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ABSTRACT

The normal impact penetration of both projectile and fastener into soils,
rocks, and concrete at low velocities has been investigated using theoretical,
experimental, and numerical approaches under axisymmetric conditions. The
projectile penetration theory is developed on the basis of the existing cylindri-
cal cavity expansion theory with target materials approximated by compress-
ible locking behaviour in a hydrostatic state and elastic-plastic, linear strain-
hardening behaviour in a shear state. This theory is one-dimensional with re-
spect to wave propagation in a radial direction. Impact penetration experiments
have been performed using a cartridge-operated tool firing the steel fasteners into
sandstone and concrete targets. The associated pull-out problem has also been
studied. Damage to both fastener and target caused by the impact penetration
is assessed using an opti@al microscope. Finite element programs have been em-
ployed to investigate the penetration process of the projectile, and eventually to
simulate the process of fastener penetration. The dependency of the penetration
process on impact velocity, projectile nose shape, projectile-target interfacial
friction, and target material properties have been studied for a variety of impact
conditions. Comparisons of results obtained from all three approaches are made

for cases in which data are available. Agreements reached are.reasonably good.
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CHAPTER 1 INTRODUCTION
1.1  Introduction

The subject of impact and penetration has long been of interest to scientists
from the areas of mechanics, physics, geophysics, metallurgy, material science,
and engineering. Galileo was among the first to observe the difference between
the static and dynamic behaviour of metals. Robins and Euler contributed
the earliest work for the investigation of dynamic penetration. Since then the
subject has been studied using empirical relations based on experimental results.
Only from about the time of the Second World War was considerable research in
analytical methods initiated and has continued to this time. More recently, with
the advent and soplistication of large high-speed digital computers, research
work on this topic has been greatly enhanced. Many analytically intractable or
grossly tedious problems have been tackled and solved, and considerable progress

made. Thus, the subject has now been extensively explored.

In areas involving impact and penetration the terminology 1s often scattered,
and sometimes confusing. In the present context, some fundamental and phe-
nomenological terms are defined for this thesis. The term impact is defined as
the description of all phenomena associated with the physicai process mvolved
in the collision of two or more objects whose masses must be téken mto account.
Thus tmpulsive or ezplosive loading is excluded from impact because one of
the striking objects does not possess the characteristics of a solid. The targel is
normally defined as any object or structure to which either impact or impulsive
loading applies. Some impacts of practical interest produce a distinct local con-
tact phenomenon when the striking object enters the surface of a target. This
process results in the embedment of the striking object into the target and the

formation of crater, providing physical emphasis to the meaning of penetration.




Thus, penetration may be defined as the entrance of a striking object into a
target without completing its passage through the body. In contrast, perforation
implies the complete piercing of target by the striking object. The penetration
process can develop into perforation if targets are suﬁicient]y. thin. If the strik-
ing object rebounds from the impacted surface or penetrates along a curved
tyajectofy, emerging through the impacted surface with a reduced velocity, the

process is termed a ricochet .

The impact, penetration and perforation of striking bodies into metallic and
non-metallic targets have now received widespread attention. Although military
interest has and continues to be the important motivation for development and
research in this area, the increasingly severe demands for safe, cost-eflective
design and dynamic behaviour of materials in short duration loading require a
thorough understanding of materials and structures subjected to impact and

impulsive loading. These concern the following.
(1) Mihtary technology m:

(1) terminal ballistics for the study of plate penetration and perforation by

bullets and shells and for the design of lightweight armour systems;

(11) military weapons for the vulnerability of military vehicles, aircraft and

structures to impact and impulsive loading.
(2) Civilian technology in:
(i) design of the protection of space vehicles subject to meteroidal impact;
(i1) design of the safetf of nuclear-reactor containment vessels;
(iii) transportation safety of hazardous materials;

(iv) erosion and fracture of solids subjected to multi-impacts by solid and



liquid particles, e.g. turbine blades, percussive drilling machines, pile drivers

and grinding wheels;
(v) crashworthiness of vehicles;

(vi) explosive metal forming and welding, and safe demolition of prestressed

concrete structures;

(vil) earth penetrations, e.g. remote investigations of geological materials,
underground explosion, installation of deep-sea tension anchors, and measure-

ments of sea-ice thickness;
(viit) study of the dynamic behaviour of materials at high rates of strain;

(1x) study of problems associated with the use of fasteners ( which is the

topic of this thesis ).

Due to the complexity and variety of the subject, the establishment of a
unified treatment of impact and penetration has thus far been inhibited by the
variety of deformation mechanisms which may predominate, depending on the
velocity regime, the material characteristics and configurations of the colliding
bodies. Among these factors, the impact velocity so significantly influences
the phenomenon that it precedes any other considerations in classifying the
impact process. A rational description of the material responsé and deformation
mechanisms then has to be confined to a specific velocity range. There is a
number of existing classifications of the impact process as a function of .the
initial impact velocity. However, they are orientated to different purposes of
applications. ‘It. 1s inappropriate directly to adopt any of these. Instead, referring
to many classifications, especially those given by Backman and Goldsmith (1978)
and by Zukas et al (1982), the following classification is considered more suitable

to the work described in this thesis.




0 — 50 m/s free falling velocity
50 — 500 . m/s low velocity
500 — 3000 m/s high velocity

> 3000 m/s hypervelocity

Because the response and the deformation mechanisims of materials depend
on a number of parameters in addition to impact velocity, the range limita-
tions should only be regarded as reference points and not as precise transition

velocities.

The phenomena of impact and penetration in fluids and gases are beyond
" the scope of this thesis. Only the original solid state is considered. A main
rational treatment of solids is perhaps bounded at two extremes by the dynam-
ics of elastic solids and of compressible fluids. The response and deformation
mechanisms which occur within these two boundaries have comprised a limited
number of individual processes often with one predominant. They can be lo-
cal or gross deformations or coupled, to some extent, dependent on a specific
velocity range. The failure modes of target materials may be characterized in
several different ways dependent on target thickness, material charactenstics (
brittle or ductile ) and shape of the striking object in addition to ilnj)act. velocity.
Most failure modes are closely related to the perforation of thin or intermediate
targets. Frequent types are fracture, spalling, scabbing, plugging, front or rear
petalling, fragmentation in brittle targets, ductile hole enlargement and crater-
ing ( or embedment )*. Illustration of these modes is provided by Backman and

Goldsmith ( 1978 ) and by Brown ( 1936 ).

* In general, embedment implies that the striking object is captured within
the body of the target and involves no mass loss or erosion. The Jatter condition

is not necessarily true for cratering.



In the following sections of this chapter, attention is devoted to the historical
review of soﬁe fundamental principles and general phenomena, covering the
whole range of impact velocity, pertaining to the impact and penetration. The
unpact phenomena occurring n the free falling velocity and hypervelocity ranges
are only briefly reviewed for the complete coverage of the subject, and are not
intended‘to be comprehensive. The high velocity range will be reviewed and
discussed in terms of stress wave propagation. The principal phenomena in
these velocity ranges are discussed only in a general sense, the dominant process
or mechanism in each range will be emphasized for its relation to the impact
and penetration of interest in the following chapters of this thesis in order to
facilitate analyses and understanding. This thesis primarily concerns itself with
the deformation process and rational treatment of impact and penetration in
the low velocity range ( 50 — 500 m/s ). Various aspects and the state-of-art of
the subject are thoroughly discussed in a number of excellent review articles by
Hopkins (1961), Goldsmith (1963), Backman and Goldsmith (1978) and Jonas
and Zukas (1973), and are treated in detail in three monographs by Goldsmith

(1960), Johnson (1972) and Zukas et al (1982).

The major objective of work in this thesis i1s two-fold. First, the majority of
investigations have been co.ncerned with the normal impact and subsequent pen-
etration into construction materials such as soils, rocks, and concrete in the low
velocity range. Three general types of approaches, i.e. theoretical, experimental
and numerical, have been used to analyse, interpret and to understand t.inese
phenomena. Some part of work is equally applicable to metal materials, and to
the higher ranges of impact velocity. Second, some éffdrts have been directed to
understanding of the nature of anchorage formed between projectile and target
after impact, which determines the force, known as the ‘pull-out’ force, required

to extract the embedded projectile. For clarity, all aspects of the proposed work



are as follows.

(1) A comprehensive and historical review of some fundamental principles
and general phenomena pertaining to impact and penetration is discussed, pri-
marily in terms of stress wave propagation, which is the major task of the current

chapter. .

(2) Experiments of both impact penetration and pull-out are conducted on
a laboratory scale. The mineralogical characteristics and mechanical properties

of sandstone as a target are described and determined.

(3) Slices of sandstone before and after impact are examined using an optical
microscope and the impacted projectile ( fastener ) is examined by scanning

electron microscope.

(4) The fundamental theory of impact penetration for geological materials
1s developed on the basis of existing cavity expansion theory under the ideal

conditions of the material mechanical behaviours.

(5) A suite of two-dimensional computer programs is employed to simulate
both penetration and pull-out processes. Numerical examples are provided and

comparisons are made with results available from other sources.

(6) Impact penetrations under identical conditions in more ( mineralogically
) plastically-deformed rock ( a limestone ) and concrete should ideally be at-
tempted for comparisons of penetrations, fractures and resistances to pull-out

in sandstone.
1.2  Elastic Wave Phenomena

The response of striking bodies on impact in the lowest velocity range ( 0 —
50 m/s ) 1s primarily dominated either by elastic wave phenomena or by elastic

contact deformations provided that there are no drastic differences in the shapes

6



of the striking bodies and their physical properties. The elastic waves that are
generated include longitudinal, tranverse and torsional waves, their propagations
becoming more complex when the boundaryAconditions are imposed by various
structure geometries. This present review is restricted to the simple case of
longitudinal wave propagation produced by impact in a homogeneous, isotropic,
linear elastic bar or rod. Other types of geometry such as beam, plate, shell and
half-space are not considered. Further, tranverse strain. lateral inertia, body
forces and internal friction ( dissipative force ) effects in the bar are generally
neglected. The elastic deformation problems of contact will be discussed at the

end of this section.

Because of the assumption of one-dimensional motion of elastic waves, so-
lutions can be obtained-only in a few simple circumstances. Although these
solutions are quite simplistic, they prove to be very useful in understanding
the complex physical impact phenomena and in assessing the use of more com-
plex analytical schemes. Extensive treatment of elastic wave propagation in
sohids 1s provided in detail in a number of monographs by Kolsky (1953), Gold-
smith (1960), Johnson (1972), Wasley (1973), Achenbach (1978) and Zukas et
al (1932). An excellent review of developments in elastic wave propagation is

given by Miklowitz (1960).

Pochhammer (1876) and, independently, Chree (1339) presented the first
analytical solution of sinusoidal wave propagation in infinitely long elastic bars,
based on a linear theory of elasticity ( often called ‘exact’ theory ). The solution
based on the specific boundary conditions comprised expressions relating the fre-
quency and wavelength of the vibrations to the radius and material properties
of the bars. The expressions are often called frequency equations { or disper-
sion equations or propagation conditions ) for longitudinal waves. This solution

forms a basis for much of the work in this area. The frequency equations for
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longitudinal wave propagation were solved by Bancroft (1941), who presented
the numerical values. Davies (1948) confirmed the Pochhammer-Chree solution
experimentally. Because of the complexity in application of the exact solution
and the inherent restrictions, the Pochhammer-Chree approach is never used
in practice. Instead, .a number of elementary and approximate methods have
been developed for treating elastic waves generated under one-dimensional (bar)
impact situations. There are two types of approximate methods. The first one
includes treatments that involve extensions of and improvements to the elemen-
tary theory ( to be discussed below ) so as to obtain the approximate dispersion
curves. In the second method, the approximate solutions are obtained to the
exact frequency equations using power serles techniques. These two approx-

imate methods will not be discussed further, but for more information, the

afore-mentioned books should be referred to, especially that by Wasley (1973).

For many impact problems, the elementary theory is often employed under
the assumptions in addition to those mentioned above that each plane cross
section of bar remains plane during the wave motion and the longitudinal stress
over each plane is uniform. It gives results close to reality as long as the ratio

of bar radius to wavelength transmitted 1s much less than unity.

Based on the elementary theory, the first analytical solution of the equations
of motion was obtained by Skalak (1957) {or two semi-infimte bars undergoing
impact. Jones and Norwood {1967) extended Skalak’s solution by taking the
radial dependence of stresses and strains into consideration. In all these so-
lutions, the resulting integrals are so complicated that the evaluation of these
integrals has been accomplished only for relatively long durations and distances
from the impact end. However, for the practical impact of finite bars in which
short wave lengths are involved, no direct analytical solution 1s available due to
the difficulty resulting from the incorporation of end conditions. Love improved

8



the elementary theory by considering radial inertia. Using Love’s approximate
theory, Conway and Jakubowski (1969) analysed experimental results from the
coaxial impact of identical short-length bars and found that the comparison be-
tween experimental and analytical results was in close agreement provided that
the end loading was correctly controlled. It is considered that a more accept-
able solution can be derived using computational methods. Bertholf (1967)
presented the results of a numerical study of the finite-length-bars subjected to

continuous and step loading.

A different school of thought dealing with elastic impact phenomena comes
from the theory of the local contact deformations introduced by Hertz in spite
of the static nature in its derivation. This »theory, neglecting wave phenomena,
predicts the local deformations under the assumptions that two bodies in contact
have continuous, non-comforming and frictionless surfaces, and are considered
elastic half-spaces; the strains are also assumed to be small. Thus, it only
serves as a guideline since its assumptions limit its applicability to an ideal
situation which can hardly be sustained in practice. For further details and its
various forms of predictive equations the following reference is recommended to

Goldsmith (1960) and Johnson (1982, 1985 ).
1.3 Elastic-plastic Wave Phenomena in the Low Velocity Range

When the yield strengths of materials are exceeded, the analyses of impact
phenomena in terms of elastic plastic and shock wave propagation are far more
complicated than those involving purely elastic material behaviour. A general,
unified solution of this kind of analysis does not exist, but solutions have been
obtained in two special cases, namely uniaxial stress and uniaxial strain states.
These represent the extreme bounds of material behaviour, encompassing most

other states of stress, and they are the simplest conditions to treat in mathemat-



ics and to produce i experiments. An analysis in either case is carried out to
understand the dynamic deformation mechanisms through wave theory, to deter-
mine dynamic properties of materials and to construct the material constitutive

equations.

The existing theories that have been employed for predicting the propagation
of uniaxial stress waves in metallic bars fall into three general categories : (1)
the rate-independent theory using the static stress-strain curve, (2) the rate-
independent theory using a single dynamic stress-strain curve. (3) the rate-
dependent theory in the form originally proposed by Malvern (1951). In the
case of the second category there still i1s argument abouti whether or not this
theory should be regarded as the rate-independent theory. On the other hand,
the theory that has constantly been used to describe stress waves in conditions

of uniaxial strain developed from plate impact.
1.3.1  Uniaxial stress wave propagation
1.3.1.1  Wave analysis by rate-independent theory

The foundation of rate-independent (RI) theory of plastic wave propagation
under uniaxial stress conditions was formulated by Donnell {1930) who stud-
ied the wave propagation of inelastic stress in a semi-infinite bar by extending
the concept of elastic wave propagation. Considering an elastic plastic mate-
_rial having a static bilinear stress-strain relation independent of strain rate he
found that two distinct wave fronts would propagate through the material. The
velocity of each front has its own characteristic speed dependent on the respec-
tive moduli of the elastic and plastic regions, as shown in Figure 1.1. Major
contributions to the development of this theory were made during the Second

and Puwez

World War independently by von Karman/\(1950) in the U.S.A.) Taylor (1946)

in England and Rakhmatulin (1945) in the USSR.
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The theory was formulated on the basis of the following assumptions :
a) lateral inertia eftects are negligible;
b) strain rate is neglected;

c) total strain ( i.e. sum of elastic and plastic components of strain ) in

uniaxial stress is a single-valued function of stress;

d) the stress-strain curve is concave towards the strain axis ( as shown

Figure 1.3 ).

The analysis is most simply made in terms of engineering ( or nominal )
stress and strain i'n the Lagrangian coordinate system. The complete solution
can be schema;(.ical]y presented in Figure 1.2. Three distinct regions which show
the sirain, ¢, along the axis of the bar at a given time, {. may be identified by

reference to the original axial position, z, within the unstressed bar :

(a) from r = 0 to = = ¢,t the strain is a constant, ¢ . and the plastic wave

travels with front velocity ¢,.

(b) between = = c¢pt and = = ct, there is variable distribution of strain

between ¢g and ey ( yield strain );

(c) for 2 > c.t, i.e. ahead of the elastic wave, the bar is physically unstressed.

It shows that there 1s a discontinuity in the strain at = = cet.

A powerful mathematical treatment for this type of wave propagation is
the method of characteristics, the inherent complexities of which make further
explanation difficult. Detailed information about this method can be found in

monograph by Zukas et al ( 1952 ).

Precictions of the RI theory consist of two primarily distinct {features. First

is the presence of a plateau of constant strain near the impact end, which has
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been verified by a number of experimental investigations. primarily by Duwez
and Clark (1947). Secoﬁd, each small increment of plastic stress is expected to
propagate at a characteristic velocity ( which should be less than the elastic wave
velocity ) dependent on the tangent modulus or local slope of the static stress-
strain curve. However, the experimental observations performed first by Bell
(1951), on a bar which was prestressed into the plastic range statically or as the
result of a prior pulse, show that both elastic and plastic waves are propagated
at the elastic wave velocity. This point casts the most serious doubt about the
validity of the RI theory, causes the major controversy about the necessity of
including strain-rate effects in the constitutive model, and has generated nearly
all of the experiments conducted in this area in the following three decades in
order to explain this disagreement. However, it is reported that the predictions
made with a single dynamic stress-strain curve agree very well with experimental

results.

Another remarkable feature of the RI theory is the concept of a critical
velocity beyond which instantaneous failure will occur at the impacted end. For
the stress-strain curve as shown in Figure 1.3, at the ultimate strength of the
material the speed of plastic wave propagation is zero. It implies physically that
the energy of impact cannot propagafe away from the impact end because of

the zero velocity of additional strain and thus instantaneous failure occurs.

For the material behaviours considered so far in the RI theory, the stress-
strain curve is concave toward the strain axis only. Thus it excludes the forma-
tion of shock waves. In practice, however, some materials ( e.g. nickel-chrome
steel, rubbers, concrete, soils and rocks ) have the form of idealized mechan-
ical behaviour as shown in Figure 1.4 indicating concavity toward the stress
axis. Since the slope governing the wave speed is an increasing function of
strain, higher strain increments will travel faster than lower strain mcrements

14



Y

Figure 1.4 Stress-strain curve for a locking material

Figure 1.5 Comparison of strain distribution in bar produced

by RI theory (solid line) and by RD theory (broken)
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and must eventually overtake them. Because of the physical impossibility of
having a higher strain increment without a lower strain increment, the stress
waves would coalesce to form a shock front ( this topic will be discussed in a
subsequent section ). Materials having this tyﬁe of the mechanical behaviour
are often designated as locking media ( Further discussion about. this is given n

next chapter ).

This basic theory of one-dimensional plastic wave propagation is generated
only under the condition that the applied load acting at the end of a semi-infinite
bar is non-decreasing ( i.e. increasing or constant ). If, after a certain time, the
applied load decreases ( or is entirely removed ) resulting in elastic unloading,
then the interactions of loading-unloading waves have to be considered, and if
the bar is finite in length, waves will be reflected completely. One of the first of

P

this type of problems was presented by Lee (1952).
1.3.1.2  Wave analysis by ratc-dependent theory

It has been noted in the discussion in the subsection above that many ma-
terials behave quite differently under static and dynamic loading, showing rate
sensitivity, and also that some aspécts of wave propagation phenomena are not
- very well explained by the RI theory, especially the observe'd problem of the
. plastic wave propagation with elastic wave velocity. The disaéreement. between

the prediction of the Rl theory and experiments has been attributed to the
strain rate effects, so that it is apparent that a rate-dependent consideration is
required in the formulation of a constitutive equation for a proper description

of material behaviour.

Ludwik (1909) postulated a logarithmic dependence of stress on strain rate.
This relation of the form ¢ = o7 + bln(fdﬂ) has been the basis of numerous

. . . , v
proposed constitutive equations to describe rate effects. Soko]c')\sky (19438) first



treated wave propagation in elastic viscoplastic material without strain hard-
ening using a similar strain-rate dependent relation. The most commonly used
form of rate-dependent theory was proposed by Malvern {1951a, 1951b) for the

dynamic behaviour of materials, namely
o= fe)+ bn(1 + dé,) (1.1)

where f(¢) is the stress from a quasi-static stress-strain curve in which ¢ is the
total strain, €, is the plastic strain rate and the superposed dot denotes the time

derivative, and b, d are constants. This expression can be rewritten in the form

) 1 -
t = sfexp( 2=

- 1) (1)
which shows that the plastic strain rate 1s a function of the overstress, o~ f(¢), or
the difference between the instantaneous stress and the value that would occur
in a quasi-static test at the same value of strain. The Malvern law decomposes
the total strain rate into an elastic and a plastic component and assumes that

the elastic strain rate (€.) 1s related to the stress rate through Hooke’s law. The

plastic strain rate function is then taken in the more general form

Eép:g(o,e‘) or Ee=FE(e +¢,)=0+glo.e) (1.3)

This formulation implies that a material is brought to a state of incipient
plastic flow after a given amount of elastic strain, independent of the elastic
strain rate, but, because the plastic flow requires sufficient time to become ap-
preciable, the additional strain beyond the static yield strain is at first 11]&;1]1}’
elastic ( Malvern 1951a,b), This explains the propagation of stress increments at
the elastic wave velocity 1 a prestressed bar since time 1s required for flow to

occur.

The predictions from the rate-dependent theory were found to be sensitive

to the assumed boundary conditions. The existence of a constant strain plateau
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could be confirmed provided that the constant stress beundary condition was
used at the impact end. In contrast, early calculations by Malvern assuming a
constant-velocity boundary condition failed to display this feature. However, 1t
was shown later from the strain-rate solutions of Wood and Philips (1967) that
the strain plateau always existed as time became very large, using the semi-
linear rate-type theory for either constant stress or constant velocity boundary

conditions.

Most research in the literature has employed the semi-linear form of the
RD theory proposed by Malvern, in which the plastic strain rate is a function
of stress and strain. One apparent prediction of this formulation is that the
incremental wave velocity is the elastic wave velocity as observed in numerous

experiments assuming there is no mstantaneous plastic response.

The RD theory of Malvern is readily solved using the method of charac-
teristics. For further details concerning this method, see Zukas et al ( 1982 ).
An alternate approach to the method of characteristics for solving plastic wave
propagation problems is a finite element or finite difference computer program.
However, analytical treatment still provides a great deal of msight. Because
neither the Rl nor the RD theories give really close agreemént with the ex-
perimental strain rate records 1t appears that further study, both experimental
and analytical, i1s needed. A microscopic description of material deformation
provides a promising approach for treating an incremental elastic viscoplastic,
strain hardening behaviour with strain rate effects based on dynamic dislocation

concepts. For further information an article by Taylor (1965) is recommended.

A major controversy between the Rl and RD theories appears to mvolve
the necessity of incorporating strain-rate effects into the constitutive equations

for impacts in bars or rods and mathematical simplicity. The discrepancies are
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most apparent near the impact end and at earlier times as shown in Figure 1.5.
However, the numeriéal study performed by Wood and Philips (1967) showed
th_a.t the strain pla"cea.u near the impact end could always be expected to appear
using the RD theory as 101ig as suﬁicieﬁt duration time was maintained; and they
demonstrated that the RD solutions asymptotically approach solutions obtained

from the RI theory as time increases.

Since the lateral or radial motion of material is neglected, and the rate effects
occuring most are significantly close to the impact end, the validity of the RD
theory was questioned by Cristescu (1972) on the grounds that the complex
three dimensional stress state near the impact end cannot be described by a

one-dimensional wave theory.

Both the RI and RD theories were generalized by Lubliner (1964) in a theory
of plastic wave propagation formulated on the basis of a general quasi-static
constitutive equation. He showed that both theories were special cases of a

generalized theory and showed conditions under which one or the other is valid.
1.3.2  Uniaxial Strain Wave Propagation

Because of the low-amplitude stress levels and relatively long time duration
obtained from the unia;(.ial stress wave studies on long bars or rods, a number of
problems were encountered in attaining high-amplitude stresses and determining
dynamic properties of materials. Thus it has be;ome necessary to make use of
experimental configurations involving a uniaxial strain condition, such as phlate
impact, to produce high stress levels and high strain rates offering the simplicity

of a one-dimensional analysis.

In these configurations, a plane wave can be generated by impacting a flat
plate, the lateral dimensions of which are large compared to the distance trav-

elled by the longitudinal waves or where appreciable lateral displacements are
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not possible. A description of the one-dimensional or uniaxial strain state is
then valid for the motion of the central portion of the plate. This leads to one
component of displacement or strain in the direction of wave propagation, and
a three-dimensional state of stress. It is not necessary to assume neglect of lat-
eral inertia, as 1s t.he case for uniaxial stress. The effects of thermo-mechanical
coupling are neglected. Because of the lateral constraints, the stresses necessary
to cause large plastic deformation are éxtremely high, often several orders of
magnitudes above the yield stress of the material under an impact or explosive
loading condition. Shock wave studies where the thermal pressure ( that gener-
ated by shock waves causes the temperature rise of the material more than its
volume change ) is important are reviewed in next section. Here, for the stress
regime where the elastic or cold pressure ( that depends only on the density
change or specific volume and is equal to the total pressure and specific internal
energy at absolute zero temperature ) is dominant and where material strengths
and rigidity behaviour must be taken into account, analysis can often be made

with the help of an elastic-plastic model.

The continuum theoretical analysis of elastic-plastic waves of uniaxial strain
was first treated by Wood (1952), who emphasized the importance of hydro-
static compressibility in determining the nature of a wave.. Morland (1959)
presented a systematic investigation of wave propagation treating elastic and
plastic waves and the formation of shock waves. Fowles (1961) obtained some
of the first experimental results verifying, in a general way, the prediction.s of
the elastic-plastic model. The subject was also examined by Wasley (1973). A
comprehénéive treatment was provided by Nicholas ( see Zukas et al, 19382 )
who extended a method of Wood to allow for variations in the elastic constants
with increasing pressure. The approach taken below for the illustration of the

analysis, though not rigorous, is presented because of its simplicity and because
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it provides insight and understanding of the situation, and requires minimum

mathematical expertise.

The equations of motion and continuity are written in the familiar form for

the uniaxial strain case :

Ovg B 0oy (1.4)
P8¢ T oz '

Jde,  Ovg

e | (15)

where 0, v, €; are the components of stress, particle velocity and strain in the
direction of propagation, denoted by the Lagrangian coordinate z, pg the initial
density, and ¢ the time. If the density change is to be considered, particularly

. s ‘ . :
at high presures, then mass conservation requires that

=1-2 (1.6)

P

where ¢, is the compressive engineering strain.

The constitutive equation is needed to complete the formulation of the prob-
lem. It starts with separating strains into their elastic and plastic components,
thus,

€&z = ¢ +¢€b (1.7)
P
€y = €, T €

where subscript y denotes any direction normal to the direction of wave prop-
agation for an isotropic material, and superscripts e and p denote elastic and
plastic components, respectively. The decomposition of total strain into elas-
tic and plastic components requires that the total strains are small (< 20%).
Waves of finite strain, which occur under very high pressures, will be treated in
the next section. Three basic assumptions are made concerning the stress-strain
behaviour of the material : (1) the elastic strains are related to stresses through

Hooke’s law, (2) plastic flow is incompressible ( 1.e. plastic strains produce no
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change m density of the material ), (3) strain-rate effects are not taken into

account. From assumption (1), one has

1
€z = —E‘[Uz — 2vay] (1.8)
¢ = —E[(l — V)oy — v0oy)

Assumption (2) can be expressed by

& +28 =0 (1.9)

while the assumption of uniaxial strain condition requires
— €4 P
€y =€, + 6 =0 (1.10)

Combining (1.7), (1.8) and (1.9), the stress-strain relations m the elastic range

are well known expressions.

E(l-v) . 4 ‘
Ty = r = L -G €q 1.11
% T T o e T B30 (1.11)
v -2,
Oy = 1= I/)UI = (K — 56)61;

where K is defined as elastic bulk modulus and G the shear modulus. For the
material behaviour beyond the elastic region, plastic yielding occurs, and 1s

defined by Mises-Hencky or the maximum shear stress criterion
or — ay = Y (€h) (1.12)
where this has the same form as that for the uniaxial stress condition.

Hence, the stress-strain relation in the plastic range is expressed by

2
0r = Keg + 2Y(eh) (1.13)
y )

22



The deviatoric stress remains constant, Yy, in the simiple case of an elastic

perfectly-plastic matenal.

The yield poi'nt 1s defined hy

=
[EW)
g
o\

e = (oo + 50, &= (114)

D

and has been termed the Hugoniot Elastic Limit (HEL) as illustrated in Figure

1.6.

Equation (1.12) and Figure 1.6 show that the uniaxial strain curve ( or
stress Hugoniot ) is parallel to the shock hydrostat ( or pressure Hugoniot ),
and is offset from the hydrostat by an amount equal to two-thirds the yield
stress, and that the stress is composed of a hydrostatic stress component and
a contribution from the shear strength of the material. For low stresses the
bulk modulus can be considered constant. At high stresses, the bulk modulus is
generally an increasing function of stress that would lead to a concave-upwards
stress-strain relation and to the formation of plastic shock waves. At sufficiently
high stresses, the plastic shock waves can overtake the elastic precursor and form

a single shock wave.

In préctice, the loading wave is often reflected from the geometric bound-
aries, so resulting in the reduction of the stress levels. A wave of this type is
called a rarefaction or release wave. The unloading process or path i1s usually
referred to as a release adiabat, illustrated by curve BDE in Figure 1.7. In the
uniaxial strain case the material unloads along an elastic release curve ( section
BD ) until the difference in stresses is large enough to cause yielding in the
reverse direction. Thereafter, the release curve is essentially that of a hydrostat-
ically compressed material with the slope of the bulk modulus. When the stress
unloads to zero, the material is still left with a compressive permanent stram.

This results from lateral elastic stresses which are not relieved m this process

3
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Figure 1.7 Stress—strain relation in uniaxial strain
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and which maintain the material at the yield pomt. These lateral stresses can
only be relieved by lateral expansion which is not allowed in this uniaxial strain

analysis of elastic plastic wave propagation.

Because of both mathematical and pliysical complexities the above analy-
sis for elastic-plastic wave propagation in uniaxial strain has been confined tothe
use of a rate-independent theory, analogous to the approach used extensively in
uniaxial stress wave studies in long bars. As previously noted, the stress-stran
relation in uniaxial strain is dominated by the hydrostatic behaviour that does
not involve strain-rate effects because of the absence of shear siresses, particu-
larly at higher pressures. Nicholas (1932) pointed out that higher strain rates
are generally achieved experimentally at higher pressures, so that rate effects,
even if more extensive at higher rates, are less significant i the overall stress-
strain behaviour. Morever, the slope of the stress-strain relation governing the
plastic wave velocity is insensitive to strain hardening or strain-rate eflects be-
cause of the large contribution of the hydrostat. However, the discrepancies
frequently found between predictions based on the rate-independent theory and
experimental results suggest the involvement of rate effects in the uniaxial strain
configuration. To identify effects of shear strength and strain-rate, experiments
are commonly undertaken to observe either the attenuation of a plastic release
wave or the amplitude of the elastic precursor at low stress levels where hoth
elastic and plastic shock wave fronts exist. The decay of the elastic precursor
with propagation distance is considered as some form of strain-rate effect o;' as
an obvious manifestation of stress relaxation. Additional difficulties may occur
in interpreting experimental data, but the current trend appears to favour strain

rate-dependent analysis.

The variety and complexity of elastic-plastic phenomena make the devel-

opment of a mechanical model of any observed behaviour a very difficult task.

[
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Promising progress made in this area came with the application of concepts
of dislocation mechanics. In dislocation theory, strain-rate effects and strain
hardening are incorporated. Taylor (1965) first investigated the decay of the
elastic precursor in detail based on this theory, and concluded that the decrease
in amplitude of the elastic precursor with increasing propagation distance may
be attributed to stress relaxation. In recent years, the microscopic phenomena
adopted for explanations of deformation from a continuum-mechanical view-
point have generated a number of dynamic theories of plasticity which, while
still evolving, show great potential to progress in this area. Comprehensive

reviews are provided by Cristescu (1968), and later by Campbell (1973).

As will be seen, elastic-plastic analysis assuming incompressible flow is a
special case of compressible hydrodynamic theory. Nevertherless imnvestigations
using this approach have proved to be extremely useful in attempting to under-

stand certain physical situations.

In addition to the simple approach discussed above, a general continuum
analytical theory of elastic-plastic waves has been developed by Lee and Liu
(1967), who considered both finite elastic and plastic strains, and change n

temperature due to thermomechanical coupling effects.
1.4  Shock Waves and Response

As impact velocities produce stress levels considerably in excess of the yield
stress of the material, significant changes can be found in the bulk nigidity mod-
ulus and density. Shear strength, which can support only low shear stress at
such stress levels, becomes a factor which has an almost negligible influence
on the mechanical behaviour, whereas the compressibility affects the behaviour
significantly so that the state of the solid material 1s characterized as if the ma-

terial were a compressible fluid. Thus, stress waves propagating mn solids can
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be considered in terms of the theory of hydrodynamics. The important implica-
tion from the increase of the bulk modulus is that high-amplitude stresses are
propagated more rapidly than are ]ower—mnplitude ones, and eventually overtake
them to form a nearly vertical front. The continuous plastic wave front breaks
down and a single discontinuous wave front develops to travel at a specific ve-
locity. This wave front is termed a shock wave. It is more precisely defined
as a finite stable, discontinuous or almost discontinuous wave in stress, density,
particle velocity and entropy, having an amplitude exceeding the elastic limit
of the material in which it is propagating. In fact, the shock front consists of
a transition zone the thickness of which depends on the material. At higher
pressures, the thickness of the shock front in solids is generally approximated
by a surface during propagation while useful results can be obtaimed simply
by applying the law of conservation of mass, momentum and energy across the
shock front ( Rankine-Hugoniot equations ). Shock waves mn solids are often
generated by high-speed projectile impact or explosion on a material boundary.
Scientific interest in them from military and non-military applications centres
on their mathematical description, influence of dynamic material properties, de-
termination of the constitutive equations or permanent damage caused by their

passage.

+ :
Again, an exhaugjve coverage of research contributions is not intended here,

but a condensed review of the field is provided to give a simple illustration
of the mechanical aspects of the shock waves and the major trends in their
development. Only comprehensive reviews, or summaries and original works are
cited here. Extensive treatment of the subject can be found-in the monographs
by Kolsky (1953), Goldsmith (1960), Cristescu (1967), Wasley (1973), Nowack:

(1978) and Zukas et al (1982). Comprehensive, critical reviews are given by

Duvall (1962), Doran and Lindre (1966), and Davison and Graham (1979).
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Because of the significant influence of increasing compressibility and neg--
lect. - of the shear strength of the material, the elastic-plastic analysis of wave
propagation has been recognized to be inadequate in this pressure regime. A
theoretical description of the phenomena has primarily been based on a com-
pressible fluid behaviour. The propagation of shock waves and the deformation
of the bodies involved must then be analysed by the relations governing com-
pressible fluid flow, which consist of the nonlinear partial differential equations
of continuity, motion and conservation of energy, and a constitutive equation
specifying the relation between stress and density in a continuum. In addition,
the equations of conservation of mass, momentum and energy across the shock
front ( i.e. so-called jump conditions ) must be satisfied on the assumptions
that the steady-state condition exists and the equilibrium of initial and final
states 1s maintained. The effects of thermodynamic coupling is generally disre-
garded. For mathematical simplicity the analysis is often confined to the case
of plane waves of infinite lateral extent, i.e. macroscopic uniaxial strain, as in

elastic-plastic analysis. Hence, jump conditions are expressed as follows :

1= = 1.15

P ” (1.15)

01 — 0p = PoUCs (116)

1 , _

€1 — e = (a1 + o) (Voo — V1) (1.17)

=

where ¢, denotes shock velocity, a,p,v,e and V, are normal stress, density,

particle velocity, specific internal energy and specific volume (= =), respectively,

1
p
in which subscripts 0’ and "1’ denote the imitial state ahead of the shock front
and the final state behind it, respectively. The locus of final states behind the
shock front can be uniquely determined for a given material by the initial state

ahead of the shock. This locus in stress-volume plane 1s commonly referred as to

a Rankine-Hugoniot equation of state, or simply a Hugoniot. As can be seen from
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Equations (1.15) and (1.16), the Hugoniot can be determined by measurement
of only two of the four variables, o, v, ¢, p. Thése two variables are usually shock
velocity which can be measured directly and particle velocity which cannot be
directly measured fo-r many metals. The particle velocity 1s then often obtained
by the inference from the measurement of free-surface velocity. However, for
materials such as rocks and ceramics, somé sophisticated methods have been

developed by Dremin and Adadurov (1964) to measure particle velocity directly.

As discussed above, at high pressures the mechanical behaviour of the solid
in the absence of the shear strength is described using a hydrodynamic model as
shown by curve I in Figure 1.8(a). However, when brittle materials are employed
to study impact phenomena, strain rate effects are found by a number of inves-
tigators to be very important in the early period of loading. The materials no
longer sustain any shear stress once yielding commences so that the final shock
state lies on the hydrostat or shock Hugoniot as illustrated by curve IT n Figure
1.8(a). The mechanical behaviour of this kind is often described by a model,
called an elastic-hydrodynamic model. If pressures are lower, the shear strength
of the material cannot be disregarded. A description of wave phenomena follows

the elastic-plastic analysis reviewed mn the last section.

At certain pressures and temperatures some solids can transfer from one
crystalline structure to another. These changes are the so-called phase (poly-
morphic) transitions as illustrated in Figure 1.8(b). Due to this fact several
shocks waves will appear, which propagate with distinct velocities. The shock
wave is then no longer stable. Research into shock stability has been the subject
of many investigations, but is beyond the scope of impact phenomena concerned
in this thesis. The effects of shock waves on sandstone will be discussed in

Chapter 3.
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1.5 Hypervelocity Impact

In some physical situations such as the meteoroidal impact from the advent of
space travel, jet penetration produced by a shaped charge { detonatable explosive
device ) and long rod or pellet penetration for terminal ballistic design, both the
striking objects and targets are severely deformed either partially or completely
because of the very high impact velécity, and many undergo a transformation
from the state of a normal cohesive solid to that of a quasi-fluid. The large
stresses induced by such impacts greatly exceed the yield strengths of materials
so as to permit ‘safe’ neglect of material shear strength and compressibility. The
impact velocity created in situations of this type is termed hypervelocity, the
domain of which varies with projectile and target material combinations. It is
at present favoured to take a velocity in excess of the elastic longitudinal wave
velocity (ce) as the lower bound and that less than thrice the plastic longitudinal
wave velocity (cp) as the upper bound ( 1.e. ¢, < V < 3¢, where 3¢, denotes

the explosive limit ).

Investigations into this velocity regime usually centre on the penetration his-
tory, factors affecting the penetration depth, wave propagation effects, damage
of the striking object and terminal crater geometries on wliich the final pre-
diction of }.)enetration efficiency is based. A theoretical analysis of impact and
penetration phenomena is often based on the hypothesis of steady, incompress-
ible flows because of the complete deformation of the striking object and local
target material. Opik (1936) developed the first theory of this type to study me-
teoroidal impact on a semi-infinite target while Birkhoff et al (1948) presented
the penetration of jet-generation by a shaped charge on a semi-infinite target.
Some extensions were made to account for the unsteady motion from the simple
theory of Birkhoff. Although it has proved successful in application to limited
problems, this simple theoretical approach as a whole is often criticized on the
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grounds of the absence of strength effects and the assumption of steady mo-
tion, resulting in the considerable deviations between experimental results and
predictions. Consequently, the original hydrodynamic theory was modified to
incorporate strength effects, first by Pack and Evans (1951), who also pointed
out the three-phased process of cratering. A different model has been proposed
by Grimminger (1948) who considers a rigid striking object for the meteoroidal
impact. Similar treatment with a rigid portion of projectile in long rod pene-
tration was also provided by Alekseevskii (1966) and by Tate (1967, 1969). As
a result of this development, a compressible hydrodynamic theory is extensively

introduced to investigate the various problems of hypervelocity impact.

In general, hypervelocity penetration involves three distinct stages : (a)
when the striking object impacts the target surface a strong plane shock wave is
initiated in both the striking object and target. A crater is then produced, and
the interface between the striking object and target i1s moving relative to the
shock wave; (b) after this first stage of impact the shock wave runs far ahead
of the interface leaving the materials behind the shock unaffected so that the
steady-state situation develops where the hydrodynamic analogy is applied. 1f
the target is thick enough and the striking object long enough this intermediate
stage will be the domhinant phase of penetration; (¢) when energy at the crater
wall can no longer overcome the target material resistence or when the strik-
ing object is completely consumed then the termination stage results in crater

formation or else failure occurs.

Taken overall, the penetration is clearly an unsteady process, especially in
the initiating and terminating stages of the cratering process. In a more complete
treatment these effects must be taken into account, leading to the introduction
of elastic plastic considerations that can only be achieved using extensive com-
putational codes such as DYNA, HEMP, EPIC and HELP. Such examples are
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provided by Pidsley (1984) and by Misey ( 1977 ). Morever, if rarefaction waves
are involved as 1s the case in the finite target impact situation, then reflected
waves and their interactions with incoming waves must be considered. This is
especially true i thin plate impacts where observed phenomena are often ex-
amined from the viewpoint of shock wave propagation. Abundant contributions
on this topic can be found in numerous monographs by Burke and Weiss (1971),

and by Chou and Hopkins (1972).

Because of limited applicability to penetration mechanics and to problems
concerned in the following chapters of this thesis, there will be no further dis-
cussion. There 1s a vast literature on this subject. Important work is covered
quite comprehensively in a series of proceedings ranging from 1964 to 1969 and
in a monograph edited by Kinslow (1970). Reviews and surveys are also given

by Backman and Goldsmith (1978) and by Swift (1982).




Chapter 2 THEORY OF IMPACT PENETRATION
2.1 Introduction

Impact and penetration phenomena are extremely complicated. The interac-
tion of projectile and target involve not only different materials and geometries
at given impact conditions, but also various deformation mechanisms and dam-
age patterns. Hence, much research work in this area has been experimental in
nature, especially in early times. However, in order to quantify the phenomena
the collected data are often either correlated with some algebraic equations lead-
ing to empirical or semi-empirical analytical relations to make predictions for
the guidance of further experiments or are used to fit the equations generated

by some analytical theory for predictive calculations.

A number of useful empirical equations have been developed which provide
reasonable estimates of the penetration depth, based on the projectile and target
characteristics for a variety of situations. However, some empirical parameters
contained in these equations are not defined explicitly in terms of the target
properties and the projectile characteristics. The numerical values of these pa-
rameters have to be evaluated from the separate penetration experiments. Thus,
although some success has been achieved using these numerical equations, they
may prove unreliable or else if reliable, their accuracy i1s limited to the range of
test conditions for which they are deduced. A more basic approach has been
imtroduced to treat one or two predominant aspect of physical phenomena (
such as plugging, spalling, and cratering ) by approximating the gross physical
behaviour of the target material with a simple constitutive law. Onc_e such a
realistic constitutive law has been established, a boundary-value problem will
be formulated using a group of governing differential equations with some sim-
plifying assumptions. Further simplifying assumptions are usually made in the

cause of obtaining a solution. The theory of dynamic expansion of a cylindrical
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cavity which will be developed in subsequent sections is one of such approaches
in which material is approximated by a compressible locking behaviour in dilata-
tion and bilinear elastic-plastic strain-hardening behaviour in shear. Unlike the
empirical equations the resulting equations produced by the analytical approach
do not contain empirical parameters that have to be determined from separate
tests. For a complete solution of impact and penetration phenomena recourse
must be made to a numerical approach using either the finite element or the
finite difference computer programs which are the subject of Chapter 4 in this
thesis. In the present chapter, attention is concentrated on (a) a brief review
and discussion of existing empirical equations; (b) discussion on the mechanical
behaviour of a locking medium; (¢) the theoretical development of a cavity ex-
panéion using the locking approximation; (d) penetration theory adapted from

the cavity expansion theory.

For different combinations of the projectile-target dimensions, analytical
method used to attempt a solution can be quite different. The following con-
text is confined to phenomena and the rational treatment of normal impact and
penetration into a thick - semi-infinite target ( i.e. the influence of a distal
boundary on the penetration process is not present or is negligible ). There 1s a
vast amount of literature dealing with thin plate, intermediate and thick targets
impact resulting in penetration and perforation. Considerable information can
be found, among others, in articles by Goldsmith (1963), Zaid, El-Kalay and
Travis (1973), Backman and Goldsmith (1978), Jonas and Zukas (1978) and
Zukas et al (1982), and in monographs by Goldsmith (1960) and by Johnson
(1972). A review paper given by Brown (1936) also covers many aspects of this

topic.
2.2 Review and Discussion of Empirical Relations

In this section, efforts are made towards the assembly of empirical rela-
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tions in areas such as cratering and penetration into target material in which
the formulation of a rigorous theory has been inhibited by the complexity and

variability of impact phenomena.

The empirical relations are closely related to certain types of material char-
acterizations and impact conditions. The large number of parameters appearing
in them make the impact and penetration process very complicated to under-
stand, especially those parameters which are difficult to control. In general,
these relations do not give any insight into the process described, but rather
provide an overall effect over some parameter ranges. However, because of the
complex nature of impact phenomena their value should not be underestimated,

especially when the number of variables to be correlated i1s small.

Most empirical relations used in penetration mechanics were developed under
the assumption that the target resistance (F) to penetration is a function of
initial impact velocity. This assumption is often expressed mathematically by a
power series as follows™® :

F=a+auV+aVi+ - +a,V7" (2.1)
where a, and V™ are positive constants and velocities, respectively. However, in
practice only the first three terms are actually found to have physical meanings.

Thus, Equation (2.1) is truncated at second order to be the following empirical

expression, the very well known as force law.

F= ag + a1 Vv + 0,2‘/2 ( .

SV
o
S

Through Newton’s second law of motion, the following equation for projectile

motion after impact is immediately obtained :

dV
~m—£ =ag+ a1V + a.gV2 (2.3)

* Tt should be mentioned that «g in this section denotes a constant and its

utility 1s confined within this section. The appearance of ¢y anywhere else n
this thesis will denote the initial cavity radius as shown in Appendix B.
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where m,t are projectile mass and time, respectively. The empirical prediction
equations are then derived by integrating this motion equation with the axial
resistance force giv-en in the above force law. In the above equation, the terms
oﬁ the right-hand side have been interpreted to associate with material strength,

frictional effects and the acceleration of target material, respectively.

Bepause of a limited understanding of the penetration process and obviating
mathematical difficulty, one or two constants in Equation (2.3) are often assumed
to have no effect on ’the penetration process in order to make the final relations
capable of prediction as a simple engineering tool. That is, most empirical

relations are special cases of the above equation as will be seen in what follows.

One of the earliest known penetration equations was proposed by Robins
and Euler, who assumed that the resistance to penetration was a constant pro-
portional to the cross-sectional area of the projectile. Poncelet later modified
the Robins-Euler assumption by considering that the resistance is a function of
impact velocity in addition to the material strength. Since then, a number of
empirical relations have been developed based on more or less different versions
of the force law and with varying degrees of success. Among others, the follow-
ing assumptions and their resulting prediction equations are quite well kno.wn

and representative :

Robins and Euler

= (2.4)
m 7 = qayq . 2,
m
Z;= %LO? (2.5)

where Zj, Vg are the final depth of penetration and the initial impact velocity,
respectively.

Poncelet

v + V2 (2.6)
—-_m— =4a bR 2.
dt 0T a2

38



m 02 72 a o~
Zy=—1In(1+ —=V 2.
= %a, n( +a.0 o) (2.7)
Resal
d‘/ 2 S
—m—- :-a.lV + aV* (2.8)
m ay .
Zi=—In(1+ —W 2.9
/ ag“( + 2 0) (2.9)
Petry
dv
—mgi‘ = ag + a2V2 (2.10a)
mgk Vi
Zs= log(1 4+ —— 2.10b
f og(1 + 55705 (2.100)

where g, k and A are gravitational acceleration, constant and the cross-sectional

area of a projectile.

Allen, Mayfield and Morrison (1957a,b)

dV

—m—H— = a.2V2 for Vo>V >V, (2.11a)
t
—mE— =aV?4+a for V.>V >0 (2.115)
Zp = Ze+ 2in(1 + 2172 (2.12)
2 ag
where Z. is critical penetration depth at critical velocity V7.
Young (1969) *
7 = 13.4N, /2 ln(1 4 VOZ) V, <61 m/ 213
= i yf—In(1 + 2. .
i 3 z;\l 2 n{ 265 f 61 m/s ( a)
m
2 = 0.257N¢\/-f(v0 ~305) V,>61 m/s (2.13b)
where N, are soil constant and nose shape factor, respectively.
Chisholm, Peleze and Pugh (1962, see Wang, 1971) **
dv .
e = ag +ayl (2.14)

* Young derived his equations using a best fitting technique, so the assumed

force is not available.
**  Bquations(2.15) and (2.16) giving the respective penetration depths have

been derived by the author.



Zp = (Vo - 2)in(1 + 2 Vo) (2.15)
ay ay ag
Fuchs**(1963)
dV .
—m— =ag+a;V + ap V2
dt
m 2as \%
7= —[n(l1 4+ —V)) = ——7 2.16

2a9
for a;? = 4agas.
It can be noted that Petry’s equation (2.10) has virtually the same form as

Poncelet’s, and differs only in the constants which have been evaluated.

In the above discussion, almost all empirical equations have been derived on
the basis of a force law, i.e. the resistive force is a function of impact velocity.
However, Wang (1971), and Murff and Coyle (1973) employed different expres-
sions for low velocity projectile penetration by assuming that the resistance to
penetration is a function not only of impact velocity but also of projectile depth
( i.e. displacement in the direction of penetration ), which is expressed in the
following form :

Wang (1971)

dVv
e = ap+ Vi + 02

R
—
-l
e

where Z,b; are displacement in the direction of penetration and a constant,

respectively.

Murff and Coyle (1973)

dVv
—me = ag+ aV + 52

o
—
[0 4]
~—

The complicated resulting prediction equations were obtained and were re-

ported to give fairly reasonable results for the ranges of conditions considered.
9.3 Mechanical Behaviour of Materials with Locking Characteristics

In this section, the constitutive relations of the locking materials are de-
scribed and their characteristics are discussed for the formulation of the cavity
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expansion theory. A material subjected to dynamic loading ( impact or impul-
sive ) will experience deformation. Before the yield limit of a material is reached
the material exiaeriences elastic deformation, its linear stress-strain relation be-
ing governed by Hooke’s law. Beyond the yield limit, plastic deformation occurs.
A stress-strain relation in this range deviates from ( the extension of ) Hooke’s
linear law, and can be described in a number of rather different ways depending
on the characterization of a material. Thus, to facilitate analysis and under-
standing it is necessary to distinguish materials in terms of their mechanical
behe&iours in order to to make it possible to characterize their stress-strains
relation sufficiently and accurately. A material may be loosely classified as ‘soft’
or ‘hard’ according to its strengths. Whatever it is termed, its true mechanical
behaviour may always be idealized by two straight lines giving a stress-stran

curve which is independent of strain-rate effects, as illustrated in Figure 2.1.

For a ‘soft’ material in the plastic regime as qualitatively shown by line OAB
in Figure 2.1, an increase in deformation results in a decrease i stress * and the
material does not support any stress greater than the yield stress. This process
of deformation coincides with the behaviour of ‘strain-softening ‘materials which
are often encountered in civil engineering practice. Such ‘softening’ behaviour is
unstable, and then may transit to a stable state with increasix_ﬁté, strain to sustain
a residual stress. However, if it is assumed to have no signficant difference
between yield stress® and residual stress of a material then it can be conceived
that the deformation proceeds unlimited at an approximately constant state of
stress once the yield limit has been reached. Hence, there exists an extreme

case of the mechanical behaviour of a ‘soft 'material, as indicated by line OAC.

* Tt should be noted that for this class of materials, a material loses its

resistance with the increase of deformation only after its ultimate strength 1s
reached. If there is no significant difference between yield strength and ultimate
strength of material, the ultimate strength is omitted in Figure 2.1.
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In general, the material with this type of stress-stramn relation is commonly
called an ideal plastic or elastic perfectly-plastic material. In this case here,
that state of constant stress rather serves as a limiting condition. The analysis
and understanding of this ‘soft’ material are very useful. However, emphasis in
this section is placed on the other class of materials discussed in the subsequent

text.

In contrast with ‘soft 'material described above, there exists a ‘hard ‘material
with its mechanical behaviour bounded between an elastic perfectly-plastic and
ideal ‘locking’ state, the former being taken as a lower extreme case of the
range, and the latter being considered as an upper extreme case of the range,
as indicated by line OAG in Figure 2.1. It may be noted {rom Figure 2.1 that
in this class of materials the material resistance to deformation always increases
with the proceeding deformation. However, there are two distinct situations
depending on the slope of stress-strain curve in this range and leading to two
rather different ways of analysis and understanding the material behaviour. It 1s
apparent that if the slope of stress-strain curve is smaller than Young’s modulus
(ie. 0 < E; < E), the slope governing wave speed is a decreasing function
of strain, stress waves corresponding to their slopes have speeds less than the
elastic wave velocity. As the deformation proceeds, stress waves propagate slower
and slower and the distance between elastic and plastic wave fronts incieases
steadily, so excluding the formation of shock wave. Thus, the solid with (average:
tangential modulus less than Young’s modulus (0 < E; < E')1s commonly called
an elastic-plastic strain-hardening material, as shown by line OAD in Figure
2.1. If the slope of the stress-strain curve is greater than Young's modulus ( 1.e.
E < E, < o) then the slope governing wave speed is an increasing function of
strain. Stress increases faster than strain does until deformation nearly ceases,
so leading to a state in which material is said to be locked. In other words. the

distance between elastic and plastic waves fronts diminishes gradually until the

43



two fronts coalesce to form a shock front, as illustrated by curve OAF’ and ideally
by line OAF in Figure 2.1. The material with a tangential modulus greater than
Young’s modulus and having a locking tendency is termed a locking material. ( A
more complete definition will be given in the following appropriate paragraphs.)
If the slope of stress-strain curve 1s approaching infinity, the upper extreme case
of the locking material is obtained, indicated by line OAG mn Figure 2.1. Up
to now the locking materials have been distinguished from the strain-softening
and strain-hardening materials in terms of their mechanical behaviours. The
important properties of locking materials are hereafter discussed with emphasis
being placed on their stress-strain relation related to the cavity expansion theory

and penetration theory which will be followed.

The use of porous materials and artificially foamed solids in structural apph-
cations, of soils in soil dynamics and geophysics, has gained widespread attention
during the past three decades. For instance, lightweight distended metallic foams
have been employed as either outcasings or interfacial layers or core materials to
protect structures from mmpact and shock waves, and geological materials have
been either targets or engaged in earth penetration studies. Materials such as
these and those like nickel-chrome steel, rubbers, ice and snow are examples of
locking ( or compactable ) materials. The dynamic behaviour of these locking
materials under impact or impulsive loading and in particular, phenomena relat-
ing to the constitutive relationships and the propagation of shock waves through

them have required thorough understanding and analysis.

The concept of locking 1n a material can be described n the following way.
Consider a material with the initial density pg in the non-deformed state sub-
jected to a compressive loading. With the increase of this loading material
undergoes deformation until a certain level of pressure ( P, - critical pressure) is
reached, and then the density of material jumps to a limiting value characteristic

of the material, ( or called locking density ). Once this limiting density has been
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reached, t-i1e material is said to be locked, no or almost no further increase"of the
density is possible during any subsequent increase in loading. During unloading
the density remains constant and equal to the limiting density reached during
loading, as illustrated in Figure 2.2. It is assumed that the material has only two
states, i.e. the elastic ( segment OA ) and the locking plastic ( segment BC ),
and that the transition from the elastic to plastic occurs only on the shock wave
front instantaneously as simear yielding takes place at P = P. in which a viscosity
effect is not taken into account. Because the shock front is approximated by a
surface, the density change is manifested by a jump. In the elastic range, the
material 1s incompressible and reversible deformation follows Hooke’s law, while
in the locked plastic range at P > P, the material again is incompressible, and
behaves as a rigid body. A residual volumetric deformation is produced ( line
CBD ) after the material is unloaded, or in other words, the material is com-
pacted. During yielding the deformation is converted to the plastic work. As
one knows, the influence of the hydrostatic stress on plastic work is insignificant
in the vield of metals. Such an assumption appears not to be quite true for
porous materials and geological materials. In this case it 1s more plausible to
assume that the plastic work increases with an increase of the hydrostatic stress.

In spite of this, the effect is regarded as being substantially insignificant.

Described above is a general model of locking mechanical behaviour m a
material. A number of special cases further simplify this general model to facil-
itate analytical formulation in wave propagation problems. These are discussed

in subsequent text.

The concave-upward ( toward the stress axis ) stress-strain curve as lus-
trated in Figure 1.4 was first reported by White and Griffis (1948) and the lock-
ing concept appeared in the paper by Ishlinski et al ( see Cristescu, 1967),
who studied soil deformation caused by an undergrognd explosion. The work

of above authors was further developed by Zvolinskii (1960). Prager (1957a.b)

45



jeualew BUO0] B Ul uonElal UlelIS-SsaNng g g @anbiy

uoneierq

Q)
QU

1d
FY W)
O

AL
W

— e —— ey —— —
—————— —

ainssalg

46



discussed one of special cases with a material model termed ideal locking and
proposed a general theory for this class of materials which presentsa critical con-
dition beyond or under which locking can or cannot occur. Further, . Sun and
Philips  (1969) developed a more complicated general theory which contained
three locking conditions. However, these general theories have been developed
only for static problems. The propagation of spherical waves in a plastic lock-
ing material was also treated by Salvadori et al (1960) who attempted closed
solutions with additional simplifying assumptions. Hanagud (1964, 1966) con-
sidered, in an analytical way, problems of expansion of a spherical cavity in a
locking material and studied the constitutive equations of this type of materials.
Scott and Pearce (1975) employed this model to investigate soil compaction by
impact. The propagation of an impulse in a viscous simple locking material was
discussed by Miles (1961). Based on the general model of a locking material as
shown in Figure 2.2, there is a number of special cases which are very useful and

offer simple analysis and understanding.
(1) Ideal locking model, ¢. = ¢

Since the material of a certain initial density does not offer at first very much
resistance to Comp1‘eséi0n, when the material is compressed and its volume is
reduced there is a resulting increase in-density. Once its limiting density 1s
approached, the material becomes incompressible in the mauner of a rigid body,
as shown by curve OCD in Figure 2.3(a), and can be idealized by line OAB. This
material model is termed the ideal locking material. It is noted that after yield
the material density does not experience a finite jump ( no energy is dissipated
during this process ). There will further be two special cases from this model

which will be discussed in the subsequent text.
(2) Rigid plastic locking model, ¢, =0
In contrast to the ideal locking model, the material in the present situation
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does not produce any deformation until the yield stress is attained, and then
the material density immediately reaches its limiting value with a concomitant

jump, so leading to some irreversible deformation, as shown in Figure 2.3(b).
(3) Elastic locking and plastic locking model, €. # (= 0), € = ¢€q

Since a wave discontinuity exists at the interface of a siress-free state and an
elastic state, a shock front can then be expected. Hence a finite jump in density
( also in stress ) is assumed from the stress-free to elastic states. However, if
this leading shock front is relatively weak, the elastic locking density (p;) may
approach the initial density. Then this model is virtually same as the second
special case, i.e. rigid plastic locking model. In spite of this, this model as shown
in Figure 2.3(c) has been widely accepted as a more general example of the two-
state behaviour of locking materials, and is extremely useful in the formulation

of the cavity expansion theory.

In certain circumstances, the ideal locking model does not describe the ma-
terial behaviour accurately. There are two such cases to be discussed below.
First, when a large finite deformation problem is involved and the initial pres-
sure * of compressive loading considerably exceeds the yield imit of a material,
the elastic stresses can be safely neglected resulting in an extreme case of ideal-
‘ization. The material with this type of behaviour in volumetric deformation is
called the simple locking model. as lustrated in Figure 2.4(a) ( 1t can be easily
followed by setting P, = 0 in Figure 2.3(a)). This simplified model is very useful
when used to analyse the mechanical behaviour of plastic materials, such as soft
soils. Second, when the pressure is increased greater than the yield himit and
the limiting density of the material has been reached, any further increase in

pressure will still produce deformation. This material behaviour, in which the

* Tt 1s assumed that before the material has sufficient time to yield, the

pressure has risen to a level which is considerably greater than the yield limit.
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density can increaée beyond the locking value, is called the non-ideal locking
model, as shown in Figure 2.4(b). As the pressure is reduced to zero, the resid-
ual volumetric str{ain’ 1s still very large compared to the small elastic recovery,
and at preéent the increase in pressure to generate a small increase in density is

much greater than it is in the elastic state.
2.4 Cavity Expansion Theory

There 1s wide variety of problems in solids involving either spherically sym-
metric or axisymmetric inelastic deformation when subjected to dynamic load-
ing. Interest in these problems stems from various motivations. For example, the
deep underground explosions by high-explosive charges have been investigated
in the past half century for military, geophysical and mining applications and
the safe design of pressure vessels and walled structures is another long-standing
problem in industry. Deep metal punching and gun barrels are also closely con-
nected with the present topic. Finally, impact and penetration into soil, rock,
concrete and metal by shaped-charge jets, and projectiles or other striking ob-
jects have offered some good examples. In all the above cases of this class of
problems there is a common feature in their deformations. This 1s that the de-
formation of materials has an approximate pattern of either spherical symmetry
( underground explosions, pressure vessels, walled structures a1.1d penetration by
hemi-spherical projectiles ) or cylindrical symmetry ( deep me.tal punching, gun
barrels and penetration by shaped-charge jets and sharp-nosed projectiles ) by
envisaging the expansion of a formed cavity. Henceforth, the deformation of all
solids exhibiting this feature is described as a cavity expansion, and a solution

development for this cavity expansion is termed cavity expansion theory.

The dynamic expansion of spherical or cylindrical cavities in solids has been
studied by many researchers. The first theoretical investigation of the cavity ex-

pansion with spherical and cylindrical shapeé was provided by Bishop, Hill, and
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Mott (1945) to approximate the solution of a quasi-static indentation process of
a rigid punch in a semi-infinite medium. Hill (1950) discussed many aspects of
the expansion of a spherical shell and a cylindrical tube in his monograph. The
quasi-static expansion of a spherical cavity in metals was also treated by Chad-
wick (1959) who studied a similar case in ideal soil which obeyed the Coulomb
vield criterion and flow rule. A dynamic solution for spherical expansion was
later obtained by Hopkins (1960) who also incorporated the effect of material

strain-hardening.

There 1s extensive Russian work relating to the cavity expansion problem,
especially the problem of an underground explosion in soils. Because this work
has 1ts own complicated feature ( e.g. the presence of moisture and degree of
water saturation ) it requires a separate treatment. No attempt is made here
to summarize their work. For detailed information, a survey article given by
Zvolinskn, Pod’Yapolskiy and Flitman (1973) should be consulted. It is apparent
that the cavity expansion problems not only are of the practical importance,
but also stimulate the academic interest in a variety of diverse fields. In this
section, attention is deliberately confined to a general theory of a cylindrical
cavity expansion with geometry as illustrated in Figure 2.5 and with material
behaviour described by ideal locking compressibility under hydrostatic stress (
as stated in the last section ) and elastic-plastic, linear strain-hardening under

shear stress, as illustrated in Figure 2.6.

The theory of dynamic expansion of a cylindrical cavity in an ideal compress-
ible locking, elastic-plastic strain-hardening material is developed in Appen(li'k
A. This theory depicts the expansion of a uniform cavity of instantaneous radius
r(t) to the projectile radius in a semi-infinite material subjected to conditions of
plane strain. The eflect of material compressibility is approximated by means of
an nstantaneous locking assumption whereby the material experiences locking

in both elastic and plastic states such that transition from the elastic to plastic

ot
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states is accomplished by a finite volumetric strain. As discussed in Section 2.4,
the locking strains are a function of the instantaneous average dynamic pressure.
The material in shear is described by bilinear elastic-plastic strain-hardening be-
haviour. Only in-plane stresses are considered. The exact solutio‘n of this theory
is obtained from an equation of motion for the cylindrical expansion of the ma-
terial having the mechanical behaviour stated above, and with the conservation
laws of mass and momentum applied to the expanding boundaries of the locked
elastic and locked plastic regions. Because of its complexity in order to make
predictions as a practical engineering tool, an approximate solution is introduced
to reduce it to a simpler form by using certain assumptions. According to Equa-
tion (A.66), the cavity pressure or local compressive normal stress to enlarge a
cavity is determined for an assumed velocity field in the material adjacent to

the cavity as

Y

E Y E
p(t) = 5(1 - e‘~/3) _ —‘)ilnaz + —B—tl\nagln(l — \/&2)

—gEti( 13;_1 [a;% - (az_% - 1) =1]+ f;_ﬂdz - }7)72((12 + aa)lney
n=1 - -
= ps + P4 (2.19)
where
ps = g(l - e_2ﬁ) — %h]ag + %lnagln(l - \/ag)
g3 T et et (2900

in which a3, and Y7 are defined in Equations (A.41b), (A.20) and (A.29) and

po .o palnoag
Po.2 (i
9 3

<

Pd = + aa) (2.205)

It is apparent that this cavity pressure consists of the separate contributions due
to quasi-static deformation ( or the shear resistance ), ps and dynamic pressure
( or inertia ), pg, respectively. It is also noted that the quasi- static part of the

55



pressure is determined by the constitutive properties of the surrounding material,
i.e. the Young’s modulus FE, strain-hardening modulus E;, yield strength Y,
initial and locked plastic densities, pg and p;. The dynamic part of the pressure

is determined by the radial position, velocity and acceleration of the cavity wall.

Comparing the above results with those obtained from the dynamic expan-
sion of a spherical cavity under similar conditions, as discussed by Hanagud and
Ross (1971), it is obvious that their solutions differ only with respect to the con-
stant terms. Thus, no attempt will be made to develop a similar theory for the
dynamic expansion of a spherical cavity. In the above discussion, the developed
theory is based on the homogeneous and isotropic material assumption. How-
ever, some materials have an apparent layered st.ructure-. Bernard and Hanagud
(1975) developed a theory of dynamic expansion of a spherical cavity for such

materials.

The present theory yields the material displacement front separating an
outer elastic region {rom an inner plastic region, and which implies a condition
that the tensile stress is less than the material strength. This implication ex-
cludes consideration of the formation of cracks at the elastic-plastic interface

and elastic front.
2.5 Penetration Theory

In the preceding section, the cylindrical cavity expansion theory developed in
Appendix A is discussed. This theory forms the basis of the present penetration
theory which will be discussed subsequently in this Section. The results from

the cavity expansion theory will be directly applied to the penetration problem.

By means of an ad hoc analogy, Goodier (1965) first extended the dynamic
expansion theory of a spherical cavity to the penetration of a rigid spherical pro-
jectile into an incompressible elastic-plastic, strain-hardening material. Hanagud

and Ross (1971) modified the cavity expansion theory to account for the tar-
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get compressibility by means of the ideal locking approximations. Bernard and
| Hanagud (1975), Bernard (1976) further developed the cavity expansion theory to concen-
trically layered compressible material and used that as the basis of a projectile
penetration theory for layered targets. In their work, a nose shape other than
hemispherical was considered and the theory of penetration at non-zero oblig-
uity was also proposed. Realizing that the penetration of porous materials by a
rigid sharp-nosed projectile may be better described by the dynamic expansion
of a cylindrical cavity, Norwood (1974) proposed a corresponding analysis for
the penetration problem .in a state of plane strain. Quite recently, Forrestal,

Longcope and Norwood (1981a, 1981b), Longcope and Forrestal (1981, 1983), Forrestal
and Longcope (1982), Norwood and Sears (1932), and Forrestal (1983, 1936) developed a se-
ries of penetration models based on the cylindrical cavity expansion theory by
employing a variety of different constitutive relations for either plastic or elastic-
plastic geological materials. In their work, the similarity solutions were obtained
and the formations of the radial cracks at the elastic-plasiic interface and the
elastic-stress free boundary were taken into account ( Forrestal and Longcope,

1982; Forrestal, 1983. 1986). Butler (1975) and Rohani (1975) also treated this problem.

At present, the following fundamental assumptions are made for the validity

of the present penetration theory :
(1) the projectile is assumed to be completely rigid;

(2) the projectile impacts normal to the surface of target ( 1.e. at zero

obliquity ) and remains normal to it at all times;
(3) the target is initially stress-free and at rest;
(4) the target material 1s homogeneous and isotropic;

(5) the entire initial kinetic energy is transformed into the permanent defor-

mation of the target and shock waves;

(]
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(6) the influence of the temperature change in the target is very localized

and so heat conduction is neglected,
(7) there is no energy source within the system;

(8) body forces are neglected.

Assumptions (3), (4), (6), (7) and (8) are retained from the cavity expansion
theory. There are also two assumptions made for the projectile-target interaction

as follows :

(9) the nose surface of a projectile is in complete contact with the target

when the penetration depth is greater than the nose length.

(10) after the penetration depth is greater than the nose length, only normal
stress exists on the nose surface of the projectile ( i.e. the friction effect 1s

neglhgible ).

It is not unreasonable to assume that the motion of the target matenal
is mostly radial because of the sharp nose of projectile. To explain this point
clearly, it is advantageous to use some observed evidence from penetration exper-
iments. It was observed from the surface of the impacted fastener as described
in Section 3.4.2 that the severe abrasion occured mostly at the nose surface,
especially near the tangential pomt to the aft cylinder { fastener shank ), vet
adhesion of the target material to the aft body was due to the elastic recovery.
This seems to suggest that the penetration of a sharp-nosed projectile in the
target is the result of radial pushing action of the nose portion of 1-1;16 penetrat-
ing projectile. A cylindrical projectile with a conical nose travelling at velocity
V. at time t is first considered. as shown in Figure 2.7(a). It is assumed that V.
is a small velocity increment so that its higher order terms are negligible ( this
implies physically that the target particle acceleration has only a small effect on

the projectile loading ). Thus, the following relation exists since the projectile
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is a rigid body :

a = tV.tang, V, = 7 (2.21)

where Z denotes the penetration depth at time ¢t. Then Equation (2.19) becomes
p(t) = ps + Bsz (2.22)

where

(p0 — palnay)
2

Z

B = tan’¢ (2.23)

Now, consider the work-energy relation, i.e. the total plastic work performed on

the surrounding material by the initial kinetic energy in a small element.
dU = p(t)-dS - dr (2.24)

where dS 1s the surface area of the instant cylindrical cavity at radius r ( 0 <
r < a(t)). Hence dS = 2wrdZ and the plastic work at the cavity surface ( i.e.

the axial resisting force ) for that unit thickness (dZ) becomes

v e ) L
=7 = ), 2reltrdr = plt)ma’ = p(1)4 (2.25)

where A is the cross-sectional area of the projectile. Subject to assumptions (5)
and (6), the change of the kinetic energy is equal to the plastic work performed

on the cavity, that is, in conjunction with Equation (2.22)

dUu

— T\ ‘/_.2 = — = = ' /:2 2-._) )
dZ(sz )= = Ap(t) = A(ps + BV) (2.26)

with the initial and final conditions
V.=V, Z=0 V.=0, Z=12 (2.27)

Equation (2.26) is integrated to give the impact velocity - penetration depth

relation as
m ps + BV

z ="
248" . T B2
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As the velocity of the projectile 1s reduced to zero, then the final depth of

penetration is obtaned as

B
(1 + 2 V2) (2.29)

Jf =
F = 24B Ds

It 1s interesting to note that Equation (2.29) is of the same form as empirical

Equations (2.7) and (2.10).

Alternatively, the resulting equation for rigid body motion of a projectile
with mass m can be used to give the total axial resisting force by integrating the
normal stress over the nose surface of projectile. Thus, for cylindrical projectiles

having conical noses,

. z=L
m% = —F = — /Z B(1) - singdA(Z) (2.30)
where dA(Z) = opland 747, Integration of the right-hand side of Equation

cosg
(2.30) in conjunction with Equation (2.21) and & = Ztané leads to
{po — palnag)tan?e ;

. , 1 N
mZz = —p(t)naé = —[ps + 3 72 - 3;)3001]1()2Z]‘/Taé (2.31)

Z

which 1s solved for the penetration-projectile velocity relation replacing Z with

V.
M BV?
7= (Pt B Y (2.32)
2AB ' ps + BV2
where
1
M=m - ;)—pgaolnaz (2.33)

As the projectile velocity drops to zero, the final penetration depth is then

obtained as

]\4 B r2 99
S+ p_sl'” ) (2.34)

Zf=

It 1s found by comparing Equation (2.28) with Equations (2.32) and (2.33)
that if the second term, so-called added mass or dirt cone, in the right-hand
the

side of Equation (2.33) is neglected, then Equation (2.32) will be exact.lyAsame
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as Equation (2.28). Because the added mass, %pg Taglnay, is usually far smaller
then the projectile mass, neglecting the added mass term seems to be reasonable

and implies that the effect of the target acceleration is negligible.

For cylindrical projectiles with ogival noses as shown in Figure 2.7(b), a
similar procedure as above applies. The ogive shape is assumed to be an arc
of a circle with radius s and is tangent to the cylindrical aft body. Its locus is

described by

r=a-—-s+\s2—-2%2 Z=Vit, 0<r<a (2.35)

By replacing a, @, a in Equation (2.19) with r,7,7 the pressure at the cavity

surface becomes

p(t) = ps + C(Z)V? (2.36)

where
00 7?2 79 s2(s - a) -
C=%5 ol Y (230

It should be noted that in the above equation €' is a complex function of

variable Z instead of a constant. Thus, the axial resisting force 1s given by

L
F. = /0 2rp(t)a— s +\/s? — Z%)tanbdZ (2.

The integration for rigid body motion of a projectile is then given by

(3]
Lo
(o]
~—

mZ = —F. (2.

o
Lo
O

which is solved to give the penetration depth as

m Cips + ACLVE

Z = 1 2.40
24C, a( Cips + AC,VE ( )

m ACy .
7 = In(1 v? 2.41
f 2‘4(;12 n( + C"] Ds 0 ) ( )

where

27 L L 8 1
¢y = . (acosf — L + ——( = + =sinticosd)] (2.42)

cosf sind 2 2
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2L 51119 —cosf+1 . 9 asin?g &

P2
Chy = —sinf)— Zlnas(tanf—— — — .
2 = cos”G 51118)[ n=3 T+ cosd — 1 sind) 5 nas(tan 7ol sm@)]_.
217 po, 0 1 P2 S a sind—cos6@+1 8 1 -
—(=—=sinfcosf)——=1 1——siné (21 Zsinbe ,
a2sinfcos?f' 2 (2 5 SIMYCos ) 5 ne(( 7sin )lnsi119+c059—-1 (2+2sm€c059))]..
(2.43)

From the variation of the half-nose angle in the coefficient ¢ in above equa-

tion it can be observed that as this angle approaches 2. which 1s the case of

(TR

a semi-sphérical nose, the depth of penetration approaches zero. This implies
physically that the axial resisting force becomes infinity and produces an infinite

expansion, which 1is not allowed.

At this stage, it should be pointed out that in the foregoing analysis when the
total resisting force is calculated it has been assumed that the cavity pressure
or the compressive normal stress on the projectile nose surface or the cavity
surface is constant for a given velocity. In other words, the normal stress is
independent of the nose shape. Thus, the stress distribution on the nose surface
is spatially uniform. This assumption apﬁears to be plausible for the quasi-static
part of the normal stress, but obviously it is questionable for the distribution of
the dynamic pressure over the nose surface. Goodier (1965) proposed a cosine
spatial variation of dynamic pressure around the spherical nose of a projectile
so that the maximum pressure is obtained at the tip ( or stagnation pomt )
of the projectile nose and zero normal pressure at the base of the projectile
nose. Bernard and Hanagud (1975) considered the spatial variation of dynamic
pressure over the ogival and conical projectile noses in terms of a nose shape
factor. No further consideration will be given in this thesis to this problem. For

more details, the above references should be consulted.

The major objectives of a theoretical study into impact penetration are to
find the resisting force or pressure exerted on the surface of the penetrating
projectile and the penetration depth. The axial resisting forces obtained are
expressed in Equations (2.31) and (2.38) for conical and ogival noses of pro-
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jectiles, respectively, and the final depths of penetration are correspondingly
given in Equations (2.34) and (2.41). Examining these equations some principal

criteria in the design of impact penetration can be justified as follows :

(a) The analytical results show that the axial resisting force increases with
the increase of projectile radius and impact velocity; the ignorance of target in-

ertia overestimates the resisting force and underestimates the penetration depth.

(b) The results also show that the final depth of penetration increases as
the impact velocity mcreases and that either a denser or a longer projectile
is expected to penetrate into a target more deeply. The increase of projectile

diameter reduces penetration.

It has been shown in the preceding analysis that the projectile penetration
theory can be developed approximately on the basis of the cavity expansion
theory. However, because of this crude analogy, the predictions from the present
penetration theory may represent only the overall features of the projectile-
target interaction which offers a complex physical phenomenon in practice. This
theory has not been verified in experiments; hence further efforts should be
made to assess its apphcability and accuraéy by comparative numerical examples.
Moreover, it should be re-emphasized that the motion of the target material was
assumed only radial in the development of this theory, the efiect of frictional force
acting on the nose surface was neglected and the influence of the aft body of the
projectile has not been taken into account. This latter point implies that a gap
may exist between the surface of the projectile aft-body and the surrounding
materials, and may have some eﬁecf on the penetration process of the projectile.
The rate-independence behaviour in shear was assumed. These considerations,
together with the non-zero obliquity impact and penetration into layered targets,

provides some important areas which merit further investigation.
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Chapter 3 EXPERIMENTAL STUDY OF IMPACT PENETRATION
3.1  Introduction

The experimental study of impact penetration described m this thesis con-
sists of three parts. The first paIrt is the penetration experiment which comprises
a cartridge-operated fixing tool firing a fastener into a cylindrical target with the
initial impact velocity measured separately. Without perferation the fastener is
embedded in the target which is relatively large. In the second experimental
part the embedded fastener is pulled out from the target at a constant rate in
order to investigate the bonding med1anism formed during penetration. The
last part is the microscopic pre- and post-impact examination of the fastener

and target.

In this and subsequent chapters, the term ‘fastener’ is used to denote the
specific device which is the projectile fired from the cartridge tool. The term
‘projectile’ is a generic term and is used elsewhere in the thesis in this sense.
If not stated expressly, the use of fastener elsewhere imphes direct connection
to experiments described in this Chapter. The distinction so made 1s just for

maintaining this device as it 1s to avoid confusion.
3.2 Penetration Experiments
3.2.1  Description of apparatus

The penetration experiments were performed using a cartridge tool firing a
fastener into a target which consists of a sandstone core encased 1n reinforced
concrete. The cartridge tool and accessories were provided by Hilti (GB) Ltd.
The cartridge tool of type DX450, as shown in Figure 3.1(a), is a powder-
actuated tool based on a co-acting piston principle, designed for fixing work

in the construction industry. This co-acting piston principle means that the
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piston and fastener are accelerated together inside the tool and have the same
velocity at the time the fastener strikes the target material. Because there
1s no immediate res'istanc.e to this co-action, so only the mass inertia of the
fastener and piston act. The cartridges are supplied by the manufacturer in
two strengths; red ( medium-high power ) and black ( extra-high power ). The
driving power of the tool can be varied by means of a power regulator ( a thumb
wheel ) in which the setting as selected is shown on a scale by an indicator. This
is controlled by the volume of the gas expansion chamber in the piston guide,
which can be enlarged or reduced by the thumb wheel through a regulating pin.
The largest and smallest volumes correspond to the lowest and highest power
regulator settings, respectively. Using the DX450 tool with the red cartridge,
the lowest and highest power settings give a kinetic energy ranging from 120
Nm to 320 Nm, respectively according to technical information provided by
Hilti. Referring to BS 4078:1966, this tool is thus categorized as a high power

tool.

A wide range of fasteners may be purchased for use with the tool. Only
three types of fasteners as shown in Figure 3.1b were chosen for use in all the
penetration experiments. After preliminary tests the red cartridge ( calibre
6.8/11 M ) was selected for all experiments. The type M4-10-25512 féstener
‘was chosen for the first part of penetration experiments. Types M4-10-30512
and M4-10-40S12 were taken for the second part experiments. The fasteners
have an ogival nose with the nose apical angle of 45° degrees. Besides.the
no minal diameter of 3.5 mm, the rest of their dimensions is indicated in the
type specifications as shown in Figure 3.1(b) in which the second, third and last
numbers ( i.e. the number after the letter S ) denote the lengths of thread and
fastener shank, and the washer diameter in mm, respectively. The washers are

attached to the shanks of both sizes of fasteners about 11 mm and 14 mm {from
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the ballistic point, respectively and act as a penetration retarders. Their effects
on the penetration process will be discussed in Section 3.2.4. All fasteners are of
the same material in which a zinc layer 1s coated over the work-hardened mild
steel. The mechanical properties of fastener available is shown in Table 3.1a,

and the physical propertiesareshown in Table 3.1b.

Table 3.1a Mechanical properties of fastener

Mass Uniaxial tensile strength Shear strength i Bending strength
g : GN/m? G N/m? g GN/m?
3.1 2 1.28 | 3
Table 3.1b  Physical properties of fastener
Type M4-10-25512 M4-10-30S12 M4-16-40512
Weight 3.1g 4.0g 4.1g
Total length 35 mm 40 mm 50 mm
Shank length 25 mm 30 mm 40 mm
Thread length 10 mm 10 mm 10 mm
Washer diameter 12 mm 12 mm 12 mm
Washer location 11 mm 13 mm 14 mm

The target cores were made from cylinders of Staindrop sandstone 150 mm
high and 100 mm diameter cored from large sandstone blocks. Around the core
was .~ cast a reinforced concrete case having an outer diameter of 150 mm. The
concrete was allowed to cure for a nunimum of 28 days at room temperature.

The mineralogical composition by weight of the sandstone was determined by X-
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ray diffraction and X-ray fluorescence methods. The results are shown in Table
3.2. It can be noted from this Table that the sandstone is silica-cemented and
the quartz grains are the major component. The grain sizes of the quartz in the
intact sandstone slide were determined, using a Vickers microscope model-55, to
be in a range from 0.03 to 0.38 mm, having an average grain size of 0.175 mm.
The size distribution of quartz grains was analysed using a computer program
by dividing grain sizes into eight ranges from 0 to 0.4 mm with an increment
of 0.05 mm. The results are illustrated by a bar graph in Figure 3.2. This
Figure shows that the quartz grains spanning in the range from 0.15 to 0.25
mm occupy about 85 % of the total quartz volume and about 75 % of the total
components in sandstone. Moreover, these quartz grains were observed to have a
random distribution in sandstone, showing no macroscopically specific structure.
Thus, it is apparent that the sandstone is, mineralogically and structurally, a
relatively sixﬁp]e rock in which mineralogy and structure are assumed not to add
complexity to the process of impact penetration. The mechanical properties of
Staindrop sandstone are summarised in Table 3.3. A number of plain concrete
cylinders were tested to give an average uniaxial compressive strength of 23
MN/m?. Thus, the reinforcéd concrete used in making the casing for the target
should be expected to have a higher compressive ( or tensilé ) strength. The
effect of the casing was to inhibit radial cracking of the san.dstone In regions
remote from the impact and to simulate the condition pertaining i a semi-

infinite sandstone block.
3.2.2  Experimental procedure

The arrangement of penetration experiments on the laboratory specimens is
shown in Figure 3.3. Initially, twelve tests were conducted using the DX450 tool
fitted with a spall stop attachment ( type 45/54 ) and the M4-10-25512 fastener.
The spall stop attachment with a diameter of 70 mm produces sufficient area
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Table 3.2

Mineralogical composition of sandstone

Sample no. | Quartz | Kaolinite | Feldspar | Muscovite and Illite Total
% % % % %
1 85 8.1 3 2 98.1
2 86 9.3 <5 - 100
3 84 7.8 3 - 94.8
4 90 5.5 <5 - 100
5 86 8.6 5 <3 102.1
Note :

(1) Results of quartz and kaolinite come from XRF chemi-
cal and X-ray diffraction analyses with automatic computer

control.

d
(2) Results of felspar, muscovite and illite are determined by
the linear regression method with X-ray diffraction recording
charts using the statistical program, MIDAS.
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Figure 3.2 Distribution of quartz grain sizes in sandstone
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Table 3.3 Mechanical properties of sandstone

Density, kg/m? 2130
Young’s modulus, GPa ' 13.62
Poisson’s ratio 0.2
Bulk modulus, GPa 7.5
Shear modulus, GPa 5.68
Uniaxial compressive strength, M Pa 45.0
Uniaxial tensile strength, M Pa 4.55
Porosity, % 18
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to stabilize the tool at right angles to the target surface. The geometric centre
of the target surface was marked to ensure axisymmetric penetration. In the
tests the power regulator settings were varied between 1.5 and 2.5 at intervals
of 0.25. These corresponded to impact velocities ranging from approximately 61
m/s to 71 m/s according to test results carried out under contract to Durham
University by the Applied Mechanics Division of the Department of Mechanical
Engineering at UMIST ( Tennant, 1987 : 198% ). A typical specimen
after impact viewed from above is shown in Figure 3.4 in which axisymmetric
penetration is manifested by a reasonable symmetric distribution of fracture
pattern. The penetration depth for each test was measured from the length of
shank protruding above the target surface. ( In some of the tests the protruding
portion of the fastener was not at normal inclination to the target surface ). The
results of experiments are summarised 1n Table 3.4a. Diagrammatic presentation
of these experimental results is shown by curve I in Figure 3.5 in which the
penetration depth of the fastener is plotted against the power regulator setting.
The curve shows clearly that the depth of pénetrat.ion approaches a limiting
value of 25 mm ( shank length ) as the setting of the power regulator approaches
2.5. This limit results from the washer encountering the threshold portion of the
fastener shank with also a possible resulting rapid increase in resistance towards
the final stages of penetration. This leads to the choice of the use of a fastener

with the larger shank Jength in later penetration experiments.

Thus, fasteners with the larger sizes, i.e. types M4-10-40512 and M4;10-
30512, and with the higher power settings ( 1.e. greater than 2.0 ), were used to
investigate deeper penetrations. It can be seen from Table 3.1b that these two
types of fasteners have the shank lengths of 40 mm and 30 mm, respectively, and
the former only has mass 0.1 gram more than the latter. Moreover, these types of

fasteners have masses little more than 1 gram greater than that for type M4-10-
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25512. The effect of this increase in mass is considered negiigible when compared
with the 120 gram piston. To this end, seven tests were conducted following the
same experimental procedure. However, severe bending of fastener shanks was
often encountered in tests using type M4-10-40S12 with the power setting of 2.0
and less. Thus, type M4-10-40S12 fasteners were only used with a power setting
of no less than 2.25, and type M4-10-30512 fasteners were used with a power
setting of no more than 2.25. The results obtained from penetration tests are
presented in Table 3.4b. By combining these results with those obtained at the
power setting of less than 2.25 in Table 3.4a, a realistic relationship between the
power setting and the penetration depth for the sandstone targets is produced,
as shown by curve Il in Figure 3.5. It is clearly seen that the penetration depths
achieved in the first part of the experiments using M4-10-25512 fasteners with
power settings greater than 2.25 are considerably underestimated because of a
lack of sufficient shank lengths to allow further penetration. Especially, at the
power setting of 2.5, the average penetration is reduced by 22 percent compared
with the average penetration obtained at the same power level using type M4-

10-40512 fasteners.

For comparison, ten penetration experiments were also conducted on con-
crete targets in the same way. Concrete was mixed using aggregate, sand and
cement at the ratio of 3:2:1 with the average aggregate size of 8 mm. Its aver-
age dry density was 2273 kg/m*. The results obtained using types M4-10-40512 .
and M4-10-30S12 fasteners are summarized in Table 3.5. Comparison of these
results with those obtained from sandstone targets is-shown in Figure 3.6. It is
interesting to note that less resistance was encountered in concrete targets than
in sandstone targets at the same level of power setting. This could result {from
the difference of target porosities between these two materials.

 3.2.3 Impact velocity measurement

-1

-1
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The average impact velocities were determined by measuring the transit
times over fixed distances. Passes of fasteners through these premeasured dis-
tances were detected by the interruption of light beams moenitored by two pairs
of high power LEDs with matching photodiodes and built-in amplifiers, in which
their axes were oriented at 90° to each other. The detection system was checked

prior to each test.

Two types of velocity were measured, namely the fastener-piston contact
velocity and the subsequent free flight velocity. The results are represented in
Figure 3.7 in which the velocity 1s plotted against the power regulator setting. It
is interesting to note that the free flight velocity of a fastener is uniformly greater
than the fastener-piston contact velocity by about 7 m/s. This is explained by
the motion of a continuously accelerating piston. It should be pointed out that
it 1s impossible to find out whether the piston is in contact with the fastener
or not during penetration or part of the penetration during a normal fixing op-
eration, but it is plausible to suggest that the fastener is being driven into the
target material under such a condition. This coincides with the co-acting piston
principle of the tool. Thus, in this Chapter as far as the impact velocity 1s con-
cerned, the fastener-piston contact velocity 1s adopted, although measurements
of other veloci;.ies are reported to be more reliable. The detailed results and
discussion of te-sting are given in two Mechanical Engineering (A.M.Division)

Reports ( Tennant, 1987, 1988 ).
3.2.4  Washer effect test

In the preceding penetration experiments, the depths of penetration achieved
at given impact conditions were controlled by both the target resisting force
and the retarding effect of washer. In other words, the initial kinetic energies of

fasteners were dissipated during not only the shank penetration but also during
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the process of the washer overcoming the strength of the material surrounding
it and its subsequent frictional sliding on the shank surface. It can be easily
imagined that after the washer comes into contact with the impact surface of
target the penetrating velocity of fastener would suffer a sudden drop which may
be significant. Thus, it would be important to estimate this retarding effect on

the penetration process.

To this end, ten tests were conducted using an Instron Model 1195 univer-
sal testing machine under identical conditions. ( These were undertaken using
similar equipment to the pull-out tests described in the next section. ) For this
purpose, a simple hollow cylinder, having an inner diameter greater than the fas-
tener shank diameter and a shallow socket on the top surface, was made. After
calibration, each test was carried out simply by compressing down the threaded
end with the washer resting in that shallow socket and with the fastener nose
down in the hole of cylinder. The compression speed was 10 mm/min. The
results obtained are presented in Table 3.6 with the average frictional force of

8.71 kN. A typical curve is shown m Figure 3.8.

The range of the initial impact kinetic energy can be obtained based on the

erage maximum frictional force and residual frictional force of 8.71 kN and 3.25
N, respectively, the washer effect on the impact kinetic energy 1s estimated and
presented in Table 3.7. It shows that, at the displacement where the maximum
frictional force is obtained, 7.6 % - 5.6 % of the initial impact kinetic energy 1s
dissipated inA overcoming this washer force, corresponding to velocities ranging
from 61 m/s to 71 m/s and that at the limit of washer displacement ( 13 mm
) where the residual frictional force is obtained, the dissipation of the kinetic
energy increases up to 15 % - 11 %. It is obvious that the higher the impact
velocity, the less is the kinetic energy loss due to the washer effect, which implies
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the apparent friction effect. Thus, it is evident that the vwasher has a significant

effect on the fastener penetration, especially at relatively low power settings.
3.3  Pull-out Experiments

As the fastener comes to rest in the target at the end of penetration, an
interfacial bond may have been formed between the fastener surface and the
surrounding target material due to severe abrasion and adhesion occurring dur-
ing the penetration. In other words, fastener will resist being pulled out in the
manner of an anchor. To gain a better understanding of the bond development 1s
not only itself an important research area which has attracted widespread atten-
tion but also a considerable contribution to the study of penetration. Of greater
interest, 1s the bond ( or fastening ) strength, which is commonly measured
by the pul]-;jut force and 1s the maximum axial force necessary to withdraw the
fastener from the target. Thus, the ‘pull-out’ test 1s such a procedure for charac-
terizing this fastener-target interfacial bond strength, and provides quantitative
information on the withdrawal process 1 terms of a pull-out force - displacement

curve.
3.3.1  Description of apparatus

The pull-out test rig was made to fit into an Instron Model 1195 universal
testing machine to facilitate the withdrawal of the embedded fastener from the
target. The device consisted of a frame as shown in Figure 3.9a for clamping the
specimen onto the moving cross head of the testing machine and a connector as
shown in Figure 3.9b with a thread insert into which the fastener was screwed.
This latter could be attached to a coupling of the fixed upper cross head of the
machine by a removable pin. The testing machine was fitted with a strain-gauged
load cell of 100 kN capacity and a chart recorder to measure the displacement

of the cross head. A general operational view of the pull-out test is shown in

87



=
=

e = o

I 150mm l

320mm

(a)

Hole for
removable
shear pin
Hhmip
\ n
< ]J;I
i

Threaded insert

(b)
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Figure 3.10.
3.3.2 Experimental procedure

Before each test the testing machine was fully calibrated. The impacted
target was then mounted onto the moving cross head using the clamping frame.
The connector screwed onto the fastener thread was fitted into the coupling
which was adjusted to ensure symmetric alignment of the specimen and the
shear pin inserted. A tensile load was then applied to the fastener at a constant
rate of 0.5 mm/min. The pull-out force as a function of cross head displacement

was directly recorded on the chart plotter.

A total of twelve tests, using specimens {rom the penetration tests, was
performed under identical conditions. A summary of the results is given m
Table 3.8a which shows the maximum pull-out force of the fastener and the
corresponding fastener displacement at the maximum resistance. Also shown
are the data relating to the power level used during the firing of the fastener
and its resulting penetration. This relationship is presented by curve I in Figure
3.11. It is seen that the maximum pull-out force increases with power regulator
setting of the tool until the limiting penetration of just below 25 mm is achieved
when the resistance is also himited. The pull-out force is very small at the lowest
setting of the power regulator and the highest recorded value .is 4.15 kN. Since
the load cell capacity is 100 kN, which is far greater than the maximum pull-
out force obtained, thus the motion of crosshead alone can be safely used to

determine the displacement of the embedded fastener knowing the chart speed.

A typical curve of pull-out force against displacement ( for specimen 10 )
for complete withdrawal of the fastener is shown in Figure 3.12. It is seen that
a number of regions ( 1, IT and 111 ) can approximately be 1dentified. Region ]

is the first part of the curve which may be due in part to initial slackness in the
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coupling and testing rig and due in part to the cracks formed during penetra-
tion closing up. In some cases in which curves show uneven start, the former
reason is more likely. However, in the case illustrated in which the curve starts
smoothly, the latter reason is more plausible. The fact that this region 1s very
small indicates that most of cracks produced in that kinetic energy level are
closed before the pull-out load is applied. Region Il is a region of nearly linear
behaviour. This region may be the result of sliding of surfaces once cracks have
closed and the initiation of further cracks, but no debondin.g‘occurs. Region Il
exhibits the onset of complete loss of bond and shows an approach orwards the
maximum pull-out resistance. It is interesting to note that the pull-out force
does not fall right off after it reaches the maximum value. It seems to sélggest.
that the pull-out load is resisted by both the interfacial bond strength governed
by friction and the shear strength of target material. Once the shear strength
of the target material is reached, friction reduces, so resulting in the debond-
ing as indicated by a sudden drop in the pull-out resistance. If friction reduces
suﬁﬁciently' the fastener may be pulled out completely without shearing the sur-
rounding target material. In other words, debonding should otherwise take place
as the pull-out force reaches a maximum value. Moreover. if the pull-out force
does not experience a sudden drop after the maximum value, 1t would suggest
. that the debonding process never actually take place. This implies that at least
in this case the interfacial bond strength is stronger than the shear strength of
target material. Observ.at.ion of withdrawn fasteners shows that most fasteners
have thick coatings, some of them even have a chunk of target material attached
after they are pulled out, as shown in Figure 3.13. This strongly suggests that
the large portion of what was recorded as the pull-out force at this situation 1s
actually contributed by the shear strength of the target material. Under these

circumstances, what had taken place during the pull-out is the conical shear






failure as illustrated by a sketch in Figure 3.14 ( this point will be supported later
by Figure 3.16b ). Therefore, the pull-out procedure, to certain extent, is not
very well characterized using the present technique, and the pull-out force of the
fastener is apparently underestimated. To improve results of these pull-out tests
the clamping device has to be modified to fix an annular area directly around
the fasteners. To this end, a steel ring having a thickness of 15 mm was made
with the outer diameter of less than that of the target, and the inner diameter
of 19 mm ( which is slightly greater than the washer diameter ). With this steel
ring being inserted between the clamping frame and the target surface, the pull-
out tests were performed following the same procedure. The results obtamned
using this new technique are presented in Table 3.8b, which also includes some
previous results for comparison. It is seen from this Table ( and also Table 3.9b
for concrete targets ) that the pull-out forces are more or less imcreased except
in the case of test number 4 in which the target was fractured a.f’rér the fastener
penetration. Special attention should be drawn to two points. (a) If results
obtained at the power setting of 2.0 are compared for two different techniques,
the increase of the pull-out force 1s apparent. (b) It may be argued from the
previous case that the increase of the pull-out force is expected because of the
deeper penetration which results when the new technique is api)lie(l. However, 1f
results from test numbers 2 and 3 are compared with that from number 12, then
the improvement of the results is clearly justified. This is even more evident by
results of pull-out tests for the concrete targets as described later. Combining
these results with Table 3.8a, an improved relationship between the pull-out
force and the penetration depth is obtained, as illustrated by curve Il in Figure
3.11. Since the form of the pull-out force - displacement curve is dependent on
a number of factors such as material strengths of both the embedded fastener

and target materials, surface friction, penetration depth ( 1.e. contact area ),
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Figure 3.14 Shear failure in target during pull-out test
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diameter of fastener and speed of pull-out during the test. among them, friction
and shear strength of the target material are considered to have played dominant

roles in the pull-out process at a constant rate.

Ift, should be menti;)ne(l that during the process of fastener pull-out the fas-
tener itself is in tension. Thus, with the value of the maximum pull-out force
obtained during pull-out tests a simple calculation shows that the fastener elon-
gation actually suffered is of the order of micron magnitude which is entirely

negligible.

Also, it should be pointed out that the speed of pull-out can affect the
apparent pull-out force of fasteners. This line of research remains to be further

investigated.

The pull-out tests were also conducted on the concrete targets following the
same experimental procedure. The results obtained are summarized in Table
3.9a. The relationship between the penetration depth and the maximum pull-
out force is illustrated in Figure 3.15 in which the curve obtained from the
sandstone targets is also plotted for comparison. It is seen that, in general, the
deeper the penetration, the higher is the maximum pull-out force, and the latter
increases more rapidly. Because of the higher penetration achieved in concrete
targets than in sandstone targets, the larger pull-out forces afe expected. Also,
it was observed that although the tensile break of the target material near the
surface adjacent to the fastener was {requently encountered after the pull-out

test, the fasteners were relatively clean ( i.e. the shank surfaces were revealed ).

The new pull-out technique was also used on the concrete targets. Results
obtained are given in Table 3.9b and also presented in Figure 3.15 by curve
I1. 1t is evident that compared with curve I in that diagram a considerable

improvement in the pull-out tests has been achieved using this new pull-out
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technique.
3.4 Preparation and Examination of Slides

In order to understand and predict the behaviour of target maternal sub-
jected to impact loading and also to support the pull-out mechanism described
in the previous Section, it is necessary to describe the material response in terms
of the impact effects on the microscopic structure — development of fracture and
internal changes of deformations. The most common approach for this purpose
is the examination of the impacted fastener and target which are usually made

in the form of slides using optical microscope.
3.4.1 Preparation of shdes

Two impacted targets were prepared for examination, the first one with the
fastener removed from the target and the second one with the fastener embedded
in the target. The same procedure of préparation was followed. However, extra
caution was taken to avoid disturbing the fastener in the second sample because
of the considerable difference of hardnesses between sandstone and steel during

grinding.

To facilitate the mpreparation of the slides, the target material was first 1m-
pregnated with resin in a pressurized triaxial cell which was intended to force
the resin into voids and cracks in the sandstone so that minimal damage was
occurred in the subsequent grinding stage. Resin comprising Araldite LY568,
hardener HY932, accelerator DY219 and toluene thinner was coloured blue to
enhance contrast for a better indication of internal changes. Once the resin had
dried, a wet coring technique was used to remove a small core from the target,
which was assumed to cover all the internal changes which were within a dis-
tance of five- to six-time the fastener diameter. The core was sectioned using a

water-cooled diamond cutting wheel to produce comparatively thick slices, such

103



that the normals to the forces on the slices were perpendicular to the direction
of the axis of the target. The slices were ground and lapped sequenfia]ly with an
abrasive powder of grit size 400 and 1000 microns, using & Production Lapping
and Optical Polishing-LP30 machine, until the standard 30 to 40 micron thick-
ness was obtained. Then, the slices were mounted on a glass slide for inspection

using a transmitted light microscope.
3.4.2 Examination of slides

Figure 3.16a shows a general view of a thin section occupying an area of
less than 40 mm x 40 mm, which exhibits a fastener embedded in a sandstone
target. Because of the larger size of target compared to that of fastener, most
damage occurs around the fastener within the distance of ten times of fastener
diameter except for macroscopic cracks running through the target radius in
some cases in spite of the reinforced concrete surround. Figure 3.16b shows an
enlarged view with the magnification of 10. For comparison, a thin section of
intact sandstone is shown in Figure 3.17 in which the dark blue colour indicates
the voids being infilled with the resin. Detailed observation of all these thin
sections reveals that in addition to surface spalling and cratering, the damage
comprises two regions : a grain pulverized region, surrounded by a cracked
region. In the grain pulverized region which is a very thin layer having a varying
thickness around the fastener shank, quartz grains are seen to be crushed and
pulverized, as well as detached from the parent sandstone. Some features of
this region are shown in Figures 3.18 to 3.20. In these Figures as well as the
following Figures the direction indicated by an arrow denotes the penetration
direction of the fastener. Figure 3.18 taken with a magnification of 14 shows
an area at the front of the fastener tip, indicated by a dark ‘triangle’ region at
the top of the figure. In addition to a network of cracks, two large cracks are
visible propagating downwards along the two sides of the fastener shank. These
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are most possibly caused by the shear action generated by the high difference
between the principal stresses in the target. Figures 3.19 and 3.20 illustrate
similar features, showing the two sides of the fastener with magnifications of 10
and 22, respectively, and in which some fractures are clearly visible n Figure

3.19.

In the cracked region, the dominant feature is the formation of cracks both
within grains ( transgranular or intragranular ) and along grain boundaries (
intergranular ) as shown in Figures 3.21 and 3.22. Figure 3.21 taken with a
magnification of 52 shows a tiny area ( 1.1 mm x 0.7 mum ) which is just about
0.3 mm from the fastener shank. It can be observed that numerous transgranular
cracks in the form of bands are propagating away {rom source. Figure 3.22a taken
with the magnification of 20 shows the general view of a large crack contained in
a slide which is sectioned perpendicularly ( i.e. normal to the impact surface )
at a distance of about 10 mm from the fastener surface. It is noted by observing
along the penetration direction that the width of the crack reduces gradually
and dies out at the depth of about 20 mum. With the higher magnifications of 30
and 20, respectively, Figures 3.22b and 3.22¢ show some detailed views of the tail
region along the crack. It is seen that the path of crack follows mostly the grain
boundaries giving a saw-tooth pattern because the strength of bond cemented
quartz grains is much weaker than that of quartzs. Thus, the microstructure
seems to have a strong influence on crack formation and propagation at a given

impact.

During the impact penetration the fastener also suffered damage, but there
is no gross deformation observed. The damage to the fastener is then primanily
manifestatby scratches on the fasiener surface as shown mn Figure 3.23. I is
seen thal most severe scratches occur on the fastener nose, and also that the
remarkable difference can be observed between two impacted fasteners in which
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the top fastener has a coating, while the one at the middle does not. For
comparison, an unused fastener is also shown at the bottom of that Figure. This
fastener surface damage can be noted from Figure 3.16b in which the fastener
surface also exhibits a saw-like structure. From both Figures 3.16b and 3.23 1t
is noted that a brown colour is shown around and on the fastener surface. It
seenﬁs to justify the conclusion that the temperature generated by the severe
friction during penetration was so high that the kaolinite clay which cements
the quartz grains in the sandstone was burned, and was sintered on the fastener
surface. This phenomenon may contribute, to some extent, to the strength of
the interfacial bond, and explain, on the other hand, the formation of the coating

to the fastener.

The examination of these slides shows that a fine network of cracks ( both
inter- and transgranular ) exists adjacent to the fastener. The tensile fractures
occur around the fastener, as well as the shear failure. because of the high
compressive and shear stresses produced by the impact penetration. It is also
interesting to mention ( see Figure 3.18 ) as a potential prediction that the large
cracks at the front of the fastener may form a ‘dirt cone’ during penetration, and
also may develop into a shear ‘plug " if the thickness of the target is sufficiently
thin. As a final point to mention, it 1s v;-'(;rt.hwhile re-observing Figure 3.16b.
Because the fastener surface, as discussed before, is interlocked with the adjacent
target material, being manifested by the saw-like structure, and being enhanced
by the sintering effect, so a strong interfacial bond is expected. If the fastener at
this situation is being pulled out, the failure surface would develop along these
tensile fractures which originate from the fastener-target interface an(j are rather
weak. This point may very well support the pull-out results obtained previously
and the shear failure mechanism in the target which are shown in Figures 3.13

and 3.14, respectively.



Chapter 4 COMPUTER SIMULATION
4.1 Introduction

Exact and approximate analytical solutions to the penetration event have
been developed in the previous Chapter on the basis of idealizing the dominant
physical phenomena of the target material. The resulting equations obtained for
making predictions, similar to those in the authors’s work cited in Chapter 3, are
often relatively simple mathematical expressions. Although these equations are
extremely useful as engineering tools within their proposed physical processes,
the applications of these analytical solutions are limited in scope because of the
simplifying assumptions introduced in their derivations. The most comprehen-
sive approach to impact and penetration problems must then rely on numerical
simulation using sophisticated computer programs to give a complete solution.
Because less simplification or compromise is required in this approach, more
accurate quantitative predictions are possible. Furthermore. the analyses of the
results derived using these methods can provide a fundamental understanding
of aspects of mechanical behaviour that are difficult, if not impossible, to obtan
by alternative approaches. There are many commercial computer codes that
are current]y available for the analyses of impact and penetration. Zukas ( 1932
) provides an excellent review of capabilities of these computer codes. Also, a
summary and assessments of many computer codes are given by Reddy

in Chandra and Flaherty (1933 ).

In most computer programs used for the investigations of impact and pene-
tration phenomena the formulation begins with the conservation laws for mass,
momentum and energy expressed in two or three dimensions. These conserva-
tion laws are coupled to the constitutive relationship. To carry out a computer

simulation, the physical materials ( continua ) being modelled have to be rep-
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resented by a discretized system. Two numerical techmques are usually used in
the process of spatial discretization in computer prograims. 1.e. the finite dif-
ference and finite element methods. The complete assembly is then integrated
step by step in time for realistic geometries and boundary conditions until the

solution time of interest is exceeded.

In the finite difference method, the governing differential equations are di-
rectly approximated by replacing derivatives with difference quotients. In the
finite element method, differential equations are first cast in variational form
and then the solution is attempted in the form of a linear combination of al-
gebraic polynomi als defined over elements of the domain. A common feature
of these two methods is the local separation of the spatial dependence from the
time dependence of the dependent variables. The finite element method has

advantage in handling complex geometry and boundary condlitions.

Differential equations in either the finite difference or finite element method
are generally derived using one of the two kinematic descriptions, Lagrangian
and BEulerian. In the Lagrangian description, the computational grid is fixed
within the material. Thus, the computational grid distorts with the deforma-
tion of the material. In the Eulerian description, the computational grid is fixed
in space while material moves through the discretized space. Each of these two
descriptions has its advantages and disadvantages dependent on various types of
problems. Some hybrid schemes ( coupled Eulerian-Lagrangian codes ) have also
been developed, showing promise in minimising inherent disadvantages of pure
Lagrangian or Eulerian descriptions. ( Generally, the Lagrangian description is
used for material interfaces and outside of the contact region and the Eulerian
description for the contact region. ) In the temporal discretization, the govern-
ing differential equations are integrated either explicitly ( using a second-order
central difference scheme ) or implicitly. The explicit time integration scheme
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is only conditionally stable. For valid computations the tiine step size must be
kept below the critical value. However, implicit time integration is uncondi-
tionally stable, the price paid for this stability being the requirement to solve
coupled equations at each time step leading to great complexity in the code and

a increasing burden on computer resources.
42 Description of Computer Codes
4.2.1 Introduction

There are many different computer codes presently available to mnvestigate
impact and penetration problems. For example, Wilkins ( 1978 ) studied various
metal impact deformation mechanisms using a Lagrangian finite difference pro-
gram, HEMP. Sedgwick et al ( 1973 ) used a Eulerian finite difference program,
HELP. to investigate a variety of metal impact phenomena. A series of studies
of impact and penetration is provided by Johnson ( 1977, 1979a, b, 1986) who
used EPIC. Thigpen ( 1974 ) treated rock penetration problems using TOODY,
while using the same program Byers et al ( 1978 ) investigated soil penetration.
Benson and Hallquist ( 1986 ) presented some computational results of diverse
impact and penetration problems using DYNA. For the present numerical mves-
tigation carried out in this thesis, the computer codes DYNA2D and NIKE2D
( 2-cdimensional versions of DYNA and NIKE ) available n ﬂle public domain
were used. However, emphasis of the code introduction was placed on DYNA2D.
For full information about NIKE2D, its user’s manual is recommended ( see Hal-

lquist, 1983b ).

DYNA2D ( Hallquist, 1984 ) is a two-dimensional finite element computer
program developed at Lawrence Livermore National Laboratories (LLNL), Cal-
ifornia, USA for the analysis of dynamic problems involving large deformations

of solids composed of inelastic materials. A preprocessor code MAZE ( Hal-



Jquist, 1933a ) and a post-processor code ORION ( Hallquist, 1985 ) were used

in conjunction with DYNA2D.

The preprocessor, MAZE, has been developed as an input generator for
DYNA2D. It can be- used either interactively or with a command file. MAZE
has three basic functions known as phases. The first is to provide a detailed
computational mesh for the geometric configuration of the problem. The range
of element types available can be combined to give a very good representation of
practically any shape of structure. The second function is to define the interfaces
and boundary conditions of materials, to define various loading and tempera-
ture conditions as well as to specify initial conditions and time parameters for
computation. The results of these two phases can be viewed using a graphic
display terminal for verification, and the computation mesh can be modified if
necessary. In the third phase the constitutive models and material properties are
coupled with the data prepared in two preceding phases to give output informa-
tion for use as an input to the program DYNA2D. The range of material models
includes materials with elastic, elastic plastic, hydrodynamic or viscoelastic be-
haviour and thermal, work hardening and strain-rate effects.” A special facility
for incorporating soil and crushable foam materials may be especially useful for
dealing with concrete and geological materials like sandstone. All details of the

MAZE program can be found in the user manual ( Hallquist, 1983a )
423 DYNA2D

DYNA2D is a program developed for analysing problems involving the dy-
namic and hydrodynamic response of solids in axisymmetric and plane stram
situations where large deformations and inelastic behaviour would be expected.

This computer code is a vectorized two-dimensional explicit Lagrangian finite



element program. The spatial discretization is achieved by the Petrov-Galerkin
finite element method ( FEM ) with the use of 4-node solid elements. For
axisymmetric problems using the Galerkin FEM, radial weighting causes cen-
treline difficulties in large deformation calculations. However, the use of the
Petrov-Galerkin FEM eliminates this radial weighting by weighting the mom.en-
fum equations in the discretization by the product of the basis functions and
the reciprocal of the radius. In the temporal discretization, the equations of
motion are integrated by the central difference scheme. The stress is taken as
constant over an element. All integrals for the constant stress quadrilaterals are

integrated with a one-point quadrature scheme.

There are two important features which distinguish DYNA2D from other
codes available for similar problems. These are a specizhized contact-impact
algorithm which allows gaps, friction and arbitrary slides between adjacent ma-
terials, and a rezoning facility. The contact-impact algorithm allows for a va-
riety of methods of treating the interactions occurring at boundaries of bodies
in contact or likely to come into contact. It requires designation of master and
slave surfaces as input, in which each s'urface is defined by a number of nodal
points. Each combination of the slave-master surface 1s termed a slideline ( in
two dimensions ). For the proper definition of a slideline. a number of precau-
tions should be considered. As the name implies, the slave-surface motion is
dependent on the behaviour of the master surface, and the nodes in the slave
surface are constrained to slide on the master surface after impact and remain
on the master surface until a tensile force develops between the surfaces in con-
tact. There are four types of slidelines available including (i) sliding only, (11)
tied sliding, (iii) sliding with voids { no tension interface ), and (iv) shcing with
voids and friction. Frictional forces are calculated using a Coulomb-type friction

law and frictional coefficients may be specified. This interface treatment allows
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different materials to slide relative to one another, separate from each other if
the tensile strength of the interface is exceeded, or collide with each other if

previously separated.

Because of the large deformations involved in the nupact and penetration
process, the contact region of the computational mesh which moves with the
deformed material is often severely distorted. Mesh elements become tangled
and overlapped, resulting in computational inefliciencies and in inaccuracies and,
in extreme cases, execution of the program ceasing. In this explicit Lagrangian
method, the smallest element dimension controls the time step size of calculation.
Hence as the distortion of the mesh increases, element sizes may decrease and the
stable time step size is progressively reduced. It approaches zero for very large
distortions leading to either the collapse of calculation or uneconomic impractical
computation. Whenever such situations occur, recourse must be made to a built-
in rezoning facility. Rezoning maps element quantities of the old grid onto the
new grid such that conservations of mass, momentum and total energy, as well as
the constitutive relationship, are satisfied. The new grid may be defined by the
deletion of any number of mesh lines in both dimensions. Options are allowed to
redefine positions of individual points, to equal or vary spacings along mesh lines
and to reshape material boundaries. The overlay of the new -and old grids and
conservations of mass and momentum produce a density in each new element and
a velocity for each new mesh point. Rezoning can be carried out interactively
or automatically at given time intervals or in some suitable combination. Each
time rezoning is done, conserved quantities are computed and printed for each
material before and after rezoning to enable the user to see if the rezoned mesh

is acceptable.

Both these facilities require some physical understanding of the penetration
process and considerable experience if the program 1s to be used effectively.
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Many incongruities arise from their misuse. Computations for certain impact
and penetration problems take a long time and require a great deal of com-
puter storage. DYNA2D provides a restart facility so that computations can
be resumed after interruption. Input for DYNA2D may be generated using the
preprocessor MAZE, or manually. Output is generated from DYNA2D for the
post-processor code ORION in the form of restart, rezoning and binary plot
files. All details about this code are given in the DYNA2D manual ( Hallquist,

1934 ).
424 ORION

The output resulting from the computétions is generally massive. Hence,
to interpret and 1;111(161‘81&1](1 these output results for predictive purposes a post-
processor code ORTON must he relied on to provide visual displays of physical
quantities of interest as well as tabulated information ( printer output ). ORION
is capable of producing any physical quantity and time history in each coordinate
direction for every nodal point or element in the modelled structure. 1t has the

capability to plot the following features :
colour fringes
contour lines
vector plots
principal stress lines
deformed meshes and material outlines
iime histories
reaction forces along constrained boundaries

interface pressure along shidelines



user specified labels.

ORION has two phases of operation, all but the time history plots being
produced in phase one. All details of the commands used by ORION can be

found in its manual ( Hallquist, 1985 ).
4.3  Running the Program

The codes were mounted on two VAX computers, Micro VAX located m
Newcastle and an 8600 lioused in Durham. On both machines the programs ran
under VMS and the amount of disc space available for this study was hmited
to 15 Mbytes and 25 Mbytes, respectively. The programs catered for a number
of peripheral devices including monochrome and colour terminals and various

plotters.
4.4  Simulations of Penetration Processes

The entire project of computer simulation consisted of three mterrelated
stages. These were the simulations of the projectile ( or fastener shank ) pene-
tration, fastener penetration and fastener pull-out. The necessity of performing

the projectile penetration at the initial phase was that
(1) it was a simplified problem,

(ii) it enabled familiarity with the program to develop without undue com-

plexity,

(i11) it was a much studied problem; hence, comparison with other work

would be possible,
(iv) it helped in a fundamental understanding of the penetration process.

In this Section, only simulations of penetration are presented and discussed.

Fastener pull-out will be tackled in the next Section.



4.4.1 Projectile penetration

In practice, it is generally difficult to ensure normal projectile impact and
to enforce the projectile to follow a normal path during sudsequent penetration
within the target because of the target packing structure and inhomogeneity.
This is even true in some well-controlled laboratory penetration experiments.
So, strictly speaking, it is more useful to have projectile imjpact at a small an-
gle of obliquity ( the angle between the normal to the target surface and the
trajectory of projectile). For impacts normal to the target the angle of obhg-
uity is zero. The two-dimensional code may provide some qualitative under-
standing of the penetration process for the plane strain condition, but generally
this type of problem requires a three-dimensional treatment. However, such a
treatment would increase tremendously the computational difficulty and require
considerable Computer.1“esou1‘ces. Also, for comparison with both theoretical
and experimental work, the axisymmetric analysis in the numerical computa-
tion is of great advantage. Thus, in this Chapter, penetration simulation is
confined to the normal impact penetration under an axisymmetric condition
and with an assumption of the penetration path along the axisymmetric axis.
The two-dimensional version of DYNA with its axisymmetric condition, which

was previously described, was considered adequate to carry out this work.

The process of penetration was initiated with a projectile impacting the
target at a given initial velocity and at zero obliquity. A long solid cylinder with
an ogival nosetip was modelled as the projectile having a total length of 35 mm,
and a diameter of 4 mm with calibre radius head ( CRH ) being 2.5 ( an ogival
nose has a circular shape which is defined by the parameter CRH, that 1s, the
ratio between the arc’s radius and the projectile diameter ). The steel projectile
was treated as an elastic plastic, strain hardening material having a Young's
modulus of 209 G Pa, a uniaxial yield stress of 1.2 G Pa, a tangent modulus of
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1.0 GPa and a density of 7800 kg/m®. The finite element mesh was formed

from 48 elements.

A cylindrical block was modelled as the target having both height and di-
ameter of 150 mum. A total of 677 quadrilateral elements were used to form the
computational mesh. Because constant-stress elements lhad been used in the for-
mulation of DYNA2D, many small elements were necessary where the stress was
expected to change rapidly. An area at a radius of 15 mun was then finely zoned
to accommodate large potential plastic deformation since such deformation was
expected to be localized. The area beyond this was coarsely zoned to conserve
computational time because it was only intended to transmit wave effects or
gross response. Due in part to this reason and in part to the small differences
of material properties between sandstone and concrete. thus, the concrete case
was not modelled for simplicity. A rigid body movement of target was inhibited
by constraints on the far outer boundaries in the vertical direction. In this ax-
isymmetric Lagrangian computation, target elements around the projectile were
often severely deformed as the projectile entered the target. These elements
were mostly compressed radially so that element sizes were greatly reduced if
the element aspect was not large enough. These highly distorted elements con-
trolled the time step size, resulting in considerable increase .of prob]em. cycles
and computation time. Whenever this happened, frequent rezoning of .t.arget
material in the vicinity of the projectile was required. Use of the rezoning fa-
cility not only added computation time but also introduced variability in the
results dependent on the rezoning intervals and on the user’s experience. To
avord this difficult situation and potential unreliability of results, and also to
save on computation time, a tiny hole with a diameter of only 0.02 mm was
introduced at the axisymmetric axis ( or centreline ) of the cylindrical target.

However, the direct consequence of this assumption was the possibility for ele-
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ments near the centreline to cross over radially, which was physically impossible.
To compensate for this, a rigid wall was defined on the centreline. Penetration
was achieved by expanding that hole. Ideally, the assumption that the intro-
duction of a hole does not significantly change the states of stress and particle
velocity in the target should be justified. The effect of the introduction of this

central hole will be discussed in Chapter 5.

To impart the kinetic energy of the projectile to the target, a frictional
slideline was defined along the outer boundaries of the projectile and target to
accommodate their interaction. Friction was applied through the Coulomb-type
friction law. A realistic frictional coefficient between the steel projectile and
the Staindrop sandstone at the penetration condition was not available. Thus,
a notional value was used in calculation with the best possible estimation (its
effect on the penetration process will be discussed later). The slideline scale

factor was increased by 15 times to reduce slideline overlap.

Two of the eleven available material models in DYNA2D were used for the
target mafterial in this analysis. These were the elastic plastic model, and soil
and crushable foam model. Although it is suggested that the latter is more
flexible and suitable to represent materials which have no regular characteristics
like geological materials and concrete, the former one is easier to use and requires
Jess user intervention. Thus the target material, sandstone, was first represented
as an elastic plastic continuum, being fully determined by a density of 2130
kg/7713, Poisson’s ratio of 0.2, a Young’s modulus of 13.62 G Pa and a uniaxial

compressive yield strength of 0.02 G Pa.

The sandstone was also modelled using a pressure-dependent. soil and crush-
able foam model. This material model required for input & pressure-volumetric

strain relation and a yield strength-pressure relation. A pressure-volumetric



straiﬁ relation was input in a tabular form. This determined the material com-
pressibility of sandstone with a porosity of 13 %. When the stored maximum
value of the volumetric strain was reached, unloading occurred elastically with
a bulk modulus of 11.25 G Pa from the corresponding peint on the curve. This
is assumed to be a tensile cutoff and the pressure after unloading was left at the
cutoff value which was input. The relation used in this computation is shown in
Figure 4.1. The deviatoric or yield strength-pressure relation used in this model
is given by

J» = ao + & P + ay P* (4.1)

where Jy is the second invariant of the deviatoric stress tensor, P 1s pressure,
and a,,a; and ay are constants determined from experimental data. For a

compressive triaxial test, the second invariant becomes

Iy = (03 ;03)‘ (4.2)

where o7 is the maximum compressive stress and o3 is the confining stress. Thus,

the pressure-dependent yield criterion in this model is given by

(_@___@)_‘3 =@y + a1 P + (1.2P2
3

This relation gives a general expression of Coulomb-type yié]d criteria. Obvi-
ously, the von Mises criterion is a special case obtained by setting a; = a3 =0 for
the elastic-perfectly plastic material. Each of the three constants. a,, a1, and ay
in above equation is a certain function of material strengths, and is determined
by fitting experimental data into that equai:ion. There 1s a range within which
experimental data can reasonably be fitied, resulting in slight fluctuations of
{hese determined constants. This implies that a slightly different fitting curve
may be used. However, in the present calculation. a parabolic fitting curve with
@y = 0 was used to represent the pressure-dependent yield behaviour, as shown
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Figure 4.1 Pressure-volumetric strain relation for sandstone
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in Figure 4.2. Input constants for yield criterion Equation (4.3) were as follows

ap = 0.00133 MPa, a; =60.27 MPa, ¢;=0 (4.4)
The computational results obtained using this model will be presented later.

The detailed examination of the computation results would be too lengthy
to provide. Thus, only representatives which are sufticient to show the main fea-
tures of system considered are presented. The impact velocity of 100 m/s was
chosen to be low enough for the target material strengths 1o be important factors
characterizing the penetration. Figure 4.3 shows a central portion of the entire
configuration, i.e. the projectile-target contact region, at various times (0,100
and 450 ps, respectively ) after impéct at the initial impact velocity of 100 m/s
using the 1sotropic e]a‘stic-pla\.st.ic model to approximate the target behaviour. It
is seen that the deformation increases as time progresses over a period of 450 us,
and that the severe deformation and large displacement occur mostly in a rela-
tively small region of target material. A lip is formed on the edge of the crater.
Figure 4.4 exhibiting the contours of the maximum displacement illustrates that
the target deformation extends only about 2.5 projectile diameters in the radial
direction and 2.5 projectile diameters in the vertical direction when the projec-
tile comes to rest Thus, the deformation front has approximé.tel},-' an outline of
the shape of the projectile indicating apparent effects of friction and the nose
shape of the projectile. The projectile motion is predicted mainly in terms of
its deceleration, velocity, and penetration histories. Especially, the deceleration
curve provides considerable information on thé target resistance and material
properties. Figure 4.5 shows the axial rigid body deceleration history of the pro-
jectile. 1t is seen that the projectile takes about 100 us to encounter the highest
resistance in the target, and this corresponds to the penetration depth of the

projectile nose length. This resistance 1s maintained for about 250 us, showing
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steady motion before the projectile comes to rest. This is manifestedby an ap-
proximate plateau at the deceleration value of 320 km/s® on the curve. It seems
to suggest that once the yield strength is reached the target material develops
plastic flow until most of the kinetic energy is dissipated. and also that the pro-
cess of expelling the target material in front of the projectile contributes most
resistance to penetration. Oscillations as seen along that plateau are attributed
to stress wave effects. However, from the axial rigid body velocity history as
shown in Figure 4.6 al}cl the penetration history of the ballistic point in Figure
4.7 it is seen that the rigid body motion of the projectile 1s not affected by these
effects. Also seen from these Figures is the fact that the penetration velocity
decreases down to zero at about 360 us and then the projectile rebounds at a
velocity of about 5 m/s rather than resting at the maximum penetration depth.
This may be attributed to the recovery of the kinetic energy imparted to the
target as elastic strain energy. It will be shown later that as the impact velocity
increases { up to 250 m/s ) this rebound velocity approaches zero so implying
that the kinetic energy imparted to the target exceeds the elastic strain energy.
It is sometimes very useful to measure the penetration depth as a function of the
impact velocity. This relation may provide a more comprehensive view of the
projectile response and especially help to locate regions which offer the major
resistance to penetration. Figure 4.8 obtained from an element located at the
top of the projectile shows such a relation exhibiting a locus of the quarter of
an approximate circle. In addition to the confirmation of the projectile rebound
it illustrates the onset of the plastic flow which is manifested by the stair-like

variation at region A.

Figures 4.9, 4.10 and 4.11 show axial and radial stresses and pressure con-
tours, respectively. 1t can be seen that maximum stresses and pressure in the

target occur near the nosetip of the projectile, and that the compression gen-
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erated by impact is confined to a cylindrical zone having a radius of about 4
projectile diameters. It is also interesting to note from Figure 4.11 that a re-
gion near the impact surface around the projectile indicates the potential tensile

failure ( frontal petaling ).

Figure 4.12 shows that the kinetic energy loss of the projectile ( curve A
) manifests itself primarily in the form of plastic work done in deformation of
the target material. Only about 4 % energy imparted to the target material is

associated with the particle motion.

In this calculation, a frictional slideline was used to treat interaction be-
tween the steel projectile and sandstone target. However, because a frictional
coeficient between these materials under the penetration condition at an impact
velocity of 100 m/s is not known, an assumed material value was adopted. It
is generally considered that the dynamic frictional coeflicient depends on the
interface velocity and the normal stress state, and it decreases with the increase
of the interface velocity. Gaffney ( see mecope, D.B. and Grady, D.E., 1978 )
measured the frictional coefficient between Dakota sandsione and steel using a
rotating steel wheel technique in a velocity range of 10 to 30 m/s at a normal
stress of about 40 M Pa. Values ranging from 0.57 to 0.23 were vbtained. Since
the impact velocity in this calculation is much higher than the velocity range
in which those results were produced, it seems plausible to assume that the
dynamic coefficient of friction used in the present calculation is no more than
0.1 for the free-flight projectile penetration. The effect of friction with given
frictional coefficient on the total penetration resistance is illustrated in Figures
4.13 and 4.14. 1t is seen that the penetration resistance increases with increasing
surface friction, while the penetration depth and duration are all reduced ac-
cordingly. The degree of penetration depth and duration reduced by increasing
the frictional coefficient from zero to 0.1 is calculated to be less than 20 percent
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and about 80 us, respectively. The direct consequence of incorporating a high
frictional coeflicient is the potential separation of the projectile-target interface
which was reported in the literature. The present calculations perfornmd with
the highest frictional coefficient of 0.1 and the ogival nose of the 25 CRH reveal

that separation does not take place mn this application.

In the elastic plastic representation of the target matenal, it was expected
that the yield strength and the hardening effect play important roles in the
material behaviour since the constitutive relations of the geological materials
and concrete are greatly affected by the confining pressure. Thus, although in
previous calculations an elastic perfectly-plastic case was assumed, the influence
of these strength parameters on the impact penetration merited some attention.
To this end, the calculation ( model 11 ) was repeated using the larger vield
strength of 45 M Pa. Comparison with the previous model ( 1 ) is made in
Figures 4.15 to 4.18. Results show the remarkable differences. The resistance
to penetration is increased two-fold. The penetration duration and depth are
reduced by 150 us and by 40 percent, respectively. The most significant variation
is found in the kinetic energy in which the target kinetic energy is increased by a
factor of about 4 so that it amounts to the 30 percent of the initial kinetic energy
of the projectile. To examine the sensitivity of penetration to the hardening
effect, a hardening modulus with a magnitude of only 0.5 percent of Young'’s
modulus was incorporated, and the calculation was repeated ( with the previous
value of yield strength, i.e. 20 M Pa ). Significant differences can be observed
in Figures 4.19 to 4.21, showing comparisons with results obtained from the
perfectly plastic model (11 ). It is seen that in addition to a 25 % reduction in
the penetration depth, the most impressive difference lies in the deceleration
histories in which the curve obtained from the elastic- plastic strain-hardening

model shows a very sharp rise at a time of about 90 ps with a peak value of 538
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kim/s? ( 84 percent increase ) and falls down very rapidly to zero. This curve
shows no plateau ( i.e. no plastic flow ) as is seen in the perfectly plastic case,
indicating, apparently, a hardening effect. It suggesﬁs, also as seen n Figure 4.21,
that the hardening behaviour of the target mater;a,l has significant influence on
the depth of penetration and on the motion of the projectile. However, it has

little effect on the duration of penetration.

As stated expréssly in the previous chapters, the impact velocity and the nose
shape of the projectile play dominant roles in the impact penetration event. Es-
pecially, the relation of the impact velocity to the penetration depth is always of
great interest in this field. Therefore, the influence of these parameters over the
impact penetration was investigated. The velocity range covered was {from 50
m/s to 250 m/s. Calculations were performed using both the elastic perfectly-
plastic ( 1 ) and the elastic-plastic strain-hardening meodels with a frictional
coeflicient of 0.1 at the projectile-target interface. The relation between the im-
pact velocity and the penetration depth was established, as presented in Figure
4.22. 1t shows that two curves have the same general shape and that the pen-
etration depth increased more rapidly than the impact velocity, so exhibiting a
parabolic trend. A blunt projectile having a hemispherical nose with the CRH
of 0.5 was chosen to investigate the nose shape. The penetration was performécl
at the identical impact condition. The contact region of the system is shown in
Figure 4.23 at a time of 300 us in which the separation of the projectile from
the target is clearly observed. The penetration persisted for 220 us, and the
projectile reached a depth of ouly 11.5 mm which was 60 percent of that in the
ogival-nose case. The relation between the projectile velocity and the penetra-
tion depth is illustrated in Figure 4.24 which shows that the nose shape is more
effective in the early stage of penetration { i.e. embedment ) and contributes a

significant portion of the target resistance to penetration.
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It 1s seen from the foregoing calculations that satisfactory results are ob-
tained using the elastic-plastic ( strain hardening ) model to represent the tar-
get material. However, in the plastic deformation, the hnear strain hardening
behaviour is prescribed, which introduces a certain idealization of the material
behaviour. This can be improved by using the soil and crushable foam model.
Also, as an alternative, the calculation was performed using this model with
the pressure-volumetric strain relation and yield strength-pressure relation de-
scribed in Figures 4.1 and 4.2, respectively. The results obtained are compared
with those of the elastic plastic model ( I ) in Figures 4.25 to 4.30. It 1s seen that
the results produced by these two mo dels are in good agreement and that the
slight disparity was expected because of the presence of the 5-percent volumetric

strain in the latter model.
4.42 Fastener penetration

Based on the model developed for the projectile penetration i the preceding
section, the penetration process of the fastener was simulated. Because the ma-
jor difference between the projectile and the fastener is the presence of a washer
on the fastener shank ( or projectile ) which acts as a penetration retarder, as
illustrated in Figure 4.31. Simulation of the free-flight fastener penetration was
attempted by incorporating the washer into the model of the projectile penetra-

tion.

The washer 1s made of the same material as the projecti]e,. and was located
about 11 mm {from the ballistic point with the outer ring diameter of 12 mm.
Only one solid element was used to represent the washer. Two extra slidelines
were added to the model to define the washer sliding over the fastener shank
and the washer-target impact. The process of the fastener penetration with an

initial impact velocity of 100 m/s is illustrated in Figure 4.32, which exhibits
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Figure 4.32 Configurations of fastener-target contact region
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the motion of the washer at various times. It is seen ihat al the end of the
calculation the washer is about 1 mm above the impact surface. This agrees with
observations in the penetration experiments described in the previous Chapter.
The washer response is illustrated in Figures 4.33 to 4.35 i which it is seen
that the retarding effect lasts for only about 50 us. Figure 4.35 portrays the
motion of the washer, which shows clearly that at 100 ygs the washer impacts
the target surface and then rebounds slightly. Only 1 »wn reduction m the
penetration depth was found, implying the insignificant effect of the washer
retardation. It should be pointed out that in this calculation the washer-fastener
shank friction is assumed to be only 20 percent of the fastener shank-target
friction, and it is found that the former friction is very sensitive to the projectile
motion. Furthermore, the present treatment incorporating the washer into the
model was very crude.. This problem might be better presented if a loading

curve be employed to give a more refined control of the washer behaviour.

As described in Section 3.2.1, the actual process of fastener penetration is
not that of a free-flight entry, but rather that the fastener 1s driven into a target
by the piston. Thus, on the basis of the foregoing model, the fastener penetration
simulation was further developed by incorporating the piston action. The piston
is made of the same material as the fastener shank and the washer. It has a
weight of about 120 grams, a diameter of 12 mm, and has a thread insert at the
front having an inner diameter of 4 mm. The piston collar and the cartridge
expansion chamber were not modelled because what it 1s required from the
piston is just a propellent action. Three more slidelines were incorporated in the
previous fastener pene.\.tra‘tion model to describe the piston-fastener mnteraction
and the potential piston-washer impact. A frictional coeflicient of 0.2 was used
for the fastener-target interface. Contact between the fastener and the piston

was defined as frictionless. The initial impact velocity was set to 62 m/s which
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corresponded to a power regulator setting of 2.5. Preliminary calculations which
were not very successful revealed that the elastic perfectly-plastic representation
of the target material using the previously defined values of material properties
did not provide much resistance to the fastener penetration. A similar result was
obtained with the elastic plastic representation incorporating a low hardening
modulus. In both cases, the piston and the fastener over-penetrated the target
and the washer became severely deformed, leading to numerical instability. As
a consequence, the uniaxial compressive strength was used as the yield strength
of the target material and a hardening modulus of 1 percent of the Young's
modulus was also included. Four elements were employed to model the washer.
Finally, the fastener shank length was increased up to 40 mm ( to match the
physical dimensions of M4-10-40512 fastener ) in order to avoid the mutual
contact at the end of the piston, washer and target surface, which could affect
the actual penetration of the fastener. The results of the modified calculation, in
which the duration of impact increased to about 1.2 ms, are presented in Figures
4.36 to 4.47. Figure 4.36 portrays the motion of the fastener together with the
piston at various times. In Figure 4.37, the piston deceleration history shows
that the largest resistance was clearly encountered at about 750 us although
the curve oscillated considerably over its increase. This pomt was supported by
the piston velocity history as shown in Figure 4.33, 1n which t:he turning region
was evident corresponding to that time. Figure 4.39 shows a smooth increase of
the piston displacement. The fastener motion in this process was dependent on
the motion of the piston. This is reflected in the fastener velocity history which
has a shight oscillation, as is shown in Figure 4.40. and is further supported
by Figure 4.41 which exhibits this feature more explicitly. Figure 4.42 shows a
penetration history of the fastener. The washer displacement could be observed

in Figure 4.43. The action of the piston was so dominant in this process that
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the washer behaviour was actually negligible. This is explicitly seen in Figure
4.44 which also shows that the kinetic energy imparted to the target material

constituted about 43 percent of the total initial kinetic energy.

In all the previous illustratioﬁs, only the responses for the individual ma-
terials in terms of various physical quantities have been examined. At present,
the fastener-target interface behaviour is to be examined m Figures 4.45 to 4.47
which provide significant inf@nnation about the fastener-target interaction. Fig-
ure 4.45 shows the history of the fastener-target interface force in the vertical
direction. It is not surprising that its prediction has the same overall shape
as that of the piston deceleration history and differs from the latter about a
constant in magnitude. It is also observed in Figure 4.45 that after the peak
resistance the curve shows severe oscillation. Figures 4.46a and b illustrate
the axial interface force distribution in terms of three nodal points which were
located at the tip, the turning region and the aft body of the projectile, respec-
tively ( see Figure 4.36 ). It is clearly seen that there was only a small portion
of the axial resisting force distributed at the projectile tip and along the surface
of the aft-body of the projectile. The largest portion of the axial resistance
was distributed around the turning region of the projectile nose while the major
shear stress was distributed on the tip of the projectile, as iilustrat-ed mn Figure
4.47. Tt can be inferred that in moving along the projectile surface from the tip,

the shear stress dies out.

For comparison with the experimental results, several calculations were per-
formed with the initial impact velocity ranging from 49 m/s to 62 m/s, which
corresponds to the power regulator setting on the cartridge tool of 1.5 to 2.5.
The relation between the impact velocity and the penetration depth achieved
is compared with the experimental curve in Figure 4.48. It is seen that the
penetration depths predicted by computations are constantly greater than the
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experiment values by about 20 percent.

In all the previous computations the steel strength was sufhicient high so

that the projectile and fastener were not deformed.
4.5 Simulation of Fastener Pull-out

The fastener penetration, resulting in the fastener coming to rest embedded
in the target, was successfully simulated. The pull-out process, as described
in Chapter 3, was attempted under similar conditions. Since the pull-out pro-
cess is a quasi-static procedure, the time required to withdraw an embedded
fastener from a target is of the order of a second. This makes it very difficult
from both computational and economic points of view to use DYNA2D as a
suitable program to carry out this work. Instead, an mmplicit finite element
code, NIKE2D, was employed for this simulation. NIKE2D was developed by
the same author as DYNA2D, and is also available in the public domain. This
program is a fully-vectorized, finite-deformation, large strain. finite element code
for analysing both the static and dynamic response of two-dimensional axisym-
metric and plane strain solids. Full details about this program are contained in

the user’s manual ( see Hallquist, 1933b ).

The numerical 'procedure for performing the pull-out process was divided
into two steps. To begin with, the projectile penetration was carried out using
the dynamic analysis as previously described_. With the projectile embedded in
the target, the pull-out simulation was then performed by changing to a static
analysis using the restart facility in which a loading condition can be redefined.
Thus, the projectile penetration was 1]]0(]eliec‘] using the same computational
model as DYNA2D. The results of the calculation are compared with those

obtained using DYNA2D in Figures 4.49 to 4.53. It is seen that reasonably

good agreement has been achieved.
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It has been realized that, from the computational point of view, the projectile
penetration and pﬁll-out have to form one general process. This implies that
a loading curve required to withdraw the projectile atter penetration has to
be specified in the initial input deck. Since only the imtial impact velocity
is required to initiate the projectile penetration, thus. the imcorporation of the
pull-out loading curve ( either the displacement or the velocity histories ) at this
initial stage would interfere with the initial impact velocity to produce erroneous
results for reasons which are not clear. Unfortunately, there seems no method
of removing this particular hurdle at this time. Thus, no further attempts were

made to solve this problem.



Chapter 5 DISCUSSION AND RECOMMENDATIONS

&

In the preceding chapters, the impact penetration of both projectile and
fastener into construction materials such as soils, rocks and concrete, as well
as the associated pull-out problem, have been mvestigated using experimental,
analytical and numerical approaches. The efforts made throughout the thesis
with respect to all of these three approaches have led to an improved under-
standing of the p-henomena‘occuring at impact, during penetration and during
pull-out, and have provided reasonably accurate predictions as a guide and an
insight for further research on this subject. However, because of the complexity
and variability of the problem, solutions are far from complete in the context
of their relevance to all aspects of the problem. Therefore, the discussions and
suggestions which are presented n this chapter aim to emphasize those areas in

which further research, leading to improvement of results, can be made.

In Chapter 2, apart from the historical review of the empirical penetration
formulae, the major attention has been focused on the development of the ana-
lytical penetration theory which is based on cylindrical cavity expansion for the
class of locking materials. Because of the complex physical characteristics of the
materials considered as well as in the interests of mathematical tractability, a
number of the simplifications of the physical situation and of the mathemati-
cal manipulation were necessarily assumed. However, this theory is believed to
provide a realistic account of the gross features of a non-deforming sharp-nosed
cylindrical projectile penetrating porous, compressible locking materials. Its
main predictions concern the axial resisting force exerted on the frontal surface
of the -projectile, the deceleration history, and the penetration depth. The major
deficiencies are atiributed to the neglect of the stresses on the aft body of the
projectile { which is reasonably valid f;)r the penetration of the hemispherical
projectile ), and to the neglect of the frictional effect which has been shown to
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be significant in Chapter 4, as well as to the assumption of the radial motion of

the target material.

Since no experiments or measurements of projectile penet-r'a.t.ion other than
fastener penetration were conducted, the input parameters required for the quan-
titative predicﬁions of the theory cannot be evaluated. This deficiency clearly
prevents any direct comparison of results from this theory with those of the nu-
merical computations. However, as has been noted and discussed in Chapter 2,
the solutions, such as Eciua.tions (2.34) and (2.41) have the same form as some
of empirical formulae presented in Section 2.2 ( for instance, Equations (2.7),
(2.10b) and (2.13a) ) apart from the incorporation of the nose shape effect in
the coupled material constants. This compensation provides some encourage-
ment for attempting comparisons between the analytical and numerical results.
To this end, the modified Petry formula in Equation (2.10b) is chosen because
it requires fewer material constants, and because it is a widely-used formula,
especially in concrete design against projectile impact and penetration ( Young,
1969; Sun, Burdette, and Barnett, 1976; Backman and Goldsmith, 1978; and
Brown, 1986 ). Comparison is made with Figure 4.17 over the impact velocity
range of 50 m/s to 250 m/s for the projectile having a mass of 3.1 g and a
diameter of 4 mm. A constant k is involved, and % is dependent on the nature
of the target material. Iis variation is governed by many factors, among them,
the density, hardness and the compressive strength. Generally, the harder the
material is, the lower the value of k. lts range for various materials can be
consulted from Table 2 of Sun, Burdette and Barnett ( 1976 ), and Backman
and Goldsmith ( 1978 ) as well as from Table 1 of Brown ( 1986 ). For concrete,
limestone and sandstone, this constant ranges from 0.0035 ( reinforced concrete
) to 0.003 ( 1n f&/1b ). The variation of this constant 0.004 - 0.007 is illustrated

in Figure 5.1 in which the impact velocity is plotted against the penetration
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depth. Also plotted is the computational curve indicated by a dashed line. It
is seen that none of them fit the computational curve very well throughout the
velocity range. Nevertheless, the curve with a k value of 0.0058 appears to give
the best correlation. The major disparity occurs at velocities below 100 m/s.
Petry’s formula seems to predict the existence of a critical velocity on reaching
which the target resistance is considerably reduced. However, this feature is not

as clearly evident on the computational curve.

As has been shown from the computational results of Chapter 4, in the fas-
tener penetration, the washer does not exert significant resistance on the shank
penetration because of the dominant inertia effect of the piston. Thus, the
washer behaviour can be ignored without greatly affecting the gross features of
the fastener shank penetration in this situation. The direct advantage of this as-
sumption is to compare the results of the fastener penetration into the sandstone
targets with both the computational curve and the modified predictions from
the Petry formula. However, examination of the modified Petry formula reveals
that the formula is independent of the nose shape of the projectile although it
is well recognized that sharp noses encounter less resistance than blunt noses.
This enables comparison of the results from the experimental, analytical and
numerical approaches for the fastener pe;netration. The prediction, made from
the modified Petry’s formula with the material constant & of 0.0058 and plotted
in Figure 4.48 is now presented in Figure 5.2 which shows an excellent correla-
tion . This comparison, which is made possible under the assumptions discussed
in the previous paragraph, is somewhat crude, and the good agreement may be
regarded as fortuitous. However, the fact that the same value of't.liis material
constant fits both two curves provides hope that the form of this formula may
e more general than at first anticipated. Thus, this chosen material constant,

k, of 0.0058 may be taken as a rough estimate of the material constant of the
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sandstone for this formula in the impact penetration considered.

It should be emphasized that a]thqugh the experiments conducted in Chap-
ter 3 ére_ quite satisfactory, they are, however, rather simple, and have left quile a
few facets requiring further experiments to be performed in order to obtain more
information ( comprehension and analysis ) abou@ the penetration and its associ-
ated pull-out phenomena. For instance, investigations can be conducted on the
fastener shank penetrations using the fasteners with their washers being moved
right to the thresholds of the threads before firing. Given a suflicient numbers
of targets, this type of experiment, if performed, may quite easily indicate the
actual effect of the washer reta’rdation. Perhaps, the most tempting method to
collect the dynamic information rather than pre- and post-impact measurements
is to record the target response in terms of the radial and tangential strains using
the strain gauge techﬁique. All of these suggested experiments may provide vital
information to improve on understanding of the impact penetration phenomena

and to compare results with those obtained using other approaches.

It is found, by comparing it with the computed peak pressures which are
achieved during the projectile penetrations, that the maximum pull-out force
cé_btained at a constant rate of extraction is extremely low. This suggests that the
initial kinetic energy of the fastener-piston combination 1s primarily cdissipated
in plastic deformation of the target, in the formation and propagation of cracks.
and .in the generation of heat. It is believed that the speed of the pull-out plays
an important role in these pull-out tests, and may affect the plﬂl-out force. Thus,
the validity of the pull-out results that were obtained is restricted to and imited
by the constant rate used (h;ring the tests. Further experiments are desirable to
find out the differences of the pull-out forces required to withdraw the fasteners
at the different rates from the targets in which their penetrations are achieved
using the same initial kinetic energy ( or impact veloaty ).
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In order to understand and predict the damage or failure of the target mate-
rial subjected to the impact loading it is often necessary to examine the impacted
target using a scanning electron microscope ( SEM ) and an optical microscope.
Although there are some rather advanced high-speed cameras and related 1mage
forming devices still being developed which may provide a promising technique
to record the impact phenomena directly, they are generally either expensive
to use or utterly inaccessible. Thus, the technique used in this thesis for this
aspect of the work relies completely on the post-impact examination of the tar-
get using microscopes. Efforts made to this end are presented in Section 3.4,
in which the damage to the sandstone targets adjacent to the craters has been
examined using the optical microscope at magnifications up to 52-times. Suf-
ficient evidence of sandstone crushing, shearing and cracking has been found.
Since only two target specimens were prepared, from each of which only a hm-
ited number of thin sections cut at the chosen directions could be obtained, the
local and structural crackings associated with the damage caused by the impact
penetration are only qualitatively examined. The results obtained have indeed
improved the understanding to the impact penetration. However, these results
are not sufficient to generate a description of the damage in terms of the mi-
crostructural quantities for the target examined, and are completely inadequate
for establishing any reliable quantitative relation such as the cracking extent -
the energy level of the impact loading, even on an empirical basis. To predict or
quantify the target damage is even more difficult. The mathematical displines
used for this purpose are from either continuum fracture mechanics pioneered
by Griftith and Irwin, or a microstatistical internal-state varable approach both
of which are somewhat complicated subjects beyvond the scope of this thesis.
For further information on this subject. a review article by Gilman ( 1963 ),

two monographs by Lawn and Wilshaw ( 1975 ), and by Zukas et al ( 1932 ),
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respectively, may be consulted.

In Chapter 4, the numerical mvestigations have been carned out using com-
puter programs, and two objectives have been achieved. These comprise the
numerical analysis of the projectile penetration and the simulation of the fas-
tener penetration. The majority of this work has been performed using the
elastic plastic model to represent the target behaviour. The factors which most
affect the penetration procéss of the projectile such as the impact velocity, the
nose shape of projectile, target yield strength and the hardening modulus, as
well as the projectile-target friction, have been investigated. Based on the expe-
rience gained in modelling the projectile penetration, the fastener penetration
has been successfully simulated. Because of lack of the measured input param-
eters of the frictional coeflicient and the hardening modulus, and also because
of the static strengths of the target material used in this dynamic process, some
variations from actual behaviour may have been introduced. However, a rough
estimate of these parameters has provided reasonably accurate predictive calcu-
lations. The slightly deeper penetration obtained, as shown in Figure 5.2, may
be atiributed either to the lower Young’s modulus { i.e. the static value ) or to

the smaller hardening modulus.

In the penetration experiments that were conducted, structural cracks are
widely observed as long as the impact velocity is greater than 52 m/s ( corre-
sponding to the power regulator setting on the cartridge tool of 1.75 ). Although
there 1s no information available about the fraction of the imtial kinetic energy
associated with the formation and propagation of cracks, these cracks clearly
absorb a certain amount of the energy. This seems important for an accurate
account of the gross features of the target behaviour modelled in the computa-
tion. However, the incorporation of such a material characteristic is beyond the
capability of a two-dimensional computer code. This deficiency in the present

201



computations undertaken in this thesis may well lead to the deeper penetration
since the fraction of the energy which should be absorbed during cracking has
to be transformed into the plastic target deformation. Another factor which
was not accounted for in this axisymmetric computation was the potential ro-
tation of the penetrator during penetration. Also, it is believed that the washer
behaviour, although substantially insignificant, can be better described using a

loading curve.

In the present numerical investigation the soil and crushable foam model
has also been used. The yield - pressure relation is required for input, apart
from the pressure - volumetric strain relation. Because of lack of sufficient ex-
perimental data leading to flexibility of the determination of the constants in
the former relation throughout the stress range, the quadratic term 1s set to
zero for simplicity. The computational results presented in Figure 4.10 show
that the stress level achieved at the penetration condition considered 1s of the
order of the uniaxial compressive strength of the target material. Thus a large
departure from the parabolic fitting used in the calculation is not expected to
take place. However, in the fastener penetration, the stress level is substantially
higher than in the projectile penetration case. Since the maximum pressure in
the pressure - volumetri; strain relation obtained from the triaxial experiments
is only 52 M Pa, for the .higher pressures which are achieved, no data are avail-
able. Therefore, this material model has not been used beyond the projectile

penetration.

A final mention about penetration simulation should be made with respect
to the assumption made throughout Chapter 4 cbncerning the small central
hole introduced in the target. Ideally, it should be necessary to show that
such a hole does not alter the states of either stress or particle velocity mn the
target. Unfortunately, because of the limitation of the computer resources, this
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assumption has not been justified in this thesis. However. it has been proved by

Schwer, Rosinsky and Day ( 1938 ) mn their work.

Finally, the pull-out of the embedded fastener has not been successfully

simulated using the computer codes.
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CHAPTER 6 CONCLUSIONS

The subject of impact penetration into soil, rocks and concrete has been
investigated in this thesis. Because of the complexity and variability of this
subject which involves various diverse fields, a rather general review has been
provided to include the definitions of some phenomenolagical terms, classifica-
tion of the impact process, and brief descriptions of some basic principles and
related phenomena pertainiﬁg to impact and penetration in terms of stress wave
propagations. Three analytical approaches have been adopted : theoretical,

experimental, and numencal. .

In the theoretical work, and in addition to an assembly of empirical pene-
tration formulae, a non-deforming sharp-nosed projectile penetration theory has
Been developed on the basis of the existing cylindrical cavity expansion theory
with the constitutive relations of the target materials idealized by compress-
ible locking behaviour in a hydrostatic state and elastic-plastic, hnear strain-
hardening behaviour in shear. It is important to re-emphasize simplifving as-
sumptions made in this theory such that (1) the stresses on the aft body of the
projectile were neglected, (2) the frictionalaeffect on the projectile-target nter-
face was not taken into account; (3) the motions of the target materials were
'assumed to be only radial. Since no dedicated experiments were conducted for
the determination of the material constants required for input,.the predictions
of this theory could not be quantified. It was thus not possible to compare this
theory with either the experimental results or the numerical results. Despite

these limitations, this theory does provide a correct assessment of the general

features of the problem considered. It was found that

(1) The axial resisting force was proportional to the projectile racdius and

impact velocity. Ignorance of target inertia overestimated the resisting force and



underestimated the penetration depth.

(2) Not surprisingly, the penetration depth increased as the impact velocity
increased. A denser or a longer projectile penetrated into a target more deeply.

An increase in projectile diameter reduced penetration.

In the experimental approach, the penetration tests were conducted using a
cartridge-operated tool firing steel fasteners into sandstone and concrete targets.
Relationships between the power regulator setting ( controlling impact velocity
and initial kinetic energy ) and the penetration depth were deduced from the
measured results. The associated pull-out problem has also been studied. Pull-
out tests were conducted to establish the relationships between impact velocity
and the pull-out force recorded using an Instron universal testing machine at a
constant rate of pull-out. Post-impact examinations of thin sections made from
the impacted target specimens were performed. For the range of test conditions

considered in the present investigation, the following conclusions may be drawn.

(1) The penetration depth was directly proportional to the impact velocity.
A long shank length of fastener was desirable, but an increase of this length also

increased the susceptibility to bending failure.

(2) With an originally-adopted pull-out technique, the expected debonding
process in the sandstone target did not occur; rather the shear failure took place
within the target a]ong the conical plane. Values of the pull-out forces were low.
With an improved technique the requisite debonding process did occur and the

values of the pull-out forces noticeably increased.

(3) The pull-out force depended little on the penetration depth for the sand-

stone target, and was independent of the penetration depth for the concrete.

(4) The general damage observed in the sandstone targets covered two re-



gions : (1) a grain-pulverized region and (ii) a cracked region. The distinctive
features of these two regions were that, in the former, quartz grains were pulver-
ized; and were detached from the parent sandstone showing no clear preference
for a cracking path, while, in the latter, the formation and propagation of cracks

were greatly affected by the grain boundaries.

With the present availability of large computer programs such as DYNA2D
and NIKE2D suite in the ]5Ubli¢ domain, the fundamental case of projectile (
normal ) impact penetration, has been studied using both elastic-plastic, and
soilv and crushable foam models to represent the sandstone target behaviour.
The key factors affecting the projectile penetration into the large target, fac-
tors such as the initial impact velocity, the nose shape. the projectile-target
friction, the yield strength and the hardening modulus at low velocities, have
been investigated. Based on the projectile penetration model, the fastener pen-
etration with the piston propellant has been simulated. Computational results
from both the projectile and the fastener penetrations have been compared with
those obtained either empirically or experimentally, and reasonable agreements
have been achieved. For the cases investigated under given impact conditions,

1t was found that

(1) The penetration depth increased parabolically with increase in the im-
pact velocity. The projectile at low velocities rebounded after reaching the max-

imum depth of the penetration until the impact velocity was sufficient large.

(2) The frictional force alone, with the frictional coefficient up to 0.1, reduced

the penetration depth by 20 % at an impact velocity of 100 m/s.

(3) The initial kinetic energy was primarily transformed into target defor-
mation. Only 4 % of the energy imparted to the target material was associated

with the particle motion.
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(4) The yield strength had the most significant effect on the penetration
comparecd with the pgrfectly-plastic model (I). Resistance was directly propor-
tional to this strength parameter. Penetration duration and depth reduced by
150 us and 40 percent, respectively. The target kinetic energy was increased by

a factor of four.

(5) The hardening modulus had a signiﬁca.nt effect on the penetration depth.
With the value of 0.5 % of Young's modulus the penetration at the impact
velocity of 100 m/s was reduced by 25 % compared with the perfectiy-plastic
case. However, this modulus appeared to have no effect on the penetration

duration.

(6) The hemispherical-nosed projectile achieved a penetration depth only 60
% of that obtained with the ogival-nosed projéctile ( CRH = 2.5 ) at an impact
velocity of 100 m/s. Séparation of the projectile-target nterface was observed
along the aft-body of the hemispherical-nosed projectile, while this feature was

absent for the penetration of the ogival-nosed projectile.

(7) The depth of the fastener penetration was constantly greater than indi-

cated by the experimental results by 20 % over the impact velocity range.

(8) The projectile and fastener suffered no gross deformation, and behaved

very much like rigid bodies.

The significant capability of the numerical computations is that they provide
quantitative information on nterior stress, strain and velocity states at any time
and any location in system, and that various material properties and parameters
can be varied easily, with their effects being noted and compared as presented.
For the projectile and fastener penetrations -a.t the low velocities considered, the
dynamic stresses generated by the impact were of a similar order to the mate-

rial strengths. Thus, the response of the target materials in computation was

(&)
o
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dominated by these material s'trengths. However, since there were no available
dynamic experiments orientated to characterize the candidate materials in the
impact penetration environments from which either stress-strain relation or sim-
ple strength parameters could be extracted, such a numerical analysis may not
be relied upon .entirely for quantitative results. If realistic constitutive relations
or material properties are provided, then computer programs such as those used
in this thesis can be an efficient tool for both developing an approximate method

of analysis and supplementing experimental mvestigations.

The present status of this impact penetration problem 1s that more work
( both experimental and numerical ) is needed in order to verify the theory
of projectile penetration, and to instill confidence n the outcomes by cross-

correlating results from the different approaches.

In the future, it is hoped to continue exploring the penetration process of
a fastener both experimentally and numerically. In the former approach, effort
should be directly made to collect the dynamic data using a strain gauge tech-
nique, so that comparison with the computational results can be made. In the
latter approach, study should be pursued to investigate the problem of target
dilational effects inevitably associated with the penetration. An attempt should
be made to investigate the effect of a central hole in the fastener so that possible
controlled collapse mechanisms in the fastener can be assessed in order to reduce

rock dilations. Finally, the numerical modelling of the pull-out process should

certainly be pursued.



Appendix A DEVELOPMENT OF THE CAVITY EXPANSION THEORY

This appendix presents an exact solution of the dynamic expansion of a
cylindrical cavity within the framework of the proposed theory. Major contri-
butions to the development of the theory of cavity expansion were made by
Bishop, Hill, and Mott (1945), Hopkins (1960), Goodier {1965), Hanagud and
Ross (1971), and Norwood (1974). Bishop, Hill, and Mott proposed static so-
lutions for the expansions of both spherical and cylindrical cavities produced
by a indenting p-unch m a semi-infinite e]a.stic-])la:;1<ic, linear strain-hardening
material, whereas Hopkins presented a dynamic solution for the expansion of a
spherical cavity in elastic-perfectly plastic material. Goodier treated a similar
problem, and attempted a solution in a semi-infinite, incompressible elastic plas-
tic, linear strain-hardening material. Hanagud and Ross modified this the(;ry to
account for the material compressibility by micans of an ideal locking approxima-
tion under hydrostatic stress. Norwood developed a corresponding analysis for
the expansion of a cylindrical cavity under a state of plane strain. The present
work developed thereinafter adopts a similar logic to that in the work of the

above authors.
A.1  Problem Statement

6301lsicler the sudden application of uniform hydrostatic time-dependent pres-
sure { from projectile loading ) to a semi-infinite, homogeneous and isotropic tar-
get using a cylindrical polar system of coordinates. A cavity of radius ¢g (> 0)
1s produced on the surface. Under this pressure, the material first experiences
the elastic deformation. By additional increase of pressure the yield strength is
reached at the expanding surface of the cavity and the cavity has been enlarged
to radius r(t) (> ag). This process is regarded as an expansion of a cavity and
can be imagined as one of a series of expansions which will follow. Thus, the

projectile penetration is assumed 1o be formed by a series of cylndrical expan-
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sions imtiated at the tip of a projectile nose. As the radius of the projectile
1s approached the cav'.it.y will not expand any further. Thereafter the material
experiences plast.ic loci{ing deformation in dilatation and plastic behaviour in
shear. The material is then placed n an expanding state in which the cavity is
surrounded by plasfic and elastic zones. The physical phe nomena so posed sug-
gest that plasticity 1s confined to a region adjacent to the cavity. Accordingly
i"t can be assumed that the structure of the motion is as follows. This structure

1s illustrated also in Figure 2.5.

Cavity 0<r<at)
Plastic region Aa.(t) <r < gq(t)
Elastic region q(t) <r < R(t)
Undisturbed region R(t)<r

Here, o, and ay represent the normal stresses in the radial and tangential
directions, ¢, in the vertical direction. Correspondingly, €,, €y represent the
strains in the radial and tangential directions. ¢ represents the time coordinate
measured from the instant of first application of pressure, r is distance mea-
sured from the centre of the cavity having an initial radius ag. The solid is
supposed 1nitially at rest and free from stress. All physical quantities are as-
sumed functions only of the independent variables r,¢. Because of cylindrical

symmetry

Org = 0pr = Tzr = €,9 = €,; = €9, =0, € =0

and
ur = up(m,t), o, =a.(rt), op=op(r,t), o0.=0:r1t) (A.1)

This implies a state of plane strain. Under these coordinates of cyhndrical
symmetry, the most important objective of this theory is to predict the extent of
the disturbed region and the elastic-plastic boundary and the resulting stresses.
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The governing equation of motion is*

00.,+a,—09_ & _@ Ao
o - D VT o (4:2)

where p is the instantaneous density, subscripts 0, 1, 2 will be added to it in the
following analysis corresponding to each appropriate region, e.g. p for elastic

Dv

region, v is the particle velocity and 57 is the total or Eulerian derivative of the

éarticle velocity with respect to time along the particle path :

Dv _0dv  Ov
Dt ot Vor

(A.3)
In general, the use of a superior dot, D/Dt, denotes differentiation following
‘the motion of a material point, i.e. DF/Dt = 9F/dt + v{9F/dr) for any given
fﬁnction F that is attributable to the motion of a material point ( see Fung,
1965). Because of the large deformations in the material involved in the present
problem, an Eulerian description of the motion is chosen to establish equations
sufficient for the determination of the distributions of displacement, velocity,

stress and density at all times **.

In the following analysis, according to the
structure of the motion the development of a solution is split  into elastic and

plastic regions in addition to the separate consideration for the elastic-plastic

interface.

§
A.2  Elastic Region (I)

As shown in Figure 2.5, this region contains the locked-elastic material be-
hind the advancing shock front r = R(t) where r is the Eulerian radial coordi-

“nate. The elastic locking condition requires the material around the cavity to

* The subscript r on u will be omitted henceforth because u, s only non-zero

component of displacement.
** However, it should be noted that strictly speaking the use of the convention

notation &,ép to denote strains rates could violate this definition, since these
quantities are defined in their own specific way as will be seen in Equation

(A.5).



obey the following expression for dilatation on the application of a hydrostatic
pressure :

€=¢€, + €g = €g (A.4)

where €, 1s the elastic locking strain, and 1s assumed to be a material constant,
€ = —e€1. The kinetic relations are expressed in terms of the radial outward
particle velocity v(r,t). If the displacement undergone by a material point at

racdius r and ¢ is u, then
U, .
=-=—, v=u (A.5)
-7

Differentiating Equation (A.4) and combining it with Equation (A.5) leads to

4 _f')'_'l_,'+‘z_’_la(mv)_0 (A
L R )

Integration of Equation (A.6) gives

v = I—(—t—) (A.T)

r

where {(t) 1s an unknown function of integration. Stresses and strains in the

elastic region are related by Hooke’s law as

1
& = plor v(og + 0.)]

1
€= E[Og —v(o. + 0,)]

(A.8)

Then the stress-strain relationship in shear for an elastic material is obtained

upon substitution of Equation (A.8a) and (A.8b) as
op — 0y = 2Cleg — 1) (A.9)

It 1s previously stated that the material in this region is in a locked elastic state
which 1mmplies that the material allows no further compressibility. Then, G is
taken to be E/3. Using Equation (A.4) with ¢, = —¢; and E/3 in Equation

(A.9) it immediately follows that

E(2¢p + €7) (A.10)

0g — 0p =

Wi b

[E%]
it
[



Since the motion is purely radial, ¢y may appropriately be evaluated for large
deformations by following Hopkins (1960). This gives

e = In(—) (A.11)

o
where 7o 1s the nitial radial coordinate of a particle that has moved to position
r behind the shock froﬁt r = R(t) ( because of the passage of shock wave ).
Combining Equations (A.2), (A.3), (A.7), (A.10) and (A.11) leads to

do, 2E, 7 Fof?
or 3r To

Integration of Equation (A.12) results in

1 1 2F 7 d
—7——2)+T/q(71n—+e] T (413)

q To

.o
O-T(T1t) = U'I‘(q7t,)+p1fln; —plf

where ¢ i1s the interface radius at time ¢ between elastic and plastic regions, and
or(q,t) s a function of integration which remains to be determined. Considering

the jump condition for conservation of mass at r = R(t) provides the condition

pol R = vo) = p1(R - vy) (A.14)

where vg,v; are the particle velocities in the stress free and elastic regions,

respectively, and vg = 0,v] = f—gl. Thus, Equation (A.14) becomes

f(t) = a1RR : (A.15a)
in which
a=1-2 (A.15b)
P1

where a7 is the locking compressibility. Likewise, the conservation of momentum

at r = R(t) offers
o (R, t)— o.0(R, 1) = —/)](R — vy~ ,)O(j? — vp)ug (A.16)

where 0,9 1s the normal stress in the stress free region, is zero. Thus, Equation

(A.16) becomes

o (R, t) = ~p1(R - vy)ey = -Pli(,R - 3) (A.17)
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Substituting Equation (A.15) into (A.17) gives

0,-(]?,1) = —poa1 R? (A.18)

However, in some zone adjacent to the elastic-plastic interface at r = ¢(¢) of elas-
tic region, the elastic stresses are assumed to be in a state of incipient plasticity
of the form

og—o, =Y - (A19)
Combining this condition with Equations (A.10) and (A.11) yields

3Y
1nqq—0: E—%:g (A.20)

where (3 is a material constant. Rearranging Equation (A.20) gives
go = ge P (A.21)

Applying conservation of mass in this region, ¢(1) < r < R(t), offers

Q]
W]
S

p1(r% = ¢%) = po(rd ~ ¢2) (A.

Combining Equation (A.22) with Equation (A.21) yields
r P ¢ p
o _93- Po
(2P ==[1-5(1-e%)=] (A.23)
r Po T P1
It is apparent,as shown in Section 2.3, that the volumetric strain is function of

material volume variation, and it is also apparent that pV, = 1 for the mass

conservation. Therefore,

dv, dp
de = = ——
Ve p

which is integrated for initial and final values in elastic region to give

ef— e = —In(2L) (A.24)

Pi
where ¢, = 0, € = —¢1; p; = po, pf = p1, respectively. Thus, Equation (A.24)
becomes

€1 = In(—) (A.25)



A.3  Plastic region (II)

The procedure for analysis in this region is similar to that for the analysis
given in the elastic region. The locking condition remains in the same form, that
1s

€&+ €9 =€y = —€2 (A.26)
where €, is the plastic locking strain and equals a material constant, —e> as
shown. However, a change will be made in the stress-strain relation as follows

_ irst
by starting from Equation (A.9). When yielding occurs, the material behaviour
A

is described by
2
gg — Oy :Y=2G(69—61):2G6y = §E6y (A.27)

where ey is the yield strain corresponding to the yield strength. By analogy with
with Equation (A.9), the stress-strain relation in shear for the locked plastic

material 1s expressed as
.2 .
og -0, =Y + §Et(€9 — €, — €y) (A.28)

Substituting Equation (A.27) into (A.28) to eliminate ¢y in conjunction with

Equation (A.26) yields

Ey

2 3 . B ,
0y — Op = §E1(269+62)+}'1, Y1 =Y(1- E) (A.29)
The particle velocity is defined in this region as
; :
v = 9(t) (A.30)
T
The equation of motion then becomes
do,  2E r oo, ¢
= —{(2ln— — 4+ —{¢g— = A.31
or 3r( nro+62)+ T * 7*(9 7‘2) ( )

At the cavity surface, the applied pressure is supposedly prescribed, i.e.

Or = —p(f,)7 r=q t2>0 (1432)



Thus, integration of Equation (A.31) with the boundary condition of Equation

(_A.‘3'2)A give_s_i

o Loro 1 _ _: 2 T 7 dr
o.(r,t) = —P(t) + Yiln— + pagln— + ~ppg®(r 2 — s73) + ZE, / (2In— + eg)—-7—
a s 2 o3 a To 7
(A.33)
The conservation of mass in this region provides
palr? = a2) = pafr? = o) (4.34a)
If ¢, =0 < a, this equation becomes
pors = py(r? — az) (A.34b)
Rearranging the above expression gives
o Po,T a9, T 9 _ )
(=) ==2(=)[(=) -1 (4.35)
To P2 A «
For the special case at » = ¢, Equation (A.34b) becomes
pods = palq® — @) (4.36)
In conjunction with Equation (A.21), Equation (A.36) is expressed as
o =1
(172 = (1 - Peep) . (4.37)
a P2

Now, the plastic locking strain is obtained using a similar process to that given by
Equations (A.24), (A.25) in the elastic region. Integration must be accomplished
n two separate ranges because of a discontinuity in density at the elastic-plastic

mterface.

-f o f
/ d.e:/de+/l de = ef — ¢, = —€3

f dp l(lp f (1/) Pl Pf
:—/—z—/——/——:—ln—-—ln—
Jvoop Joopo JLp Pi P

= -In™ = 2 (A.33)



in where ¢, = 0, p; = po, ps = py are implied. That 1s

2

e = In(22) (A.39)
Po

A.4  Elastic-plastic Interface

At the elastic-plastic interface, mass and linear momentum must be con-

served. Mass conservation offers :

i =)= prlg—w), =g (A.40)

where v; = f(t)/q,v2 = ¢(t)/q. Solving for g(t) yields

glt) = azqq + 2 f(1) (A.41a)
P2

where

ag:l——ﬂ

(A.410)
P2

The momentum conservation at this interface provides

ar2(g,1) — ari(g, 1) = —p2(g —w2)ua+ p1(g —wr)y at r=gq (A.42)

where the second subscripts 1 and 2 on the stress quantities denote the elastic

and plastic side of the interface. In conjunction with Equation (A .40), Equation
(A.42) becomes

or2(9,t) — 0r1(g, 1) = —p1(q — v1 )(v2 — 1) (A.43)
Upon substitution of Equation (A.41) with v; = f(t)/q,

vy = ¢(t) /g, Equation
(A .43) becomes

. [
Ory — 0p] = —pr0e2{q — ;1‘) (A.44)
Combining Equations (A.13) at » = R, (A.18) and (A.33) at » = ¢ with Equation

(A.44) to solve p(t) yields

R. L ,. 2E R . dr
p(t) = pIn—f + prf (R? ¢ )+ = / (2111?— + e])—7—+
q 2 3 q i T

To
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poalR + ¥ ln— + p>gln~ 3 —a )+
2 g T dr '
§Et/ (?.hlr— + 6-7) + pro(q — i) (A.45)
Q 0

In conjunction with Equations (A.15), (A.41) and their derivatives, Equation

(A.45) becomes
| _ R 2 1 202 P2 p-2 -2
p(t) = plallng(RR+ R ) + 5p1a1 R°R (R —q )-i-
dr 2 -1 9
—E/ 7111— +€1)— + ppa R* 4+ Yiln—+
r a

o - . 1 . 2,
[p202(3” + q4) + prea (R + RR)]lng + 5p(p2oa0d + p1oa RR) (g P a0+

(a3 RR )2

) .
gEt / (7111—+f7)—‘+9102(é— (A.46)

a 70

A5 Approximate Solution

From Equation (A.46), the complexity of the exact solution for pressure
acting on the cavity wall is apparent. In addition to two definite integrals
that remain to be evaluated, there are also two boundary relations unknown,
i.e. g/a and R/q. Therefore, in order to enable predictions to be made some
simplifications of this expression have to be considered. First, if the leading
shock front is relatively weak, then the cavity jump between the stress free state
and the locked elastic state is supposedly very small. Thus, an approximation
can be made as follows :

P1 = pPo (A.47)

What follows immediately from Equations (A.15), (A.25) and (A.41) because of

Equation (A.47) 1s

1 =0, f(t)=0 (A.48)
e =0 (A.49)
Po . .
ap=1-—, g(i) =g (A.50)
P2



It should be noted that Young’s modulus is usually far greater than the yield
strength of a material, or Y/E << 1. In conjunction with Equation (A.49),

Equation (A.20) becomes

p<<1 (A4.51)
From Equation (A.23)it gives
7 2
Zapn-a-e?)d) (A.52)
s r

Sincer > ¢ and 1 — ¢~ 28 is small, according to the binomial thesrem, the above

equation yields

r 1—e 28 q .9
— =1 =)* A.53
70 * 2 (7’ ) ( )
so that
In— = In[1+(1-— e—zﬁ_)(g)z] (A.54)
To r

=

Using Taylor’s series, Equation (A.54) can be further approximated to be

1— e
lni- = __e__(
To 2

2

)2 (A.55)

-]

With these simplifications, the first integral, [; in Equation (A.45) becomes

d 2 R d
_—E/ )hl—‘rél T i—E/ (1_6—29)((1 2 ar
r 3 . g T r
which on integration gives »‘
E ,
= 50-e- (}%)21 (4.56)

Since the assumption so made results in Equations (A.47) and (A.49), it is
implied that the radial distance may approach infinity, i.e. R — oo. Thus,
Equation (A.56) becomes

Ilig(l—e‘zb) - (A.57)

If now Equation (A.37) is reconsidered in conjunction with Equation (A.51), the

following expression results




It is clear that at » = a, the particle velocity v(a, t) at the Ca\;it_\' surface must
be equal to the time rate of change of cavity radius «. That 1s, in conjunction

with Equations (A.30), (A.50) and (A.53)

' 'lj(a,,t):M:%:QZQ(g)':é. (A.59)

a a a

which shows the consistency in the approximations.

Next, consider the second integral, I; in Equation (A.45) and use Equations

(A.35) and (A.39), then

2 | dr 2 g po.T. ., 1 P2 (lr
I:—E/‘H-— SB[l ]+
R (2l 70 te) 37 {nlpz(a) (3)? I s
. )2
d
= ;—Et/ In| 1() ]— = —Et/ ‘71112——T — —Et/ In{( ——1 (—+1 ]——
2 2 { 2 {
= -éEtan(%) §E‘/ In(1 + 51 —g / ln -~ 2
2 2,4 2 2 .
= Z))'Et]n (;) - gEi[;g - gEtL; (A()O)

The integrals I3 and I defined above can be separately evaluated as follows.

r dr

a). Iy= '/aiqln(l%- —-)—

a7
Now a transformation is necessary for the integration of I3. Let In> = « then
r = ae’, dr = ae"dy, in(l +o)=In(1+e")andasr —a, vy —=0; r —q, v —
InZ. Therefore

o] (_i)’ll—]

Z n 1€ d’)’— Z 5 [(g)n_l]

n =l n a

.-:DQ

In? :
Iy = / In(1+e")dy = /

Jo
(A.61)

by, I = /:qln(—r—ni"l

Ja T a T
It must be noted that the integrand of this integral has infinite discontinuous
points at r .: a, i.e. lim,_, ln(i — 1) = . Hence, I 1s a so-called generahzed
integral and needs a special method of integration. Now take w > 0, if the limit

limy—0 fay ln(g — l)dr—r exists, then define

I = / n(F - 1)< = Bm / n(Z - 1)< (A.62)
Ja a T w—0Jotw a T
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Exercise a transformation similar to that above by defining £ —1 = €” in Equa- .
tion (A.G‘E), then » = a(e¥ 4+ 1), dr = ae?dy, In(L —1)=vandr = a+w, y —
In®; » — ¢, v — In(Z — 1). Thus, Equation (A.62) becomes

ln%~1 ey
Iy = lim / ——Ld’y
w—0JIn (1+€7)

) : ln( :-1)
= limo[ln(g - 1)111g - lngln(l L2 )} = lim -/l In(1 + e7)dy

a a a a w—0./In¥
. | > (—1)*1 , w
= 111(% - 1)1113 - NZ::] LH)T“(g - 1)" -~ ulJig]qh]-(;lﬂ(l + %}) (A.63)

where lim,, 0 In2In(14+%) = I5 is a indeterminate limit which can be determined
a a -

by using the L’'Hospital rule as follows

Is = hm ln—ln(l + ) 0 (A.64)

w—0 @ 48

Combining Equations (A.61), (A.63) and (A.64), Equation (A .60) becomes

-n. -1

i (I (Lo o1 (465)

CL a

2
I, = ~§Etln( )ln(l e

- a

OJ[[\.’J

Fially, Equation (A.45) in conjunction with Equations (A.48), (A.50), (A.57),

(A.58) and (A.65) becomes

E Y] E,
p(t) = —?)—(l—e_zﬂ)—%lnaz%-—lna)ln (1-Vay)
oo, 1 S B G e S S »
26 - Sonncala +ad) - 3B S ar -(g— ) (ae0)

n=1

where /3, Y7 and oy are given by Equations (A.20), (A.29) and (A.50), respec-

tively.

]
o
—



Appendix B NOTATION

a, i,

CS
¢
Ch, €

d

radial position, velocity and acceleration of cylindrical
cavity surface, respectively.

itial cavity radius.

positive constants, n = 0,1,--,n

projectile cross-sectional area.

constants.

inertial coeflicient for projectile nose in penetration theory.
elastic wave velocity.

plastic wave velocity.

shock wave velocity.

mertial coeflicient function of penetration in penetration theory.

quasi-static and inertial coeflicients for ogival projectile nose in
penetrétion theory, respectively.

constant.

projectile diameter.

specific internal energy.

Young's modulus.

strain-hardening modulus.

‘unknown integration function for elastic region in cavity

expansion theory.

quasi-static stress in rate-dependent uniaxial stress wave theory.

axial resisting force.

axial resisting force along the projectile axis of symmetry
in penetration theory.

gravity acceleration.

unknown integration function for plastic region in cavity

expansion theory.

SV
(8]
3]



g(o,¢) plastic strain rate function rate-dependent uniaxial
stress wave theéry.
G shear modulus.
I, determinate integration , n = 1,--, 5.
] variable used for transformation.
J variable ﬁsed for transformation.
k  constant
K bulk modulus.
L projectile nose length.
m  projectile mass.
M effective projectile mass.
N soil constant in Young’s empirical equations.
p(1) compressive normal stress on the projectile surface.
Psy Pd quasi-s.tatic component and dynamic component of p(t).
P pressure. |
P. critical pressure.
g radius of the elastic-plastic interface.
r Eulerian radial coordinate.
ro initial position of the particle currently at radius 7.
R ra(lgus of the stress free-elastic interface.
s radius of circular sector for ogival nose.
S surface area of projectile nose.
t  time.
u displacement.
u, radial displacement.
U plastic work.
v particle velocity.

vg,v1, vy  particle velocities in stress free, elastic and plastic regions,

[
|8
W



Ug
1%
Vo
Va

V,

€0

€1, €2

€r; €y

€z, €y

€

- €el, €pl

€Yy

respectively.

particle Velociiy i orthogonal coordinates. |
impact velocity.

initial impact velocity.

specific volume.

instant impact velocity in penetration theory.
projectile weight.

longitudinal distance in orthogonal coordinates.
yield strength.

yield strength in elastic-perfectly plastic material.
effective yield strength.

mstant penetration depth.

critical penetration depth at critical ve](\)city Ve.
final pénetration depth.

locking compressibility.

constant.

total strain.

.constant strain.

constant strains in locked elastic and locked plastic

regions, respectively.

strains in radial and tangential directions, respectively.

strains i orthogonal coordinates.

critical strain.

locking strain.

elastic and plastic locking strains, respectively.
yteld stramn corresponding to oy.

strain 1 the vertical direction. )

ogival half-nose angle.

8%
1]
o



T 3.14159.
P instaﬁt density.‘
P0,P1, P2 clensities in stress freé, elAas"t‘ic. and plastic regions, respectively.
pc critical density.
p1 locking density.
pel, Pt elastic and plastic locking densities, respectively.
o stress.
or, 09 stresses in radial and tangential directions. respectively.
0z,0y stresses in orthogonal coordinates.
o, normal stress in the vertical direction.
v~ Poiss on’s ratio.
¢ conical half-nose angie.
Y nose shape factor in Young’s empirical equations.

w transformation variable.

[V
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