ibility for different vehide sub-systems. Generai Eiectric 

themselves provided the motor whilst Globe Batteries provided lead acid 

batteries, Triad Services were responsible for the vehicle structure and finally 

Volkswagen produced a modified engine. An important new development in 

the HTV -1 was the use of a sophisticated microprocessor control system, 

which JPL considered to be essential for both efficient vehicle operation and 

to provide acceptable vehicle driveability [Trummel and Burke, 1984]. Of 

all the hybrid vehicle projects to date the HTV-1 control system has the 

most similarities with the work described in this thesis. Consequently specific 

aspects of the control will be discussed in context in later chapters, however 
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at this stage it is relevant to mention the overall results obtained from the 

HTV-1. Vehicle fuel economy was assessed under both urban and highway 

driving conditions. In both cases economy declined with distance travelled 

due to falling battery state of charge. Over five cycles of the 12 km FUDS 

cycle, battery state of charge (SOC) fell from 100% to 19%, indicating fairly 

limited urban range. Average battery losses of 17 Wh/km over the cycle 

caused this drop. Over the same five cycles the fuel economy fell from 

54.9 mpg (23 km/1) to 17.7 mpg (7.5 km/1) [Trummel et al, 1984]. It is 

worth noting that the high power load from accessories, typical of American 

vehicles, was responsible for using 63 Wh/km and had this been reduced by 

only 25% the vehicle would have achieved unlimited urban range. A similar 

result could have been achieved by using a more advanced body design than 

the HTV-1 which had poor aerodynamics (Cd = 0.43). On the highway cycle 

the net fuel economy ranged from 34.6 mpg down to 26.2 mpg after 450 

miles when battery SOC forced the use of heat engine recharge. Using a 

combination of these results the annual fuel consumption of the vehicle was 

predicted for typical usage patterns. The pattern chosen was for the 50th 

percentile all purpose 4-5 passenger vehicle in 1985. Under these conditions 

the HTV-1 achieved a combined urban and highway economy of 39 mpg 

which compared to the 1985 reference vehicle represented a petroleum saving 

of 31%. Although the performance of the i.e. engine reference vehicle is 

not particularly impressive by present standards, it does not detract from the 

achievement of this vehicle in demonstrating the considerable potential for 

substituting petroleum use with the more broadly based electricity. 

Following the development of the HTV-1, American interest in hybrid 

vehicles has been reduced to further paper studies. JPL have carried out an 

assessment of advanced vehicle technology to establish what they think might 

be worthy of development in the 1990's [Hardy and Roan, 1980]. Computer 
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simulations were used extensively in this study to evaluate various vehicle 

drive trains. Each vehicle was designed to provide the same performance 

as an i.e engine equivalent vehicle in its category. These vehicle categories 

were based on range and passenger carrying capability and covered a broad 

spectrum of vehicles from a two passenger commuter car to a full size, general 

purpose car designed to carry five passengers. All electric vehicles proved 

to be an attractive option for the small commuter vehicle but no battery 

technology was capable of replacing the general purpose vehicle with adequate 

range at reasonable cost. In contrast the hybrid vehicle was shown to be 

ideally suited to this type of application. Its main advantage is that the 

presence of the petrol engine means that only limited range is needed from 

the batteries; 80 km was considered perfectly adequate in this case. Choice 

of battery technology is therefore unrestricted and so the cheapest available 

type can be used. This study recommended the bipolar lead acid as the 

most suitable design. Overall the JPL study concluded that hybrid vehicles 

might save 70-75% of liquid fuel. 

The Electric Power Research Institute in America has also carried out 

a survey of hybrid vehicle technology fairly recently [Renner, 1986]. From 

the point of view of the electricity generating utilities, represented by this 

organisation, electric and hybrid vehicles represent a large potential market for 

off-peak electricity since such vehicles would most likely be charged overnight. 

In their study they identify the limited energy storage capacity of batteries 

and the complexity of the vehicle as a whole as the main barriers to the 

success of hybrids. 

Development of actual prototype vehicles is now continuing outside 

America and in particular Volkswagen are building on experience gained during 

their involvement with the HTV-1 project. Volkswagen's continued interest in 

hybrid vehicles stems from the belief stated by Kalberlah [Kalberlah, 1986], 
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that the 'flexibility in the hybrid drive system makes it into a universal 

drive system not predestined to be restricted to the second car' ( unlike the 

electric vehicle ). In addition he notes that even if some advanced battery 

technology such as sodium sulphur does extend the range of electric vehicles 

to a respectable 250 km, the stored energy requirement of .50 kWh can not be 

charged overnight from a common power socket. To demonstrate the potential 

of hybrids Volkswagen have recently developed a parallel hybrid version of the 

Golf [Miersch et al, 1987]. This vehicle has very limited electrical capability, 

the 3 phase asynchron dynamotor can only provide 6 kW, which corresponds 

to a cruise speed of 50 km/h. This small motor follows from Volkswagen's 

belief that the cost of the electrical components must be kept to an absolute 

minimum if hybrids are to be an economic proposition. Control philosophy 

for the vehicle is relatively simple, the driver can select one of three operating 

modes; all electric, all i.e. engine or hybrid. In the hybrid mode the 

engine provides all power requirements above 6 kW, being shut down if such 

extra power is not needed. In assessing the potential of this system in the 

German car market Kalberlah notes that due to its unlimited range it has an 

application potential equal to that of the conventional Golf. A large potential 

market is seen to be vitally important because the vehicle would have to 

take full advantage of the economies inherent in high volume production to 

be competitive. Taking into account German usage patterns a typical mix of 

urban and highway driving would allow the vehicle to achieve 67% petroleum 

substitution. Total energy consumption by the vehicle over the ECE15 cycle 

is 3.3 litres/100 km plus 16 kWh/100 km. In monetary terms, at 1985 prices, 

the electricity used costs the equivalent of an extra 2.8 litres of petrol to the 

German consumer. Taking this into account a substantial cost saving results 

when compared with the baseline performance of the Golf which uses 10.11 

litres/100 km over the ECE15 cycle. 
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1.3 The Context of the Present Work 

Having brought this survey of hybrid vehicle technology up to date 

with the discussion of the latest Volkswagen results, the relevance of the 

present work and the computer studies which lead up to it, can now be 

established. Computer studies of hybrid vehicles have been carried out at 

the University of Durham using a general purpose road vehicle simulation 

package called Janus [Bumby et al, 1985]. This program, developed over a 

number of years in the School of Engineering and Applied Science, is capable of 

predicting the energy use of a variety of power train configurations. Computer 

simulation studies, using programs such as Janus, have formed an important 

part of hybrid vehicle research since the mid 1970's. Their great strength 

lies in their ability to systematically assess the fundamental design options 

available in hybrids such as component configuration, component layout and 

component ratings. In 1977 when JPL undertook a survey of electric and 

hybrid vehicle simulation software, it reported 111 operational programs [JPL, 

1978], many of which had been written as a result of the 'Electric Vehicles 

Research and Development Act'. Obviously these programs performed many 

functions but two main categories can be identified [Wolfson and Gower, 

1983]. Least concerned with actual vehicle design is the first category, which 

attempt to define what vehicle performance and range is necessary to meet the 

requirements of a given percentage of vehicle users or vehicle missions. Such 

studies are usually based on national travel statistics which are produced 

m both Britain and the U.S. [Department of Transport, 1979] [U.S. Dept. 

of Transport 1972]. Often included at this stage is an assessment of the 

economic implications of a particular hybrid or electric design both in cost 

to the consumer and on required infrastructure such as electricity generating 

utilities. One such study was carried out by General Electric of America 

[Burke and Smith, 1983] to establish what performance would be required 
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from a hybrid vehicle. 

Janus belongs to the second category which use models of individual 

drive train components to calculate the energy use of a vehicle when driven over 

a simulated driving cycle. In the HTV-1 project the equivalent program was 

called HEAVY, (Hybrid and Electric Advanced Vehicles Systems Simulation) 

[Hammond and Beach, 1981] developed by Boeing Computer Services in 

conjunction with NASA. This program stores a number of standard drive 

train configurations and drive train components together in a library module, 

allowing standard and novel drive trains to be investigated. In addition the 

user may define a drive train component that the program knows about by 

entering a list of parameters required to define that component. Having 

specified a design the program will put the resulting vehicle through a driving 

cycle. As the cycle proceeds the program models the drag and rolling 

resistance forces and thus produces the vehicle energy requirement at the 

road wheels which can be reflected back through the transmission, taking 

due account of losses, to arrive finally at the amount of petrol or battery 

charge consumed. Once the simulated cycle is complete the user has at 

his disposal a breakdown of energy requirements on an individual component 

basis. Using a method similar to this Janus has been used to thoroughly 

investigate the economic potential of parallel i.e. engine/electric hybrids 

[Bumby and Forster, 1987]. Although the results show that a hybrid can 

save considerable energy overall, when compared with present day vehicles, 

this ability reduces dramatically as likely improvements are incorporated in 

the conventional vehicle used for companson. Neverthless they are attractive 

because they can shift energy use away from petroleum towards the broader 

base of fuels used to generate electricity. This petroleum substitution potential 

is also sensitive to the conventional vehicle technology used for comparison, 

although to a lesser extent than overall energy saving. Placing a precise 
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figure on the percentage of petroleum which might be saved by the hybrid 

is complicated by the vehicle use pattern [Forster and Bumby, 1988]. In 

the past overall energy consumption for vehicles have been based on an 

assumption that 40% of vehicle driving is under urban driving conditions, 

50% at 90 km/h cruise and 10% at 120 km/h cruise. When applying this 

mix to the hybrid design it can reasonably be assumed that urban driving 

will be electrically powered and that the 120 km/h cruise will be powered by 

the engine. The 90 km/h cruise however might well occur in either mode, 

with petroleum substitution depending on the relative use of the engine and 

the motor. By assuming equal use of engine and motor at 90 km/h Bumby 

and Forster [Forster and Bumby, 1988] calculated that a parallel hybrid could 

save 50% of petrol when compared with an advanced conventional vehicle 

featuring an efficient continuously variable transmission (CVT). Clearly such 

a vehicle represents a much more formidable target performance than vehicles 

considered in American studies. 

When considering the parallel hybrid drive train Janus predicted the 

effects of component ratings on overall performance in much the same way as 

the General Electric computer study did for phase 1 of the HTV-1 project. In 

the case of Janus though, the drive train performance was designed to match 

that of a modern mid-size European car. Such a vehicle represents the 1.6-2.0 

litre category, and since over 40% of petrol in Britain is consumed by such 

vehicles they offer the greatest potential for saving fuel. Differences in the 

General Electric and Janus studies also appear in the way that they arrived at 

a detailed control strategy for operating the hybrid vehicle. General Electric 

considered the operating conditions which gave the best efficiencies for the 

engine and motor and then postulated a control strategy which they thought 

would best achieve the design goals of maximising petroleum substitution 

whilst still retaining acceptable performance. These broad objectives remain 
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valid in the Janus study, however the control strategy designed to meet them 

came out of a formal optimisation study. The optimisation process defined 

an energy cost function, which allows arbitrary values to be placed on petrol 

from the tank, E1, and electric charge from the battery, E2 , as follows: 

(1.1) 

By varying the two weighting factors, .X1 and .X2 , the cost function can be 

made to take into account the prevailing monetary value of the two fuels 

and at the same time other factors such as a penalty for the environmental 

damage associated with use of petrol can be considered. Having decided on 

the relative values of the two primary energy sources Janus then puts the 

experimental vehicle drive train through a driving cycle. At every one second 

interval the torque requirement of the vehicle at the wheels, is calculated 

to meet the instantaneous speed and acceleration defined by the cycle speed 

profile. This torque requirement is then reflected back through the drive 

train taking into account successive losses in each component, such as the 

final drive and gearbox. Once the gearbox is reached however there are two 

important decisions to be made, concerning which gear to use and how to split 

the total torque demand between the engine and motor. It is the gear ratio 

which defines what the total torque demand will be at the input shaft to the 

gearbox but this total demand can be met in any number of ways between the 

two extremes of all electric operation and all i.e. engine operation. Choice 

of gear ratio and torque split is in fact crucial to energy economy, since the 

efficiencies of both the engine and the motor are functions of torque and 

speed. This fact is clearly illustrated for the engine by figure 1.3 which is 

a typical efficiency map for a 50 kW engine. In order to calculate which 

gear and torque split to use, Janus evaluates the cost function for all gear 

ratios and a representative selection of torque splits. Thus the cost function 
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1s determined by two independent variables, with the optimal solution being 

the minimum value. Having chosen the optimum solution for gear ratio and 

torque split, the energy use is calculated by assuming steady state conditions 

over the one second time increment. At this point the whole calculation is 

repeated. 

The net result of the optimisation process ultimately depends on the 

weighting factors as illustrated by figure 1.4. This result shows range and 

liquid fuel consumption as a function of weighting factor for an urban driving 

cycle. If the ratio AI/ )..2 is greater than about 1.5 then the penalty for 

usmg petrol is so high that Janus will operate. the vehicle almost entirely 

electrically, resulting m inevitable range limitations but effectively infinite 

liquid fuel economy. In contrast when the ratio is less than about 0.3 the 

preffered strategy includes so much operation by the engine that range is 

unlimited but fuel economy, measured in terms of litre/100 km, is low. As 

the weighting factor ratio is varied two differing operating philosiphies present 

themselves. At about ).I/ )..2 = 0.25 raw energy use is minimised, suggesting 

an energy saving strategy. On the other hand at ).I/ )..2 = 0.6 the engine is 

restricted to relatively efficient operation but use of electricity is small enough 

for sufficient urban range to satisfy nearly all such journeys. This type of 

operation could be considered as aiming for maximum petroleum substitution 

without compromising vehicle utility. Of these two philosophies petroleum 

substitution has perhaps the greatest potential. As mentioned previously 

there is likely to be considerable improvement in i.e. engine vehicles over the 

next few years and this means that although the energy saving hybrid makes 

economic sense at the moment it may not do so in the future. In contrast 

the petroleum substitution strategy will make increasing sense in future as 

liquid fuel prices increase due to the rising scarcity of the resource. 

·whenever the weighting factors do allow use of the engine the op-
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timisation process favours operation near to the engme maximum efficiency 

point which lies within the 32% contour on figure 1.3. In fact as the 'cost' 

of petrol is increased the optimisation tends to restrict use of the engine to 

ever smaller regions around this point. As an example figure 1.5 shows the 

use made of the engine over a typical urban driving cycle with the weighting 

ratio )..1 / )..2 = 0.6. Each figure on the diagram represents the percentage of 

the total cycle time that the engine spent operating at that point. Although 

a good deal of the cycle was powered electrically the figures for the engine 

are clearly clustered round the maximum efficiency contour. 

Carrying out the optimisation process in full involves quite complex 

·calculation, particularly to determine losses in the prime movers. Consequently 

although it would be ideal to include it in an operational vehicle there simply 

is too much work involved for real time computation. By considering the 

usage patterns for both the engine and the motor over an optimally controlled 

cycle however, it is possible to devise a sub-optimal control algorithm, based _ 

on a number of simple rules, which produces virtually the same economy 

as the fully optimal case [Bumby and Forster, 1987]. It is the practical 

component control problems raised by this sub-optimal control strategy which 

provided the motivation for the work described in this thesis. 

The job of the sub-optimal controller can be seen as that of selecting 

one of the possible operating modes that are available with a parallel hybrid 

drive train. All of the operating modes are described in Table 1.1. With 

maximum petroleum substitution as the goal each mode tends to be suited 

to a particular type of vehicle operation 

Electric Mode. Used for journeys within the electric range of the vehicle. 

Primary i.e. Engine Mode. Used for long distance high speed travel. 

Electric power is used to supplement the engine during hill climbing or 

acceleration. 
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Hylbnricl Mode. Used for long range urban or sub-urban travel beyond 

the capability of the motor alone. In this case the motor starts the vehicle 

from rest, with the engine taking over when efficiency considerations allow. 

Acceleranto:r 6]ldck~dlown9 • Overrides other modes to give the driver full 

power m a panic situation. 

JBaUery Clh.arge Mode. 

dangerously low. 

Regenerative lEbakhag. 

energy. 

Used to prevent battery charge from becoming 

Used whenever possible to recoup vehicle kinetic 

The inputs to the mode controller are the driver's demand signals 

represented by the position of the accelerator and brake pedals. Not all of the 

modes listed in Table 1.1 will actually be selected by the sub-optimal controller 

working on purely efficiency grounds. In particular it would never select the 

battery recharge mode because the multiple energy conversions would always be 

too inefficient. To overcome this problem the purely efficiency based strategy 

must be overriden by battery state of charge considerations. Accelerator 

'kick-down' is another mode where efficiency considerations are overriden, this 

time by the needs of the driver. Normally the engine would be limited to 

90% of its maximum power since above this the carburetter system would 

reduce efficiency, however in a panic situation the driver must be given full 

power regardless of the cost. Another useful input to the mode controller 

might be the journey type specified by the driver. If maximum petroleum 

substitution is the design goal then for example on a short urban journey it 

would be advantageous to restrict the vehicle to all electric operation since 

there is no possibility of dangerously depleting the batteries. Similarly on 

long journeys use of the motor should be kept to a minimum. Combining 

all these considerations produces the vehicle control hierarchy illustrated by 

figure 1.6. At the top of the hierarchy is the driver who makes inputs to 
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the system in two ways. Firstly his unique knowledge of intended destination 

allows him to select one of the three possible journey types. Secondly he 

communicates his power demand through use of the brake and accelerator. 

Journey type has a large influence on which operating strategy is best for the 

vehicle and hence which operating modes should be used. Restricting the use 

of some of these modes however are the battery charge constraints which seek 

to keep the battery SOC above 20% at all times. After processing through 

these constraints it is then up to the mode controller, which embodies the 

sub-optimal strategy to operate the vehicle in the best way to meet the power 

demands coming from the driver. 

Even if the precise form of sub-optimal strategy mentioned above 

were not employed, any other mode controller would still pose the same set 

of component control problems. As it responds to the driver's ever changing 

input the mode controller produces only three outputs; the torque demand 

for the motor, the torque demand for the engine and the required gear ratio. 

Component control then involves matching the torque output of engine and 

motor to their respective demands and controlling the transmission. If the 

theoretical economic potential of the vehicle is to be realised in practice 

these demands must be met as quickly and accurately as possible. A further 

complication arises in the case of the engine, in that when it is not needed 

it must be shut down and remain stationary. Once torque is again required 

from the engine a control subsystem is needed to start it and match its speed 

with the rest of the drive train so that torque is reapplied smoothly. 

Microprocessor based control systems capable of meeting all of these 

control needs have been developed on a full-sized laboratory test bed and 

are described over subsequent chapters. Using a test bed represents a logical 

progression from the computer simulations previously carried out at Durham. 

Unlike an operational vehicle problems such as component packaging do not 
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have to be tackled during the development of the rig. This leaves the way 

clear to test the fundamental feasability of the control strategies suggested by 

the simulations. In this context it should be mentioned that only the control 

of a warm engine has been considered on the grounds that if satisfactory 

engine control could not be achieved under such conditions then additional 

work would be pointless. Furthermore the vehicle manufacturers are currently 

undertaking the development of engine management and cold start systems 

[Meyer et al, 1983]. 

The individual component controllers developed for the rig have been 

assembled into a fully integrated drive train system capable of responding to 

the outputs of the mode controller. Final testing of this complete system is 

made easier by the development of a computer based driving cycle controller 

which mimics the action of a driver in producing the necessary accelerator 

and brake signals to follow the cycle. Using the computer based cycle speed 

controller leads to greater repeatability in the cycle tests. In addition the 

cycle controller IS sufficiently flexible for any cycle to be quickly defined, 

and then driven, provided it is within the power limitations of the engine 

and motor on the rig. Although this system is intended for use with the 

sub-optimal mode controller described earlier, its operation is independent of 

the mode control strategy and is a necessary part of any hybrid drive train 

controller. 

In the next chapter a description of the laboratory test system is 

given thus providing the necessary background information on the operating 

environment of each of the component controllers. Subsequently chapters 

3 and 4 examine the relevant theory to allow indirect methods of torque 

measurement to be developed for both the engine and the motor. Chapter 

5 then proceeds to design torque control systems on the basis of these 

measurements and a speed control system used during engine starting. The 
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dynamic performance of both torque and speed controllers is tested against 

simulations. The final control sub-system is a pneumatic actuator for a 

'manual' gearbox described in chapter 6. In chapter 7 torque controllers, 

engine starting system and automated gearbox are combined into the fully 

operational system. 
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Mode Description 

Electric Mode All propulsion power supplied by 
the electric traction system 

I.C. Engine Mode All propulsion power supplied by 
the i.e. engine 

Primary Electric Mode The electric traction system provides 
the principle torque, but when necessary 

its maximum torque is augmented by the engine 
Primary I. C Engine Mode The i.e. engine provides the principle 

torque, but when necessary its maximum 
torque is augmented by the motor 

Hybrid Mode Both the i.e. engine and the electric 
traction system provide torque 

split between them in some way. 
Battery Charge Mode The i.e. engine provides both the 

propulsion power and power to charge 
the batteries, with the traction motor 

acting as a generator. 
Regenerative Braking During braking the vehicle kinetic 

energy is returned to the battery 
with the traction motor acting as 

a generator. 
Accelerator 'kick-down, Essentially a primary i.e. engine mode 

when full engine torque is allowed 
to give maximum acceleration 

Table 1.1 Possible Operating Modes for 

· the Parallel Hybrid Vehicle 
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Fig. 1.1 Series Hybrid Electric Vehicle Drive Train 

wheels 

Fig. 1.2 Parallel Hybrid Electric Vehicle Drive Train 
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CHAPTER 2 

THE LABORATORY TE§T §Y§TEM 

The laboratory test system is the hardware realisation of the parallel 

hybrid drive shown in figure 1.2. The component layout in the rig system is 

shown by figure 2.1. Overall the rig consists of three subsystems; firstly the 

flywheel and dynamometer representing vehicle inertia and road load, secondly 

the hybrid drive train itself and finally the computers and signal monitoring 

equipment [Bumby and Masding, 1988]. Each of these subsystems are now 

described in detail. 

2.1 JLoad Emulation 

On the test bed layout of figure 2.1, all the components forward of, 

and including, the transmission represent the drive train components present 

in an actual vehicle. To the rear of the transmission the dynamometer 

and flywheel are included to represent the losses associated with a moving 

vehicle. Vehicle mass is simulated by the variable inertia flywheel which has 

an available inertia range of 2.02-15.4 7 kgm2 . In simulating any real vehicle 

of mass M, the necessary equivalent flywheel inertia Jeq 1s 

(2.1) 

Where rw is the vehicle wheel radius and 9! is the gear ratio of the vehicle final 

drive system. A nominal flywheel inertia of 6.54 kgm2 was used throughout 

the experimental work. Independent calibration experiments presented in 

chapter 7 confirm the accuracy of this value. 

Using typical values for a mid-range passenger car of rw = 0.3 m 

and 9! = 3 the inertia of 6.54 kgm2 represents a vehicle weighing 650 kg. 

Typically hybrid vehicle curb weights would be much higher than this, for 

example the HTV-1 [Trummel and Burke, 1983] weighed 2032 kg and a 

32 



hybrid vehicle built by Lucas Chloride weighed 2100 kg [Harding et al, 1983]. 

Simulating an unrealistically low weight on the rig does not however invalidate 

any of the control systems developed in subsequent chapters; indeed in most 

cases it is more difficult to obtain satisfactory smooth operation with low 

vehicle weight. Keeping flywheel inertia low is also an advantage on safety 

grounds, since it reduces the stored energy in the system. The dynamometer 

is of eddy current design and is water cooled. Control electronics for the 

dynamometer provide three load settings; constant speed, constant torque and 

power law. Most important for the hybrid vehicle work is the power law 

setting which ideally reproduces the effects of aerodynamic drag and rolling 

resistance which act on a real vehicle. Road wheel torque needed to overcome 

these two factors is given by [Bumby et al, 1985]. 

1 
Td = 2pCdAVrw Nm 

Tr = CrMgrw Nm 

Where 

p = Air density ( 1.226 kgfm3 @ 15°C, 105 Pa ) 

Cd = Coefficient of drag 

Cr = Coefficient of rolling resistance 

A = Vehicle frontal area m2 

V = Vehicle velocity m/s 

rw = Wheel radius m 

M = Vehicle mass kg 

g = gravitational constant 

(2.1) 

(2.2) 

In fact the dynamometer control system is not complex enough to 

reproduce the combined effects of rolling resistance and drag. Instead the 

dynamometer power law setting produces a load which varies according to 
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speed squared, but the curve is made of piecewise linear sections. Since the 

dynamometer system is typically operated at fairly low speeds, it rarely reaches 

the second linear sub-section of its loading characteristic and hence in most 

experiments loading on the rig is simply proportional to speed. Consequently 

neither drag nor rolling resistance are accurately modelled. In order to 

assess the seriousness of this defficiency figure 2.2 shows the dynamometer 

loading curve and the equivalent requirement predicted from equations (2.1) 

and (2.2) using likely parameters for a parallel hybrid as suggested by Bumby 

and Forster [Bumby and Forster, 1987]. Their values for such a car are 

Cd = 0.35, Cr = 0.01, A = 1.95 9! = 3.5, M = 1880 kg 

and r w = 0.3 m. Rotational speeds for the flywheel are converted to km/h 

by assuming the same values of g1 and rw. Essentially this is the same as 

saying that the speed of the flywheel represents the prop-shaft speed in a 

real vehicle. As can be seen the dynamometer loading is at least_ realistic up 

to speeds of 50 km/h, which is the maximum encountered in the European 

ECE15 Urban driving cycle adopted for many of the rig tests. To operate 

at speeds above this would require modifications to the control electronics 

governing the dynamometer. 

2.2 The Hybrid Drive System 

The power sources in the experimental hybrid drive train are a 

standard Ford llOOcc petrol engine and a Lucas Chloride separately excited 

d.c. traction motor. The traction motor has been used in operational electric 

vehicles, specifically the Bedford CF and Freight Rover Sherpa 1 tonne panel 

vans [Manghan and Edwards, 1983]. Both the engine and the traction motor 

are connected to a common drive point at the input to the gearbox by a 

toothed belt drive giving a 1:1 speed ratio. Smooth performance is achieved 

by accurately balancing the belt and associated pulley wheels. The belt 
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itself has a trapezoidal tooth section and ground back. The i.e. engme 1s 

connected to the common drive point through a friction clutch, short drive 

shaft and torque transducer. During normal operation the friction clutch 

is not needed, since the rig is invariably started from rest by the electric 

motor. It is retained however for experiments requiring complete isolation of 

the engine, such as no-load speed testing. In addition this device also makes 

it possible to start the flywheel from rest on the engine alone, should the 

motor not be operational for some reason. An additional one way clutch or 

free wheel, allows the engine to remain stationary whilst the rest of the drive 

train is in motion. In common with the engine, the electric traction system 

is connected to the common drive point via a flexible coupling and torque 

transducer. The flexible coupling- is designed to cope with the motoring 

and regenerative braking torques which are encountered in the motor drive 

shaft. In this instance a tyre type coupling is used which has proved ideal, 

both because it is easy to connect and has favourable mechanical properties 

such as zero backlash and ability to marginally damp high frequency torques. 

Such torques appear because of the nature of the chopper control system, 

which is a Lucas Chloride Mark III design and connects the motor to the 

traction batteries. It emjJluys a thyristor armature chopper and transistor 

field chopper. A summary of all the drive train ratings is given in Table 2.1. 

In total the combined power output of the motor and engine can match that 

of a medium sized conventional passenger car which typically has a maximum 

engine power of 55 kW and weighs about 1 tonne [Bumby and Forster, 1985]. 

As such the engine and motor on the rig are representative of what might 

be installed in an equivalent hybrid vehicle. In contrast the 1 tonne lead 

acid battery pack used on the rig would preferably be replaced by 400 kg 

of similar batteries ( or better still 200 kg of Ni/Zn batteries [Bumby and 

Forster, 1987] ). The greater size of the battery pack used with the ng 1s 
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simply a consequence of its original application m an all electric van. 

2.3 Computer Control andl Signal Moniio:ri:ng 

Control of the rig is provided by a Motorola M68000 based mi­

crocomputer system. In carrying out its control function the M68000 has 

responsibilty for receiving and processing data from the transducers round the 

rig. Operator inputs and data display are handled by a second computer 

which is a Duet 16 personal computer (PC). Communication between the two 

computers is achieved via an RS232 serial data line operating at 9600 baud. 

A schematic diagram of the two computers and instrumentation interface is 

shown in figure 2.3. 

2.3.1 Motorola M68000 system 

At the heart of the drive train control system is the M68000 micro­

processor unit which has two main tasks to perform. Firstly it must operate 

the engine motor and transmission as required to meet the demands of test 

driving cycles and secondly it must act as a data logger. Both control and 

data logging depend on the extensive range of interface hardware available to 

the Ivi68000. In total this hardware comprises four 6522 versatile interface 

adaptor (VIA) chips with interrupt facility; a 16 channel, 12 bit, analogue 

to digital convertor (ADC) also with interrupt facility; eight 12 bit digital 

to analogue converters (DAC) and finally two standard timer/counter (STC) 

chips each with five, 16 bit, timer counters. The M68000 itself operates at 

8MHz and has 192k of random access memory (RAM). 

Output control signals from the M68000 are summarised m Table 

2.2. The i.e engine output is controlled by a stepper motor servo-system 

on the throttle valve, with the stepper motor pulses and direction signal 

being generated by the M68000 using two of its VIA chips. On initial start 
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up the throttle control system is initialised by closing the throttle onto a 

micro-switch. Pulse rate for the stepper motor is software controllable but is 

consistently set to 1 step per 5 ms, representing a practical lower limit which 

ensures that no steps are lost when moving from rest under load. With each 

step being 0.9°, zero to full throttle requires 85 steps and is thus achieved in 

425 ms. Ideally a slightly faster response is desirable and other drive by wire 

systems have achieved zero to full throttle in 150 ms [Collonia, 1979]. When 

describing the throttle servo for an automated gear change system requiring 

engine speed control, Ford [Main et al, 1987] state that to be transparent to 

the driver full to zero travel time should be less than 200 ms and positional 

accuracy should be 0.5° or better. The system described in this reference used 

an analogue throttle servo which offers greater resolution than the discrete 

motion of the stepper system. Originally such a device was employed on the 

rig, however the system proved extremely sensitive to noise from the engine 

ignition system causing unsatisfactory hunting around the command position 

leading to its replacement with the current stepper system. 

The electric motor is controlled via the M68000 DAC interface which 

feeds analogue voltages to the Lucas Chloride power electronic control unit. 

One signal is used to controi acceieration and another to control regenerative 

braking. Both software and hardware interlocks are used to prevent brake 

and motor signals from being applied simultaneously. In the event of a 

software failure a watchdog routine has the ability to disable the output from 

both DACs with a single signal from a VIA; with the result that no further 

erroneous controller action will be effective. 

Software for the M68000 is written mostly m the 'C' language, with 

small amounts written in M68000 assembler. This assembler is necessary 

for manipulation of registers within the VIA and STC chips. The 'C' 

programming language is particularly useful for real time control applications 
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as it is sufficiently high level to allow complex control structures to be easily 

written, and yet compiles efficiently to produce fast execution times. 'C' 

also interfaces easily with M68000 assembler routines with a simple system of 

parameter passing between the two. All program development is carried out 

on an M68020 Unix based system and down line loaded into the M68000. 

2.3.2 The Duet 16 Personal Compll.llter 

This computer does not carry out any direct control of the drive train. 

Its purpose is to interact with the operator for overall rig control, to display 

graphically in real time selected test results and, when a test is complete, to 

accept data from the M68000 system and display selected data after suitable 

analysis. All the P.C. software is written in BASIC. Although BASIC suffers 

from slow running speed and lack of structure its interactive nature and ease 

of use in graph plotting has proven extremely useful for displaying results. 

The Duet has a useful range of peripheral devices including a dual disk drive, 

colour graphics monitor and dot matrix printer which has been used to obtain 

most of the graphs in this thesis. 

2.4 Instrumentation 

Instrumentation on the rig is used to gather three categories of data; 

vital control values, safety measurements and visual checks. Control signals 

passed to the M68000 are shown in Table 2.3. In each case the transducer 

type and input signal type are given. In all cases these signals first pass 

through an interface electronics unit, housed under the M68000 itself, prior 

to connection to the appropriate input chip. Close proximity of the interface 

and microprocessor ensure minimal contamination by noise in the intervening 

wmng. Least accurate of the measuring devices listed in Table 2.3 is the 

engine fuel flow transducer. This device consists of a small turbine which 
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generates pulses as it rotates. Unfortunately at low flow rates measurement 

accuracy is poor and so this method cannot be used for measuring the idling 

fuel consumption of the engine. An alternative manual method uses a digital 

balance to accurately weigh the amount of fuel used and can easily measure 

idle fuel flow rates. A simple tap arrangement allows fuel to be drawn either 

from the main tank or a container on top of the balance. 

Electronic signal processing provides the necessary filtering and am­

plification appropriate to each signal type and input chip combination. All 

interface circuits are based on the 741 operational amplifier ( op-amp) and the 

filters use a second order Butterworth design [Hilburn, 1973]. Due to the 

presence of the op-amps a dual power supply is required, this is provided 

by a number of de-de converters which are intended to demonstrate that the 

whole system could function off the single 12v engine battery. 

Speed signals are vital to rig safety and so duplicate systems pro­

vide speed readings to both the M68000 and hard wired overspeed trip 

circuitry. Three speed measurements are provided covering the engine, motor 

and flywheel. Reference to the rig layout diagram shows that this set of 

measurements completely defines the state of the rig. All speed signals come 

from m3-gnetic probes activated by i.uuthed wheels. Those providing data to 

the l\1168000 include integral circuitry to generate a pulse train, in contrast 

the safety probes produce unconditioned analogue output. Signals from the 

safety probes are fed to the operators display panel where, in addition to 

passing through the trip circuitry, they are used to drive panel speed meters. 

In figure 2.1 the operator's control panel is labelled safety trips, 

instrumentation and test bed control. This unit includes the electronics for 

the torque transducers which process the raw signals prior to passing to the 

M68000. In addition these devices provide panel meters displaying torque, 

speed and power. Other displays on the panel show engme cooling water 
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temperature, oil pressure and battery state of charge. 

Throughout the whole rig temperature sensitive paper is used liberally 

on components liable to overheat such as bearing mountings. Regular checks 

of these indicators show the maximum temperature which has been reached 

and thus provide an additional safety precaution. Finally two emergency stop 

buttons are provided, one on the operator's control panel and one near the 

gearbox, these cut the engine and motor ignition and apply an air brake 

which is fitted to the flywheel. 

2.5 Software System 

Computer software for the rig system provides real time data gathering 

and control, with simultaneous real time displays. Data analysis programs 

are also available for later analysis of results. Such varying demands are met 

using the software structure shown in figure 2.4. During an active test the 

M68000 and Duet run parallel programs which proceed in three broad phases . 

regardless of the test being carried out. As can be seen from figure 2.4, the 

three software stages are initialisation, active rig control and data gathering, 

and finally data transfer and disk storage. Because of this common core 

structure programs designed to carry out widely differing tasks can be quickly 

produced by modifying existing programs. 

2.5.1 System Initialisation 

During the initialisation phase, system parameters are relayed from 

the Duet to the M68000. Maximum flexibility is achieved by passing nearly 

all variables in this way, however many seldom change between tests. To 

avoid the need to enter such variables every time a program is run, they can 

be selected as a default option by the user. A most important example of a 

variable of this type is the base sampling period which will apply to all digital 
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control algorithms and data sampling. This sampling period is generated by 

interrupts from a timer on the ADC board. Selecting a sampling period for 

a digital system is quite a complex process, however in this case it represents 

a compromise between allowing for the fast response times characteristic of 

the torque control systems and still leaving sufficient time to carry out all 

necessary control computations at each interrupt. As a result of this trade 

off the standard sampling period used in all experiments is 20 ms. Should a 

key variable such as this, ever need to be altered for some reason this means 

altering a line of BASIC which is a far quicker process than recompiling the 

M68000's 'C' program. 

Ultimately the interrupt period is based on a 0.8 MHz clock on the 

ADC board which is then subdivided by countdown timers to provide the 

20 ms period. Interrupts on the M68000 can have any one of 8 priority 

levels, with level 7 the highest and level 0 the lowest. Only levels 3 and 4 

are used on the hybrid vehicle rig processor, the data sampling and control 

interrupt generated by the ADC is level 3 and the VIA chips can generate 

at level 4, either when one of their timers times out or in response to an 

external signal. Both these possibilities are represented by the three interrupt 

applications carried out by the VIA's on the rig system. One timer is used 

to count pulses output to the stepper motor. When all necessary pulses have 

been sent, the counter reaches zero and pulses are cut off by the interrupt 

routine. The second timer application is a watchdog system included in the 

software as a safety measure. During normal operation the watchdog timer 

is reset at each sampling interrupt and consequently it never reaches zero. 

In the event of a software failure causing the sampling interrupt to become 

inactive, the watchdog timer times out and generates a level 4 interrupt. 

When this happens the interrupt routine shuts the rig down by cutting the 

engine ignition and disabling motor accelerator and brake signals. Finally the 
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only external signal generating an interrupt comes from a gear lever position 

sensor as described in chapter 6. 

Another important initialisation is concerned with data logging. Before 

an experiment begins the Duet presents the user with a full menu of available 

data sources. He is then able to select any combination of data sources which 

may be relevant to the particular test. Furthermore the user can request 

that these sources be recorded either after every 20 ms interrupt period, or 

after any multiple of it. Thus although data is sampled every 20 ms for 

control purposes, it need only be recorded as often as the user considers 

appropriate. Both these features of source selection and extended sampling 

period encourage best use of available memory space and reduce the time 

needed for data transfer to the Duet and its subsequent retrieval from disk. 

An essential feature of the software in most applications is the cycle 

following capability. A test cycle commonly refers to a speed/time profile but 

in addition the engine throttle or motor accelerator can be made to follow a 

cycle of positions or settings. It is also possible to define a torque/time profile 

when testing the engine and motor torque control systems. Regardless of the 

cycle type, cycle parameters are transferred from the Duet to the M68000 

during the initialisation phase. The operator can select any cycle which has 

been previously defined and stored on disk. A small BASIC program is used 

for cycle definition. When this program is run, the user is prompted firstly 

to input the number of data points followed by the time and demand level 

for each one. When the M68000 interprets the cycle it interpolates between 

each data point so that cycles consist of a number of straight line sections. 

Having received all the basic system variables the M68000 carries 

out hardware initialisation, this consists of moving the throttle-servo to zero 

and placing the gearbox in neutral. After this stage further variables are 

transferred to the M68000. In this case they are mostly controller gains, 
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precisely what values are needed depends on the particular test, with the 

full set only being necessary when the completed hybrid control system is 

operated over a cycle. Once this stage is finished the initialisation phase of 

the software comes to an end. 

2.5.2 Active Rig Co:rrntroli 

With initialisation complete the main phase of both programs begins. 

In the M68000 the software divides into time critical tasks which are executed 

every 20 ms in the interrupt routine and non time critical tasks which run 

in the background whenever time is available. Immediately after initialisation 

the main programs give the operator at the Duet full manual control of the 

ng. By pressing appropriate command keys, as detailed on a menu, the user 

can operate the engine ignition, starter motor or change gear. A further Duet 

command key toggles the action of a small hand held potentiometer between 

control of engine throttle or motor accelerator demand. The signal from this 

potentiometer is fed back to the M68000's ADC board. All command keys 

cause a single character to be passed from the Duet to the M68000 which 

continually scans for such inputs in its background routine. A summary 

of the command keys and their functions is given in Table 2.4. Although 

processing a user request maybe delayed by an interrupt routine, the delay 

is so small that as far as the user is concerned his commands are obeyed 

immediately. 

As indicated m Table 2.4 one of the user commands instructs the 

M68000 to commence the test cycle. Once this option has been selected all 

the manual control commands are overridden. At each interrupt throughout 

the cycle, the M68000 calculates cycle time by incrementing a counter on 

each execution. This time value is used by the interpolation routines which 

calculate the required setpoint at each point in the cycle. In a simple test 
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this may provide the demand signal to the throttle servo-system but there 

are other applications as mentioned previously. As the test proceeds relevant 

parameters are passed to the Duet for use in a real time display which may 

be graphical or numerical. These parameters are not passed on any strictly 

regular basis but depend on the processing time needed for the Duet to 

display each one, subject to any delays due to interrupts in the M68000. For 

example during a driving cycle test values of speed in km/h are passed to the 

Duet. These are displayed numerically and they are plotted over the cycle 

profile to give an immediate visual check on the accuracy of cycle following. 

Over a typical cycle time period the rate of on line data transfer 1s more 

than sufficient to fully utilise the resolution of the graphics screen. At any 

time during the cycle the operator has the option to abort it by pressmg 

the appropriate key. If he takes up this option the rig is shut down by 

cutting the engine ignition and applying the regenerative brakes until the ng 

is stationary. At this stage the cycle may be restarted from the beginning 

with all control and data logging reset. 

2.5.3 Data Logging 

rig control commences the M68GGG begins gathering 

data from all sources at each interrupt. Thus data is always available for 

control as soon as the cycle starts or in some cases for user displays during 

manual control. Scanning the data sources gets first priority as soon as the 

interrupt occurs. Since this scanning process only consists of reading chip 

registers and transferring the measured values to an array, execution time is 

very small. Only raw transducer values are recorded so that no unecessary 

time is used in computation. During this initial data retrieval routine the 

watchdog timer is also reset. 

Component control routines follow the first data logging routine ac-
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cording to the individual program application. In the most complex case, 

this comprises fully integrated control of the engine motor and transmission 

to meet the demands of the test driving cycle. Due to the compact nature of 

the initial data logging the component controllers will have suffered minimal 

delay in receiving the necessary data and need only process those data sources 

which they require. 

Before each interrupt routine ends, a final data logging routine is 

executed. This routine transfers those data sources selected by the user 

during initialisation to a large array which builds up m memory until the 

test is complete. With extended data logging this only happens after the 

appropriate number of interrupts have occured. Having final data logging 

after component control is advantageous in that control is not unecessarily 

delayed and in addition parameters derived during the control process may 

be recorded. A final refinement to the data logging software allows recording 

to begin at a specified point in a cycle as · input from the Duet during 

initialisation. As a result it is possible to sample a small part of a long 

cycle at maximum sampling rate without building up an unecessary amount 

of data. This is particularly useful during transient experiments when often 

there is a iarge preliminary phase of the cycle, designed to allow steady state 

conditions to be reached, before the transient input is applied. 

2.5.4 Data Transfer 

The final phase of the software on both the M68000 and the Duet 

Is concerned with data transfer. To start this process the user presses the 

appropriate command key and inputs the name of a disk file to be used by 

the Duet. At this point the M68000 scales all the raw transducer readings 

that have accumulated in its data array into meaningful values, for example 

the raw ADC reading from the manifold pressure transducer is converted to 
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mbar. During the transfer the Duet prompts the M68000 for each data value 

and immediately writes it to the disk file. Before the disk file is closed the 

user can input any number of comments concerning experimental conditions. 

Following this action the M68000 and Duet programs both end. It is possible 

to end both programs without going through the data transfer phase. 

2.5.5 Data Allllall.ysis 

Any disk file may be retrieved at a later date and then displayed 

graphically on the screen of the Duet using a BASIC graph plotting program. 

The nature of BASIC made it easy to refine the graphics display into a pleasing 

format. This feature has been exploited to produce a graph drawing program 

capable of coping with all the different data types present in experimel].ts on 

the rig. The graphics routines begin by retrieving the sampling period and 

data code word from the disk file. This provides the information necessary 

to label the y-axes and also specifies what increment to use between points 

on the time-axis. 

With two or more data sources the program can use two independently 

scaled y-axes. The program allows the operator to specify which data sets 

from the file are to be plotted on the same a_vis. It then retrieves all d~J::t 

points from the disk file and searches for maximum and minimum values 

to automatically scale the axes and therefore make best use of the screen 

size. As an alternative to plotting results against time, an additional program 

allows any pair of data sources to be plotted against each other. Apart 

from graphical display several data analysis utilities have been written, one 

of the most useful of these will produce a regression line for any pair of data 

sources. 
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2.8 JD.iisc1lll.ssiollll 

Foremost of the considerations taken into account when designing the 

rig has been retaining flexibility in operation. For this reason manual control 

has been retained as a possibility in almost all cases, as an alternative to 

computer operation. For example it is still possible to select a gear by hand 

when the rig is stationary, despite the fact that this meant designing an oversize 

shift mechanism. Clearly this is an advantage since many experiments are 

carried out in a fixed gear and there is then no need to operate the compressed 

air system merely to initially engage that gear. The only exception to this 

manual option rule is the engine throttle, which must be operated by the 

computer controlled stepper servo-system. Nevertheless no major modifications 

have been made to the carburetter and it would be straightforward to install 

the conventional manual linkage to the butterfly valve once again should the 

need anse. 

As well as considering freedom of operation in the mechanical design, 

the software too has been structured to allow as much experimental flexibility 

as possible. As a result of this approach the M68000 software consists 

of a hard core of control and data logging routines which provide the basic 

framework for individual experiments. These core routines provide an interrupt 

programming area which carries out data logging of all available sources and 

a background routine which allows easy transfer of user commands from the 

Duet. To build up a program for a particular experimental application only 

requires that the necessary component control be added to the interrupt 

programnung area. This is made easier by a number of basic component 

control routines such as those for stepper-servo control and gear changing. 

By adopting this approach there is no need to write a fundamentally different 

program whether the experiment is concerned with simply observing the effects 

of transient throttle movements or carrying out fully integrated control of all 
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the drive train components. 

The microprocessor and electronics system on the rig represent what 

would be a vital part of any operational road vehicle based on the design. 

Only ten years ago this microprocessor control system and associated instru­

mentation, would have seemed exceedingly sophisticated when compared with 

conventional vehicles of the time, however this is almost certainly not the 

case today. As Westbrook pointed out in a review of automotive electronics 

[West brook, 1986], there has been a rapid increase in the electronics content 

of conventional vehicles over the last few years and this trend seems set to 

continue. In all complex control systems applied to vehicles to date, the main 

problem facing manufacturers has been achieving high reliability and low cost 

in the relatively harsh vehicle environment. Despite this difficulty the incen­

tive of achieving better economy and reduced emissions has been sufficient to 

allow microprocessor based engine systems to be considered for use in mod­

erately priced vehicles [Kawamura et al, 1985][Main, 1986]. These examples 

illustrate that the control system needed by a hybrid vehicle should not prove 

an insurmountable obstacle to its acceptance. Furthermore these systems also 

illustrate that the high volume production associated with the passenger car 

market even make it possibie to design custom chips for automotive appli­

cations. Often this comes about as a result of close collaboration between 

vehicle and semiconductor manufacturers, as is the case with Nippondenso 

and Toshiba [Kawamura et al, 1985]. 

In the software field the attention of vehicle manufacturers has focussed 

on reliability and efficient use of memory space [Srodwa et al, 1984]. When 

the low cost of electronic memory is considered this latter consideration might 

seem surprising, but it 1s merely indicative of the highly competitive state 

of the vehicle market. In the above paper, Ford discuss the advantages of 

writing small engine control programs in assembler rather than using the usual 

48 



combination of high level language plus compiler. They state that the added 

difficulty in producing the coding is worthwhile even if the resultant program 

is only 25% smaller than the high level language version. It is however 

unlikely that this advantage would remain as control structure becomes more 

complex, as it would be in a hybrid vehicle. Since conventional vehicles are 

almost certain to incorporate an equivalent level of sophistication in their 

control systems the hybrid should not suffer any disadvantage in this respect. 

Transducers are another area which are vital to the operation of the 

rig, since without them the complex control strategies necessary for optimum 

control of the hybrid drive train would be impossible. The reliability and 

cost of these devices has an important bearing on whether the hybrid vehicle 

control concept, investigated on the rig, could ever be put into commercial 

production. As far as cost is concerned the transducers are often far more 

important than the controlling electronics; typically they account for 65% of 

the cost in an engine management system [Westbrook, 1986]. Fortunately 

all the engine transducers used on the hybrid vehicle rig have already been 

successfully employed in conventional production vehicles. A summary of the 

state of engine sensor technology in 1985 was carried out by Wolber and 

Ebaugh [Wolber and Ebaugh, 1985]. As this paper shows both magnetic 

speed sensors and the strain gauge manifold pressure transducers have passed 

the twin tests of low production costs and reliability in the engine operating 

environment. When it is realised any component operating in the engine 

compartment must survive temperatures ranging from -40°C to 120°C, as 

well as the effects of salt spray, it is apparent what a stiff test of transducer, 

and electronic technology, this represents. In the case of the motor the only 

transducers required by the hybrid drive system are the Hall effect current 

probes. These devices have long been an essential part of electric traction 

control systems and indeed one is included in the Lucas Chloride power 
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electronics control unit 011 t.lw ng. 

The purpose of t.he preceding discnssions ha.s been to show that. t.he 

microprocf':-;sor ha.sed control system envisa.gf'cl for a hybrid vehicle would not. 

pose any extrem<" difficult.ies t.o vehicle manufacturers. Possibly a far more 

important ecoJJomic co11sidera.tion is t.hc viability of having t.wo power sources 

in the drive t.rain. However this is an exceedingly difficult quest.ion to answer 

and lies beyond the scope of the work described here. In this case the primary 

goal is to est.ahlish the technical feasa.bility of blemling the various operating 

modes possible with a hybrid drive t.rain. The rig system described in this 

cha.pt.er provides t.be necessa.ry t.cst. environment. to achieve this, however it. 

represents only a beginning. In the next chapter t.he design of the control 

system begins in e<trnest. wit.h an analysis of t.lw relevant physics of the engine 

<tnd mot.or. 

2. 7 SoftwaJ't> Docunwnt.ation 

For re<t.sons of commercial contldent.ialit.y softwet.re listings are not 

included in this thesis. However full listings and supporting documentation 
·;_ 

are a.va.ilable within the School of Engineering and Applied Science. This 

document.ation includes an OJWr<t.ting guide for the rig and circuit diagram:; 

for all the t.ransducer circuitry. 

50 



Component Description 

Traction Motor Lucas Chloride separately excited d.c. 
motor, Type MT286 rated 37 kW (1/2 hr) 

Motor Control Lucas Chloride Type Mk. HIB current 
controlled SCR Armature Chopper and 

transistor field chopper 
Batteries 1ucas Chloride Type EV5C, 216v, 184 Ah 

(5hr rate) 
Engine Ford 1100cc petrol engine 

32 kw at 5,500 r.p.m. 
71 Nm at 3,000 r.p.m. 

Transmission 1st 3.656:1 
2nd 2.000:1 
3rd 1.425:1 
4th 1.000:1 

Flywheel Variable inertia 
2.02 to 15.57 kgm2 

Dynamometer Froude Consine EC38TA water cooled 
dynamometer 

Max. torque 4 75 N m 

Table 2.1 Test Bed Component Ratings 

Signal Name Interface Hardware Signal Type 

Engine Throttle 2 x 6522 VIA Chips Pulse Train to 
·Command Stepper Motor drive card 

Motor Accelerator 12 bit DAC Analogue signal to 
Command power electronics controller 

Motor Brake 
, , 

Command 
Starter Motor 6522 VIA ofp port l=ON O=OFF 

Gear shift signals 6522 VIA ojp port ON/OFF signals 
to solenoid valves 

Engine ignition 6522 VIA ojp port l=ON O=OFF 
Engine Throttle 6522 VIA ojp port 1=Move to Full 
direction signal O=Move to Zero 

Motor Accelerator/ 6522 VIA ojp port 1=Enable 
Brake enable/disable O=Disable 

Table 2.2 M68000 Output Control Signals 
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... 

Signal Name Interface Hardware Signal Type 

Engine Speed VIA Counter Pulse Tiaill fro¢' 135 tooth 
engine . starter iing 

Motor Speed STC Counter Pulse Train from 
90 tooth wheel 

Flywheel speed STC Counter Pulse Train from 
60 topth wheel 

I.C. engine STC Counter Pulse Train from 
fuel flow turbine device 

Inlet manifold ADC Integrated strain gauge 
depression bridge O,.lOOmV ..:...Q-300 Nm 

Motor and Engine ADC Strain gauge 
Torque Transducer 

Motor Field and ADC Hall effect current transducers 
Armature current 0-lOV =0-200A-turns 
Motor Field and ADC Voltage tr~nspdsers 
armature voltage Transfer ratio 25:1 

Gear lever VIA Input Port l=Active 
Sensor switches 0 =:IJ1acti ve 

Manual accelerator ADC 0-5V from hand 
sig11al held pot. 

Table 2.3 M68000 Input Data Signals 

Command Letter M68000 Response 

D Commence Cycle 
A Abort cycle:- Engine throttle set to zero, 

ignition off, regenerative braking until 
flywheel is stationary 

I Toggle engine ignition 
u Record data sources requested 

during initialisation 
Q Stop data recording:- EngiJ1e throttle set 

to zero, ignition off, stop motor, 
disable motor brake and accr., stop ADC 

interrupts, disable stepper motor, exit program 
R As Q but transfer data to Duet prior 

to program exit 
M Toggle manual pot. between motor accr. and 

engine throttle control 
s Toggle engine starter n10tor 

0-4 Move i1~to neutral or appropriate gear 

Table 2.4 Operator Command Keys 
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CHAPTER 3 

PHYSICAL ANAJLY§I§ OF THE ENGINE AND MOTOR 

In the introduction the concept of the various possible operating 

modes of the parallel hybrid drive system was put forward. Once a given 

mode has been selected the necessary torque and gear shift control must be 

undertaken to actually bring about the chosen operating state. To achieve 

this goal the primary requirements are engine and motor torque control and 

transmission shifting. A further control sub-system is needed to start the 

engine when required. 

The simplest way of providing torque control for either the engine or 

the motor is to monitor the signals from the torque transducers and then adjust 

the demand to either the engine throttle servo system or the motor power 

electronics, until measured output matches demand. Unfortunately torque 

transducers, such as those used on the rig, are not practical in a production 

vehicle due to their prohibitive cost. This problem would be likely to remain 

even if the devices were manufactured in the large numbers applicable to the 

mass car market. As a result, torque measurements must be made which 

are based on cheap, robust sensors. Once these alternative methods are 

devised and calibrated they can be used as the feedback signals to closed 

loop torque control systems. On the hybrid vehicle rig the indirect torque 

measurement method for the engine is based on inlet manifold depression and 

speed, [Masding and Bumby, 1988 (b)] whilst the equivalent system for the 

motor uses values of armature and field currents [Masding and Bumby, 1988 

(c)]. 

Before any control algorithms can be designed, mathematical models 

of both the i.e engine and the motor must be developed. These mathematical 

models will describe the dynamics of the relationship between the controlled 

variables, which are the calculated torque outputs of the engine and motor, 
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and the adjustable inputs which are throttle setting and demand voltage to 

the power electronics unit. All the control is carried out in the M68000 using 

discrete control algorithms, suggesting that the most appropriate form for the 

mathematical models is discrete transfer functions. Identification techniques 

described in the next chapter make it possible to arbitrarily assume what order 

of transfer function might be appropriate to say, the relationship between motor 

torque and accelerator demand and then determine the necessary coefficients 

from experimental data. Using this technique however brings with it the 

danger of underestimating the order of a key transfer function and hence 

eventually to poor controller design. Less seriously overestimating the order 

of a transfer function needlessly increases the identif).cation time. Consequently 

an important first step towards . digital transfer function identification, is an 

analysis of the physics of both the engine and motor. Such an analysis 

is best carried out in the continuous s-plane which more easily relates to 

most of the systems involved. Having established, through this analysis, 

what order of transfer function is appropriate to each plant the equivalent 

digital systems have a sound analytical foundation. In the next two sections 

analysis of first the motor and then the engine will be brought to the stage 

where an appropriate digital transfer function can be written down to relate 

the individual control signal to the resulting torque output as calculated 

through the indirect method. In addition a similar result is obtained which 

relates engine speed under no load conditions to throttle setting. At the 

conclusion of this process the coefficients of these digital transfer functions 

are unknown however in chapter 4 they are successfully determined on the 

basis of experimental input/output data. 
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l.Jl A:n:naly§i§ oft' ihe EleciFic 'JI'JractimD. §y§iem 

The main elements which make up the electric traction system are 

shown in figure 3.1. The motor field current is controlled by a transistor 

field chopper while the armature current is controlled using a thyristor (SCR) 

chopper unit. Both systems operate at a nominal battery voltage of 216v. 

Connected in the armature circuit is a large inductance for regenerative braking 

purposes and to ensure continuous current flow . .The M68000 microprocessor 

control unit interfaces with the power electronic controller by outputting an 

accelerator or brake demand signal, Bm, to the power electronic controller via 

two DAC's. All identification and analysis is carried out in terms of this 

variable Om, which is the number set in the DAC register by the M68000. 

Any relationship involving Om can be converted to volts by taking into account 

that numbers in the DAC registers range from 0-4095 and this corresponds to 

0-5 volts. Raw output from the DAC's is modified by buffer amplifiers which 

have a gain of 0 .. 68, in the case of the accelerator signal, and 0.56 in the case 

of the brake. According to the original design for the electric traction system 

the brake and accelerator signals originate from potentiometers moved by the 

driver's pedals. Sup1Jy voltage for this potentiometer comes from the power 

eiectronics and does not exceed 3.5 volts in the case of the accelerator or 3 

volts in the case of the brake. Consequently not only do the buffer amplifiers 

isolate the computer DAC from direct contact with the power electronics, 

but in addition the attenuation they provide ensures that even the full DAC 

voltage can not exceed the design limits for the controller. 

3.1.1 D.C. Machine Analysis 

The basic equations governing the behaviour of any d.c. machine are 

(3.1) 
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Equations (3.1) and (3.2) can be expressed in transfer function form as: 

~a 1 
-- = A(s) = ---
Va - ea Ra + Las 

it = F(s) = 1 
v1 R1 + L1s 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

whilst ¢1, the field flux, can be expressed as a function of the field current, 

(3.7) 

If no saturation of the magnetic circuit is present, then 

(3.8) 

In road vehicle applications the traction motor must provide the 

necessary propulsion torque to overcome vehicle inertia effects aerodynamic 

drag and vehicle rolling resistance such that 

(3.9) 

where 7l is the vehicle aerodynamic and rolling resistance loss torque and J 

is the vehicle inertia both referred to the motor shaft. 

In his paper on electric machines and power systems, Barton [Barton, 

1987] elegantly represents these equations in the block diagram form of figure 

3.2. Unfortunately this system is non-linear because of the presence of the 

two multiplier blocks and the saturation function which relates field current 
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to field flux. Examination of figure 3.2 suggests that two basic methods are 

available for controlling the torque output, and hence speed, of the electric 

traction system. Firstly, field voltage can be maintained constant and all 

control carried out on the armature via the armature chopper. With field 

current constant the motor speed is essentially proportional to the applied 

voltage so that, assuming constant current flow, as the applied armature 

voltage is va~ied so too is the motor speed. Consequently with full field 

current applied to the field winding motor speed can be varied from zero to 

break speed by controlling the voltage applied to armature terminals via the 

armature chopper. When full armature voltage is applied the motor will run 

at break speed. In this condition the multiplier blocks reduce to a simple 

gain which produces a linear transfer function relating both motor torque and 

motor speed to the controlled armature voltage. In the second basic control 

mode armature voltage can be maintained constant while the field current 

is varied. Because motor speed is inversely ·proportional to field current, 

equation (3.3), this field weakening mode is usually employed to obtain motor 

speeds in excess of the break speed. To provide smooth control in this field 

weakening, high speed, region some degree of armature control may also be 

necessary. 

In some instances a third mode of operation maybe used at speeds 

below break speed in which both the field current and the armature current 

are varied together, m some way, so as to improve the overall response of 

the motor/ controller system. 

3.1.2 Motor Torque Equation 

In any D.C. motor air-gap torque is related to armature current and 

field flux by equation (3.4) which, if saturation is not present, reduces to 
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(3.10) 

As machine saturation is mainly dependent on the value of field 

current, a more accurate statement of equation (3.10) would be 

(3.11) 

3.1.3 Effect of ilhe Power Electronic ConiroUer 

Initial tests on the power electronic control unit showed that all three 

modes of control described in section 3.1.1 are used to control the motor over 

its complete speed range. Each of the three modes of operation used can 

be characterised by the behaviour of the field current as shown in figure 3.3. 

Over the range Om = 0 - 250 both field and armature current are directly 

controlled. This mode, termed the field boost mode, 1s characterised by 

the rapidly increasing field current. At speeds below 2500 r.p.m. the field 

boost mode ends when i 1 reaches 8.5A the motor then moving into a full 

field mode where field current is constant and all control takes place in the 

armature. The motor remains in this full field mode for all higher values of 

Om provided that the speed is no greater than about 2000 r.p.m. At higher 

speeds the field weakening mode, characterised by gently falling field current, 

is entered. The precise value of Om at which this happens is speed dependent, 

for example at 2300 r.p.m. ()m = 500 while at speeds above 2500 r.p.m., 

the motor break speed, full field mode is not used and the motor switches 

directly from field boost to field weakening at an initial field current value 

that depends on speed. 

In the power electronic control unit both field and armature current 

are controlled. Examination of the circuit diagram for the power electronics 

shows that a Hall effect device is used to derive the feedback signal for control 
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of armature current, whilst a current transformer is used for control of field 

current. Each closed loop system uses a set point based on the accelerator 

demand. Combining this information with the governing equations, (3.1)-(3.6), 

produces the control block diagram of figure 3.4. 

The set point in both the field and armature current control loops is 

calculated from the accelerator input, Bm, by the set point functions a( Bm) 

and f3(Bm) respectively both of which depend on the mode of operation. 

Analysis of this block diagram allows the relationship between Bm and 

motor torque, Tern' to be determined. Consider first the field current control 

loop. Here a compensator, C1(s), outputs the voltage, Vf(s), to the field 

windings on the basis of the current error which it measures. This action 

results in a certain closed loop current response for the compensator plus field 

windings which may be defined as G t( s ), where: 

G 
8 

_ C1(s)F(s) 
t( ) - 1 + C1(s)F(s) (3.12) 

hence the response of field current to the accelerator setting is 

(3.13) 

and for small changes m demand, f:l.()m, 

(3.14) 

Similarly for the armature loop, the set point current is j3(()rn(s)), and 

the closed loop current response for the armature in the absence of ea ( s) is 

Ca(s)A(s) 
1 + Ca(s)A(s) 

(3.15) 

giving the full armature loop response in the presence of ea( s) as: 
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(3.16) 

To evaluate equation (3.16) it is necessary to know the transfer function of 

the current controller, Ca( s ). First order op-amp compensators are used by 

the power electronics in both the field and armature current control loops so 

that the form of the armature controller is: 

( ) 
KP CaS = -~-

1 + TpS 
(3.17) 

Hence by substituting for the controller and also for the field current, i 1 ( s), as 

defined by equation (3.13) the complete armature current response is obtained 

as 

(3.18) 

where a*(Om(s)) = ~a(Om(s)) 
p 

During normal operation any change in motor speed occurs only slowly 

due to the large vehicle inertia. In contrast current changes occur rapidly so 

that during current control motor speed can be regarded as constant at the 

initial vaiue N0 , so that, for smali changes in demanc.l 

(3.19) 

The importance of equations (3.13) and (3.18) lies in the way in which 

they can be used to relate the accelerator demand to the motor currents 

and hence to the output torque via the torque equation, (3.11). Particularly 

important is the linearised form of this equation which is given by 

(3.20) 



Substituting for 6.i1(s) and 6.ia(s) from equations (3.14) and (3.19) g1ves: 

6.Tem(s) =KT(I,)[Ga(s){L).,B(Om(s))- (1 + Tps)Noi).a"(Bm(s))Gt(s)}if(O) 

+ Gt(s)L).a(Om(s))ia(O)] 
(3.21) 

Provided that the setpoint functions, L).a(Bm(s)) and L).,B(Om(s)), may 

be written as K 6.Bm(s), where K is some constant, then equation (3.21) 

describes a linear transfer function relating D.Om(s) to D.Tem(s). Such a result 

is the key to the control of motor torque since it relates the output to be 

controlled to the only available input, D.8m. To evaluate the expression for 

D.Tem( s) two channels of identification are required. 

A. Steady state experiments to determine the set point functions D.a(Bm), 

D.a"'(Bm), D.,B(Bm) and to calibrate the torque relationship KT(1.f ). 

B. Transient experiments to determine the unknown dynamic elements 

Both the steady state and transient identification experiments are 

presented in chapter 4. The transient experiments are used to obtain digital 

transfer functions for the dynamic elements. Before such identification can 

begin however it is necessary to transform the s-domain transfer functions 

into the correct z-domain form. 

Equation(3.15) defines Ga(s) in the abscence of ea(s). During iden-

tification experiments ea ( s) can be made constant so that when difference 

values are considered the same expression applies. 

Ca(s)A(s) 
1 + Ca(s)A(s) 

(3.22) 

Substituting for the first order compensator included m the power 

electronics, equation ( 3.17), reveals the form of the s-plane transfer function 

for Ga(s) 
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(3.23) 

A zero order hold is included in series with the transfer function G a ( s) to 

model the digital to analogue converter to give the pulse transfer function 

(3.24) 

with result: 

(3.25) 

A similar equation to equation (3.25) holds for G1(z). 

3.2 Physical Analysis of the I.C. Engine 

3.2.1 Inlet Manifold Pressure Variations 

As previously mentioned the engine torque may be calculated from 

speed and inlet manifold depression. This method was successfully applied for 

the HTV-1 [Somuah et al, 1983]. The analysis of the engine must therefore 

investigate the physical processes governing air and fuel flow through the inlet 

manifold. All the relevant physical processes are shown in the block diagram 

of figure 3.5. An air /fuel mixture flows through the inlet manifold into the 

cylinders With the volume of the inlet manifold acting as a plenum chamber 

smoothing out pressure changes as the flow rate varies. When the throttle 

suddenly moves the manifold pressure will change over a number of engine 

cycles. Essentially the rate of flow of the air/fuel mixture into the inlet 

manifold depends on the throttle opening and the inlet manifold depression 

[Morris et al, 1981]. As the air fuel ratio is of the order of 15:1 this flow is 

dominated by the mass air flow rna. The mass charge flowing out of the inlet 
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manifold, me, depends on manifold pressure and engine speed. Balancing 

mass flows in and out of the inlet manifold gives: 

(3.26) 

Where mm is the mass of the gaseous mixture in the inlet manifold. Assuming 

ideal gas conditions then the mass, mm, can be related to the volume and 

temperature of the inlet manifold by: 

(3.27) 

g1vmg 

. . 
ma- me= (3.28) 

As explained above, the mass charge flowing into the cylinders is dependent 

on the manifold pressure and the engine speed and for small changes can be 

expressed as [Morris et al, 1981], 

(3.29) 

while the mass airflow into the inlet manifold is dependent on throttle opening 

and manifold pressure, which for small changes, gives: 

(3.30) 

Combining equations (3.27)-(3.30) gives the change in inlet manifold pressure 

as 

(3.31) 
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Where the manifold filling time constant 

(3.32) 

and the associated gam 

(3.33) 

both of which are dependent on engine speed, manifold pressure, and throttle 

opemng. Finally, because of the nature of the Otto cycle, a power stroke 

delay is present due to the time between filling a cylinder and combustion 

torque being produced. This power stroke delay amounts to one revolution 

60• 
of the engine, as represented by the term e-""N on figure 3.5. Physically 

this means that following any change in manifold depression, engine torque 

is delayed by an amount inversely related to speed ranging from 15 ms at 

4000 r.p.m. to 60 ms at 1000 r.p.m. In their analysis Morris et al, defined 

the sampling period for the digital engine model as the time for one engine 

revolution, arguing that this was the fundamental time period of the engine. 

As a result the power stroke delay could be simply modelled by the unit 

d 1 t -1 e ay opera oOf :0 • UnfortHnrt.tP.ly this step did not mean that the other 

terms in the digital model were independent of speed. In the context of the 

present system modelling the power stroke delay poses a difficult problem in 

that a fixed sampling period must be used regardless of engine speed. Not to 

do so would complicate software design and give a sample period irrelevant 

to the traction motor. Consequently the power stroke delay is dropped in 

all subsequent analysis of the engine and it is assumed that torque appears 

simultaneously with variations in manifold depression. Even under the worst 

case assumption of low speed engine operation the delay amounts to only 3 

system sampling periods. Such a small discrepancy between the torque that 
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the controller assumes that the engine is producing and that which it actually 

is, would be hardly noticeable to the driver. The power stroke gain, Kqt 

relates changes in the engine torque to the change in the manifold pressure 

and, as the experimental results in chapter 4 will show, it is dependent on 

engine speed. 

3.2.2 TlrrumsfeiL Function foll." Engine Toll"qpme 

The objective of the engine analysis is to relate the combustion torque 

to throttle position thus allowing a torque control system to be designed. 

Combining the result of equation (3.31) with the fact apparent from figure 

3.5 that 

(3.34) 

achieves this goal, m the form of the following equation: 

(3.35) 

The above expression can be considerably simplified by noting that over the 

time scale of manifold pressure and torque variations, the large vehicle inertia 

will maintain the speed constant at some value N0 . As a result it is possible 

to directly relate torque to throttle variations by a simple transfer function. 

~Tic(s) 

~0( s) 
_K~1 -ko(t9, Pm)Kqt(No) 
1 + STJ 

(3.36) 

The gam function Kqt(N0 ) is best measured under steady state conditions 

as part of the calibration of the whole manifold pressure, speed, torque 

relationship. Omitting this gain leaves the first order lag element, called the 

manifold filling delay, defining the dynamic relationship between two easily 

measured variables. 
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(3.37) 

In practice manifold pressure changes from this element are not observed 

directly, they must be filtered to avoid aliasing problems at the sample rate 

of 50Hz. This IS achieved by an active second order Butterworth filter. 

As the response of the filter is much faster than the manifold filling delay, 

equation (3.37) remains valid for the filtered pressure values, /}.pm, measured 

by the computer. 

(3.38) 

To aid in the identification process a discrete version of equation (3.37) is 

necessary which, in conjunction with the throttle transfer function, developed 

in section 3.2.3, will allow changes in inlet manifold pressure to be related 

to demand throttle opening. However the transfer function identified for the 

throttle unit only relates discrete values of throttle position at each sample 

interval whereas the throttle position applied to the engine is continuously 

changing during the sample period. Consequently some method of reconstruct-

ing a continuous signal from the discrete values produced by the throttie puise 

transfer function must be included in the discretisation of the engine transfer 

~f function. This is best achieved by incorporating a triangular hold in series ( 

with MJd(s), such that 

where T~ 1s the sampling period. Evaluating the z-transforms gtves: 

6p,(z) 
f}.B(z) 

b0 + b1z- 1 

1 - a1z-1 
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Once Kqt(N) is determined variations in engine torque can be predicted from 

throttle movements. 

3.2.:31 Throttle §ervo~System 

As explained in chapter 2 the stepper motor controlling the engine 

throttle moves 0.9 degrees per step at a rate of 4 steps/sample period 

(20ms ). Consequently should a throttle step demand of less than four steps 

be requested the throttle will be seen to reach the new position at the 

next sample instant. Due to the inherent discrete action of the stepper 

motor system this simply translates to a pulse transfer function without the 

intermediate s-plane analysis: 

Gr(z) = ~O(z) = ! 
~Od(z) z 

(3.41) 

With a change in excess of four steps per sample however, the throttle will 

not have reached its final destination after one sample and the new, updated 

position will simply be four steps in advance of the old. This process results 

in the block diagram for the throttle system as shown in figure 3.6. Full 

throttle opening occcurs at 85 steps and appears as an output limit block. 

For step changes of less than or equal to four steps/sample the transfer 

function reduces to that of equation (3.41) and is that used by Morris et.al. 

[Morris et al, 1981] 

3.2.4 Engine Speed on No-Load 

The i.e engine is only started when the drive system is rotating at 

speeds above 1000 r.p.m. Consequently to bring the stationary engine on line 

it is necessary to automatically start the engine and match its speed with the 

moving drive train. Design of a controller to achieve this requires a model 

of the engine which relates engme speed to throttle position when the engine 
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runs on no load. Examination of figure 3.5 suggests that, ignoring the small 

power stroke delay, a second order transfer function 

6.N(s) 
~B(s) 

(3.42) 

will relate throttle angle to speed. This model can not be expected to give 

entirely accurate results since the manifold filling delay terms, r 1 and K f, are 

themselves speed dependent as are k9(8, Pm), kN(N, Pm) and the power stroke 

gain, Kqt· Of these, variations in the gains K1 and Kqt will be the most 

significant because changes in the time constant, r1, will always be swamped 

by the delay, r2 , due to the engine inertia. Indeed it is the engine inertia 

which dominates the speed response, and by its slowness further justifies the 

omission of the power stroke delay in this case. 

3.2.5 Transfer Function for Engine No-lLoad §peed 

Using a triangular hold and discretising the second order transfer . 

function of equation (3.42) gives: 

~N(z) 

~B(z) 

bo + b1z-1 + b2z-2 

1 - a1z-1 - a2z-2 
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CHAP'I'ER 4 

EXPER][MJEN'I'AJL ][DEN'I'][F][CA'I'][ON RJE§UJL'I'§ 

In the previous chapter measurement techniques were proposed which 

allow the torque output of the engine and motor to be determined from 

other related variables rather than by direct measurement. Two experimental 

investigations are required before these methods can be applied directly to 

the control of torque. 

Firstly the indirect measurement methods must be calibrated under 

steady state conditions, for the particular engine and motor in use on the rig. 

In the first part of this chapter the results of these calibration experiments are 

presented and then the resulting torque relationships are tested under normal 

operating conditions. Once these torque signals are available and proven to be 

accurate, then the second stage is to determine the dynamic torque response 

of the engine and motor to input signals from the two accelerator systems. 

Analysis in chapter 3 has already shown what form of transfer functions 

ought to relate indirect torque measurements to throttle setting, in the case 

of the engine, and DAC setting in the case of the motor. For the engme 

there is only one dynamic element governing this relationship known as the 

manifold filling delay. It was shown that this element, describing the flow 

of air through the inlet manifold, may be modelled by a simple first order 

digital transfer function. All that remains to obtain a complete picture of the 

engine is to identify the numerical values of the transfer function coefficients 

at a range of different operating speeds. 

The situation with the motor is similar but now three dynamic 

elements, describing the behaviour of field and armature current, remain to 

be quantified. In this instance however further steady state calibration must 

precede the identification of the dynamic elements. This first stage measures 

the accelerator gain functions as defined in chapter 3 thus removing the 
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non-linear effect of the power electronics controller. The experiments which 

allowed these gain functions to be determined follow on from the calibration 

and testing of the two torque models. 

Once the gain function problem is solved the way is clear to identify 

all the necessary transfer functions. This is achieved using a model reference 

adaptive identification algorithm, thus completing the picture of the torque 

control environments relating to both engine and motor. To confirm the 

accuracy of the resulting transfer functions each one 1s tested against a 

completely independent set of data. These independent tests confirm that 

the engine and motor both behave consistently and so subsequent controller 

design can be tackled with confidence. 

4.1 Calibration of Indirect Torque Measurements 

4.1.1 Engine Torque Model Calibration 

Calibrating the engine torque model involves measunng the relation­

ship between speed, inlet manifold depression and torque output. In the 

steady state engine combustion power can be measured on the engine torque 

transducer and when plotted against inlet manifold depression at different 

speeds gives the variation shown in figure 4.1. These variations suggest that 

engine power can be expressed as: 

Pic = fi(N) + h(N)pm ( 4.1) 

At any speed / 1(N) and h(N) can be quantified by fitting a least squares 

regression line to the data of figure 4.1. The values of / 1 ( N) and h( N) are 

themselves expressed as a function of speed in figure 4.2. This figure shows 

that ft(N) and h(N) can in turn be computed at any speed by means of a 

regression analysis to give: 
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h(N) = -0.22112169 + 5.587 X 10-3 N 

h(N) = -6.152 x 10-4 
- 8.843 x 10-6 N 

(4.2) 

(4.3) 

which when substituted into equation 4.1 and converted to combustion torque 

gives: 

-2112.457 (5.875 ) A 

Tic = N + 53.359 - ~ + 0.0844 72 Pm Nm (4.4) 

Normally the nse time associated with torque and inlet manifold 

depression is significantly faster than that associated with engine speed, 

because the large vehicle inertia restricts the rate at which engine speed can 

change. Assuming the engine speed to be constant, then changes in engine 

torque can be related to manifold pressure changes by linearising equation 

( 4.4) about the initial operating speed to give 

tJ.Jic ( 5.875 ) ( ) ;:;:::-- = - f.i:- + 0.084472 = Kqt No 
Pm 0 

( 4.5) 

where Kqt is the gain of the power stroke delay shown in the block diagram 

of figure 3.5. 

4.1.2 Engine Torque Model Testing 

Although the global engine torque model described by equation ( 4.4) 

has been calibrated over a large engine operating range it is important to 

carry out independent verification. Only then can the effect of inaccuracies 

in the linear regression analysis be properly assessed. To achieve this the 

engme was operated on load over a wide speed range. Throttle changes 

were made manually during the experiments. All adjustments were made 

slowly to ensure pseudo steady state conditions and so allow the model and 
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torque transducer readings to be compared directly without concern for their 

differing dynamic responses. In figure 4.3 comparison is made between the 

two readings by plotting the ratio transducer torque over model torque against 

speed. The resulting graph shows the indirect model giving acceptable results 
at high speeds, whilst a.t speeds below 1200 r.p.m. the model begins to breal 

clo\Vll a.ncl predicts torques higher than those nwa.surecl by the transducer. In 

<til al.tt>mpt to compensate for this defficiency in the model the scaling factor 

1; 11) is applied whenew·r the engine is operating below 1200 r.p.m. 
In the hybrid arrangement engine torque control at such low 

speeds is unusual, since low speed operation is mostly all-electric. If greater 

accuracy is required then a possible solution would be to map torque as 

a function of manifold pressure and speed into a two dimensional array or 

look-up table. One disadvantage of this method IS the greater computational 

expense involved in interpolating between values. 

A separate experiment plotting the prediction of the global torque 

model against time reveals an interesting effect. As shown by figure 4.4., . 

the model gives a torque prediction that is approximately 3 Nm higher than 

the torque transducer measurement whenever the radiator cooling fan is not 

operating. During engine characterisation the cooling fan was always on 

and consuming some engine torque via the alternator. When the fan is off 

this torque is available at the output shaft and is registered by the torque 

transducer. As a consequence of this the torque prediction algorithm shows 

greatest accuracy in figure 4.4 during the indicated 10 second period when 

the radiator cooling fan was on. 

4.1.3 Motor Torque Model Calibration and Testing 

During the constant speed experiments used to determine the motor 

operating modes, as shown in figure 3.3, the M68000 was recording all 

data sources associated with the motor. After the experiments the torque 
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transducer and current readings were processed to show how the the motor 

torque constant, KT, varies with field current by applying equation (3.10). 

As figure 4.5 shows these results demonstrate a slight degree of saturation 

at high field currents the effect of which is quantified by the regression line 

which is fitted to the data. 

KT(it) = 0.109- 2.52 X 10-3it ( 4.6) 

and hence 

Nm (4.7) 

Further investigation of these results showed no variation of the torque constant 

with armature current. A comparison of predicted torque using equation ( 4. 7) 

with that measured from the torque transducer is shown in figure 4.6 for 

both motoring and regenerative braking operation. Agreement is at all times 

within ± 3 N m. 

4.2 Gain Functions for ~he Three Operating Modes of the Motor 

Open loop gain for the field and armature current control loops is 

given by CJ(s)F(s) and Ca(s)A(s) respectively. Assuming that in both cases 

the gain is substantially greater than one, then the corresponding closed loop 

transfer functions Ga(s) and G1(s) will have unity gain as can be seen from 

equations (3.12) and (3.15). Once this simplifying assumption is made the 

steady state expression for field and armature current can be predicted on 

the basis of equations (3.13) and (3.18) respectively 

it = a(Om) 

ia = f3(0m) - N a*(Om) 
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and in linearised form at constant speed N0 

L':l.i1 = L':l.a:(Bm) 

Aia = L':l.{3(Bm) - Nofl.a:*(Bm) 

( 4.10) 

( 4.11) 

Steady state experiments in each of the three operating modes should therefore 

reveal the form of the gain functions. 

4.2.1 Field Boost Mode 

In the field boost mode the experimental results of figure 4. 7( a) 

indicate that the set-point function a:( Bm) may be accurately represented by 

a second order polynomial. 

( 4.13) 

By defining the mean value of Bm as: 

( 4.14) 

and expanding equation ( 4.13) a.s a second order Taylor senes gives 

( 4.15) 

A least squares analysis of the experimental data shown in figure 4. 7{ a) 

gives the coefficients for equation ( 4.15) as a = 1.97, b = 9.683 x 10-3 and 

C = 7.472 X 10-5 . 

From the definition a:"(Bm) = Iff X a:(Bm) it follows that a:*(Bm) should 
p 

have the same form as equation (4.13). As the second order term in a:(Bm) 

is small however, reduced further by the gain modifier, Iff, a linear variation 
p 

for a:*{Bm) is adequate i.e. 
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(4.16) 

Experimental evidence similarly suggests that a linear variation for the arma-

ture set-point function f3(Bm) can be used i.e. 

( 4.17) 

Experimental results expressing armature current as a function of motor speed 

for constant ()m are shown in figure 4. 7(b) and, as suggested by equation 

(4.9), are straight lines of intercept f3(Bm) and slope a"(Om)· Regressing the 

gradients and intercept values gives the constants d, e, f and g in equations 

( 4.16) and ( 4.17) as 

( 4.18) 

and 

{3(Bm) = 26.618 + 0.2104()m (4.19) 

which for small changes implies 

( 4.21) 

These results are summarised in Table 4.1. 

4.2.2 Full Field Mode 

In the full field mode field current is constant which means that 

~a(Bm(s)) = 0. All control is carried out on the armature which, in the 

absence of ~a"(Bm(s)), must vary according to 

( 4.22) 
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Slow rampmg of the demand input, Om, at a number of constant speeds, 

figure 4.8, shows the field current constant at 8.5 A and reveals that in this 

mode the set point function, f3(0m), depends only on the initial armature 

current and the demand value Om as 

( 4.23) 

Where Ia(N) is the initial armature current at motor speed N, giving the 

linearised results 

tl.f3(8m) = 0.137tl.Om 

it(O) = 8.5A 

tl.a*(Bm) = tl.a(Bm) = 0 

( 4.24) 

( 4.25) 

( 4.26) 

As a consequence of these results for the set point gam functions, and 

the simplification of the motor block diagram ·in the armature control mode . 

described in section 3.1.1, this mode is the simplest of the three to analyse, 

smce it has constant gain and dynamics regardless of the initial conditions. 

The result for this set point function is summarised in Table 4.1. 

4.2.3 Field Weakening Mode 

When operating in the field weakening mode, experiments show that 

the field current reduces with both speed and accelerator demand. The 

field and armature currents are again given by equations {4.8) and (4.9) 

respectively. The set-point functions a( Bm) and /3( Bm) can be evaluated by 

slowly ramping ()"' at a number of constant speeds and recording the variation 

m both field current and armature current. 

For the field current the results of figure 4.9(a) suggest that a(Bm) 

has the form 
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a(Bm) = a(N) + b(N)Om (4.27) 

Regressing the slopes and intercepts gives 

a(Om) = (19.957- 0.004611N) + (1.605 X 10-6 N- 6.134 X 10-3)0m (4.28) 

With speed constant and taking small variations gives 

( 4.29) 

Armature current is given by equation ( 4.8) but unlike the field boost 

mode, a*(Om) has negligible effect on ia since typical values of a(Om) are 

ten times smaller. The experimental results o( figure 4.9(b) show that the 

armature current set-point function, f3(0m)j behaves in a similar manner to 

that in the full field mode, equation ( 4.23), but with a slightly different gain, 

namely 

( 4.30) 

The important relationships for the field weakening mode are summarised in 

Table 4.1. 

Field Boost Full Field Field Weakening 

a(Orn) 1.97+9.683 X 10-38m 19.957-4.611 x Io- 3 N 
+7.472x I0- 5 8~, 

- +( 1.605x 10-6 N -6.134x I0- 3 )Om 

~a(Om) (9.683 x w- 3 +1.494 0 (1.605x 10-6 No-6.134 X 10- 3 ).6.8rn 
X 10-4 iim ).6./lm 

{3( ()rn) 26.618+0.210411 ... /..,(No)+0.1378m Ia (No )+0.1478m 

~{3(0m) 0.2104fll;lm 0.137.6.8 ... 0.147 fl8m 

a*(Om) 4.914 X 10- 3 -6.600X 1U-5 8m - -

~a*(Om) 
-6.600x w-s il8m 0 -

Table 4.1 Set Point Functions 
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4.3 Transfer Fmndion ][dlentificaiion 

Both the analysis of the engine and motor began in the s-plane since 

it more readily relates to the continuous time processes involved. As a final 

stage discrete equivalents of the resultant transfer functions were produced 

since ultimately a digital control system was envisaged. Before either form 

of transfer function can be of practical use in controller design however the 

numerical coefficient values must be determined from experimental data. 

Despite the discrete nature of the final control system, identification 

can be carried out in two ways. Either the s-plane model can be evaluated with 

subsequent discretisation via the appropriate hold algorithm or alternatively 

a digital model maybe identified directly. Eventually a particular version 

of the latter method was successfully applied in all cases on the rig, but 

m one instance the alternative s-plane method was tried for comparison. 

In comparing various methods of identification Whitfield [Whitfield, 1986] 

mentions the linear least squares technique due to Levy [Levy, 1959], which 

involves fitting a curve to frequency response data in the classical Nyquist 

form of gain and phase shift. This method was applied to the transfer 

function relating throttle position to engine speed on no load, by applying 

a sinusoidal input to the throttle via the stepper motor and measuring the 

corresponding speed variations. A comparison of the results from this method 

and those from the direct digital identification is given in section 4.6. 

It was felt however that success with this method was likely to 

be fairly limited, both because of experimental difficulties in applying the 

requisite sinusoidal inputs ( particularly in the faster acting torque transfer 

functions ) and since as vVhitfield points out [Whitfield, 1986] the method 

produces biased parameter methods and locally poor fits to the experimental 

data. Consequently the method was abandoned in favour of a method which 

is both unbiassed and leads directly to a digital model, which in the present 
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context seems a more natural choice. The identification technique used is 

Landau's Model Reference Adaptive Identification algorithm [Landau, 1976]. 

Many methods are available for off line identification of digital models and 

some are discussed by Warwick [Warwick, 1986]. He notes that Landau's 

method is strongly immune to disturbances affecting the output, an important 

advantage in a system liable to noise. The principle of Landau's identification 

procedure is to apply a common input to the actual system and an adjustable 

model, as illustrated schematically by figure 4.10. The output of the system 

and the model is then compared to produce an adaptive error, vi, which is 

processed by an adjustment mechanism to provide an update to the model, 

/3i. Applying the technique assumes that the plant can be described by the 

general discrete transfer function: 

y(z) _ bo + b1z-1 + 
u(z) - 1 - a 1z-1 -

( 4.31) 

The output of the model at the lh sampling interval is calculated from a . 

difference equation, which can be expressed in vector form as: 

( 4.32) 

Where {3T 1s the plant model coefficient vector: 

( 4.33) 

Similarly, ¢1 IS the model input/output vector: 

¢J = [ Yi-1 ··· Yi-n Uj ··· Uj-m ] ( 4.34) 

The identification algorithm seeks to find approximate values of a limited 

number of terms from the plant model coefficient vector. In the case of 

a first order model the vector {3T = [ a1 b0 b1 ] will be identified. The 
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algorithm works with a set of experimental inputs, u, and plant outp11ts, Yp· 

At each step it applies the same input Uj to a reference model and calculates 

the model output given by: 

Yj = !3T-1 </>j ( 4.35) 

Where f3J_ 1 is the best estimate of the plant model parameters from the 

previous j - 1 th step. An adjustment mechanism is now applied to calculate 

an updated model parameter set /3i 

( 4.36) 

Two new terms appear in equation ( 4.36), the adaptive gain matrix Pj_ 1 and 

the error term Vj. Matrix P is square with dimension m+n+1 and, at the 

beginning of the identification it may be defined arbitrarily but must be non 

zero. In the present work diagonal elements cif P are initialised to 0.1 with . 

other elements left at zero. As the identification proceeds P is updated, after 

the update of /3, according to the equation 

( 4.37) 

The error term, Vj, is a measure of the difference between the plant 

output and the model output and can be considered as an adaptive error. 

Calculation of Vj, by equation ( 4.38), is the final stage for each data point. 

n. 

Vj = Yp(j) - YJ + L g;ej-i 
i=l 

( 4.38) 

On the right hand side of this expression the difference between the plant 

and model output appears as well as the weighted sum of the n previous a 

posteriori errors, e(j-i), i=l to n . The model output, y1 , is calculated from 
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the previous parameter set f3J_ 1 so that the difference, (Yp(i) - Yi ), constitutes 

the a prwn error . 

Once the parameter set, f3J, has been updated the new a posteriori 

error is calculated from 

0 
ei = Yp(i) - Yj 

With yJ being the a posteriori model output: 

0 _ (3T A. 
Yj - i '~-'i 

( 4.39) 

( 4.40) 

At each step the previOus n a posteriori errors are used and each is 

multiplied by a fixed gain 9i before summation a8 in equation ( 4.38). Values 

of 9i are important to the convergence of the whole algorithm as explained by 

Landau [Landau, 1976]. In practice it is sufficient to set 9i = -ai(o); where 

ai(O) is a reasonable initial estimate of the corresponding plant denominator 

coefficient. Suitable initial estimates can be obtained from the s-domain 

transfer function of the plant. In the case of the engine and the motor, an 

appropriate form for this transfer function can be obtained from an analysis of 

the physics of the plant, with an approximate evaluation of parameters being 

obtained from the open loop step response. After suitable discretisation, an 

initial estimate of the discrete transfer function is obtained. 

A slight adjustment to experimental data is needed when identifying a 

transfer function with reduced order numerator as was found to be appropriate 

for the motor (equation 3.25). In this case it is required that the coefficient 

b0 be zero. To achieve this it is not sufficient to set m = n - 1 since the 

identification algorithm then produces a transfer function with bn equal to 

zero rather than b0 . If in addition however the experimental data set is 

shifted one step back in time prior to the identification the problem is solved, 
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because then the coefficient given by the algorithm as bo is in fact b1 . Finally 

it should be noted that for identification purposes both input and output 

data have their offset at zero time removed. 

4.4 'fia:nsfer Function ][dentificatioltl for ilh.e Motor 

4.4. 1 The Closed JLoop 'fiansfe:r Fu.n.ltll.ctii.ons fo:r Current 

In section 3.1 a complete model relating motor torque to accelerator 

demand was developed. To complete this model the transfer functions Ga(z) 

and G f ( z) are needed. To carry out the necessary identifications, short 

accelerator transients are applied to the system and the resulting variations 

in field and armature current are recorded. Particular behaviour in different 

operating modes makes them more or less suitable for identifying a g1ven 

transfer function. In the field boost mode the large variations of field 

current provide ideal conditions for identifying Gt(z), while a full field mode 

experiment, conducted at constant speed, ensures that the motor back e.m.f. is . 

constant, an important condition for identifying Ga(z). Once the experimental 

input/output data has been gathered the identification algorithm can be 

applied. Although the algorithm can be applied indefinitely there comes a 

point when no further worthwhile improvement can be made to the fit between 

model and experimental data. This point must be judged arbitrarily by the 

operator but to aid in this decision the identification program, written for 

the M68000, calculates the mean difference between experimental and model 

output over each pass through the data. Figure 4.11 shows how well the 

identified transfer function Ga(z) fits the experimental data. 

It is not easy to identify the time constant in the armature torque 

current controller directly, however once Ga(z) and Gt(z) are known an indirect 

method is possible. Initially these pulse transfer functions are transformed to 

theirs-plane equivalents, Ga(s) and Gt{s), using the inverse bilinear transform. 
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Then by companng the actual response of ia in the field boost mode with 

the prediction of equation (3.19), Tp can be adjusted until a similar response 

is obtained. The identified transfer functions and time constant, Tp, are 

tabulated in Table 4.2. 

Transfer Function 

Ga(z) 0.1304zf0.08034 
z2 -0.8300z+0.04187 

Ga(s) 0.02676( s+420. 75 )( s-100) 
s2 -102.371s+ 1131.866 

GJ(z) 0.01536zf0.1008 
z2 -1.183z+0.2973 

G1(s) 0.0344(s-135.97)(s-100) 
s2+56.657s+460.63 

Tp 0.085 

Table 4.2 Transfer Functions Identification 

4.4.2 Direct Identification of the Motor Torque Transfer Function 

With the identification of the three dynamic elements in Table 4.2, 

the current based model relating torque to accelerator setting is complete 

and could be used as a basis for controller design. There is however a 

gain in accuracy if a model is identified directly between accelerator setting 

and torque. Such a model could have been identified at the outset with 

no knowledge of the intervening system, in this case the motor and power 

electronics combination would be treated as merely a 'black box'. A serious 

drawback of such an approach is that the resultant transfer function would 

have arbitrary order, possibly resulting in important dynamic properties being 

overlooked. With the current model available however, a direct identification 

can be constructed from a logical foundation. As an example the following 

paragraphs describe how the direct identification of the motor torque transfer 

function for the field boost mode follows from the current model. 

When the dynamic elements, identified in section 4.4.1, are transformed 

into the s-plane and substituted into equation (3.21), they produce a fourth 
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order torque response transfer function for the field boost mode. Experimental 

evidence and analysis of this fourth order model however clearly shows that 

the system is predominantly second order. For example, a particular field 

boost transient at 1500 r.p.m. had the initial data tabulated in the left hand 

column of Table 4.3. 

Field Boost Full Field Field Weakening 

Speed No r.p.m. 1497 1500 3030 

em 165 500 550 

~a(O) (Amps) 47.07 81.81 64.82 

i/(0) (Amps) 4.10 8.50 5.63 

21 (Amps) 5.76 8.50 5.57 

Table 4.3 Initial Conditions for a Transient m Each Operating Mode 

Combining this data with the mode dependent gains defined in Table 

4.1 and adding all the s-plane dynamic elements defined in Table 4.2 provides 

the complete fourth order torque model with poles and zeros as shown in 

Table 4.4. 

n • r01es Zeros 

-9.389 -11.637 

-12.610 -52.316 

-46.818 -1528.622 

-89.761 369.23 

100.00 

Table 4.4 Poles and Zeros for the Field Boost 

Transfer Function Based on Current Relationships 

Several of these poles and zeros do not have a significant effect on the 
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transient performance of the model. For example, after a suitable modification 

to the system· gain, the pole at -89.76 and the zeros at -1528, 100 and 369 

may be dismissed since they are, at least, an order of magnitude larger than 

the dominant poles and zeros. Of the remainder, the pole-zero pair at around 

s = -12 cancel and so contribute little to the system which leaves the second 

order result: 

1. 7398( s + 52.316) 
(4.41) 

( s + 9.839)( s + 46.818) 

Adding the necessary zero-order hold and discretising the result using equation 

( 3.24) gives 

0.03292z - 0.01147 

z2 - 1.2134z + 0.3220 
( 4.42) 

This equation serves as a starting point for the adaptive identification proce-

dure to identify a second order transfer function which more closely matches 

the experimental data. For comparison a fourth order identification was also 

carried out but no increase in accuracy was achieved. The results of the 

different identification procedures are tabulated in Table 4.5. 

6.Tcm(z) 
6.8m(z) 

FromCurrentModel 0.03292z-O.Oll4 7 
(ReducedOrdcr) z2 -1.2134z+0.3220 

Directldentifica.tion 0.01168z3 -0.00928lz2 + 
(4th Order) z4 -1.282zl +0.4149z2 

0.001506zf0.001028 
0.00537 z-0.01728 

Directldentifica.tion 0.01171z-0.008569 
Reduced Order z2 -1.3184=+0.422 

Table 4.5 Comparison of Torque Transfer Functions 

For the Field Boost Mode 

These results not only vindicate the use of the reduced order model 



but also confirm the accuracy of the transfer function derived directly from the 

current model. In figure 4.12 a comparison of the experimental torque response 

and the simulated torque response predicted from the transfer functions listed 

m Table 4.5 is made. All three have similar gains and dynamics. 

For any given set of initial conditions a similar process 1s possible 

for the field weakening and full field modes, conveniently carried out in five 

stages: 

Stage 1. Transform Ga(z) and GJ(z) into the equivalent s-domain transfer 

functions using some appropriate inverse mapping procedure e.g. the inverse 

bilinear transform. 

Stage 2. Substitute the mode dependent gains and dynamics from Tables 4.1 

and 4.2 into equation (3.21) namely Ga(s), GJ(s), (1 + Tps), ~{3(Bm), ~a(Bm), 

~a*(Bm)· 

Stage 3. Determine the parameters specific to. the individual transient 

§tage 4. Examine the full current model and if possible obtain a reduced 

order equivalent. 

§tage 5. Combine the resulting transfer function with a zero-order hold 

and discretise using equation (3.24). Carry out a direct identification between 

!l.Bm and fl.Tem using the reduced order model as a starting point. 

Results from the final stage of this process are set out for all three 

modes in Table 4.6. 

Field Boost Full Field Field Weakening 
ReduccdOnlcr 0.0329z-0.0115 0.0125z-0.00637 0.00866z-0.00442 
CurrentModel z2 -1.213.:+0.322 z2 -0.943.:+0.129 z2 -0.943z+O.l29 

Direct 0.()117.:-0.00857 O.IJ152z-0.00310 0.000359.:-0.00543 
Identification z2 -1.318::+0.422 z2 -1.308.:+0.427 z2 -1.276.:+0.355 

Table 4.6 Identified Torque Transfer Functions 

for All Three Operating Modes 
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4.5 Ma:nifoldl Fming Delay andl Engi:ne Toll'que Vall'nations 

Identification of the transfer functions relating inlet manifold depression 

to throttle position, equation (3.40), using the model reference equations of 

section 4.3 were carried out at engine operating speeds of 1000, 1500, 2000, 

2500 and 3000 r.p.m. In each case data for identification was obtained by 

measuring manifold pressure changes as the throttle was moved about an 

average setting for that speed. Numerical results relating to equation (3.40) 

for all the identification experiments are given in Table 4. 7. Included in this 

table are the steady state gains of each transfer function derived from the 

final value theorem 

( 4.43) 

where H(z) 1s the input to the plant G(z). If H(z) 1s the unit step 

= zj(z- 1); then the gain 1s 

( 4.44) 

Speed al bo bl System 

r.p.m. Gain 

1000 0.766 0.184 -10.26 -40.45 

1500 0.648 0.177 -10.964 -31.65 

2000 0.640 0.158 -11.360 -31.11 

2500 0.644 -0.185 -9.985 -28.31 

3000 0.536 -0.608 -11.14 -25.31 

Table 4. 7 Identified Transfer Function Coefficients and Gain for the 

Engine Manifold Filling Delay 

Results obtained under steady state conditions are compared with 
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these transfer function gams m figure 4.13. Lines representing these gams 

have been added to the steady state data at speeds of 1000, 2000, and 

3000 r.p.m. Apart from the consistent slopes, the form of the steady state 

results confirms the theoretical prediction of equation (3.31) for the steady 

state case i.e. 

( 4.45) 

Before being used by the torque prediction algorithm, equation ( 4.4), 

an additional, digital, filter is included in the manifold pressure signal to 

remove the transitory effects of inlet valves opening, particularly at low 

speeds. Acceptable results are obtained by using a first order filter of the 

form: 

1- a{z-1 
( 4.46) 

Combining the results of equations (3.40),(3.41),(4.5) and (4.46) allows a 

complete linear model to be produced which relates variations in engine 

torque to changes in throttle demand as shown in the block diagram of figure 

4.14. For simulation purposes this model can conveniently be expressed in 

state space notation by defining the state space vector X = [ X 1 X2 X3 ] 

so that: 

( 4.4 7) 

where: 

0 
(4.48) 

BT = [ 1 0 0 l ( 4.49) 
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( 4.50) 

(4.51) 

yT = [ ~() 

with changes in engine torque, ~Tic, being obtained from equation ( 4.5). 

To check the accuracy of the engine model a common throttle signal 

was applied to the model and the real engine, for a number of different 

operating speeds. In each case the test signal demanded that the throttle 

be opened and closed twice, first moving by 5 steps and then by 3, finally 

returning to the average setting for that speed. 

At the low engine speed of 1000 r.p.m. (figure 4.15) the engme 

does not operate very smoothly causing a noisy manifold pressure signal, and 

slightly non-linear behaviour, both of which reduce model accuracy. This 

uneven performance at low speed is the main reason for the a~ditional digital 

filtering of the manifold pressure signal. 

At 3000 r.p.m. engine performance is greatly improved as shown by 

figure 4.16. At this speed the manifold filling effect is both more linear and 

less noisy in its response than at 1000 r.p.m., allowing greater accuracy from 

the simple low order model used. 

4.6 Engine No-Load Speed Transfer Function 

Applying a simple step input to the engine, allowed the transfer func­

tion given by equation (3.43) to be quantified by the identification equations: 

fj.N(z) 
fj.O(z) = 

0.838 - 1.510z-1 + 1.922z-2 

1 - 1. 790z- 1 + 0. 795z-2 
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To verify the model a signal comprising two step changes in throttle over 3.5 

seconds was applied. In figure 4.17 the resulting variations in engine speed 

are compared with not only the digital model given above, but also with a 

third order transfer function identified by Levy's method: 

tlN(s) 
tlO(s) 

-0.0236s3 + 0.2522s2 
- 1.3479s + 14.8812 

0.0182s3 + 0.0188s2 + 1.0747s + 1 
(4.54) 

As can be seen the digital model achieves greater accuracy and does not 

exhibit the non-minimum phase behaviour displayed by the Levy model. It 

should be mentioned that the simulation for the Levy model did not attempt 

to model the lag caused by the throttle, however figure 4.17 suggests that its 

inclusion would have further reduced the predicted variation in speed. 

4. 7 Discussion 

Previous sections m this chapter have demonstrated that there are 

two ways of identifying transfer functions relating motor torque to accelerator 

input. 

The first, and most ngorous, involves identifying the behaviour of 

the current control loops within the power electronics. When considered m 

isolation the response of armature and field current to a given transient input 

is highly dependent on the initial operating conditions. This non-linear effect 

is cancelled by investigating set point functions which describe how current 

varies with demand under steady state conditions, over the whole operating 

range of the motor. Once these set point functions are obtained it is relatively 

easy to calculate the change in current which will result from a given change 

in demand, !:l.()m, and a given set of initial conditions. Such changes m 

current do not appear instantaneously but are governed by the dynamics of 

the closed loop current control systems G11 ( z) and G 1( z ). The real advantage 

of using the set point functions is that these dynamic responses are now seen 
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to be nllll.dlependlelllli of operating point. 

Coupling both dynamic elements and set point functions together 

through equation (3.21) completely defines the torque response of the motor for 

any initial condition. Before considering the simplified version of this model, 

the accuracy of the global description of the motor will be demonstrated 

for three example transients. Table 4.3 indicates the three sets of initial 

conditions, one for each of the operating modes. In figures 4.18-4.20 results 

for both torque and current, calculated from equations (3.14), (3.19) and 

(3.21), are compared with experimental data. 

By using the complete model as a basis a second method can produce 

a more compact form of torque transfer function. In this case a second 

order model was fitted directly between ()m and torque, Tern, for a specific 

set of data obtained in eac~ mode. H controller design could be based on 

"'~ such transfer functions then tli'e11 the task would be considerably simplified, 
""- . 

however they are strictly speaking only valid for one operating point. Before 

extending their use to controller design further tests are needed to see how 

their accuracy deteriorates at the extremes of a mode. As illustrated by figure 

4.21, the direct model for the field boost mode is extremely accurate at original 

conditions, however at an entirely different point figure 4.21 also illustrates 

that this model is still capable of providing acceptable results. To exploit this 

fact direct models were also obtained for the full field and field weakening 

modes. Figure 4.22 demonstrates that the full field model is accurate at 

any point within its mode as expected from the ·theory. Furthermore the 

field weakening model is still adequate away from its original identification 

condition, as shown by figure 4.23. This has important implications for 

controller design as it removes the requirement to produce a controller design 

which adapts to widely varying gains and thus remains well tuned at all 

times. 
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Modelling of th~ engine has proven relatively straightforward with only 

one first order dynamic element governing the torque response loop. When 

designing a controller it must be remembered that that this element is speed 

dependant so that design performance may well deteriorate away from design 

speed. 

In both systems the indirect torque measurements have proven accmrate 

under steady state conditions, however a difficulty arises when trying to assess 

the accuracy of these measurements under transient conditions. In this case 

the problem lies with the torque transducer signal which required heavy 

filtering to produce a meaningful result, thus vastly reducing its usefulness 

when transient accelerator variations are being considered. Consequently, with 

the present instrumentation available on the rig, it is difficult to ascertain 

whether transient behaviour of true torque differs sufficiently from model 

torque to affect vehicle driveability. Even if improved rig design did solve 

this problem, questions of driveability are more naturally approached using 

an operational road vehicle. 
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CJHIAJP>TJER 5 

CONTROJLJLJER DJESJrGN 

This chapter deals with the design of single input single output control 

systems bi1Sed on the discrete models of the engine and motor identified from 

the theoretical analyses and experimental data. There are four separate closed 

control loop systems in the hybrid drive train as set out below. 

1. Control of motor torque 

2. Control of engine torque 

3. Control of engine speed on no load 

4. Control of motor speed on no load 

An additional system is developed in chapter 7 to control the speed of the 

flywheel in response to the demands of a test driving cycle. Unlike the 

systems mentioned above however, this control loop is not strictly part of 

the vehicle control system since it replaces a driver. Of the four remammg 

systems, the control of motor speed on no load is unique, in that no formal 

design method was used. Instead a simple method of tuning the control 

parameters on line was adopted because of the peculiar operating conditions 

of this system, within the gear changing process. In the case of the other 

three systems a single design technique was adopted and proved successful in 

all cases [Masding and Bum by, 1988 (d)]. 

5.1 Controller Design Method 

In discussing methods for producing discrete control systems for 

continuous plant, Katz [Katz, 1981] discusses three methods. In the first, 

known as the analytical method, the desired system response is translated 

into a closed loop transfer function. Knowledge of the plant allows an exact 

solution to be obtained for the controller. Unfortunately in this case the 

designer has no control over the form of the resultant controller, which may be 
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of higher order than is strictly necessary to ctehieve satisfactory response. Such 

higher order is undesirable since it increases computation time and exaggerates 

numerical inaccuracies. A second technique uses root locus methods for pole­

placemento on the z-plane. Desirable closed loop pole locations are usually 

based on second order criteria such as damping factor and rise time. Loci 

of constant values of such criteria have rather more complex form in the 

z-plane tha.n they do in the s-plane, making it more difficult to assess the 

effect of not precisely obtaining the calculated closed loop poles. Finally Katz 

proposes transforming a discrete version of the plant to the w-plane followed 

by controller design by frequency response methods. 

Although all these methods have their merits, Katz notes that the 

w-plane method IS very widely used and has resulted in many successful 

discrete designs. A slightly modified version of this technique has been used 

to design the three key closed loop control systems for the hybrid vehicle 

ng. The w-plane method usually begins by discretising the continuous plant 

and then transforming to the w-plane. Since this plane is very similar to 

the s-plane almost any analogue design technique may be used. In this 

case pole placement on the root locus diagram was chosen in preference to 

frequency response methods mentioned above. Essential to the design method 

is a knowledge of the discrete plant based on the continuous plant transfer 

function plus an appropriate hold device. In this application the correct form 

for the continuous plant was established for the engine and the motor through 

the physical analysis presented in chapter 3. Following on from this it is 

possible to add the appropriate hold device a.nd determine the correct form 

for the z-transfer function before attempting to identify it. Consequently the 

z-transfer functions, which were finally identified from the experimental data, 

are ideally suited to the w-plane design method. 

In it simplest form the w-plane transform involves a large distortion 
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of the frequency response which must be taken in to account in the design. 

A slight adjustment defines the w' transform which largely corrects this fault. 

Using this adjustment, z-transfer functions are mapped into the w'-plane by 

the transf0rmation pair, 

2 (z- 1) 
w' = Ts z + 1 (5.1) 

w' + 2/Ts z = --~:-=-
w'- 2/T~ 

(5.2) 

where Ts is the sampling period of the digital system. The complex variable 

w' is written w' = a ± j v', where v' is a fictitious frequency. Distortion of 

·the frequency response is governed by the relationship between v' and true 

frequency w. 

, 2 wT~ 
v =-tan--

Ts 2 
(5.3) 

If the sampling rate is sufficiently high, then clistortion will be negligible over 

a wide range of frequencies. In the case of the rig control system, with a 

sampling period of Ts = 0.02 seconds, equation 5.3 shows that distortion is 

under 5% for frequencies up to 38 radians/ second (240Hz). In physical terms 

this frequency is much faster than the response of any of the electrical or 

mechanical systems to be controlled on the rig. Consequently even when 

considering the relatively fast acting motor torque control system, the part 

of the root locus containing the closed loop poles lies well below the 38 

rad/sec mark on the imaginary axis. Once the plant is available m the 

w'-plane it remains to select the required pole-locations appropriate to the 

chosen performance criteria. Pole locations are chosen to give specified values 

of rise time, tn and damping factor, ~· For a simple second order system 

these values are related to the closed loop pole locations by the following 

equations: 
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I ± • W = (j )Wd (5.4) 

(5.5) 

(5.6) 

If the real system is dominated by one complex pole pair, then pole locations 

calculated from these equations will provide a good initial target for controller 

design. In practice the combination of hybrid vehicle plant plus the controller 

usually produces an additional closed loop pole on the real axis which has 

a significant effect on the transient response. Although this does cause a 

departure from the calculated performance, the effect is partly reduced by 

placing the controller zero near to the additional system pole. As a result 

the pole zero pair virtually cancel and so the the second order complex pair 

are the dominant factor determining the transient response [D' Azzo, 1975]. 

5.2 Col!ltlroll Algorithm 

Although the M68000 rrncroprocessor would be quite capable of im-

plementing sophisticated control algorithms, experience has shown that sat-

isfactory results can be obtained in all the hybrid vehicle applications by 

usmg a simple proportional plus integral (P+I) controller. Using such a low 

order controller brings several advantages which are important to the hybrid 

vehicle. Not least of these is the extreme robustness of the controller, even 

in the face of adverse system behaviour such as that occasionally encountered 

from a cold engine. This advantage has long been recognised by industrial 

users, who also capitalise on the fact that such control can be applied to 

a plant which has not been fully identified [Krikelis and Fassios, 1984]. A 

second advantage is that the P+l controller gives very fast execution times, 

thus allowing the M68000 time to carry out a multitude of other control 
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tasks within the interrupt period. Typically the control algorithm takes only 

0.8 ms to execute in integer arithmetic. In a.n ideal digital system data 

sampling is followed instantaneously with output of the controller response 

at the sampling point. In practice this clearly can not be the case since 

the control algorithm must take a finite time to execute, however by using 

this fast algorithm the M68000 is able to carry out all data sampling and 

output the last of its four controller responses within 6 ms of each interrupt 

occurrmg. Such a delay although not ideal, is quite insignificant compared 

with the response tim~s of all the systems involved. 

Due to the similarity between the s and w'-planes, the proportional 

·plus integral controller retains its usual form: 

, (w' +a) 9c(w) = 9 w' (5. 7) 

Phase one of the design process is concerned with determining g and a m 

order to best achieve the pole locations calculated from equations (5.4)-(5.6). 

In all cases the design criteria are ~ = 0. 707 (critical damping) and a rise time 

which represents a realistically achievable minimum for the system concerned. 

Once g and a have been selected, equation (.11. i) can be transformed in to 

the z-plane by the reverse mapping of equation ( 5.1) to give: 

( ) 
(g + k; )z + ( k; - g) 

9c Z = 
z- 1 

(5.8) 

where k; = gaTs/2. From this equation comes the direct realisation for the 

controller output uk. 

(5.9) 

This control algorithm is then tested by examining the step response of 

the completed system. Since the assumption, made in the design, that the 
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resultant closed loop system would be second order is not true, the response 

of the system may be found to be unsatisfactory in which case the parameters 

g and ki are fine tuned until that is no longer the case. Final versions are 

then implemented on the M68000 using equation (5.9) for testing in actual 

operation. 

5.3 De§ligm oil' lilllldlivlidluun.ll Col!lboll.lle!i"§-

5.3.1 lEillgillle To~rque 

The engine torque controller receives its demand signal from the mode 

controller, and must match the indirectly derived torque measurement to this 

demand. Apart from the P+I control algorithm itself, the other key elements 

in the engine torque control loop are the throttle servo, the manifold filling 

delay, a digital filter and the torque model all of which are illustrated in 

figure 4.14. In drawing this diagram it was assumed that, due to the vehicle 

inertia, engine speed is essentially constant over the time scale of manifold 

pressure changes and hence, in the present context, speed is assumed constant 

over the time scale of engine torque control. In addition to being valid 

only for constant speed, a further limitation of this diagram is that the 

simple linear delay element used to model the throttle servo-system is only 

completely accurate when the controller demand does not exceed a movement 

of four steps per sample period. With these limitations taken in to account, 

the design aims for the system are critical damping and a rise time of 

200 ms. Substituting these values in to equations (5.4)-(5.6) gives the pole 

locations w' = -11.78 ± j 11. 78. Due to the speed dependent elements in 

the block diagram, it would be necessary to have a. whole series of controller 

designs if these performance criteria were to be met at all times. Clearly 

this is not a practical option, and in any case variations in engine gain 

and dynamics are not great, making it reasonable to assume that one design 
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for a mid-range speed may well be sufficient. To test this theory a torque 

controller was designed for the engine operating at 2000 r.p.m., taking the 

relevant parameters for the manifold filling delay from Table 4. 7. Prior to 

compensation, the system locus for 2000 r.p.m. appe&rS as in figure 5.1(a) 

with two open loop poles, one due to the manifold filling delay and the other, 

nearer to the origin, due to the filter. After slight adjustment to give a 

satisfactory response the controller 

, (w' + 7) 9c(w) = 0.4 w' (5.10) 

.was selected which produces the modified system locus of figure 5.1(b). As 

shown the final pole locations are not too far removed from those calculated 

for guidance however the combination of engine plus controller has produced 

a third, real, closed loop pole. After applying the inverse transform equation 

(5.10) becomes 

( ) 
0.428z - 0.372 

9c z = z - 1 
(5.11) 

Live control system tests were carried out initially at design speed, by 

applying a step increase of torque demand amounting to 10 Nm. Results 

from the test are illustrated by figure 5.2(a). As the test proceeded the 

M68000 simultaneously carried out a complete simulation of the system using 

the state space equations developed in section 4.5. Three results from the 

simulation are plotted together with their experimental counterparts in figure 

5.2(a). Of these, experimentally measured manifold pressure prior to digital 

filtering, shows considerable noise but the simulation accurately represents 

the general trend. Torque traces match almost exactly, since by this stage 

manifold pressure has been digitally filtered and noise effects are virtually 

eliminated. This slight difference in the torque repsonse may be partly 
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explained by the real pole. D'Azzo predicts that such a pole positioned 

between the complex pair and the origin, as is true in this case, will slow 

the system response and reduce overshoot. Close examination of figure 5.2( a) 

shows tha1 the experimental response does not exhibit the slight overshoot 

predicted by the simulation. 

Good system performance is to be expected at original design speed, 

however the engine must be accurately controlled at all speeds. To assess 

what effect the changing gain and dynamics has on system performance a 

second test was carried out at 3000 r.p.m. As figure 5.2(b) shows, acceptable 

performance is still obtained with the original control parameters chosen for 

-the 2000 r.p.m. model. In this case the reduced manifold filling delay gain 

increases system rise time. By incorporating the correct model of the manifold 

filling delay in the simulation this effect is accurately predicted. 

A small change in demand of 10 Nm was chosen for these initial 

tests so that the non-linear effects of the throttle step rate limitation would 

not affect the system. Under normal operating conditions the control system 

might well experience far greater changes in demand. For example large step 

changes in demand are likely when the vehicle operator wants to change from 

acceleration to cruise. Figure 5.3 shows how the control system reacted to 

a 25 Nm drop in demand, which is typical of such operating conditions. 

As this diagram demonstrates there is no significant deterioration in system 

performance. Also included on this diagram is the trace from the torque 

transducer which provides further confirmation of the accuracy of the indirect 

torque measurement. 
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5.3.2 Ellecbiic Mo1toll' Toll'l{j\1llle Con::ni1wll 

Engine torque control must be carried out m the face of a system 

which has continuous speed dependent variations in both gain and dynamics. 

In the caa of the motor similar variations in system transfer function occur 

dependent on the particular operating point. In addition motor operation is 

divided in to three distinct operating modes due to the action of the power 

electronics control unit. As defined in chapter 4 these three modes are named 

field boost, full field and field weakening. 

Of all the three modes only full field operation allows the relationship 

between the controlled output, Tem, and the controllable input, Om, to be 

accurately described by a. single linear transfer function. In the field weakening 

and field boost modes, this relationship, vital to controller design, can only 

be described by a complex fourth order model with non-linear gain functions. 

Nevertheless the analysis took due account of the fact that it would be 

extremely difficult to produce a single controller which could continually 

compensate for such variations in the system and thus stay optimally tuned 

at all times. Consequently the model was successfully reduced to a single 

linear second order result which is valid for one particular set of operating 

conditions. Furthermore tests showed that despite this apparent limitation 

one such transfer function identified at a representative point for each mode, 

could model motor performance across the whole of the mode with acceptable 

accuracy. 

Building on this result it is possible to design a single fixed gam 

controller for each mode which maintains satisfactory performance at all 

times. One additional task which arises from the adoption of this strategy is 

accurate determination of the mode based on available measurements. Only 

by achieving this can the correct set of controller parameters be selected. To 

start with however three sets of controller parameters were produced using 
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the w' root locus design technique. The common design criteria used for all 

three modes was rise time of 150 ms and critical damping. 

Figure 5.4 illustrates the block diagram for electric motor torque 

control. IQl this control system the plant is given by those discrete transfer 

functions listed in Table 4.6, which directly describe the relationship between 

accelerator demand, Bm, and the indirect torque measurement, Tem(ia, if). As 

such the plant includes the power electronics, motor and electronic current 

filters. No additional filtering is necessary to obtain a satisfactory torque 

signal from ia and i1. Part of the controller design process is illustrated by 

figures 5.5( a) and 5.5(b) which show the uncompensated and compensated 

locus respectively for the field boost mode. Final results are given in Table 

5.1 which lists a set of controller gains designed on the basis of the models 

chosen as representative of mid-band conditions for their mode, as listed in 

Table 4.6. Controller gains are given both in w'-plane form and in z-plane 

form ready for implementation on the M68000. 

Parameters Field Boost Full Field Field Weakening 

w'-plane g 3.0 9.0 15.0 

a 15.0 15.0 9.0 

z-plane g 3.0 9.0 15.0 

k t 0.45 1.35 1.35 

Table 5.1 Electric Motor Torque Control Parameters for 

All Three Operating Modes 

5.3.3 Motor Torque Control Test Results 

As with the engine, step tests of 10 Nm are ideal for testing torque 

controller performance. There are two reasons for carrying out these tests on 

the motor, firstly to verify system response at design conditions. Secondly, and 

more importantly, to check that performance does not det.eriorate unacceptably 

127 



under extreme conditions, well removed from those of the design. Figure 5.6(a) 

shows the field boost controller giving excellent results under design conditions. 

Furthermore there is almost exact agreement between experimental data and 

the simula;tion carried out by the M68000. In a second test performed away 

from design conditions for the field boost mode, falling plant gain causes 

system rise time to increase as illustrated by figure 5.6(b ). 

As expected from the theory the full field controller produces precisely 

the same result regardless of the operating conditions. One representative 

experiment for this mode is shown in figure 5. 7. 

Like the field boost mode, the field weakening mode is expected to 

produce variations in controller performance. Under initial design conditions 

a good system repsonse is obtained which closely matches the simulation 

despite a slight change in system gain (figure 5.8(a)). Away from design 

conditions, figure 5.8(b) shows that changing plant dynamics have caused a 

slightly oscillatory response from the system. 

There is obviously no absolute law which can decide whether or not 

any of these changes in performance are unacceptable, but in no instance is 

system stability even remotely called into question neither is there a large 

departure from the designed rise time. 

5.3.4 Mode Determination 

Isolated step tests carried out entirely within one mode are not 

representative of working conditions for the torque controllers. Under normal 

conditions the motor will regularly pass between modes and so in response, 

the torque controller must switch between parameters. · There is no definite 

signal from the power electronics to indicate the operating mode of the 

motor, consequently a mode determination algorithm has been written into 

the software using measurable signals. As shown on the block diagram 
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of figure 5.4, the necessary inputs are speed, field current and accelerator 

demand. Reference to figure 3.3 shows that these measurements do define 

the operating mode. The mode determination rules are based on a simple 

set of inequalities: 

1. If i1 > 8.4 then Mode 

2. 

3. 

else if Om< 515- O.lxr.p.m. then Mode 

e~e Mo~ 

Full Field 

Field Boost 

Field Weakening 

To avoid rapid switching between controller gains a time constraint only 

allows a new mode to be selected after every 10 interrupts (200 ms). The 

mode determination rules were tested by instructing the motor to follow an 

arbitrary torque profile and allowing natural speed variations to occur. As 

can be seen from figure 5.9 the experiment succeeded in making the motor 

pass through all of its operating modes, but more importantly smooth control 

was achieved at the transition points. 

With reference to rule 2 above, representative mode transition points 

have been added to figure 3.3. Bearing in mind that all areas to the left 

of the marked transition points will be treated as either full field or field 

boost it is apparent that on occasion these latter modes ·will be selected 

when in reality the motor is operating in the field weakening mode. This is 

deliberately chosen to be the case so that the relatively high field weakening 

gains are never used erroneously in the field boost mode when plant gain too 

1s relatively high. 

Tests show that should this condition anse the system 1s liable to 

go unstable whereas should the reverse mistake be made the use of low 

field boost control gains mPrely results in an extended rise time for the field 

weakening mode. In figure 5.10 the field weakening gains were deliberately 

used under operating conditions similar to the design state for the field boost 

controller. Although this particular step test does not illustrate unstable 
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behaviour, overshoot is unacceptable and there is evidence of amplification 

of noise in the controlled signal. Since this experiment took place near the 

design conditions for the field boost mode, it should be possible to predict 

these osciUations by using the field boost model in a simul<n.tion. When 

the field boost model is combined with the field weakening controller gains, 

considerable oscillation is predicted as shown by figure 5.10, but it is much 

less than that observed in experiment. Although this might in part be caused 

by operating conditions not precisely matching those applicable to the model, 

a more likely cause is noise and quantisation errors becoming a. problem with 

the unsuitably high gains. 

5.3.5 Engine §peed §ynd:nli"o:rni§ation 

Whenever the hybrid vehicle is operating m all electric mode or is 

stationary, the i.e. engine can be uncoupled from the drive train by means 

of the one-way clutch. Since in either of these situations the engine is not 

required to provide torque, the most obvious strategy is to shut it down 

entirely in order to conserve petroleum fuel. Adopting this strategy means 

that the next time the engine is needed it must be started and synchronised 

with the moving, and possibly accelerating drive train, before it can replace or 

augment the torque supplied by the electric traction system. Consequently a 

starting system is needed that has fast response and no tendency to overshoot 

the prevailing drive train speed, thus avoiding a shock torque in the drive 

shaft as the one-way clutch is engaged. Design of such a control system uses 

the transfer function relating throttle position to speed identified in chapter 

4. When this is connected to the required control algorithm and throttle 

servo-system, the block diagram of figure 5.11 is produced. 

For small variations in throttle demand, GT( z ), reduces to 1/ z, 

producing a completely linear system which can be transformed to the w'-plane 
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for controller design. In order to produce an acceptably short synchronisation 

time for the engine a system rise time of tr = 0.5 and critical damping is 

chosen as the design criteria. By equations (5.4-5.6) this suggests closed loop 

poles w' =<J -4.71 ±j4.71. Figure 5.12(a.) shows the uncompensated root locus 

for the system and figure 5.12{b) the system locus with the controller 

( , ) ( w' + 1.1 ) 
9c W = 0.012 w' (5.12) 

With this controller the presence of the closed loop pole on the real axis 

modifies the system response so the performance criteria are not achieved with 

exactly the calculated imaginary pole locations given above. The simulated 

and experimental closed loop response of the system being shown in figure 

5.13. On this diagram the experimental throttle trace shows the step rate 

non-linearity which was not included in the design. This is a consequence 

of the high gain needed to meet the fast system response requirement, and 

the large errors present at the beginning of the step demand. Actual engine 

response is delayed by the throttle step rate limitation causing it to lag behind 

the simulation, which does not allow for this effect. Despite this departure 

from design performance, the experimental result still exhibits satisfactory 

damping. 

5.3.6 Engine §tartii:ng and Load Transfer 

When required the warm engine will fire in typically 250 ms usmg 

the conventional electric starter motor, but there is a further delay whilst 

the engine accelerates up to the drive train speed. Inertia starting used 

in the HTV-1 project [Trummel and Burke, 1983] allowed the engine to be 

completely coupled into the drive train in 300 ms but the cost was the need 

for an additional clutch between the engine and the engine flywheel. A time 

analysis of the starting process on the rig is shown in figure 5.14. In this 
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experiment the motor was initially accelerating under load, as illustrated by 

the motor speed and torque traces. At time t=0.45 however, the computer 

receives the start command, immediately it turns on the ignition and engages 

the starter motor. At the same time the throttle is opened go and the 

computer then waits for the engine to fire. This is adjudged to happen 

when the engine speed passes 490 r.p.m. Above this speed the starter motor 

is turned off and the speed control algorithm is entered to run the engine 

up to the drive train speed. Synchronisation is deemed complete when the 

engine speed is within 45 r.p.m. of the drive train speed which in this case 

is achieved within 0. 7 seconds of the original command to start. At this 

·stage torque control is transferred to the engine which continues to accelerate 

the load. In figure 5.14 the slow rise time shown by engine torque is in 

fact false, since the trace represents the output of the highly filtered torque 

transducer. Total times for starting, speed synchronisation and transfer of 

load are consistently about 1 second as demonstrated by figure 5.14. Starting 

a cold and perhaps damp engine is still an unreliable feature of modern cars, 

consequently the software must be ready to cope with failure to start. In 

the event of the engine failing to start after five seconds the starter motor 

is disengaged, to allow battery recovery, before a second attempt is made. 

With a very hot engine better starting is often achieved with full throttle 

openmg and this might be a useful strategy for the computer to adopt on 

the second attempt at starting if the engine had been operated very recently. 

Failure to start after perhaps five attempts would have to be treated as an 

error condition requiring the attention of the driver. 
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fl>.~ Q'llll&mtltitnntioim Enol1'§ &Imd Nofure 

Several effects cause errors in the digital control schemes described 

above. Taking a specific example of the elllgine torque control loop, six sources 

of error c~n be recognised: 

1. Transducer noise 

2. Measurement noise. 

3. A/D quantisation and truncation 

4. Parameter round off in the controller 

5. Arithmetic errors in the controller 

6. Quantisation of controller demand by the stepper motor throttle 

servo system. 

Estimates of the magnitudes of all these error sources are included in Table 

5.2, perhaps the most uncertain of these are the figures for measurement 

nmse. Both the measured engine parameters, inlet manifold depression and 

speed, suffer from measurement noise but in disimilar ways. 

Manifold pressure is measured by an analogue transducer, remote from 

the computer. As such the signal inevitably picks up noise, primarily from 

the power electronics, as it crosses the rig. Before reaching the ADC 'however, 

the manifold pressure signal is filtered electronically to reduce unwanted high 

frequency components and noise. Despite this filter it 1s still likely that 

measurable noise effects will reach the M68000. In order to assess the effect 

of noise from the traction system on the pressure transducer signal, two sets of 

measurements were taken, once during all electric. operation with a stationary 

engine, and once whilst the rig was entirely inactive. As Table 5.2 shows, the 

effect of the motor is to virtually double the rms noise signal measured from 

the inlet manifold depression transducer. No attempt was made to isolate 

noise effects from the engine ignition system, which is likely to be a second 

major source on the rig, because with an operational engine it is difficult to 
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separate manifold pressure variations due valve openmgs from those due a,o 

nOise. 

In contrast the speed signal from the engine is digital consisting of a 

stream of opulses generated by the magnetic pick up mounted on the engine 

starter ring. These pulses are counted by a VIA chip and then read and ihe 

count reset at each interrupt. Noise becomes a problem in this system only 

if it is severe enough to cross the logic threshold voltages of the VIA, thus 

causing an erroneous pulse to be recorded. Some problems were encountered 

during the early development of the rig from erroneous pulses created in this 

way by noise from the power electronics. Subsequent liberal use of capacitors 

to decouple the power supplies to the magnetic probes has drastically reduced 

this problem, almost to zero, as indicated in Table 5.2. 

Fairly comprehensive theory has been developed to assess the effects 

of random measurement noise on control systems. Nevertheless once digital 

transfer functions become involved it is particularly difficult to predict how 

noise will propagate through the system and according to Katz [Katz, 1981] 

no general theory exists to quantify this. 

Even if the control system were to rece1ve perfect measurements it 

has its own sources of internal error, largely concerned with the use of all 

integer arithmetic. On the M68000 all controller parameters use long integer 

type variables. As defined in the 'C' programming language, this variable 

type uses 32 bits for data storage. All calculations for control purposes are 

carried out to three decimal places by premultiplying the controller parameters 

and measurements by 1000. Taking into account the use of one bit for the 

sign, the 32 bit total word results in 231 or about 2 x 109 being the largest 

number that can be stored in the system. Hence by preserving three decimal 

places this means that the largest decimal number that can be represented 

in any control calculation is about 2 x 106 . Great care had to be taken 
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m designing all control routines to make sure that overflow errors could not 

occur as a result of this limitation. Given the truncation of all parameters 

to three decimal places, the precise error generated in the control algorithm 

depends on the way it is realised. There Cl!Jle various methods of realising any 

given digital controller or filter on a computer, and for this system the direct, 

series method has been adopted as represented by equation (5.9). Although 

this method result in a simple algorithm, it is more sensitive to arithmetic 

errors than some others, particularly when a high order controller is realised. 

In the hybrid vehicle control software, the fact that the controllers are all of 

low order vastly reduces the problem and makes the direct-series realisation 

a logical choice on the grounds of fast execution ·time. 

Arithmetic errors were investigated experimentally by applying a ran­

dom input of 1000 data pairs representing inlet manifold depression and speed 

to the engine torque control system. The output of the integer system was 

then compared with that from a full double precision floating point realisation 

of the same system. Although the floating point system is not immune to 

arithmetic errors itself, they will be much smaller than those from the integer 

system and can be ignored. Result show that in no case did the error exceed 

0.5 in the final calculated demand to the throttle-servo. The importance of 

this last result is that it establishes quantisation by the stepper motor as by 

far the largest source of error in engine control systems. As a consequence 

of this fact there is no advantage to be gained by using any more accurate 

methods of either arithmetic or controller realisation. When the engine torque 

control system is operating the effect of stepper quantisation can be seen in 

the way the throttle position cycles between two values during steady state 

conditions, as clearly illustrated by figure 5.2(a). 
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Error Type Magnitude 

Inlet Manifold Transducer inaccuracy 
depression non-linearity 0.5% f.s. 

and hysteresis 
Q Temperature dependence 0.1% f.s. 

ADC Quantisation 1 L.S.B.=4.9 mV (0.45 mbar) 

Measurement noise Motor ON 2.32 mbar (rms) 
Motor OFF 1.24 mbar (rms) 

Speed Quantisation 1 count=22.22 r.p.m. 

Measurement noise Negligible 

Stepper Quantisation of Resolution 0.9° 
servo demand signal 

Arithmetic Parameter All controller gains 
errors round-off round off to 3 d. p. 

Algorithm Truncation to 3 d.p. 
calculation 

Overflow Maximum result 2 x 106 

Table 5.2 Error Sources in the Engine Torque Control 

System 

5.5 Model Reference Col!ltroller Desigi!Jl 

Although the design process described m the previOus sections does 

produce a fast well tuned control system, it has several disadvantages in 

the hybrid vehicle application. Foremost amongst these is that the design 

process is laborious, with possibly several cycles of parameter adjustment and 

simulation before a satisfactory result is obtained. In a production environment 

this would render the above method impractical if controller designs had to 

be tuned to the dynamic characteristics of individual vehicles. Furthermore 

at the end of a manual design process there is no guarantee that the chosen 

parameters are those which most closely achieve the specifications of damping 
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factor a.nd nse time. One way of ensuring that the final parameters are 

the most suitable, and automating the whole design process, is to use a 

model reference technique. There are many advanced on-line model reference 

adaptive aollltrol techniques available, but in this section a simple off-line 

process using hill climbing optimisation methods will be applied to the design 

of the motor torque controller. 

The principle of the model reference technique is to compare the 

output of the controlled plant, yP, with that of a reference model, Ym, 

representing the desired closed loop system. For motor torque control this 

system must therefore have a rise time, tr = 150 ms and damping factor 

·e = 0.707. As before equations (5.4)-(5.6) provide the necessary closed loop 

pole locations for the equivalent second order system; now to be used as the 

reference model. 

(5.13) 

To quantify how closely the plant response matches that of the model a 

performance index, J, maybe defined: 

00 

J = j IYp - Ym idt 
0 

(5.14) 

J is conveniently calculated after a unit step has been applied to both systems. 

Clearly J cannot be calculated in a digital system but must be approximated 

by summing the difference term at each sampling interval: 

S = L:1 IYp(i) - Ym(i) I (5.15) 

By considering only the first n terms it is assumed that the integral converges, 

which will be the case if the controlled plant has zero steady state error. 

Before the digital approach can be adopted, the reference model of equation 
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(5.13) must be discretised. Any discretisation method which preserves the 

two design specifications in the digital version is appropriate, and zero order 

hold equivalence is successful in this respect. 

Hewing defined the performance index, S, and obtained the reference 

model, the remaining problem is to adjust the controller parameters until it 

is minimised. A simple way of doing this is described by Lin Luo [Lin Luo 

and Hill, 1986] and has been adapted to suit the present application. 

The P+I controller as described by equation (5.9), has two adjustable 

parameters, namely g and ki. This means that S is a function of g and ki as 

illustrated by figure 5.15. Suppose initially S is evaluated at some arbitrary 

point A and at four surrounding points, labelled N, S, E and W on figure 5.15. 

One of these four points may well give a smaller value of S than A itself. If 

this is the case then that point is chosen as the new operating point and the 

process is repeated. Continuing in this way will eventually lead to the point 

B, which gives a smaller value of S than any point around it. Hence B is a 

minimum of the function S(g, ki) and should represent the control parameters 

giving the best possible match with the reference model. Before employing 

the method there are several practical points to consider. For example unless 

the function S has a single global minimum the parameter search may stop 

at a local minimum, giving perhaps dreadful controller performance. One 

possible way around this problem is to chose a number of well spaced starting 

points and to check that they all converge to the same solution. A second 

point is that the start point may not give a stable system, although Lin Luo 

and Hill counter this by stating that a stable operating point will always be 

reached. 
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5.5. Jl. AppR.D.cmiioHll oii' tlhle Mod! eli Reii'eli'eilllce Teclhlillln«:J)1llle 

io the Moto1r 

One possible way of carrying out the optimisation process described 

above is ta> apply the control law directly to the motor, subsequently varying 

the parameters in real time in response to changing motor performance. 

However a problem which arises in applying the technique to the motor 

or engine, is how to apply the necessary step demands in the context of 

an operational vehicle. Furthermore control carried out at the start of the 

search might be exceedingly poor, hence there is a possibility of physical 

damage. An alternative solution is to use a model of the plant and adjust 

·the the control law on that before applying it to the real system. Since 

this avoids both of the practical objections raised above, and since a model 

of the motor is available, this method is perfect for the present application. 

Using the direct second order model of the motor in the full field mode from 

Table 4.6 as an example, the design process outlined above gave the results 

displayed by figures 5.16 and 5.17. Figure 5.16 shows the locus of 9 and k; 

as they converge on a single solution for four arbitrary start points. This 

single solution is encouraging since it indicates that a global rather than local 

minimum has been found. To achieve the result the step lengths are !::19 = 0.5 

and !::iki = 0.2. In each case the optimised solution is given by 9 = 8.5 

and k; = 1.4 which agrees very closely with the parameter set found earlier 

by manual adjustment {see Table 5.1). Following the design, the response 

of the model and a simulation of the motor plus appropriate controller were 

compared as in figure 5.17. As might be expected this graph shows that it 

is impossible to precisely match the reference model by simply using a P+I 

controller; nevertheless a perfectly adequate design has been produced. 
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5.(5 DJi§c1lll§§norm 

All three controllers designed m this chapter have to cope with non­

linear time varying systems. Gain and dynamics are a function of operating 

point in d>oth the engine and motor torque control loops. Nevertheless 

satisfactory col!ltrol has been achieved without recol.llrSe to sophisticated control 

algorithms or large numbers of parameters for different operating conditions. 

Engine torque control achieves peak performance at the design speed 

of 2000 r.p.m., with system gain decreasing above that speed and increasing 

below it. At the higher speeds the falling gain causes an increase in rise 

time, whereas at lower speeds the increased gain causes a slight overshoot. 

Nevertheless even in this latter case system performance is not so seriously 

degraded as to be unacceptable. More importantly examination of the root 

locus based on the manifold filling delay for 1000 r.p.m. shows that system 

stability is in no doubt down to this speed; representing the lowest operational 

speed for the engine. To counter this problem a slight modification to the 

engine torque control loop would be to make controller gain speed dependent, 

thus largely cancelling out variations in plant gain and maintaining optimum 

system performance across the whole speed range. Such a philosophy was 

adopted for torque control in the HTV-1 [Somuah et al, 1983]. This vehicle 

also based its torque control on the an indirect measurement based on inlet 

manifold depression and speed, but included a variable gain in the control 

loop. As explained in the reference the controller was a microprocessor based 

implementation of a lead-lag network. 

Turning to the motor, a single control algorithm is possible, despite 

the three operating modes. In this case the algorithm developed for the 

field boost mode can operate the motor across its entire speed range and 

all operating modes. Unlike the engine however, one controller cannot really 

cope with the wide range of system gains, and inevitably the response under 
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certain conditions is too slow to be acceptable. In particular the field boost 

controller will produce a very long rise time in the field weakening mode 

due to the very low plant gains it encounters. Consequently it is worthwhile 

adopting tdle tluree sets of controller parameters as described in the design. 

Of the three control systems designed m this chapter, the engine 

speed control loop showed the greatest discrepancy between between measured 

performance and theoretical simulation. Apart from the enhanced effect of 

the step rate non-linearity in the throttle servo-system, the analysis in chapter 

3 clearly showed that the transfer function relating throttle angle to speed 

was likely to be unreliable, since all coefficients are themselves functions of 

speed. This means that the controller is working against a continually varying 

system as it accelerates the engine. Once this fact is taken in to account the 

relatively small difference between experiment and the simple linear simulation 

IS quite surprising. 

The hill climbing technique introduced in section 5.5 offers an alter­

native method of applying the pole-placement technique in all three control 

systems dealt with earlier in this chapter. It would have clear advantages if 

it proved necessary to produce an individual controller for each hybrid vehicle 

in a fleet. Although this latter scenario is perhaps unlikely, it all depends on 

whether or not mass produced engines and motors have sufficiently consistent 

dynamics to make one controller design generally applicable. Whether or not 

the hill climb method is used for initial controller design, it nevertheless opens 

up the possibility of re-tuning controller parameters to changing drive line 

characteristics over the life of a vehicle. A possible approach to this problem 

1s discussed in chapter 8. 

Obviously the main incentive for shutting down the engine is to save 

fuel otherwise wasted during idling. Although this strategy does undoubtedly 

save fuel, the cost is some delay in the availability of engine torque however 
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small. In addition there must be some fuel penalty associated with starting 

the engine from rest and accelerating it up to the prevailing drive train speed 

before it can supply additional torque. This fuel loss is needed to replace the 

kinetic enorgy of the engine lost when it is shut down. To try to calculate 

the likely amount of fuel lost in this way, Beachley a.nd Frank [Beachley and 

Frank, 1981] quote a typical engine inertia of 0.068 kgm2 , implying an energy 

loss of 0.933 Wh when such an engine is shut down from 3000 r.p.m. If fuel 

used is based on this figure alone the result is an unrealistically low estimate 

since some of the kinetic energy is replaced by the starter motor the next time 

the engine is used. This energy will later have to be made up by the engine 

v1a the inefficient alternator battery combination. As previously mentioned 

an operational hybrid might well crank the engine using a clutch and flywheel 

combination on the grounds that it provides a faster start. This method uses 

about 0.104 Wh according to Beachley and Frank, a figure slightly higher 

than that simply needed to replace engine kinetic energy, because of friction 

losses in the clutch. As a result of these losses it is uneconomical to shut 

the engine down for a very short space of time. Nevertheless Volkswagen 

considered potential savings due to fuel off at idle and overrun sufficient to 

include the feature in their Forme! E range of cars [Schmidt, 1981]. Results 

stated in this paper suggest that stopping the engine for periods of less than 

5 seconds is uneconomic, however fuel savings in normal urban driving of 

30% are reported for the otherwise conventional i.e. engine vehicle. ) 

Experiments using the balance to measure fuel consumption show that 

for an idling speed of about 800 r.p.m., the 1100 cc Ford engine on the rig 

uses 0.1206 grams of petrol per second. Since the measured density of the 

petrol was 0.4432 g/ml this equates to a total consumption of 979 ml/hour. 

Assuming that the Volkswagen engines have similar fuel consumption to the 

rig engine, then 1.36 ml of fuel is used in 5 seconds which, if they took no 
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other factors in to account, must represent Volkswagen's assessment of the 

total fuel penalty per start. Such a small amount of fuel is very difficult 

to measure on the rig, not because the balance does not have the necessary 

sensitivity,o but because of the unevenness of fuel How out of the tank. Further 

complications arise because there is no way of ensuring that the total amount 

of fuel in the supply line, fuel pump and carburetter is the same at the start 

and end of any calibration experiment. Despite anticipating these difficulties 

an experiment was carried on the rig to try to measure fuel use per start. 

The experimental method was to operate the engine on a 50% duty cycle 

for 128 seconds. During the first test the engine spent 64 seconds stationary 

·then started, accelerated to 2000 r.p.m. and maintained that speed for the 

remaining 64 seconds. Subsequent tests repeatedly doubled the number of 

starts, until the practical limit of 16 starts was reached. This corresponded 

to each on/off cycle lasting 8 seconds. Using the digital balance to evaluate 

fuel use gave the results in Table 5.3. 

No. of Fuel 

Starts Used (g) 

1 14.5 

2 14.8 

4 13.3 

8 17.0 

16 15.0 

Table 5.3 Engine Start Tests 

If it is reasonable to equate Volkswagen's 5 second economy rule 

directly to fuel used, then 16 starts would use 9 g of fuel which would have 

been easily detected by this experiment, had it occurred. Clearly some of 
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the apparent discrepancy might be explained by loss of battery energy during 

these experiments which the engine had yet to make up, however it seems 

unlikely that this is entirely responsible. 

Wchatever the fuel penalty associated with starting the engine IS m 

reality, there can be no doubt that shutting down an inactive engine in the 

hybrid application is essential. Use of the motor means that inactive periods 

for the engine are much greater than in the conventional vehicle. Nevertheless 

on/off engine operation does pose a number of additional questions such as 

adverse effect on engine life and increased enusswns. Initial test results 

from the HTV-1 [Trummel and Burke, 1983], suggested that engine life was 

·not reduced by such action but that further work was needed to prove it 

beyond doubt. Emissions were in fact found to be a problem with the 

Volkswagen starting system in the HTV-1 project, possibly because, to ensure 

good starting, Volkswagen arranged for fuel to be sprayed in to the inlet 

manifold, resulting in a rich mixture. Eventually the system was disabled in 

the HTV -1 application as soon as engine cooling water temperature reached 

95°F. No mention is made by Schmidt as to whether this spray system was 

retained by Volkswagen for the Formel E application; if it was retained then 

this might go some way towards explaining why the 5 second economy rule 

could not be confirmed on the rig. If the starting system used on the rig 

were adopted consideration would have to be given not only to the increased 

wear on the engine but the reduced lifetime of the starter motor. 
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CHAJP>'JI'JER 8 

THE AUTOMATED GEAR CHANG][NG §Y§TEM 

As mentioned in chapter 2, the hybrid vehicle rig includes a con­

ventional G1 speed manual transmission between the engine/motor and the 

flyv:theel. For reasons of efficiency some form . of variable transmission is 

essential to the overall vehicle control strategy. This need prompted the 

development of a pneumatic actuation system which allows the M68000 com­

puter to change gear automatically as required [Masding and Bumby, 1988 

(a)}. In this chapter the automatic gear changing system will be described 

and results presented to illustrate system performance. Before embarking 

on this description however, it is useful to consider why the hybrid vehicle 

requires a variable transmission at all, and what other transmission systems 

are available as possible alternatives to the conventional manual gearbox. 

8.1 The Case lfor a Variable Thansmission in Road Vehicles 

The need for a variable transmission in a hybrid vehicle IS a conse­

quence of the power characteristics of both the engine and motor. In chapter 

1 it wa_.s mentioned that optimum control of a hybrid would restrict use of 

the engine to the high efficiency region of its characteristic, which tends to 

be at relatively high load and low speed, a.s indicated by figure 1.3. Such 

operation can not be achieved if only a fixed ratio transmission is available. 

Figure 1.3 demonstrates this fact by showing the level road load seen by the 

engme when operating in a fixed gear. It is only at high speeds, and hence 

loads. that the engine operates at all efficiently. At low loads the operating 

point is well removed from the high efficiency (low specific fuel consumption) 

area. At a road load of 10 kW the engine operates at about 3000 r.p.m. 

and is relatively inefficient. By reducing the engine speed relative to the 

vehicle speed by a suitable change in gear ratio, the engine operating point 
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can be moved up, along the constant power line, towards the high efficiency 

reg10n. As this operating point moves up this constant power line it would 

ultimately reach the engine optimum operating line, the locus of which links 

the maxiiJ)lum engine efficiency points at each speed. In order to follow 

this optimum engine operating schedule a continuously variable transmission 

(CVT) must be used, however as discussed later, a manual transmission can 

achieve comparable economy provided it is operated correctly. 

Up to now the advantages of a transmission system have only been 

illustrated for the i.e. engine, nevertheless, the efficiency and performance of 

an electric vehicle can be similarly improved by using a variable transmission. 

A typical efficiency map for a separately excited d.c. traction motor is giYen 

by figure 6.1. In this case the high efficiency region occurs at relatively high 

speed and low torque in marked contrast with the engine. Efficient control of 

the motor therefore requires a different shifting logic from that of the engine. 

Another important consequence of the electric motor torque characteristic IS 

the availability of torque at low speed, and in fact at zero speed. As a 

result neither a clutch nor a variable transmission are absolutely essential 

in any vehicle which has an electric traction system. This has lead many 

pre\ious designs for all electric vehicles, such as the ETV-1 [Kurtz et al, 

1981] and the Lucas Chloride van [Maughan and Edwards, 1983], to dispense 

with both clutch and variable transmission on the grounds that this gi,·es 

a considerable weight saving and reduction in maintenance. Aside from the 

efficiency gains that a variable transmission offers to an electric vehicle, there 

are other advantages, such as improved performance and possibly simplified 

control electronics, to be considered when deciding whether or not to omit 

such a transmission. 

As figure 6.1 illustrates, two distinct operating regions are required 

to cover the complete speed range of the motor. At about 2000 r.p.m. the 
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torque is seen to fall with speed. This transition point is termed the 'break 

speed', and is the operating speed for the motor with full field current and 

full armature voltage. Below the break speed it is necessary to control the 

armature ('!oltage at full field current while speeds above the break speed are 

achieved by reducing the field current but at full armature voltage; a process 

known as field weakening. By including a variable transmission it is possible 

to make the motor break speed appear at relatively low road speeds, thus 

confining the need for armature control to very low vehicle speeds. Field 

weakening control can be extended still further by arranging for a battery 

switching system to halve the applied armature voltage. Once the minimum 

·speed for field weakening is as low as 10 km/h, armature control electronics 

can be dispensed with altogether. Vehicle movement from rest is achieved by 

starting resistors in the armature circuit, as is the case in the Ford electric 

vehicle [Burba et al, 1986]. An electric system based on a separately excited 

motor, field chopp~r and starting resistors was identified as the most economic 

drive system available by General Electric during their component evaluation 

study for the HTV-1 project [Burke and Somuah, 1980]. 

Apart from the improvements in efficiency and reduction in electronic 

control requirements, the variable transmission also gives the electric motor 

improved performance as demonstrated by figure 6.2. In this diagram the 

motor maximum torque envelope of figure 6.1, has been converted to an 

equivalent traction force at the vehicle road wheels for three different trans­

mission ratios. Also shown is a typical road load requirement at different 

gradients. With a fixed ratio of 5.65:1 the vehicle can cover the speed range 

0-100 km/h but is incapable of starting on gradients greater than 15%. A 

typical performance specification for an i.e engine passenger car is to start 

from rest on 20% gradient and the ability to sustain 120 km/h on a 2% 

gradient. Obviously the fixed ratio electric vehicle has difficulty meeting either 
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requirement. By adding two additional gear ratios both low and high speed 

performances are improved. 

In a hybrid petrol/electric vehicle the presence of the electric motor 

means thaCl again a variable transmission is not absolutely essential as illus-

trated by the Lucas Hybrid [Harding et al, 1983] and an earlier hybrid built 

by Bosch [Fersen, 1974]. Nevertheless, if efficiency 1s an important design 

consideration one is almost certain to be included. With the differing effi-

ciency maps of the engine and motor there is some conflict of shifting strategy 

in a hybrid and hence some improvement in vehicle economy can be made 

by using independent transmissions. Previous work at Durham [Bumby and 

Forster, 1987] suggests that overall an improYement of 10% might be expected, 

although it is debatable whether the increased complexity and weight would 

make this worth while; particularly when the hybrid design is already open to 

criticism for high component {Eau~ when compared to conventional vehicles. \ 
1 

~~ I 
A further argument against using two transmission systems for the present 

work is that the control strategies which have been designed to optimise 

energy consumption tend to operate the vehicle in either all electric or all i.e. 

engine modes thus allowing gear shifting strategy to be optimiserl for w}lich 

ever unit is operational. 

18.2 Variable Transmission §ystems 

At this stage the case for incorporating a variable transmission in 

an efficiency conscious hybrid vehicle has been clearly established. Once 

this decision has been made there are several possible transmission systems 

which might be adopted, with the CVT apparently representing the optimum 

solution. By far the largest category of CVT's are those based on the 

Van Doorne pulley [Steig and Spencer-Worley, 1981][Srinvasan et al, 1982], in 

which the power transmitting and power receiving pulleys vary in diameter 
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in opposing senses so that a constant length belt can be used to link them 

but still allow the speed ratio between their shafts to change. An alternative 

system is the Perbury, [Stubbs, 1981)[Stubbs <Mid Ironside, 1981] which makes 

use of dis;cs with toroidal hollows in their faces separated by rollers with 

spherical rolling surfaces, these rollers being constrained in a cage system so 

that they can tilt and thus provide a variable drive ratio between the two 

discs. If these systems could match the efficiency, low cost, and reliability 

of a conventional manual gearbox and in addition were controlled to follow 

the engine optimum operating line they could achieve fuel savings of up 

to 30% relative to the conventional automatic and 15-20% relative to the 

conventional manual [Westbrook, 1986]. Unfortunately the belt and pulley 

CVT has a much lower efficiency than the 85-95% achieved by the manual 

and shows particularly poor performance under certain loading and speed 

conditions [Bonthron, 1985]. In contrast the Perbury CVT 

promises much higher efficiency but in this case it has 

been hampered by high manufacturing costs. For these reasons the only 

commercial application of CVT's up to 1984 was the Daf Variomatic belt 

system [Cuypers, 1984]. 

Due to the present low efficiency of practical CVT's there is a danger 

that any benefits accruing from improved engine utilisation can be lost in 

the transmission itself. Even with high efficiency the potential advantages of 

a CVT may be quite small when compared with an improved conventional 

system following an economic shifting strategy. A comprehensive study of the 

problem of matching engine and transmission carried out by Riccardo Engrs., 

[Thring, 1981], demonstrated that a discrete ratio transmission following an 

optimal shifting strategy can achieve virtually the same economy as a high 

efficiency CVT. The most important factor influencing whether or not high 

efficiency can be achieved with a stepped transmission is the span and riot 
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the number of ratios. Specifically Thring points out that a gearbox with 

only 4 ratios can achieve very good fuel economy provided it has a span 

of at least 5. Gear boxes fitted to present production vehicles, such as the 

Ford gearlJ>ox fitted to the test rig, typically have a span of 3.5 with top 

gear giving 19mph/1000 r.p.m. An optimum design would provide about 

35mph/1000 r.p.m. which together with a span of 5 would bring about a 

30% improvement in fuel economy. Above these values a law of diminishing 

returns applies to both span and number of ratios, demonstrated by the fact 

that increasing the span to 8 yields only a further 2% gain in economy and 

a similar negligible improvement occurs if the number of ratios is doubled to 

8. 

Several manufacturers have recognised the fuel saVIng potential of 

usmg a conventional manual gearbox while automating the shifting process. 

Examples to date are those built by Ford [Main et al, 1987] and Isuzu of 

Japan [Isuzu, 1986). Complicating the design of both these systems is the 

need to automate not only the operation of the gear shift lever but, m 

addition, the movement of the clutch. In practice the clutch has proven by 

far the more difficult item to automate successfully, with smooth ;md reliable 

operation being difficult to achieve. In their paper Ford suggest that the 

completed system would be most likely to find acceptance in light delivery 

vehicles and taxis rather than passenger cars. For this latter market Ford 

believe that conventional automatics designed for better fuel economy have the 

greatest potential because they offer better smoothness in shifting. Despite 

these difficulties considerable research effort continues into the automatic 

operation of the clutch system [Falzoni, 1983] [Tanaki, 1984]. In their study 

Fiat [Falzoni, 1983] reported major difficulties in obtaining smooth low speed 

operation, particularly in reverse. 

The alternative option, mentioned above, of controlling a conventional 
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automatic so that it follows a more economic shifting schedule has also been 

investigated by .Ford [Richardson et al, 1983] and Fiat [Busca et al, 1979]. In 

this case inevitable losses in the torque converter, even with lock up clutch, 

must limit the potential of such a system. A microprocessor controlled 

automatic, with torque converter removed, was chosen for the HTV-1 project 

[Somuah et al, 1983]. In this case there was no need to use a torque converter 

with the 3-speed General Motors automatic_ because the_ vehicle included two 

microprocessor controlled clutches capable of isolating the gearbox from both 

the engine and the motor during shifting. It is interesting to note that no 

problems with clutch control, even during low speed manoeuvres, are reported 

'for the HTV -1. 

From the above discussion it would seem that if a conventional manual 

gearbox can be successfully automated, it arguably represents the best choice 

in terms of fuel economy and production cost. Possibly the only barrier to 

its success in conventional i.e. engine vehicles is the need to control the 

clutch. This latter problem does not arise in a hybrid vehicle because the 

electric motor can be used to move the vehicle from rest and control the 

speed of the input shaft to the gearbox during shifting. As a result of this 

simplification it is believed that the system developed for the rig would be 

ideal for an operational hybrid. 

Before moving on to consider the mechanics of the rig system, it is 

important to consider what characteristics constitute good driveability in an 

automated transmission. Firstly it is apparent that the manual gearbox cannot 

achieve a 'hot shift' and so it is important that the total shift time, during 

which torque is absent from the road wheels, must be as short as possible. 

In the Ford system [Main et al, 1987] total shift times amounted to 0. 7 

seconds which was considered to be acceptable. Secondly a key consideration 

is smooth action, with large torque transients in the prop-shaft being avoided 
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when power 1s restored. 

18.3 'IDralillsmis§nollll §ysiem Hardwrure o.!Ill ilbte Hylln·id Velh.ide Rng 

TOJ achieve the automation of the gearbox on the rig a pneumatic 

actuation system has been mounted on the rear portion. This mechanism is 

illustrated by figure 6.3; overall dimensions are about 600 x 300 mm. In an 

operational system the design could be considerably reduced in size; in fact 

it would seem perfectly feasible that the final product would not be much 

larger than the original gearbox. Such scaling down has not been attempted 

on the rig because it would prevent gear shifting by hand, thus reducing 

·experimental flexibilty. 

The function of the gear-change mechanism is to move the gear lever 

m a similar manner to a human operator. Such freedom of movement is 

provided by the two pneumatic cylinders attached to the gear selection lever 

as shown in figure 6.3. Activating the longitudinal cylinder causes a plate 

to move backwards and forwards thus shifting the gear change lever between 

the 1/3 and 2/4 ends of the H gate. This plate is mounted between two 

sets of bearings rotating in the horizontal plane. Each hP.aring wheel has a 

grooved edge which locates with a bevel on the edge of the plate. A second 

cylinder is mounted on the plate and moves with it. This cylinder provides 

the necessary sideways movement of the gear selector between the 1/3 and 

2/4 sides of the H gate. 

The circuit diagram for the pneumatic system is shown in figure 6.4. 

Compressed air is supplied to the system from a reservoir which is recharged 

as necessary by an electric pump. During normal operation a regulator valve 

maintains the working pressure in the system at about 2 bar. Each of the 

two working cylinders is controlled by a piston valve. There are five ports 

on each piston valve with the flow path between them being controlled by 
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activating the appropriate solenoid. In the case of the longitudinal cylinder 

two additional components are used to help stop the piston in the central, 

neutral position. The first is a fast acting valve which cuts the air supply 

to the cyldnder 12 ms after its solenoid has been energised. Secondly flow 

regulators are fitted to both supply lines feeding the cylinder. These allow 

air to flow freely into the cylinder but, when air is flowing out to the exhaust 

ports, the flow is restricted. As a result the speed of the piston's movement 

is decreased which reduces its tendency to overshoot the neutral region :ore 

the air cut-off valve can be activated. 

Both cylinders have magnetic pistons which operate sensor switches 

attached to the outside of the casing, as illustrated in figure 6.3. A system of 

two switches on the transverse cylinder and four on the longitudinal cylinder 

completely define the the position of the gear lever. Each sensor switch can 

easily be adjusted by repositioning along the casing thus ensuring that it is 

activated when the gear lever reaches precisely the right position. The area 

of the H gate covered by each position sensor is shown diagramatically in 

figure 6.5. 

The six sensors alone are sufficient to confirm when a particular gear 

is engaged and when the gearbox is in neutral. Logical OR of the two centre 

sensors provides a. single signal which covers the whole of the neutral region. 

This signal is interfaced to a positive active edge interrupt input on one of 

the VIA chips. \Vhenever this signal generates an interrupt the air supply 

to the longitudinal valve is cut using the fast acting cut off valve. However, 

ambiguous positions exist, for example, the position reading obtained between 

first and neutral is the same as that obtained between neutral and second. A 

solution to this problem is provided by connecting the two centre sensors to 

a positive edge triggered D type flip-flop decoder circuit. The flip-flop circuit 

uses one centre sensor as clock and the other as D, relying on the fact that 
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the two centre sensors are displaced slightly from one another. As a result 

an output is produced which is high forward of neutral and low to the rear. 

15.4 Kmnte~r:fi'.aJ.(ce <Cnll'c1llln'lcli'y 

In order to give the M68000 full control of the pneumatic system 

both position sensors and solenoids are interfaced to the VIA chips. Two 

chips are used, one assigned to input signals from the position sensors and 

decoder circuit and the other assigned to output signals for the control valves. 

Power for the position switches comes from the 12v engine starter battery, 

making the signals prone to noise from the ignition, in addition to any other 

noise picked up as the signal cables cross the rig. Consequently each signal 

passes through a de input module, which includes some filter circuitry, before 

finally arriving at the M68000 VIA input port. 

Solenoid valve control signals from the VIA passs through opto-isolator 

units before reaching the relevant valve. These devices not only provide noise 

protection for the M68000 but switch the necessary 12v battery supply to the 

valves. 

6.5 Software Coliltrol 

As described in chapter 2, the M68000 software is structured so that 

time critical control tasks run every 20 ms in interrupt routines whilst non­

critical tasks such as user requests run in the background. Gear changing 

encompasses both types of software task; the fundamental control of the 

gearbox runs in interrupts whilst manual requests to change gear come from 

the background. \Vhen the complete drive system is running however, gear 

change requests are also generated in interrupts. Gear change logic is provided 

by a single 'C' sub-routine, which has the flow chart illustrated by figure 6.6. 

Direct access to the input and output registers of the VIA chips involved is 
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provided by two small assembler routines. All that is necessary to activate 

the main 'C' routine is to call it in every interrupt passing the required 

gear each time. On completion of the gear change the routine returns false. 

Each gearachange breaks down into three stages as described in the following 

sections. 

!5.5.Jl. §iage Jl.: §lhlift i:nio Neuill'ru 

At the start of any gear change the loading on the gearbox is removed 

and the gear lever is moved into neutral. During its first call the gear change 

routine activates the necessary solenoids to move into neutral by sending a bit 

pattern to the relevant VIA output register. A two dimensional array provides 

the program with all the bit patterns it needs based on the current and next 

gear. These codes activate the longitudinal cylinder as appropriate to get 

out of the current gear and simultaneously activate the transverse cylinder to 

move left or right ready for the next gear. When the gear lever moves into 

the central neutral region a high level interrupt signal (level 4) is generated. 

At this stage the air is supply to the longitudinal cylinder is immediately cut. 

Control now reverts to the m::~.in ge::~.r shifting program which is executed in 

the level 3 interrupt software every 20 ms. It would be slightly simpler to 

allow this routine to cut the supply to the longitudinal cylinder, however this 

would entail a delay in this action which might amount to 20 ms. It was 

felt that the need for prompt action in this respect justified the use of the 

higher level interrupt. Reaching neutral does not necessarily mean that the 

gear lever is on the correct side of the H gate, and consequently the main 

routine continues to check the position sensors until the appropriate position 

is reached. Checking the position consists of reading the VIA input register 

ten times and only accepting a given result if all ten give the same correct 

reading. 
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Shifting into neutral is made easter if no power is being transmitted 

by the gearbox, and so the program takes steps to remove the loading from 

both the motor and engine. Unfortunately in neither case is this simply a 

matter of a setting an accelerator signal to zero. Complications in reducing 

the engine loading arise from the fact that it must pick. up load smoothly 

again once the gear change is completed. If the engine throttle is simply set 

to zero, engine speed will fall far behind the rest of the drive train during 

the gear change. Consequently when the throttle is returned to its previous 

setting, the engine can accelerate very rapidly until it hits the rest of the 

drive train, possibly causing an unacceptable jolt in a real vehicle. To solve 

this problem closed loop speed control of the engine is provided to maintain 

the engine at about 88 r.p.m. ( 4 counts on the engine speed transducer L 

) behind the drivetrain throughout the gearchange.~ 

Set points for the engine speed controller depend on whether the gear 

change is up or down. With an upshift the engine can immediately start 

to slow towards the speed it will need when the new gear is engaged. In 

contrast it is not physically possible to accelerate the engine to the speed that 

will be necessary after a downshift, until the gearbox is in neutral. Hence 

two setpoints are used; for a downshift the engine follows 88 r.p.m. behind 

the motor as it accelerates and for an upshift the engine is sent immediately 

towards the speed needed for the next gear. 

When the electric motor has been providing power pnor to the gear 

change particular attention must be paid to the accelerator and brake signals 

so that is simply rotates without loading the drive shaft. If both brake and 

accelerator signals are set to zero then the logic within the power electronics 

becomes undefined causing the contactors to switch continuously between the 

acceleration and braking modes. Application of a small signal to either input 
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solves this problem and causes the controller to switch positively into one 

or other mode, with acceleration taking priority if ooth signals are present. 

Accordingly the gear change routine applies a small signal to the accelerator 

in prepar<0;ion for a. down change and a brake signal for an up change. 

8.5.2 §tmge 2: §peed!. Mmtclbtiltllg 

Once neutral has been obtained the next stage is to synchronise the 

speed of the input shaft of the gearbox to that of the output taking into 

account the ratio of the next gear to be engaged. This is achieved by sensing 

the speed of the flywheel and controlling the speed of the electric motor 

to a setpoint based on the flywheel speed times the gear ratio. Action of 

the synchronisation algorithm depends on the size and sign of the error m 

a way that has been designed to minimise the time taken to match the 

speeds. Intuitively mixed use of accelerator and brake, depending on the 

sign of the demand from say a P+I algorithm might seem an obvious form 

of control. However this is not the case because of the delays that anse 

when the power electronics have to switch between braking and accelerating. 

In practice these delays are caused by the contactors closing and the field 

current reversing, which amounts to an unacceptable 0.5 second delay. To 

avoid this problem, and achieve synchronisation in about 0. 7 seconds the 

controller takes different courses of action depending on whether an up or 

down shift is needed. On a change down, having preset the contactors to 

accelerate prior to making the neutral move, speed control is achieved by a 

P+I algorithm using the accelerator alone. During a change down accelerator 

action is all that should be required, however if the system overshoots slightly 

natural slowing of the motor provides adequate correction without recourse to 

regenerative braking. One slight modification to the basic P+ I algorithm is 

that the gains are reduced for small errors since the unloaded motor is highly 
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sensitive to variations m the input signal. On an up shift the system has 

been primed for braking and so a constant brake value is applied for as long 

as the overspeed error is greater than 200 r.p.m. Once the overspeed error 

has been :eeduced below this level the controller sends out a small accelerator 

signal in anticipation of the time it takes the electronics to make the necessary 

changes. Meanwhile the motor continues to slow naturally and eventually 

reaches the required speed, at this stage the P+I accelerator algorithm takes 

over to maintain this speed until the gear is successfully engaged. 

6.5.31 §tage 3: Engaging the New Gea.K 

As soon as the speed error is less than 66 r.p.m. the longitudinal 

cylinder is activated to engage the new gear. Any residual speed errors are 

partly corrected by the synchromesh in the gearbox, assisted by the continuing 

action of the P+I control algorithm. Once the engage move has been made 

the program waits for the sensors to confirm that the position for the new 

gear has been reached. Finally the program returns false to the calling routine 

thereby signalling that power may be restored to the drive shaft. 

6.5.4 EK"Imli' Handling 

Several error conditions are feasible during the gear change operation, 

the mam control routine has been designed to detect the occurence of three 

of them. Paramount consideration in handling error conditions is to protect 

the gearbox against the possibility of attempting to engage a gear when there 

is a large speed error, or when either prime mover is attempting to provide 

power. If this precaution is not fully observed, the result can be destruction 

of the gearbox. 

As indicated above it is possible for the gear selector to stop in a 

position that, although in neutral is not covered by the centre sensor. If this 
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happens the mam gear change routine would wait indefinitely for the neutral 

position to be reached. Accordingly 25 interrupts (0.5 seconds) are allowed 

for the neutral position to be reached and after this time it 1s assumed 

that an el)'ror has arisen. When this occurs control is passed to an error 

hamdling routine which attempts to nudge the gear selector back towards 

nemtral. Interrogation of the output from the decoder circuit determines 

whitch direction the longitudinal cylinder must move to achieve this. 

Another error condition occurs if an erroneous interrupt from the 

centre position sensor causes the air supply to be cut before the engage or 

neutral moves are complete. To guard against this problem the program 

allows three seconds overall to engage the gear and if this is not achieved the 

error handling code forces the main program to remake the necessary move; 

subject to successful speed matching. 

Finally if the gear change is not completed after five seconds, the erro: 

handling code assumes that something is disastrously wrong and it abandonE 

the whole gear change. In taking this action the gear change program cuts 

the engine ignition and disables both motor accelerator and brake action. 

It is therefore impossible for external routines to restore power to the drive 

shaft. 

Should any of the above error conditions occur key control variables 

and position signals are stored by the software so that a later diagnosis 

can be carried out by the operator. It should be mentioned that with the 

present hardware and software configuration none of the above errors has 

occured, they came to light as possibilities during earlier development work. 

For example erroneous interrupts occured when the de input modules were 

placed near the cylinders so that they did not filter the signal just prior to 

it reaching the computer. 
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18.5.5 lLoi!Al~.iorrn on Powell' Up 

On initial power up a gear change initialisation routine is activated 

that locates the gear selector lever in the neutral left position ready for the 

first gear !Change. This is done without use of the decoder circuit since the 

output from the Hip-flop might erroneous until the neutral position is crossed 

for the first time. A simple series of logical movements based on the sensor 

readings makes up the structure of the location routine. 

6.6 Results 

Typical results for both a down-change and an up-change are shown 

in figures 6. 7( a) and 6. 7(b) respectively. Both changes occured when the drive 

train was operating in i.e. engine mode. As such the engine provides all 

the power before and after the gearchange. This type of operation provides 

a stiffer test of the gear changing system than a change in electric mode 

because of the delays in restoring torque inherent in the way engine speed 

lags slightly behind the gearbox input shaft during the change. 

Figures 6.8(a) and 6.8(b) shows speed synchronisation m more detail 

and indicate how much of the total shift time is taken up by each stage 

of the shifting process. Speed matching is the most time consuming stage 

with considerable dead time before the motor speed responds at all to the 

setpoint. This set point speed becomes defined as soon as neutral is reached 

and is then related to the flywheel speed through the appropriate gear ratio. 

Slight decay in the fl.jwheel speed can be seen during both gear changes as 

a result of the dynamometer loading. Variations in engine speed given by 

figure 6.8 illustrate how it immediately drops away towards the final setpoint 

value during an up change whereas in a down change it is tightly linked to 

the motor speed as soon as neutral is reached. Natural decay of speed for 

the engine is seen to be much slower than active braking for the motor. 
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18.7 DiacUlaslim:n 

Before the gear changing system was described in detail two perfor­

mance criteria were suggested; total shift time and smooth reapplication of 

torque. EXperimental results show that typical shift times for the rig sys­

tem are 1.16 seconds for an up change and 1.48 seconds for a down change. 

Greater adjustments in speed are required if the shift is between non-sequential 

gears which typically increases the total shift time by 200 ms. Figure 6.8 

shows that of this total time 200-400 ms are required to reach neutral, speed 

synchronisation requires 600-800 ms and the engagement process reqmres a 

further 100-300ms. This wide range of times for the engagement move 1s a 

result of varying residual speed errors when engagement is first attempted. 

Although quite reasonable for development work on the rig, this total shift 

time is actually rather slow for acceptable driveability in a production vehicle, 

a more realistic target is the 700 ms figure quoted by Ford. Fortunately 

there are a number of modifications to the present system which make it 

quite likely that the total shift time could be reduced to a far better value. 

A substantial improvement in shift time could result from the use of 

a more advanced electronic control unit now manufactured by Lucas [ETV 

World, 1988]. The Mark V power electronics control unit described in this 

article makes very limited use of mechanical contactors, thus making it possible 

to switch instantaneously between motoring and braking. As a consequence 

it would be possible to incorporate mixed use of regenerative braking and 

accelerator action in a single P +I control algorithm; furthermore dead time 

apparent in the present system before it responds to a control signal should be 

substantially reduced. Despite continued use of the older Mark III controller 

on the rig there is still some scope for improving shift times by altering 

the control algorithm. At present controller gains are fixed over the whole 

operating range of the motor. As was revealed in the analysis of the motor 
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m chapters 3 and 4, three operating modes exist each with differing dynamic 

characteristics. Consequently using one set of controller parameters for speed 

matching must reduce performance under certain conditions. A look up table 

of gains tp be adopted over different speed bands is one possible solution 

to this problem. A further refinement worthy of consideration is to mcrease 

the bias brake/accelerate signal during the neutral move in an attempt to 

reduce dead time once full speed control commences. Any gains here though 

would have to be weighed against a possible increase in time required to 

reach neutral due to slight loading of the gearbox. 

A second possible improvement may be obtainable by adopting a 

radically different control strategy. In a similar system, developed for an all 

electric vehicle, [van Niekerk et al, 1980] satisfactory engagement was achieved 

by simply sweeping the motor speed past the desired set point and attempting 

to engage as soon as a 10% error band is entered. Using this technique total 

shift times of 700 ms were achieved. 

Finally it must be recognised that the mechanical system has been 

partly compromised from the ideal by the desire to retain a manual shift 

facility. If the longitudinal cylinder acted directly on the selector forks and 

the transverse cylinder were replaced by rotary action, not only would the 

resulting system be more compact, but the shifting action would be faster. 

Following this course of action would require higher operating pressures to 

compensate for the loss of the mechanical advantage offered by the gear lever. 

Many operational systems such as that built by Ford, use a hydraulic oil 

based actuation system working at much higher pressures than those used on 

the rig and thus allowing a more positive shift action. 

Leaving aside operation time, perhaps one of the greatest advantages 

of the present transmission control system is the way that it fulfills the second 

design criteria, that of smooth reapplication of torque once the gear change 
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1s complete. In figure 6. 7, the engme torque traces shows no substantial 

osscilations on re-engagement, so that good driveability in this respect can 

be anticipated. · Some indication of the amount of torque oscillations in the 

prop-shaft~encountered when a typical driver starts a vehicle from rest is given 

by Lucas [Lucas and Mizon, 1978]. Their results, and those quoted by Ford 

in [Main et al, 1987] as representing a perfectly acceptable gear change, show 

far greater oscillations than figure 6. 7, suggesting that the speed matching 

system exceeds requirements. 
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CHAPTER 7 

][NTEGRATED DRIVE TRAIN CONTROJL 

AND DWVE CYCJLE TE§1C'][NG 

During the introduction it became apparent that control of drive train 

components in a hybrid design is a much more complex task than in either a 

simple all electric or i.e. engine vehicle. As a result some form of automated 

drive train controller is an almost essential part of any hybrid vehicle design. 

The only alternative to such a system is to make the driver responsible for 

controlling the drive train, as well as overall speed and steering. Such a 

strategy is clearly not only impractical, but could never lead to efficient use 

of the vehicle. 

Having recognised this need for automating the drive train, subsequent 

chapters have been concerned with four microprocessor based systems, designed 

to carry out fundamental component control on the experimental laboratory 
~ 

hybrid vehicle rig.~ These systems allow engine and motor torque to be 

precisely scheduled. the engine to be switched in and out of the drive train 

as necessary and finally they also allow fully automated transmission shifting. 

To complete the design these four control tools must now be linked together 

so that the vehicle can respond to the demands of a driver. Once this is done 

the completed system will have the control structure illustrated by figure 7.1. 

Primary inputs to the system come from the driver via the accelerator and 

brake pedals in the same way as they would in any conventional vehicle. At 

this point though, in contrast with the conventional system, the pedals are 

not mechanically connected directly to the engine or straight to the power 

electronics unit for the motor. Instead the pedal positions are fed electrically 

to the computer based hybrid mode controller, where they are interpreted as 

torque or power demands, either positive in the case of the accelerator, or 

negative in the case of the brake. Incorporated in the hybrid mode controller 
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Is some overall strategy which decides how to split the total driver demand 

between the engine and motor and also what transmission ratio to use. How 

it does this will ultimately determine the relative use made by the vehicle 

of petrol omd electricity as well as the efficiency of the engine and motor. 

After the hybrid mode controller has made these three decisions it 1s left 

to the four individual component controllers, mentioned above, to carry out 

its instructions. Between these systems and the mode controller lies the 

component sequencing control necessary to achieve a. logical order of events. 

In the first part of this chapter the action of this component sequencing logic 

is explained and then a simple hybrid mode controller is designed for test 

purposes. 

7.1 CompoiDlelilli §equencixng Conbol 

The hybrid mode controller produces three outputs on the basis of the 

driver's pedal positions. These are an engine torque demand, a motor torque 

demand and a. transmission shift command. It is the job of the component 

sequencing logic to harness the component controllers together so that these 

commands are followed with due regard to physical constraints imposed by 

the drive train. For example it is impossible to continue with torque control 

during a gear shift, and so the sequence controller includes logic to make 

sure that this never happens. Some drive train limitations are considered by 

the mode controller such as the maximum torque available from the engine 

or motor under given operating conditions. In . general however this mode 

controller embodies high level strategy so it is advantageous to separate out 

simple sequencing tasks so that its structure is not obscured by them. In 

figure 7.1 the additional sequencing logic is seen to act as a buffer between 

mode control and the operation of individual components. 

A flow chart for the sequencing logic is given in figure 7.2. Following 
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this structure it is apparent that during gear shifting all other control action 

is suspended thus avoiding the potential problem mentioned above. Several 

other features of this flowchart are concerned with engine start and shutdown, 

since theseJ two actions play an important part in ensuring a smooth transition 

between the various operating modes of the vehicle .. As an example consider 

switching between primary electric and primary engine modes, as defined 

in chapter 1. At the transition point the hybrid mode controller calls for 

an instantaneous transfer of full vehicle load from the motor to the engine. 

Clearly this cannot happen because of the finite time required to start the 

engine and synchronise it with the moving drive train. Consequently the 

·component sequencing logic tries to cover up for this delay by continuing to 

call for all demand torque to be met by the traction motor until the engine 

successfully starts. This condition persists for as long as the engine starting 

routine is active and would have to continue indefinitely should the engine 

fail to start. Thus, within the limits of the traction motor, the driver will 

not notice loss of torque during the starting process, even if it takes several 

seconds. 

A second important consideration affecting whether or not the engine 

should be started concerns avoiding too many start up operations. Failure 

to restrict the amount of engine starts would lead to excessive wear on the 

starter motor, and might damage the engine itself. As a result the sequencing 

logic includes two safeguards designed to stop this eventuality from occuring. 

Firstly the engtne is allowed to idle for five seconds at zero torque before 

bPing shut down. This five second figure is based on the estimated fuel 

penalty associated with the starting procedure as discussed by Volkswagen 

[Schmidt, 1981]. One condition does override this five second rule however 

and that is that the engine is shut down immediately should the driver touch 

the brakes. If this is not done regenerative braking can easily stall the engine 
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which is not a desirable condition. 

The second constraint on use of the engine is that it is not started if 

the torque demand is less than 5 N m. In fact such a. low torque demand is 

unlikely tc:9 result from a sophisticated mode controller on the grounds of low 

engine efficiency, however during testing with the simple controller discussed 

in the next section, certain conditions caused engine torque demand to hover 

around zero. Without the minimum torque consiraint this resulted in rapid 

starting and shut down of the engine. Finally it should be noted that since 

gear changing takes precedence over engine starting there is no danger of a 

conflict between the differing engine speed control strategies used by these 

routines. In future it may well prove necessary to allow these latter two 

events to occur simultaneously since combined engine start and down shift 

would be the most likely result of a sudden demand by the driver for full 

power. Minimum delay in achieving this would arise if the engine start 

process were gomg on during the gear change. Such dual action might well 

necessitate the selection of new parameters for engine speed control, since the 

engine would then have to synchronise with the unloaded motor. As such the 

synchronisation target speed would be subject to much more rapid variations 

than is currently the case, when all engine starts happen during the loaded 

motor condition. 

7.2 A §peed Based Modle ContJroller 

Eventually the hybrid mode controller must carry out a complex 

efficiency oriented strategy. For test purposes however, a simpler speed based 

strategy was used to investigate the interaction between mode controller, 

sequencing logic and component control. This algorithm has the advantage 

that mode transitions occur predictably, which is very useful for demonstration 

purposes and means that data sampling can be easily arranged to cover mode 
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transition points in detail. 

When this speed based mode controller IS initialised the user can 

input fixed speeds at which all mode transitions and gear changes will take 

place. Tuo of the user inputs define switching speeds between all electric 

mode, all engine mode and hybrid mode. Usually these three modes occur in 

sequence as the speed of the rig increases, but it would be possible to reverse 

the order of all engine and hybrid modes. In the hybrid mode the user is 

able to define a value of torque split ranging from one for all electric, to 

zero for all engine. Whenever a negative torque is demanded it is achieved 

entirely by the motor since the mechanical air brakes fitted to the flywheel 

are not under computer control. In addition to being able to define three 

gear change speeds the user can request that any single fixed gear be used. 

Smooth S'\\;tching between modes and gears is achieved by defining a 

hysteresis band around each threshold speed. As a result an arbitrary gear 

change speed of 20 km/h will result in an upshift at 21.9 km/h but no change 

down again until 18.1 km/h. This is vital to gear changing in particular 

because the speed inevitably falls during the gear change. A slightly smaller 

band of ±0.95 km/h is defined for mode transitions in recognition of the fact 

that speed changes are less severe in this case. 

7.3 Drive Cycle Testing 

Combining the mode controller described above with the existing 

elements provides the complete system needed to operate the rig in response 

to a driver. This means that the interaction of all the drive train systems 

can be tested under simulated driving conditions. Precisely how to evaluate 

the performance of any hybrid drive train is quite a complex question and no 

standard procedure is available [Wouk, 1982]. Wouk does however mention that 

important parameters for consideration are electric and liquid fuel consumption, 
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range before battery charging is required and emissions. Having decided to 

measure these important characteristics, it must be remembered that all 

are highly dependent on the vehicle use pattern. Consequently many test 

driving cyo::les have been developed to simulate typical vehicle missions such 

as urban, sub-urban and highway driving. As discussed by Wouk, JPL used 

a number of such tests to evaluate the performance of the HTV-1. Their test 

procedure lasted three days and included all three mission categories with a 

full assessment of emissions, range and fuel economy being carried out for 

each. 

Unfortunately it is not within the scope of the present work to carry 

out such a full evaluation of the laboratory drive train. In this case no exhaust 

gas analysis equipment is available and furthermore neither the flywheel nor 

dynamometer can provide an accurate enough simulation of vehicle load for 

fuel economy results to be meaningful. Nevertheless there are good reasons 

for testing the control system over a driving cycle. Most important is that 

such cycles will make demands on the system which are similar to those 

that would be encountered in a vehicle. If the control system is capable of 

following these driving cycles smoothly and accurately then good driveability 

m an operational system can be anticipated. 

In chapter 2 the cycle control software was described, this allows a 

speed profile to be defined in the M68000 which can be used as a set point 

for speed control. The only limitation inherent in this software is that the 

cycle must consist of a number of straight line sections. An example of a 

cycle which fits this description is the ECE15 European Urban Cycle. This 

cycle consists of three phases each characterised by a period of acceleration, 

followed by cruise and then braking to standstill. All three phases are at low 

speed with the last, and fastest only reaching 50 km/h at peak. As such it 

clearly represents typical vehicle behaviour in dense urban traffic and is often 
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used by European car manufacturers to determine the urban fuel economy of 

their vehicles. Due to the fact that the ECE15 is relatively mild, yet allows 

the hybrid drive train to use all of its operating modes, it has been used for 

most of the tests on the hybrid vehicle rig. 

To carry out a cycle test the rig operator must first select the ECE15 

or other cycle from disc, then initialise all the control systems in the drive 

system. It is quite possible to vary control parameters in all the control 

loops but the values derived in the preceding designs are available as default. 

At this stage the critical speeds defining the mode controller are selected. 

Initialisations are then complete and the M68000 is ready to start the cycle. 

Before this happens the Duet plots the cycle profile on the screen and waits 

for the user to press a single key to begin. 

Once the cycle has started the signal from the accelerator pedal is 

used to define the torque demand to the mode controller. There is only one 

operational pedal on the rig and so the user must press a key to toggle its 

action between brake and accelerator. As the cycle proceeds the speed of the 

rig is plotted against time so that the operator can attempt to follow the 

driving cycle. This procedure is carried out by the car manufacturers when 

they test the emissions of vehicles in the factory. Figure 7.3 shows the speed 

profile for the ECE15 together with the rig speed over a manually operated 

cycle. Such a result was obtained after several attempts by the operator and 

represents a fairly typical attempt at following the speed profile. 

7.3.1 Speed! Conversions 

Driving cycles can only be simulated on the rig if the flywheel speed 

is converted to an equivalent road speed. Flywheel speed is measured in terms 

of the counter value, fc, resulting from the combination of the magnetic probe, 

60 tooth gear wheel and 20 ms sampling period. To convert a given speed, 
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V, in km/h to a counter value to the scaling factor Kc IS defined so that 

c 
and hence 

fc = Kc XV 

Kc = 1000Ts9f 
21rrwNt 

(7.1) 

(7.2) 

where T 9 is the sampling period, Nt the number of gear teeth (60) and 9! 

and r w are assumed values for a vehicle wheel radius and final drive ratio 

respectively. Values adopted for the rig tests were 9! = 3 and rw = 0.3 rn. 

A first order digital filter is used to condition the flywheel speed signal prior 

.to its use in driving cycle control. 

7.4 Complete Computer Coltlltrol 

When a test driving cycle is followed by a driver he is acting as a closed 

loop speed controller, varying his accelerator and brake demand in response to 

the speed error he observes on the computer screen. Even after considerable 

practice the driver cannot follow the cycle completely satisfactorily nor can 

he provide repeatable results. This fact l~d to the design of a computer 

based speed control system which allows driving cycles to be carried out 

both accurately and repeatably. This system brings the advantage that as 

modifications are made to the drive train controllers their effect can be seen 

in isolation because the cycle will be followed in a predictable manner. Speed 

control by the computer is put into context by a block diagram for the 

complete system given by figure 7.4. In the following sections the P+l speed 

controller and expert system for cycle break point, which together represent 

the computer's equivalent of the driver, will be fully described. 
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1'.4.1 'fl'me §p~ CCol!llboll ILoop 

Dominating the performance of the speed control loop is the large 

flywheel inertia (vehicle inertia) which swamps any delays brought about by 

the torqueJ controllers. As a result the cycle speed controller can be designed 

around the dynamometer and flywheel transfer function assuming that all 

torque demands appear instantaneously. The speed controller produces a 

torque demand which must be met at the flywheel input shaft, however the 

corresponding torque required from the motor or engine depends on the gear 

ratio. To allow for this fact the control system includes the ~ terms seen 

between the component sequencing logic and torque controllers on figure 7.1. 

For control design purposes the dynamometer and flywheel can be 

approximated by a transfer function relating the speed measured from the 

flywheel probe, !c, to the flywheel torque, r,. 

fc(s) 
r,(s) 

1/K 
1+1/Ks 

(7.3) 

where J is the flywheel inertia and K indicates that dynamometer loading 

is directly proportional to speed. Torque in the flywheel input shaft Tt can 

not. he measured directly because both torque transducers are located on 

the input side of the gearbox. As a first step towards the required result 

the transfer function fc( s) /Tern( s) is identified from the way flywheel speed 

responds to changing motor torque. Subsequently the final answer is obtained 

by dividing the gain of the resulting transfer function by the gear ratio used 

in the identification experiment. 

Approximate values of the gam and time constant m equation (7.3) 

were found by carrying out a simple step test in second gear and then 

measuring them from a graph of the experimental response. The slow system 

response demonstrated by this experiment allowed greater freedom in the 

choice of the sampling period for an equivalent digital transfer function than 
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has been the case in otheli control loops, hence the normal system sampling 

period of 20 ms was extended to 320 ms for the identification experiment. 

Following this procedure the flywheel/dynamometer transfer function is found 

to be 

9.997 X 10-3z- 7.425 X 10-4 

z- 0.990503 
(7.4) 

where the numerator coefficients have been reduced by the factor 2.0 to allow 

for the use of second gear in the identification experiment. Close agreement 

between the model and the experimental identification data is shown in figure 

7.5. Having obtained this transfer function it remains to design a speed 

controller which will give satisfactory closed loop response. Following the 

pole-placement design procedure described in chapter 5 gave the following as 

a suitable controller: 

(7.5) 

which results in the root locus for the system illustrated by figure 7.6. Using 

the inverse transform of equation ( 5.1) gives the discrete controller 

( ) 
50.\ :c- so 

Yc Z = z - 1 
(7.6) 

when applying the transform pair in this case it is important that the sampling 

period, Ts is set to 320 ms for obtaining the correct dynamometer/flywheel 

transfer function m the w'-plane and yet setting T. to the usual value of 

20 ms when discretising equation (7.5). Equation (7.6) is thus valid for speed 

control at every interrupt. 

In a driving cycle situation one of the stiffest tests facing the speed 

controller is to follow ramp acceleration stages. Before facing this test in 

practice satisfactory performance can be predicted in theory by calculating 
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the ramp error coefficient for the system comprising the speed controller 

and dynamometer/flywheel combination. Following this calculation the steady 

state error in flywheel counts is 

RK 
fl/c(ss) = -­

go... 
(7.7) 

where 1/ K is the gain of the plant transfer function, given by equation (7.4), 

g is the gain of the speed controller and R is the ramp acceleration. For 

the ECE15 cycle the most severe acceleration is R = 1.989 /c/20 ms/second 

( 3. 75 km/h/sec ) which gives a steady state error of tl/c(ssl = 0. 409 or 

0. 77 km/h. 

An initial indication of satisfactory performance in actual operation 

was obtained by arranging for a step change in demand speed. During this 

experiment the engine and motor each provided 50% of the total torque 

required by the controller. The experimental results of figure 7. 7 show that 

the flywheel speed rose quickly to the new demand speed with no overshoot, 

the response having a rise time of 1.8 seconds. When the step input is 

first applied the large speed error results in a huge demand from the highly 

tuned controller, consequently it is necessary to limit the size of the step 

input so that this initial demand can be met by the combined efforts of 

engine and motor. If this is not the case saturation effects would cloud true 

controller performance. Even with this relatively small input, the sharing of 

load and the fact that this experiment was carried out in second gear, the 

initial demand for the engine approached its maximum capability. 

Due to the 50% torque split the demand to the engine and motor 

torque controllers is identical. As expected from the design of the . two 

torque control systems however the motor torque trace in figure 7. 7 shows 

a significantly faster response than the engine. Any delay in the torque 

controllers must alter the performance of the speed controller since no allowance 
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was made for such a delay m its design. 

'7.5 Am~iomaiedl Cyde Col!1lboll 1U9lill1lg dne §peed! .!Baseel Mode Con~ 

bollJleJr 

Following the successful testing of the speed controller under the 

somewhat artificial conditions of a step input, it remains to confirm that it 

will operate satisfactorily over a driving cycle. Initially the newly designed 

system was combined with the simple speed based mode controller and then 

tested over the ECE15 cycle. 

'7.5.1 1PX'eliminMy All Elecili'ic Peli'foli'mBllllce 

In order to assess whether gear changes and mode transitions have a 

detrimental effect on the performance of the laboratory system, it is useful to 

establish a baseline performance. This baseline performance is obtained by 

operating the rig over a driving cycle in electric mode and in a fixed gear. 

By operating in this simple, single powered way speed control should be at 

its best and adverse effects arising from truly hybrid action will be apparent 

by companson. 

Figure 7 .8( a) shows the first result for an all electric ECE15 cycle. 

Variations in motor torque which gave rise to this result are shown in figure 

7.8(b). Over the cycle as a whole, good speed following is achieved on 

both the ramp and cruise sections but a considerable overshoot occurs at 

the transition between the two. This fault has nothing to do with the drive 

train part of the system, which would actually appear in an operational 

vehicle, but is a consequence of the cycle break point and the nature of the 

speed controller. In fact the inability of the error actuated P+ I controller to 

provide the instantaneous change in demand at breakpoints is the root cause 

of the overshoots. Overcoming this problem would improve cycle following 
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and thus allows baseline performance to be accurately determined. A 

simple refinement to the speed controller makes the necessary improvement 

possible. This refinement takes the form of 'expert control', already included 

on figure 7.4, which acts at each cycle discontinuity. The expert uses 

its knowledge of the flywheel inertia to predict the torque needed for the 

acceleration rate of each stage of the cycle. At break points the difference 

between the acceleration torque for the previous section and that for the next 

is used to adjust the controller demand. As a result at the end of each ramp 

phase controller demand is reduced by that proportion of the torque which 

the expert predicts was being used for acceleration thus leaving the amount 

necessary to sustain the cruise. The method used to adjust the control 

algorithm giVen by equation (7.4) so that it meets the recommendation of 

the expert is as follows: 

Yn = Yn-1 + (Ta(n) - Ta(n-1)) (7.8) 

(7.9) 

where Yn is the adjusted controller demand and Ta(n) is the acceleration torque 

needed for the nth cycle section, as predicted by the expert. The purpose 

of setting en = 0 is so that the algorithm proceeds smoothly from the new 

value at the next execution which is carried out according to equation (5.9). 

Yn+l = Yn + (g + ki)en+l + (ki - g)O (7.10) 

From this equation it is apparent that the method of adjustment is equivalent 

to setting the integral summation term as below 

~ ei = Ta(nl- Ta(n-1) + Yn-1 

i=1 2ki 
(7.11) 
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Although the prediction made by the expert may not be perfectly 

accurate, the P+I controller is in a position to rapidly make any fine 

adjustments that are needed. 

7.5.2 C.mllibll'atnorrn oft' ttlllle lE:1rpell'i §y§iem. 

Calibration of the expert is concerned with measuring flywheel inertia 

so that acceleration torque can be predicted. This is achieved by instructing 

the cycle speed controllers to carry out differing constant acceleration ramps, 

the flywheel effect is isolated by turning off the dynamometer. In figure 7.9 

the measured torque values are plotted against the acceleration rate given 

in flywheel counts /sampling period/second. Torque values shown here are 

refered to the flywheel side of the gearbox but they were originally obtained 

from the motor torque transducer in two separate experiments carried out in 

second and third gears. By dividing by the gear ratio prior to plotting both 

sets of results represent flywheel torque and thus lie on the common line of 

figure 7.9. A regression analysis of this result gives: 

r, = 10.54 + 32.00/c (7.12) 

A separate confirmation of this result can be obtained from the flywheel and 

dynamometer transfer function by converting the digital transfer function of 

equation (7.4) back to the s-plane form of equation (7.3) and then solving for 

J. A simple method of finding the s-plane equivalent is to measure the time 

constant and gain of the digital transfer function so that with reference to 

equation (7.3) 1/ K = 0.972 (from the measured gain) and J / K = 33.28 (from 

the measured time constant). As a result J = 34.32 which agrees favourably 

with the value of 32.00 given above. These inertia values have arbitrary units 

dependent on the flywheel speed probe, by adjusting the transfer function 

gain for speeds measured in rad/sec the result J = 6.54 kgm2 is obtained. 
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This latter value of flywheel inertia gave the equivalent mass of a real vehicle 

quoted in chapter 2. 

'7.~.3 Allll Ellectll'Jic Pe:rft'ollmaumce wntlbt Expert CoiT!lill'oll 

With the addition of the expert system performance at cycle break­

points is dramatically improved as illustrated by figure 7.10( a). In this case 

the corresponding motor torque trace, figure 7.10(b), clearly shows the sudden 

drop in torque which occurs at cycle break points when acceleration stages 

give way to cruise. 

7.5.4 Effect of Mode 'J!Jran.sitiol!ls al!ld Gear Changes 

Regardless of the final mode control used there are five fundamental 

operating modes which occur: 

1. i.e. engine 

2. Electric 

3. Hybrid 

4. Regenerative braking 

5. Battery recharge 

Three others were mentioned m Table 1.1, namely pnmary 1.c. engtne, 

primary electric and accelerator kick down however from the description of 

these modes given in that table it can be seen that they are in fact special 

cases of hybrid operation. From these five possible modes there arise 20 

possible types of mode transition all of which must be achieved quickly and 

smoothly. Over an ECE15 cycle the speed based mode controller can be 

made to illustrate all the most important types of transition, in addition 

gear changes can be included. Speed thresholds for the test experiment were 

defined as follows: 

pt gear ~ 2nd gear @ 16 km/h 

200 



electric .= i.e engme @ 22 km/h 

1.c. engine .= hybrid @ 35 km/h 

Figure 7.11(a) shows the cycle speed trace that resulted from this 

strategy. d As is common practice with ECE15 tests a small flat in the 

acceleration ramps allows the gear changes to occur without loss of cycle 

accuracy. Torque traces for both prime movers over this cycle are shown 

in figure 7.11(b) and 7.11(c). Once again sudden reductions in torque as 

demanded by the 'expert' controller can be seen at each break point. In 

addition torque transients can be seen in the electric motor trace during 

gear changes. These occur when the gearbox is in neutral and the necessary 

·positive or negative torque is used to match the motor speed to the drive 

train speed ready to engage the new gear. 

One important mode not covered by this experiment is battery 

recharge. Unfortunately introducing this on purely speed based rules be­

gins to make the modal speed bands rather small so the mode controller 

was reprogrammed to use· battery recharge on a time basis between 70 and 

80 seconds in the ECE15 cycle. Battery recharge was achieved by defining 

a torque split of -0.5, so that the engine provided 150% of the road wheel 

requirement and the motor absorbed the excess 50%. Making this alteration 

but keeping other speed thresholds as before gave the results illustrated by 

figures 7.12(a) and 7.12(b). In this instance the flats previously included in 

the cycle for gear changing were ommitted. 
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'7.$ Dii§cmmnmn 

Any acceptable hybrid design must surely offer the driver the same 

ease of operation and smooth action that a conventional vehicle achieves. 

Using a obmputer control system allows easy operation but nevertheless it 

might be anticipated that mode transitions, such as transfer of power from 

the motor to the engine, would be sufficiently noticeable to the driver to make 

it inferior in this respect. Without an operational vehicle it is impossible 

to be absolutely certain what effect these wodes changes would have on the 

road, but a useful method, available within the limitations of the laboratory 

based system, is to compare cycles including many mode transitions with one 

using simple all electric operation. Once expert control had been added the 

ng followed the ECE15 cycle very accurately indeed in this simple mode. 

With this all electric experiment available to define a standard per­

formance the speed based mode controller was used to introduce a whole 

range of likely mode transitions in to the system. Experiments such as 

those represented by figure 7.11 are able to demonstrate, on a repeatable 

basis, that transitions involving all the possible transfers of power between 

engine and motor can be achieved without loss of accuracy when following a 

cycle. Despite the fact that this provides a good indication that acceptable 

performance could be achieved in practice, speed traces are perhaps not ideal 

for showing what effect torque transients in mode transitions might have on 

a driver. In the description of an automated gear change system, Ford [Main 

et al, 1987] state that acceleration, rather than torque, can be directly related 

to passenger comfort. Although in this case they were concerned with the 

effect of torque transients during the re-engagement of a computer controlled 

clutch, the principle remains the same for mode transitions. 

The designers of the HTV-1 utilised a power blending algorithm to 

ensure that power was transferred smoothly between the engine and motor. 
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This algorithm transforms any large step change in load into a fixed number 

of small steps over a 640 ms time period [Bose et al, 1984]. In the paper 

the authors state that the primary reason for doing this was that the speed 

of respons:e of engine and motor differed quite significantly, with the engine 

being the slower of the two. Results in figure 7. 7 show a similar difference 

in dynamic response for the engine and motor in the laboratory and, once 

again, the engine is slower. 

Apart from mode transitions gear changes clearly affect the potential 

driveability of the rig. In the first series of tests represented by figure 7.11, 

the ECE15 cycle was modified to include a small flat for all upshifts. As 

a result the speed controllers were able to follow the cycle despite the loss 

of torque during the upshift. When this flat was removed, as in figure 

7.12(a) accuracy inevitably suffered. Nevertheless not including an allowance 

in the cycle for gear changes is a logical step since an efficiency based mode 

controller would not change gear in such a simple manner and the cycle could 

not be modified appropriately. If the pneumatic gear shift used on the rig 

were ever incorporated in a real vehicle it seems likely that steps, such as 

those discussed in chapter 6 would need to be made to reduce shift times. 

\Vhether considering mode transitions or gear changes the laboratory 

system has performed well, especially when the low flywheel inertia is taken 

into account. Using a more realistic higher value would not only reduce speed 

loss during gear changes but damp any effects due to torque transients. 
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CIHIAPTER 3 

CONClL1U§XON§ AND JPROPO§AJL§ FOR. JFUT1URE WORK 

§. 1 GeimeratJl ColllldUll§ROim§ 

APthough the fuel economy of conventional vehicles has undoubtedly 

.improved considerably over recent years, their fundamental reliance on cheap 

and plentiful supplies of oil based fuels remains undiminished. At present this 

situation may seem perfectly acceptable, since the fuel crises of the 1970's 

are now largely forgotten and prices have remained stable, or even decreased 

slightly, in recent years. Despite this improvement in the oil supply situation, 

there is no guarantee that no further problems will arise, after all the previous 

oil crises were largely unforeseen and might well occur again, particularly when 

the political instability in the Middle East is taken into account. To guard 

against this possibility, and even more against the inevitable upward trend in 

oil prices as the resource becomes scarce, work on projects such as the hybrid 

vehicle system developed in this thesis must be a sensible course of action. 

In chapter 1 some of the benefits offered hybrid vehicles were described. 

Most important of these is a reduction in the use of oil based fuels by 

transferring some of the load from the otherwise inflexible transport sector, to 

the broad base of fuels used in the generation of electricity. This advantage 

is obviously better demonstrated by an all electric vehicle, but at some 

cost in terms of both performance and range. Both these limitations on 

electric vehicles are a result of battery technology. Although many possible 

alternatives to the firmly established lead/acid type have been developed, none 

can really produce a vehicle which matches the range and performance offered 

by the i.e. engine. Consequently so long as oil based fuels remain available, 

it is unlikely that electric vehicles will be acceptable to consumers accustomed 

to the convenience of i.e. engine vehicles. One factor however which might 

persuade consumers in some areas to accept the drop in performance associated 
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with electric vehicles is air pollution. Southern California has long suffered a 

serious air pollution problem brought about by its enormous vehicle population 

and exacerbated by climatic conditions. Despite American emissions controls 

these facte>rs have contributed to a continuing increase in smog in the area. 

Growing public concern has lead to a proposal that all new vehicles must 

be either electric or burn a clean fuel (most probably methanol) by 1993 

[Alexander ( ed ), 1988]. In this article the author states that the appropriate 

legislation will almost certainly be approved and a time schedule for the 

phasing out process will be drawn up by late 1988. Clearly hybrids could 

play an important part in the Californian strategy, allowing users to conform 

to legislation in sensitive areas by driving electrically and yet still offering 

them the performance they are used to for longer out of state journeys. 

Having decided that a hybrid vehicle provides worthwhile advantages, 

despite its increased complexity, the next step is to investigate possible 

mechanical designs. Many studies have shown that the design with the greatest 

potential for the passenger car application is the parallel i.e. engine/battery 

electric. This configuration allows completely independent use of the engine 

and motor in powering the vehicle as well as mixed operation and recharge 

of the batteries by the engine. Although this mechanical design is essentially 

simple the presence of two power sources allows many possible modes of 

operation not encountered with conventional vehicles. \Vith maximum economy 

as a goal it is by no means obvious how the hybrid drive train should use these 

modes to meet the power demands imposed by the driver. Such fundamental 

questions of how best to operate the vehicle were answered by the first phase 

of hybrid vehicle research carried out at Durham C niversity. During this 

first phase a vehicle simulation package was developed which demonstrated 

the potential of the parallel hybrid and used an optimisation study to show 

how best to control it. Such control requires that full use is made of all 
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the operating modes possible with the hybrid, but the simulation could not 

attempt to address the practical problems of achieving these modes nor how 

to switch between them. It was for this reason that phase two of the work, 

on the rig!, was begun. 

The laboratory based test rig IS a full scale versiOn of the parallel 

hybrid drive train. Load emulation IS provided by a dynamometer and 

flywheel combination capable of simulating vehicles weighing up to 2 tonnes. 

At the focus of the present work however, are the microprocessor system and 

associated instrumentation used to· control the rig. Use of a microprocessor 

based controller is almost essential because the additional control tasks created 

by the hybrid are certainly too much for a driver or a hard wired controller, 

the latter being too inflexible. Similar conclusions were drawn by JPL 

['frummel et al, 1984] when they designed the HTV-1, which represents the 

only hybrid vehicle to date with complexity of control comparable to that on 

the rig. In chapter 2 the M68000 microprocessor system on the rig was fully 

described. During the design of its software the main considerations were to 

produce a core unit of control and support routines which could be readily 

combined into complete programs designed to tackle specific problems. This 

approach has proven most useful and greatly reduced subsequent programming 

work. Both the microprocessor software and instrumentation are considerably 

more sophisticated than anything considered for conventional vehicles until 

very recently. Even now most cars do not contain such a high degree of 

control, however developments such as Ford's EECIV microprocessor [Main, 

1986] illustrate that manufacturers of the most popular makes of car are 

steadily movmg in this direction. Such progress should make the control 

systems needed for hybrids perfectly acceptable by the time they can be 

introduced. 

As many of the jobs of the microprocessor controller maybe categorised 
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as traditional feedback systems, they had to be built up from a good 

understanding of the physics of the rig. Chapter 3 dealt with the problem 

of a physical analysis of both the engine and motor. From these analyses 

it was poGsible to produce several key transfer functions which relate the 

engine and motor outputs, speed and torque, to the <ll.djustable inputs. In 

chapter 4 the transfer functions were identified numerically using a model 

reference identification algorithm. 
'-, 

In addition experimental data ~~J used 

to calibrate two indirect methods of measuring torque for the engine and 

motor. These methods are not the only alternatives available to replace the 

use of impracticably expensive and unreliable strain gauge torque transducers. 

"Fleming reviews a number of possibilities [Fleming, 1982] all with differing 

degrees of practicality in the control environment. One of the most promising, 

which may be applied to engine or motor, is to measure twist in the drive 

shaft. Accuracy with this technique can match the ± 2% achieved by strain 

gauge transducers. Nevertheless there are problems due to the temperature 

dependent shaft rigidity and difficulties in measuring twist at low speed. In the 

laboratory the adopted method of torque measurement for the engine is based 

on inlet manifold depression and speed, whilst for the motor measurements 

of field and armature current are used. This latter method for the motor is 

based on simple electromagnetic principles and should remain accurate over 

an extended operating period. On the other hand the engine model might be 

expected to become inaccurate with time as the engine wears. On the rig the 

original calibration of the engine continues to provide accurate results after 

18 months, however this obviously represents a small fraction of total vehicle 

life time. In addition laboratory conditions are much less arduous than those 

faced by an operational vehicle. Clearly further work is needed to establish 

the long term accuracy of the engine model under operational conditions. If 

the accuracy is found to suffer to an unacceptable extent with time then, 
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short of a complete and possibly expensive recalibration, an internal method 

of recalibrating the engine torque model must be found. One possible way 

this could be achieved is by comparing the engine torque model with the 

electric m0tor model when the engine is used to charge the batteries. 

Given the reliability of these indirect torque measurements it 1s then 

essential that they be used as the basis of fast, accurate torque control 

systems. An example of when such tight control IS needed occurs when the 

engine 1s started and used to replace the torque previously supplied by the 

motor. The transition must be as smooth as possible, and ideally indiscernible 

to the vehicle occupants. This can only be achieved if the engine provides 

precisely the same amount of torque immediately after the moment of transfer 

as the motor was before it. Chapter 5 set out to design the necessary torque 

controllers based on the indirect measurements and the transfer functions which 

capture the essential dynamics of the motor and engine. Using a root locus 

design method it proved possible to produce P+I control algorithms which 

could accurately follow a torque demand curve, and are thus equal to the task 

of providing smooth transfer of power. In both cases the performance of the 

real systems shown by experimental results agrees very well with simulations 

carried out at the same time on the M68000. This agreement provides a 

good independent verification of the digital models which had been identified 

some time before. Having a long gap between original model identification 

and subsequent verification indicates that the dynamic characteristics of the 

engine and motor are reasonably stable with time. Nevertheless there is no 

proof that substantial changes in dynamics cannot occur over the lifetime of 

a vehicle under more arduous operating conditions. A clear disadvantage of 

the original design methodology is that the controller is fixed for life and 

could not adapt to such changes. The alternative design method described 

in chapter 5 offers one solution to this problem. By gathering data during 
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vehicle operation the important transfer functions could be updated by the 

identification routines working as a background task. Identification off line 

would be perfectly adequate since the laboratory work shows that variations in 

dynamics r:nust occur very slowly. Once such updated parameters are produced 

the hill climbing method could then re-tune the controller parameters. In 

both identification and controller tuning, using the existing parameters as 

a start point should mean that neither algorithm will have to make much 

adjustment to arrive at the new solution. 

In chapter 7 the individual component controllers were brought to­

gether to make a completely integrated vehicle drive train. This process 

was complemented by the pneumatically controlled 'manual transmission' de­

scribed in chapter 6. An important part of the software needed to integrate 

component control ensures correct sequencing of events during mode changes. 

Due to the embodiment of all key component controls within easy to call 

functions, this sequencing logic was fairly easy to produce from a flow chart. 

In order to develop the sequential logic associated with mode changes in the 

HTV-1 [Sutherland et al, 1983] a state language was used as an alternative 

design aid to flow charts. Despite using the simpler design method on the 

rig, extensive testing with various mode transitions has not detected a serious 

error in the resultant component sequencing strategy. 

Above component sequencing in the vehicle control hierarchy is the 

mode controller. This software must interpret the driver's pedal positions as 

a power demand and then schedule the load between the engine and motor. 

In chapter 7 a simple speed based mode controller was developed to carry 

this out. This strategy did not attempt to schedule loading in the most 

efficient way, but simply switched between modes and gears at predetermined 

speeds. Despite not achieving good efficiency, the speed based strategy was 

useful for demonstrating that the rig drive train could switch quickly and 
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smoothly between all of its important operating modes under driving cycle 

conditions. Initial driving cycle tests were carried out by adjusting the 

accelerator and pedal positions manually m response to a plot of the cycle 

demand <l.!lld actual rig speed produced m real time on the Duet screen. 

Manual control has however a drawback in that consistent results cannot be 

obtained, consequently if some aspect of control is adjusted its effects are 

obscured by variations in the driver's performance. By designing a computer 

controller to replace the driver, consistent control could be guaranteed and 

speed errors over driving cycles much reduced. Using this replacement driver 

it was possible to show that adding several mode changes to a cycle had 

·no adverse effect on performance when compared with a cycle driven all 

electrically in a fixed gear. This result cannot prove that performance on 

the road would be entirely satisfactory but it gives a strong indication that 

it might. 

Once correct action of the component controllers and associated se­

quencing logic had been demonstrated with the speed based mode strategy, the 

logical extension is to introduce a mode control strategy aimed at maximising 

vehicle efficiency. To do this the sub-optimal controller, devised in previous 

work at Durham, is most appropriate. At this point however the neces­

sary software to implement such control has not been perfected, specifically 

problems have arisen in avoiding excessive numbers of gear shifts. 

§.2 Proposals for Future Work 

In the light of the above remarks, perhaps the most immediate 

challenge to be faced on the rig is to perfect the use of the sub-optimal mode 

controller, by tackling the gear shifting problem. Even without shortcomings in 

the software, changing gear on grounds of efficiency leads to considerably more 

shifts than occur in normal driving. This is clearly illustrated by the results 
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obtained by Bumby and Forster [Bumby and Forster, 1987] for a simulated 

ECE15 cycle. In these simulated results there is no problem in changing gear 

whenever efficiency considerations dictate, since shift times were assumed to 

be negligible and carried no penalty. On the rig however above average use 

of the gears, coupled with the rather poor shift times associated with the 

pneumatic system, would probably lead to unacceptable driveability on the 

road. Results from the speed based controller clearly showed considerable lag 

behind the cycle demand during a gear shift, although this is exaggerated 

by the low flywheel inertia. This phenomenon naturally causes the computer 

based driver to demand high torque immediately after the gear shift in order 

to catch up with the cycle. Such action has further unfortunate consequences 

when the sub-optimal controller is used since it bases its gear changing strategy 

on torque demand as well as speed. Preliminary trials have already indicated 

that the peak in torque demand after one gear shift may immediately cause 

another. Similar problems to those outlined above have been encountered by 

other workers researching optimal gear change strategies. In work at Ford 

[Kuzak et al, 1987] transmission output speed and throttle position were 

used as indicators of engine efficiency and thus a shift strategy was based 

on them. Several steps were needed to reduce numbers of shifts from those 

produced with fully optimal control, the simplest defined hysteresis bands 

on the throttle angle/speed plane between the zones defined for each gear. 

Secondly a minimum time between shifts was imposed to improve driveability. 

Such a limitation could easily be applied to the sub-optimal mode controller, 

and it is encouraging to note that the Ford [Kuzak et al, 1987] result showed 

that by imposing a 5 second limit between shifts, fuel economy in city driving 

suffered by only 3% but shift frequency was reduced by 50%. Whatever 

solution is found appropriate for reducing gear changes on the rig, it should 

be noted that it is made worse by the highly tuned nature of the speed 
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controller which makes large changes m torque demand for relatively small 

errors in speed. 

Another area of work which opens out a whole range of possibilities 

1s self tun~ng control. Even if the mode controller has a strategy for good 

efficiency, its action depends on consistent, accurate component control further 

down the hierarchy. The hill climbing design method, described in chapter 

5, offers one possible way of ensuring that component controllers remain well 

tuned in the long term. Much work would be needed however should this 

method be adopted, to make sure that necessary input/output data is only 

obtained when operating conditions are suitable. For example it would not be 

a good idea to obtain data from a cold engine since this is not representative 

of the bulk of engine operation. A more sophisticated alternative to the off 

line hill climb method is to implement some form of on-line model reference 

self adaptive control. The principles of this method are outlined in a work by 

Davies [Davies, 1970]. essentially an algorithm, such as Landau's, attempts to 

identify the controller which best achieves the desired performance embodied 

in the reference model. At present this option is not feasible on the rig 

because the M68000 hardware cannot execute the algorithm fast enough, even 

when control is restricted to the P+l controller which has only two adjustable 

paramters. Tests with Landau's algorithm indicate that a two parameter 

identification takes about 30 ms to process each data point, thus an increase 

of processor power of about three is the minimum requirement to make this 

approach feasible. Such improvements would be made possible by substituting 

the M68000 microprocessor system with an M68020 based system currently 

produced by Durham University Microprocessor Centre. This new system 

works at twice the clock rate of the M68000 and in addition it has 32 bit 

address bus rather than the 16 bit bus on the M68000. This means that the 

32 bit long integer variables used for control calculations on the rig can be 
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accessed in one operation. The net result of these improvements would be, 

according to the Microprocesor Centre, an increase in arithmetic speed by a 

factor of at least four. 

W~atever improvements are made to the ng based system, ultimate 

vindication of the hybrid control concepts that it uses can only be made 

by testing them in an operational vehicle. As a result the most important 

new phase of work should be to develop a compact version of the control 

system and incorporate it in the Lucas Chloride hybrid vehicle currently in 

the possession of Durham University. 
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