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A STUDY OF THE PHYSICAL PROPERTIES OF POLYMER 

MONOLAYERS SPREAD AT THE AIR-WATER INTERFACE 

JOHN A. HENDERSON Ph.D. 1992 

An account is gtven of the methods of anionic polymerisation and 

characterisation used to prepare polymer samples, and the experimental methods 

used to examine their intetfacial properties, when spread as so-called Langmuir 

monolayers on water. Specifically, these. are smface pressure - concentration 

isotherm studies, neutron reflectometry, ellipsometry of polarised light, and surface 

quasi-elastic light scattering. 

Hydrogenous and deuterated analogues of three different groups of 

polymers have been synthesised. These are; 

syndio, iso and atactic poly (methyl methacrylate) SYNDIO-, ISO-, and 

ATAPMMA; 

poly (ethylene oxide), PEO; 

0.85:0.15 diblock copolymers of poly(methyl methacrylate) with poly (4-vinyl 

pyridine), PMMA4VP. 

The latter materials have been quaternised with hydrogenous and 

deuterated ethyl bromide to create pattially poly-electrolyte materials, 

PMMA4VPQ. 

Thermodynamic information obtained from surface pressure data 

regarding the interaction between polymer segments and the subphase in each case 

is related to structural and compositional changes in the film measured as a function 

of surface concentration by neutron reflectometry. 

The trends described are supported by ellipsometric data, and 

preliminary experiments into the investigation of PMMA surface monolayer 

visco-elastic properties are described. 
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Preface- Units and Svmbols 

Throughout the text of this thesis, standard SI units have been used 

wherever appropriate. In several of the subject areas addressed however, it has 

become accepted practice to quote physical properties in non-SI units which are 

nevertheless more familiar or more convenient for discussion. Scattering length 

densities, for example are normally quoted in the unit of reciprocal square 

Angstroms, A-2. Where such conventions exist, non-SI units may be used in the text. 

The following list provides conversions between these units and their SI equivalents. 

1 A= w-10m; 

1 MHz = 106Hz= 106s- 1 

1 mm =10-3m 

1 Ill = 1 o-61 = 1o-9m3 

1Jlm =10-6m 

1 nm = w-9m 

1 mW = w-3w = w-3Js- 1 

In an attempt to avoid the use of over cumbersome and unfamiliar 

notation in the theoretical sections of this thesis, the most generally accepted 

nomenclature in each of the subject areas addressed has been used. While this 

hopefully makes each section more easily read in itself, it inevitably leads to 

multiple and context sensitive definitions of characters and symbols. The list below 

attempts to define briefly the symbols used in the text, including a parenthesised 

indication of the context in which particular definitions are appropriate; 

a =major semi-axis of an inclined ellipse (ellipsometry); 

A = surface area (su1face pressure theory); 

A =amplitude of x direction vibration of electric field (ellipsometry); 

A = amplitude factor (SQELS correlation function expression); 

A
0 

= extrapolated surface area at zero stut'ace pressure, or limiting area per 



segment (surface pressure theory); 

a =monomer length (surtace pressure theory); 

A2 =second virial coefficient (polymer solution theory); 

A2,2 =two dimensional second virial coefficienr(surface pressure theory); 

a =azimuth of the electric field (ellipsometry); 

B =amplitude of y direction vibration of electric field (ellipsometry); 

B =instrumental background (SQELS correlation function expression); 

b =bond coherent scattering length (neutron retlectivity); 

b =minor semi-axis of an inclined ellipse (ellipsometry); 

~ =optical path length of beam in interfacial film (neutron ret1ectivity) 

~ =retardation of incident polarised beam at quarter wave plate (ellipsometry); 

~ =instrumental line broadening term (SQELS COITelation function expression) 

c =concentration (polymer solution theory) 

c* = concentration of transition from dilute to semi-dilute solution bahaviour, 

concentration of initial chain overlap (polymer solution theory); 

X = Flory-Huggins interaction parameter; 

D(w) =Lamb- Levich dispersion expression (SQELS); 

d =dimensionality (polymer scaling theory); -

d =film thickness (optical theory); 

d =physical density (neutron retlectivity); 

~ =phase difference of x andy electric vibrations (ellipsometry); 

o~ =change in phase difference (ellipsometry); 

~fs =line width of power spectrum (SQELS); 

oe =deviation from specular angle (SQELS); 

oen = angular separation from zero order of n1h order beam(SQELS); 

O'JI =change in amplitude attenuation: 

E =electric field vector(electromagnetic theory o'f light); 

EP =parallel component of electric field (electromagnetic theory); 

E
8 

= perpindiculur component of electric field (electrom·agnetic theory); 



E0 =surface dilational modulus (SQELS); 

E' =surface dilational viscosity; 

f =fractional coverage of surface (patchy film modelling in neutron reflectivity); 

F(~) =form factor (patchy film modelling in neutron reflectivity); 

<!> = volume fraction (suli'ace pressure theory, also used in discussion of film 

compositions) 

<j>* = polymer volume fraction of dilute - semi-dilute regime transition (two 

dimensional scaling theory); 

<j>** =polymer volume fraction of semi-dilute - concentrated regime transition(two 

dimensional scaling theory); 

G('t) = measured auto-con·elation function (SQELS); 

g =gravitational acceleration = 9.81 ms·2; 

g('t) =correlation function in time domain (SQELS); 

g<l)('t), g<2)('t) · = first and second order correlation functions of scattered field 

(SQELS); 

r =surface concentration (two dimensional scaling theory); 

r = time damping constant (SQELS); 

r* = surface concentration of dilute - semi-dilute regime transition (two 

dimensional scaling theory); 

r** = surface concentration of semi-dilute - concentrated regime transition (two 

dimensional scaling theory); 

y =surface tension (smi·ace pressure theory); 

y = surface tension modulus (SQELS); 

'Yo =transverse shear modulus (SQELS); 

y' =transverse shear viscosity (SQELS); 

h(Q), h'(Q) = modifying form factors 111 kiliematic expressions for neutron 

reflectivity; 

11 =minor semi-axial direction of an inclined ellipse (ellipsometry); 

11 =dynamic viscosity (SQELS); 



I =incident intensity of radiation (neutron reflectivity); 

Ir =intensity of reference field (SQELS heterodyne beat spectroscopy); 

I5 =intensity of scattered field (SQELS heterodyne beat spectroscopy); 

K = scattering vector 

KB = Boltzmann Constant 

k = neutron wave vector 

A, = radiation wavelength (optical/neutron theory); 

A =capillary ripplon wavelength (SQELS); 

Mm = molecular weight of scattering species or monomer unit (neutron 

reflectivity); 

Mn =number average molecular weight; 

Mw = weight average molecular weight; 

m = scattering mass per unit area (kinematic theory of neutron reflectivity); 

N =degree of polymerisation (scaling theory); 

N =atomic number density (neutron reflectivity); 

Nav =Avogadro Number= 6.023x10::!3 

n =refractive index (optical or neutron); 

v =critical scaling exponent (scaling theory); 

v8 =theta condition value of scaling exponent (scaling theory); 

v =kinematic viscosity = 11/p 

w =flexibility parameter in Singer expression (surface pressure theory); 

W
0 

=flexibility with zero cohesion in Singer expression (surface pressure theory); 

w =vibrational frequency of electric field (optical theory); 

w =complex capillary ripplon frequency (SQELS); 

W
0 

=propagation frequency (SQELS); 

P(w) = Bouchiat and Meunier power spectrum (SQELS); 

1t = surface pressure; 

Q = momentum transfer component normal to inte1face (neutron reflectivity); 

Q =phase term in expression for correlation function (SQELS); 



q = interfacial wavenumber = component of the scatte1ing vector parallel to the 

liquid surface (SQELS); 

R =reflected component of radiation (neutron reflectivity); 

Re =Reynolds Number; 

Rg =radius of gyration of polymer coil (scaling theory); 

ri,j =Fresnel coefficient at the i,j 111 interface (neutron retlectivity); 

p =generalised Fresnel coefficient (optical theory); 

p =scattering length density (neutron reflectivity); 

p =physical density (sections other than neutron reflectivity); 

s(Q) =normalised fonn factor (kinematic theory of neutron reflectivity); 

cr =adsorption cross-section (neutron retlectivity); 

cr = standard deviation in the rate of change of the scattering length density 

(kinematic theory of neutron reflectivity); 

<cr> =root mean square film thickness (kinematic theory of neutron reflectivity); 

T = absolute temperature 

T =transmitted component of radiation (neutron reflectivity); 

t =time; 

t =quarter wave plate thickness (ellipsometry); 

't =reduced temperature (surface pressure theory); 

e =temperature of theta or Flory condition behaviour (surface pressure theory); 

e =angle of radiation incidence (neutron reflectivity, ellipsometry, SQELS); 

ec =critical angle of total retlection (optical/neutron reflectivity); 

e =phase term of electric vibration (optical theory); 

e = scattering angle (light scattering); 

W = interchain cohesion (Singer expression for surface pressure); 

~ =island size (patchy monolayer film model for neutron reflectivity); 

~ =major semi-axial direction of an inclined ellipse (ellipsometry); 

'I' = amplitude attenuation (ellipsometry): 

'l'a =scaling exponent (scaling theory); 



z =co-ordination number of monomer units in_ polymer chain (Singer expression 

for surface pressure); 

<z> = n111 moment of scattering length density profile (kinematic theory of neutron 

reflectivity); 

= interfacial disturbance from the mean plane for a two dimensional wave 

(SQELS). 



CHAPTER 1 - INTRODUCTION 

The study of interfacial properties is of fundamental interest to physical 

science and also of increasing practical importance to industry. Interfacial properties 

are frequently very different from the bulk properties of the same material, and are 

found to have a profound influence on the behaviour of many diverse systems such 

as electronics components, solid powder and liquid flow systems, detergents, 

colloidal dispersions, biological systems, elastomers, adhesives, and ultra-thin 

coatings. The introduction of surface active materials at interfaces, be they protein 

chains at cell membranes, soap molecules adsorbed at the air - solution interface, or 

diblock copolymers providing adhesion between otherwise incompatible materials, 

greatly alters the properties at a given interface and hence a physical understanding 

of the way such materials act enables scientists and technologists to exploit them to 

greater effect in many applications. 

One system in which the interfacial region to be studied is made 

convenient for examination by its very nature is the air - liquid interface. Apart from 

thermally induced surface ripples, in the absence of gross vibrations the air - liquid 

interface is a microscopically smooth and self levelling system. In addition, the air -

liquid interface is of interest in many practical situations. Surfactant solutions, for 

example are well known to display surface excess adsorption at the solution - air 

interface. Other applications will be discussed later in this introduction. 

The potential of polymeric materials as surface active agents has come 

to be increasingly recognised, as the nature of a long chain molecule provides wide 

opportunities for the introduction of amphiphilic properties at specified sites along 

the chain, leading to enhanced surface properties. Both soluble and insoluble 

polymeric materials are of interest in such applications and both will be considered 

in the bulk of this thesis. 
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Evidently there is a need to understand the fundamental physical science 

behind the many applications just described, and indeed a well established classical 

literature of experimental and theoretical considerations of air - liquid systems 

exists. However many of the classical techniques used provide only sketchy 

information about the actual structure of monolayer systems and it is only in recent 

times that more sophisticated non-invasive techniques employing radiation and 

light scattering type techniques have been developed successfully. The following 

sections provide an overview of the most commonly used classical techniques, 

followed by a fuller description of the more recent advances in experimental 

methods to non invasive techniques and the relevant theories on which they are 

based. 
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1.1 Classical Examination of Interfacial Monolayers 

Several techniques have been commonly used for the study of 

monolayers at the liquid- gas interface. The most widely studied systems are water 

or aqueous solution systems at the interface with air, although organic liquid 

systems and liquid metals have been studied. The principle techniques used have 

been measurements of surface pressure, surface potential, surface viscosity and 

surface shear modulus values. The last three techniques will not be considered in 

any detail here but they have been achieved by adaption of three dimensional 

concepts to the two dimensional case, for example surface viscosities are measured 

by studying the flow of film through a capillary canal on the surface very much in 

the same way that bulk viscosities are measured by a capillary tube viscometer. By 

far the most standard technique is the measurement of the surface pressure in a film 

as it is compressed and that technique will now be considered. 

1.1.1 Surface Pressure- Area (Concentration) Isotherm Measurement 

The surface pressure at an interface is defined as the difference m 

surface tension between the clean substrate and the surface with a spread film. 

1t = Ysub- Yfilm 1.1 

The measurement of 1t is conveniently achieved by the use of a 

Wilhelmy hanging plate type apparatus<l.2) where an inert metal or paper plate hangs 

vertically into the liquid suspended from a force balance. This basic design is 

usually adapted for continuous operation by attaching the plate to a displacement 

transducer where the movement of the plate (or the force required to maintain its 

stationary position) can be conveniently converted to an electrical output suitable for 

computer storage and manipulation. 
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The relative experimental simplicity, speed and ease of automation 

associated with surface pressure measurements make this a very attractive technique 

for the examination of interfacial monolayers. However traditional studies have 

always been rather limited by the lack of understanding of how the observed data 

relate to the structure of material in the layer. Many reports have been published in 

which the existence of various two dimensional phases and phase changes have been 

established. 2-D gaseous, liquid expanded and condensed, and solid films have all 

been observed, but with a very few exceptions interpretation has been very 

qualitative. Section 1.5 contains a fuller review of previous studies of monolayer 

systems. 

1.1.2 Theoretical Description of Surface Pressure Phenomena 

Apart from the pioneering efforts of Crisp, (3.4) the earliest attempt to 

develop a quantitative theory for the description of polymer monolayers according 

to the molecular interaction~ occurring at the interface was by Singer, (S) using the 

theory of polymer solutions developed by Huggins.C6) Using a two dimensional 

lattice model for the case of strong cohesive forces where the surface pressure 

exerted is less than that for a random coil, Singer derived the 

expression 

1t = NKB T[ l{ A J + ( N- 1 J z ln( 1 _ 
2

Ao J] 1.1 
Ao A- A0 N 2 zA 

where N is degree of polymerisation, kB is the Boltzmann constant, T is the 

temperature, A is the surface area for which the surface pressure equals 1t, A0 is the 

extrapolated area at zero pressure, and z is the co-ordination number of the 

monomer units in the chain (related to the degree of unfolding of the chain). 
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For any degree of polymerisation where z = 2, the chain is rigid and 

(1.1) reduces to 

1.2 

For a fully flexible chain, z = 4. Davies<7) defined a flexibility parameter 

w = z - 2, such that 

1.3 

where W is the interchain cohesion from Vander Waal's forces between polymer 

segments and W0 is the flexibility with zero cohesion. However, as pointed out by 

Kawai,<8) this theory makes no allowance for entropic effects on the chain flexibility 

caused by the strictures placed on chain configuration by the interface. Frisch and 

Simha<9•10) modified Singer's treatment to allow for chain looping and crossovers in 

pseudo two dimensional systems. Saraga and Prigogine<ll) had proposed a treatment 

based on Flory's statistical analysis methods<12) which introduced another modifying 

term to account for cohesive enthalpic interactions. A variety of these and other 

theoretical treatments were developed to describe polymer monolayer behaviour but 

there seems to have been little inclination to apply them to experimental data. 

In the past few years, there has been an important breakthrough in the 

understanding of the observed surface pressure data, with the development of two 

dimensional scaling theories analogous to those expounded for three dimensions by 

de Gennes. These theories have been derived in terms explicitly involving the 

dimensionality of the system and hence they have been extended to the two 

dimensional case. 

1.1.3 Scaling Concepts 

5 



The scaling theories of P.G. de Gennes for polymer chains in three 

dimensional solutions are described in his book<13). This describes the concepts of 

dilute and semi-dilute polymer solutions and the existence of a crossover between 

these regions at a concentration c *, where chain overlap just begins to occur. For 

good solvents, c * is expressed 

c* = NIR/ = a-3Nl-3v = a-3N-4/5 

where N =degree of polymerisation, tending towards infinity, 

Rg= radius of gyration, 

a = monomer length, 

v = critical exponent 

1.2 

A corresponding polymer fraction <!>* may also be defined to scale 

according to 

<!> * "' N-415 1.3 

In dilute solutions, that is for c < c *, the solution is a system of separate 

coils behaving as hard spheres. In this region Flory - Huggins behaviour is observed 

and the equation of state 1.4 is observed 

where the second virial coefficient A2 has the dependence 

Az:: RlN-2 "'N-115 

1.4 

1.5 

In the semi-dilute region where the polymer fraction <1> is still low, such 

that <j>* < <1> < <j>** ,(where <j>** is the polymer fraction at which transition to 

concentrated solution behav_iour occurs) the chain overlaps necessitate the 

introduction of an excluded volume interaction term. The scaling law in this case is 

rrff = c/N frr( cRo 3 IN) = c/N frr( c/c *) 
0 

where frr is a dimensionless function such that 

limx--frr(x) =canst xm =canst (<j>/<j>*)m 

= canst <l>m N4m/5 

6 
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This gives 

a31t!f = const <!>m+l N(4m/5)-l 1.8 

in the semi-dilute region. Since all thermodynamic properties are independent of 

degree of polymerisation in this region, m must equal 5/4 giving 

1.9 

This is in contrast to the mean field prediction which gives 1t "" ¢2. 

1.1.4 Scaling Theory in Two Dimensions 

The three dimensional theories outlined briefly above have been 

expressed in a uni-dimensional form by Daoud and Jannink<14) and des 

Cloizeaux<15). These expressions may be applied to the two dimensional "solution" 

case encountered in polymer monolayers. In the dilute region the equation of state 

virial expression 

1.10 

is valid, where A2,2 is the two dimensional second virial coefficient and r is the 

polymer surface concentration. The second virial coefficient can be defined 

generally in any dimensionality, d, as 

1.11 

where 't is the reduced temperature, v, v9, and 'l'a are critical exponents for the good 

and theta 2-D solvent cases. Values for these exponents have been predicted by 

many theoretical methods. E-expansion renormalisation group techniques give 

v=0.77<17•18), v9=0.505<19) and 'l'a=0.60<20). Thus 

1.12 

Other theoretical predictions for the value of the v exponent have been 

attempted widely. Mean field theory predicts that in the good solvent regime, 

v=0.75. Self avoiding walk calculations<21•22) suggest a similar value for short chains 

7 



(N < 18) whilst Monte Carlo simulations predict v=0.753±0.004(23 >. The matrix 

transfer prediction is v=0.7503±0.0002C24>. 

There is much greater diversity in predictions of v9, the value of v in the 

e condition. The mean field prediction is v9 = 2/3 and this considers only ternary 

interactions, whereas the collapsed chain value of 1/2 is obtained by ideal random 

walk treatment. Monte Carlo simulations have suggested values between 0.51 (2S), 

and 0.59(26>. An indefinitely growing self avoiding walk analysis prediction of 

0.567±0.003(27•28) has been obtained. Other predictions of 0.59 and 0.55 have been 

obtained by real space renormalisationC16•29•30) and transfer matrixC3l) methods 

respectively. The variation in these values is reflected in the measured experimental 

values which are discussed in section 1.5. 

The general n-dimensional definition of the crossover polymer 

concentration between dilute and semi-dilute behaviour is 

1.13 

with 

1.14 

the radius of gyration in the dimensional space of d. For d=2 one obtains 

1.15 

An osmotic pressure expression was obtained by des Cloizeaux 

For d=2, the surface pressure expression is 

rrrr ..... 12.ss't1.64 

1.16 

1.17 

Considering the transition from semi-dilute to concentrated behaviour, 

Daoud and Jannink produced the following general expression for c** 

1.18 

Above c ** there is chain overlap but ,due to screening, e conditions hold, 

corresponding to the semi-dilute region ate conditions. 
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and 

1t is defined by 

1t(f"" cv6d/(V6d-l) 

Ford=2 then 

r** "" to.o161 

1.19 

1.20 

1.21 

However this behaviour has never been observed, a fact which has been 

attributed to out of plane deformation of the monolayer before the concentrated 

regime can be attained. 

1.1.5 Non-Perturbative Methods 

The classical methods previously listed all necessitate some sort of 

perturbative contact with the surface under examination. For example, to measure 

the surface pressure requires the contact of a Wilhelmy hanging plate with the 

liquid surface. This can distort experimental measurements in some instances, 

yielding inconsistent results<32>. Non-perturbative methods involving the interaction 

of light and radiation sources with the surface have been developed to overcome this 

problem and provide more detailed information on the structure of surface 

monolayers. These include ellipsometry, surface light scattering, X-ray fluorescence 

microscopy, induced evanescent wave spectroscopy, and X-ray and neutron 

reflectometry. Of particular interest in the present context are ·neutron reflectometry, 

ellipsometry, and surface quasi-elastic light scattering. 
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1.2 Neutron Reflectometry 

Neutron reflectometry has emerged in the last few years as a valuable 

tool for the investigation of the surface properties of many interfacial systems. In the 

relatively short period of time since the earliest pioneering work in the field, the 

suitability of the technique for the investigation of a broad range of surface science 

problems has been demonstrated by the successful development of the instrument 

CRISP at the Rutherford Appleton Laboratories, Oxford, UK and at present several 

other similar facilities have either opened or are planned in the foreseeable future. 

The basis of the technique is the fact that the specular reflection of 

neutrons at an interface at small angles greater than the critical angle for total 

reflection is dependent on the density of material in the interfacial region and on the 

thickness of the interface. Reflectometry has been used to study a wide range of 

systems including multilayer structures of immiscible polymer blends and diblock 

copolymer spun cast films, interdiffusion properties of miscible polymer 

multilayers, the surface structure of biological materials, metal and semi-conductor 

substrate deposited solid films, surfactant and polymer solutions exhibiting surface 

excess adsorption at air-liquid, solid-liquid and liquid-liquid interfaces, and the 

properties of spread monolayers of surfactants and polymers. 

A major attraction of neutron reflection is that, being a nuclear 

scattering phenomenon (unlike X-ray reflection which depends on electron 

densities) it is sensitive to certain isotopic substitutions in the material under 

examination. Of most common practical use in hydrocarbon systems, such as 

polymers, is hydrogen/deuterium substitution. 1H and 2H nuclei have very different 

coherent scattering lengths of different sign for neutrons, and hence materials which 

are otherwise chemically identical will, if one is hydrogenous and the other 

deuterated, have completely different scattering length densities (related to the 
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neutron refractive index). As this quantity appears explicitly in the mathematical 

functions used to describe the reflectivity, isotopic substitution may then be used to 

provide a second set of independent data for the same system. Given a suitable 

number of such contrast sets, it is possible to determine in favourable cases a unique 

solution for both the layer thickness and density profile, a result inaccessible by 

other methods. 

Neutron reflectometry has been the major technique employed during 

this project and a fuller description of the technique, its development and the theory 

on which it is based is to be found in Chapter 2. 
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1.3 Ellipsometry<33) 

Ellipsometry is a useful non-invasive technique for the investigation of 

the optical properties of surfaces and thin films. As polarised visible light is used as 

the incident radiation, the technique is non-destructive. Ellipsometry operates on the 

principle that when linearly or elliptically polarised light is reflected from a surface 

or interface, the components of its electric vector E undergo a relative phase change 

related to the layer thickness and refractive index. This results in a characteristic 

state of polarisation in the reflected beam which can be used to determine the 

thickness and composition of the film. 

The classical description of electromagnetic radiation in terms of 

electric and magnetic field contributions are applied to the consideration of 

ellipsometric phenomena<34>. Polarised light is described in terms of two 

components of its electric field vector parallel or perpendicular to the plane of 

incidence, defined as the x-z plane. The interface between the two media is at z=O, 

and the angle between the electric field vector and the plane of incidence is the 

azimuth of the electric field, a.. 

by 

The parallel and perpendicular components of the E field are then given 

Ex = ~ = Ecosa. 

E = E = Esina. y s 

1.22(a) 

1.22(b) 

For two arbitrary vibrations of similar frequency ro and amplitudes A 

and B in the directions of the co-ordinate axes then 

and 

Ex = A cos( rot + ex) 

Ey = Bcos(rot + ey) 

1.23(a) 

1.23(b) 

If the two vibrations are in phase (ex = ey) or of opposite phase (Ox = 

ey±n) the ratio of the above expressions is 
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Ey!Ex =±B/A 1.24 

which is the equation of a straight line in the x-y plane, thus the light may be said to 

be linearly polarised. 

If on the other hand there is an arbitrary phase difference between the 

two vibrations, then the equation of an ellipse is generated; 

where 

(ExfA)2+(EyiB)2-2(ExfA)(EyiB)cos~=sin2~ 

~=ex- ey. 

1.25 

By redefinition of the co-ordinate system to axes ~ and 11 that lie along 

the major and minor axes of the ellipse described by the above equation 

E~ = Excosx + Eysinx 

E11 = -Exsinx + Eycosx 

1.26(a) 

1.26(a) 

where x is the angle between the ~-axis (the major semi-axis of the ellipse) and the 

x-axis (figure 1.4). 

Figure 1.1 Characteristics of an inclined ellipse 

The ellipse is now described by 

E~ = acos( rot + e0 ) 

13 

1.27(a) 



E11 = ±bsin( rot + 80 ) 1.27(b) 

where a and b are the semi-axes of the ellipse, and the double sign in E;, takes 

account of positive and negative ellipticities. 

Substituting the appropriate form of 1.22 into 1.26 and equating 1.26 and 

1.27 gives on expansion 

where 

and 

tan2x = tan2v cos~ 

sin2y = ±sin2'Jf si~ 

~ = ±tan2y/sin2x 

tan'JI = B/ A = I~V!Esl 

tany = b/a 

1.28 

1.29 

1.30 

1.31 

1.32 

The quantities that characterise the orientation of polarisation at any 

stage then are the phase difference ~ and the amplitude attenuation 'Jf, and the 

relationships between these quantities and the disinclination of the ellipse from the 

x-y co-ordinate system are explicitly present in equations 1.28 to 1.30. 

By comparison of the ratios of the incident (i) and reflected (r) p and s 

components of E on the reflection of polarised light at an interface, the fundamental 

relationship of ellipsometry is generated; 

(~5)/(E/Es)i = (E/Ej)p'(E/EDs 

= RJY'Rs 

=P/Ps 

where p is the generalised Fresnel coefficient 

= tanv/tan'Jii.exp(i(~r-~D) 

= tanv e~ 1.33 

Specifically considering reflection from a thin film spread on water, 

denoting air by subscript 0, film by 1, and subphase by 2, 

1.34 
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where~= 47tn1d1cos<l>!/A.. 

~ therefore contains terms in the refractive index, nl> of the film, its 

thickness dl> and also the incident light wavelength A. and angle <j>1. The terms r01 

and r12 refer to the Fresnel coefficients of the appropriate interfaces and are either rP 

or rs coefficients depending on the form of equation 1.34. 

Experimentally the changes in ~ and 'I' for reflection from the clean 

water surface and the spread film are measured. The change in phase difference o~ 

is defined as 

0~ =~- ~' 1.35 

where ~ is the clean water value and ~'the film value. 

o~ is found to be directly proportional to the film thickness, d1. 

For a non-absorbing substrate it is found that the equivalent amplitude 

attenuation difference 

1.36 

is essentially zero and so no sensitivity in this parameter is expected for monolayers 

spread on the surface of water. 
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1.4 Surface Quasi-Elastic Light Scattering(35) 

Thermal excitations cause spontaneous propagation of low amplitude, 

high frequency transverse capillary waves at air- liquid interfaces. Fourier analysis 

of these thermal excitations results in a series of surface modes, the temporal 

evolution of which is reflected in the time domain spectrum of the scattered light. As 

the wave evolution is governed by interfacial visco-elastic properties, suitable fitting 

to an experimentally generated time spectrum of the scattered light yields 

information about the visco-elastic properties and processes occurring in the 

interfacial region of simple liquid and monolayer dosed systems. This is the basis of 

modern surface photon correlation type experiments. 

1.4.1 Light Scattering from a Simple Liquid Interface 

Considering the liquid - gas interface for a simple liquid as a Gibbs 

dividing surface, defined a~ the x - y plane, the interfacial disturbance from the 

mean plane of a two-dimensional wave propagating in the x direction (Figure 1.2) 

may be described by 

where 

~(x,t) = ~0exp(i(qx +rot)) 1.37 

q = 2rr,/A =interfacial wavenumber, 

ro = wave frequency, 

and A = wavelength ofripplon. 

This behaves as a weak diffraction grating for iight approaching in the x 

- z plane and there is a weak scattering effect upon some of the reflected light, which 

is scattered away from the specular angle e by an amount 38. It is found that for 

small angles of scatter 

q = 2kosin(o8/2).cose 1.38 
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where 2k0 sin(08/2) = K, the scattering vector. 

Air 

Liquid 

Incident Light 

.... 
. 

A : .... 

Specular Unscattered Component 

Scattered Light 

· · · · · · · Dividing Plane 

z 

X 

Figure 2.1 Light Scattered by Thermally Induced Ripples 

1.4.2 The Dispersion Relationship for Capillary Waves 

It is a matter of choice in studying light scattering events to examine 

either the spatial power spectrum of the scattered light as a function of real 

frequency or to measure the time domain correlation function which is the Fourier 

transform of the spatial power spectrum. Previous workers have increasingly 

favoured the latter method as methods of rapid photo-correlation detection have 

been developed to enable convenient time domain experiments to be carried out 

For the case of time domain spectral analysis of scattered light, a real 

ripplon wavenumber q is studied and the frequency ro is considered as complex; 

(I) = (1)0 + if 1.39 

where (1)0 is the propagation frequency and r is the time domain damping constant. 
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ro is related to q through a dispersion relationship which additionally introduces 

terms in the visco-elastic properties of the liquid at the interface. The classically 

accepted form of the dispersion expression D(ro) for simple liquid surfaces is that of 

Lamb<36) and Levich<37) 

where 

D(ro) = (iro + 2vq2)2 + gq + yq3/p- 4v2q3(q2+iro/v) 1f2 = 0 1.40 

y = surface tension, 

v = kinematic viscosity = 11/p, 

g = gravitational acceleration, 

and p = density of the liquid. 

For sufficiently short surface wavelengths, the gravitational term may be 

neglected, and by extraction of the following reduced variables 

S = iro/2vq2 1.41 

and Y = y/4v2pq2 = yp/4112q 1.42 

the dispersion relationship may be rewritten 

D(S) = (S + 1)2 + Y- (2S + 1)1!2 = 0 1.43 

The reduced group Y represents the balance between driving forces and 

dissipative forces in wave propagation, 

Y = restoring force x inertial force 

(damping force)2 

1.44 

Numerical solutions of 1.41 show that for Y > 0.145 the roots are 

complex conjugate, corresponding to propagating capillary modes. Below this value 

however damping dominates, two real roots are found, corresponding to 

overdamping of surface motions. This theoretical prediction has been borne out 

experimentally(38). A first order approximation to the solution of 1.40 yields an 

expression for the wave frequency in the propagation mode, 

(1)0 2 = yq3 /p 1.45 

and a proportional dependence of the wave damping to the liquid viscosity, 
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1e 

r = 2vq2 

ro =roo+ ir = (yq3/p)ll2 + i2vq2 

1.46 

1.47 

In the overdamped modes the damping constant are given by 

rl = vq2 1.48 

and r 2 = yq/211 1.49 

These approximate solutions only agree with the exact solutions of 1.40 

rather far from Y crit ( = 0.145), and higher order approximations have been derived, 

however the dispersion equation can be more conveniently solved using numerical 

methods. 

It has been suggested<39.4°) that specific surface visco-elastic properties, 

different from bulk fluid properties might affect surface wave propagation. 

Interfacial viscosities arising from various shear modes might be readily imagined, 

however the propagation of transverse capillary waves would be predominantly 

influenced by a surface viscosity governing response to an applied shear stress 

normal to the surface. This is the transverse shear viscosity and forms the imaginary 

part of the surface tension modulus, y 

'Y ='Yo+ iroy' 1.50 

where y 0 is the classical surface tension. 

The effect of the complex term in 1.50 is to increase the dissipative 

influence in the balance of propagation and damping. Substituting 1.50 in 1.47 

yields 

(I)= [(Yo+ iroy')q3/p]ll2 + 2ivq2 

""'(yoq3/p)l/2 + i[2vq2 + y'q3/2p] 1.51 

This then predicts that the transition from propagating to overdamped 

modes will occur at a slightly lower value of q from that predicted in the absence of 

surface specific visco-elastic effects. 
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1.4.3 The Power Spectrum and the Correlation Function 

The power spectrum describing the dependence of the scatter in the 

spatial dimension has been obtained by Bouchiat and Meunier<41 ); 

P(ro) = -kB T/(rrro).(p/4T] 2q3)Im{ 1/D(S)} 1.52 

This spectrum is approximately Lorentzian in form and is characterised 

by a peak frequency f5 and linewidth (full width at half peak height) ~fs which can be 

identified with ffi0 and r by extraction from the dispersion equation D(S) present in 

1.52. 

The concept of photon correlation techniques is to measure the 

correlation function g('t) in the time domain, which is simply the Fourier transform 

of P(ro), however in practice certain instrumental broadening factors have to be 

included in the expression for g('t). These are discussed in section 1.4.7. 

1.4.4 The Dispersion Relationship and Power Spectrum for a Monolayer Spread 

Liquid Surface 

The presence of a monolayer on the surface of a liquid modifies the 

dispersion relationship D(ro) by introducing explicit terms in the physical properties 

of the monolayer. The modified form is<42·43) 

D(ro) = [Eq2+i(J)T](q+m)] x [yq2+i(J)T](q+m)-ro2p/q]- [i(J)T](q-m)f = 0 1.53 

where m = (q2 + irop/T])112, Re(m) > 0, and E = dy/dln(A) is the dilational modulus of 

the monolayer, where A is the molecular area in the film. 

The form of the power spectrum arising from capillary propagations 

governed by D(ro) in this case is<42) 

P(ro) = -kB T/rrro. lm[i(J)T](q + m) + Eq2) I D(ro)] 1.54 

Again this spectrum is approximately Lorentzian in form, although the 
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deviation from true Lorentzian form is well knownC44•45). 

1.4.5 Interfacial Viscolelastic Properties 

As previously mentioned, for the case of a simple liquid film, it is the 

rheological properties of the fluid in the interfacial region which determine the 

propagation and/or damping of the temporal evolution of surface capillary modes. 

For monolayers on liquid surfaces the situation is complicated by the viscous effects 

of the film material. 

In (x - z) plane hydrostatic compression of the film, K, and uniaxial in -

plane strain, described by the shear modulus S, are summed in the dilational 

modulus E, 

. E=K+S 1.55 

In most cases S is negligible compared with K. Both the dilational 

modulus and the surface tension may be expanded to include complex viscous 

terms; 

'Y = 'Y 0 + ic.oy' 

E = E0 + iOlE' 

1.56 

1.57 

y 0 and E0 are elastic moduli describing the response of the system to 

transverse shear and dilation within the plane of the interface respectively. (1.56) is 

the same form as (1.50) for the case of a simple liquid. y' and E' are the surface 

viscous terms corresponding to these two perturbations, as distinct from the classical 

surface viscosity which refers to in-plane shear. 

1.4.6 Experimental Considerations for Heterodyne Beat Spectroscopy 

Due to the weak nature of surface scattering effects, modem SQELS 
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experiments are carried out using heterodyne mixing methods, where a reference 

beam of known q generated by a transmission diffraction grating is mixed with the 

detected scattered light. Given certain conditions the sensitivity of the technique is 

greatly increased by these means. 

The measured auto-correlation function G(t) obtained from a heterodyne 

mixture of scattered and reference fields of intensity Is and Ir respectively is 

G(t) =(Is+ Ir)2 + I/[g(2)('t) - 1] + 2lslrg(l)('t) 1.58 

where gC1)(t) and gC2)(t) are the first and second order correlation functions of the 

scattered field. Provided that Ir is sufficiently greater than Is (Ir/ls > 30 is an 

accepted value) then the first order term 21slrg(1)(t) dominates the expression for 

G(t)C46). Earnshaw and co-workersC47•48) typically used an 1/Is ratio of 100- 1000. 

The accurate determination of the experimental q value is an important 

consideration in understanding the results of a scattering experiment. q is the 

component of the scattering vector parallel to the liquid surface and is given to a 

good approximation by 

q = 47t/A..sin(89J2).cose 1.59 

where e is the angle of incidence and ben is the angular separation from the 

zero-order beam of the nth diffracted beam. 

1.4.7 Methods of Data Fitting 

As previously alluded to, the measured correlation function is essentially 

the Fourier transform of the power spectrum of the thermally excited waves, 

G(t) = g(t) = Ff(P(oo)) 1.60 

In practice it is necessary to modify the form of the function used to fit 

G(t) to include terms for instrumental broadening and background effects, and for 

the deviation of the spectrum from a true Lorentzian form. Earnshaw and 
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co-workers(47A9) employed the following expression 

G('t) = B + Acos(ro0 't + q>)exp(-r't) x exp(-~2r2/4) 1.61 

where A is an amplitude factor, B represents the instrumental background 

(principally due to Ir), q> is a phase term accounting for non-Lorentzian behaviour 

and the Gaussian multiplicative term in ~ represents the instrumental line 

broadening. Earnshaw and McGivern found that this factor only affected the shape 

of the function significantly at q values greater than 700cm-1. 1.61 then is an 

expression containing explicitly the capillary wave frequency ro0 and the wave 

damping r. A best fit to the experimental data using a function of the form of 1.61 

yields values of {1)0 and r which may be related to the surface fllm visco-elastic 

properties via the dispersion equation. 

In applying this method Earnshaw and co-workers advocated a 

non-weighted fitting procedure where the values of the function at all delay times 

G('tz) to G('t128) (for a 128 channel correlator) were given equal importance. 

Additionally G('t1) was excluded to avoid dead-time effects in detection. Mann and 

Edwards(SO) suggested a weighted fitting procedure to avoid bias in the fitted value 

of r but Earnshaw and McGivern argued that since the modulation of G('t) 

represented a tiny perturbation on a large background that the statistical errors and 

hence the weights would be dependent predominantly on Ir and would thus be 

independent of 't. 

Around the same time as Earnshaw and McGivern published the above 

analysis, Hlird and Neuman(Sl) published critical comments on Earnshaw's 

treatment. Hlird and Neuman attributed bias in the fitted parameters to the fitting 

procedures used to analyse G('t), and criticised the full form of 1.61 as an 

over-complicated fitting expression which led to systematic over-estimates in 

experimental parameter values. In an attempt to resolve the issue of bias in data 

analysis Earnshaw and McGivern(SZ) responded with a consideration of various 
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alternative fitting procedures used to estimate interfacial parameters for free liquid 

films. Four models were compared with regard to the bias found in estimates of ro
0

, 

r, y a and 11 generated from them. The four models used were; 

a) a simple Fourier transform of a Lorentzian P(ro) as used in earlier studies<5I,53) 

with a background addition 

G(t) = B + Acos(ro0t)exp(-rt); 

b) the Fourier transform of a modified Lorentzian P(ro) to include the phase term for 

non-Lorentzian behaviour 

G(t) = B + Acos(ro0t + q>)exp(-rt); 

c) the full form of 1.61 including the Gaussian instrumental broadening term; 

d) an exact form of the Fourier transform of P(ro) 

f(t) = g(t)[l + A.g(t)/g(O)] 

where g(t) = FT[P(rotY.ll)] 

and A. describes self-beat contributions due to inadequate heterodyne reference 

intensity. 

Using the exhaustive model D to obtain non-biased values, Earnshaw 

and McGivern were able to demonstrate clearly that only the full form of 1.61 was 

capable of yielding non-biased estimates for the interfacial parameters for water 

over a range of q values from 300 to 1500cm-1. Since that time however Earnshaw 

has advocated the use of the rigorous "direct" analysis method (method (d) above) in 

data interpretation. 
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1.5 Review of Studies of Monolayers and related topics 

1.5.1 Surface Pressure Measurements 

It has been noticed since ancient times that oils spread on water have 

intriguing properties<54>. The ancients attributed the multi-coloured swirling patterns 

observed to their gods, but it has only been in more recent times that a scientific 

interest has been taken in such phenomena. The earliest recorded observation of 

wave damping by oil on water was by Benjamin Franklin, who described in a letter 

to the Royal Society of London in 1765<55> how he had calmed an area of half an 

acre on a pond on Clapham Common. The pioneer of modem studies on monolayer 

systems however was Irving Langmuir who published details of his studies into the 

nature of monolayers of fatty acids, alcohols and esters on aqueous subphases in 

1917.<56) Langmuir worked in conjunction with Katherine Blodgett, who developed 

the technique of lifting monolayers onto solid glass substrates for further 

examination or processing,<57) the so called Langmuir-Blodgett or L-B technique. 

Since the time of Langmuir and Blodgett, an extensive body of work on 

the experimental study of monolayers and L-B films has been published.<58) The 

properties of spread films of many amphiphilic materials have been examined in 

great detail and the techniques of trough design and the preparation and lifting of 

L-B films have been greatly refined, principally in the introduction of convenient 

methods of automation of trough and dipping mechanisms and the automatic 

continuous recording of surface pressure data. 

One group of materials to have received a considerable amount of 

attention has been polymeric films. The earliest attempts to investigate 

macromolecular films were on cellulose derivatives<59•60•61) and polyesters<62>. Even 

at this early stage the possibility of using monolayer techniques to study the surface 
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chemistry of natural macromolecules such as polypeptides and proteins was 

recognised<63-66) and a considerable concentration of effort has gone into this field 

since. A more systematic approach however has been the study of films of synthetic 

polymers. The earliest studies are described by Crisp. <3.4) Crisp later reviewed the 

field of research into macromolecular interfacial films towards the end of the 

nineteen fifties<67). From around that time however there was something of a dearth 

of activity in the technique. This may have been for many reasons, however it seems 

that the limit of the technique had been reached in terms of theoretical understanding 

of the experimental results. 

The classical interpretation of surface pressure data(3) has been to draw 

analogies with three dimensional phases. Depending on the rate of change of surface 

pressure with the decrease in area per molecule (reflecting the interactions between 

molecules in the layer; how far apart they are and how easily they can move for 

example) the film behaviour has been described as gaseous, liquid expanded or 

condensed, or solid. For non-polymeric materials such as long chain acids and 

surfactants the transitions between these phases are well observed. At very large 

areas per molecule very little or no surface pressure is discernible. As the film is 

compressed, at some point the molecules are brought closer together so that they 

begin to feel some influence from each other. The result is an increase in the surface 

pressure, corresponding to the transition to liquid film behaviour. Liquid films are 

divided into two categories, expanded and condensed. For an expanded type film the 

initial rise in the surface pressure is observed at a larger area per molecule than for a 

condensed film, and the rate of increase is generally more gradual. As the film is 

further compressed the molecules are eventually brought so close together that 

further compression becomes very difficult. The film becomes very stiff and the 

surface pressure rapidly increases in this solid phase and if the film is compressed 

beyond a certain point, catastrophic collapse occurs, accompanied by a sudden fall 
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in the surface pressure as molecules distort out of the plane of the layer. 

Alternatively, particularly for the more flexible, expanded type films, the surface 

pressure value may plateau in the high concentration (low area per molecule) region 

as molecules dip into the subphase or are excluded into bulk solution. 

For surfactants it is relatively straightforward to rationalise these phase 

changes in terms of the orientation of the molecules and intermolecular distances, 

however for polymer films the macromolecular nature of the spread materials makes 

the situation rather less straightforward. The limiting area per molecule 

(extrapolated from the initial slope of the liquid region of the isotherm) has long 

been used to infer the nature of packing of molecules at the surface but the potential 

for statistical distributions of chain configurations, long recognised in three 

dimensional polymer solutions, makes the simple arguments employed in the 

description of fatty acid type films much less useful. There have been very few 

attempts to rationalise the measured behaviour of polymer films with their structure 

with the exception of Shuler and Zisman<68) who used surface pressure and 

physically induced wave damping techniques to argue for the existence of two 

distinct conformations of poly (ethylene oxide) associated with the presence of 

bound water molecules along the chain, depending on the degree to which the chain 

was compressed. Nevertheless, a great many polymer films have been studied and 

classified as either (liquid) expanded or condensed types. Among the former are 

poly (vinyl acetate),<4•69-73) poly (2-vinyl pyridine),<74) poly (ethylene oxide),<68) 

poly (propylene oxide) and poly (vinyl alkyl ethers)<75). Among the latter are poly 

(methyl methacrylate),<76•77) and poly (vinyl benzoate).<78) Systematic trends in 

some homologous series of polymers have been noted. For example, in the poly 

(alkyl acrylates) a trend of increasingly expanded behaviour is observed with 

increasing alkyl group size from methyl to butyl. <3.4) A similar result was obtained 

for poly (alkyl methacrylates). <4) 
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Recent years have seen a revival in interest in monomolecular polymer 

film studies, primarily due to the development of new theoretical approaches to the 

prediction and interpretation of experimental results by Daoud and Jannink:. 04) 

Briefly recapping, these predict that polymer films will observe three regions of 

behaviour depending on the segment density on the surface. In the dilute regime, 

where the surface concentration is less than a critical r* value, the relationship 

between the surface pressure and the concentration should scale according to an 

exponent v. In the semi-dilute regime, r*>r>r**, this exponent is altered to a 

function ofv, y = 2v/(2v-1). Above r**, a concentrated regime is predicted where an 

exponential dependence to the power 101 is predicted. This however is not observed 

experimentally due to the contribution of other effects such as broad looping out of 

the layer and ultimately collapse. 

Many theoretical predictions for the value of the v exponent have been 

made based on a variety of mathematical models for the system. These have been 

discussed in section 1.1. The v exponent is of importance as it is characteristic of the 

thermodynamic state of the interaction between the polymer segments and the 

subphase. Theoretical predictions agree on a value of v=0.77 for the case of good 

2-D solvent conditions, however there is a greater variety of predictions for the theta 

state. v9 is variously predicted between about 0.505- 0.59, compared with a collapse 

value of 0.5. A value of around 0.56 is generally thought to be approximately 

correct. 

The first attempts to apply these scaling concepts to experimental data 

was made by Ober and Vilanove<79) in 1977. In a study of poly (vinyl acetate) 

monolayers they were able to demonstrate deviations from the mean field type 

predictions previously developed, and so modified the two dimensional solution 

model by allowing a fraction of the monomer segments to exist away from the 

lattice defined by the interface. 

28 



In 1980, Vilanove and Rondelez<80> made use of the scaling laws to 

characterise polymer film thermodynamics for the first time from surface pressure 

data at rather higher surface concentrations, where experimental difficulties 

associated with the measurement of extremely low pressures were avoided. Previous 

equation of state methods required isolated chain conditions, but from the scaling 

relationships governing the semi-dilute regime, Vilanove and Rondelez were able to 

extract values for the characteristic scaling exponent v governing the relationship 

between the radius of gyration and the degree of polymerisation. For poly (vinyl 

actetate) v was equal to 0.79 and for poly (methyl methacrylate) the value was 0.56. 

The former value is that predicted for good, excluded volume type behaviour, while 

the latter tends towards the predictions for a theta type two dimensional solution. 

Additionally the authors were able to observe the transition between dil~te and 

semi-dilute behaviour for PMMA, noting that when plotted on double logarithmic 

axes below r* the data showed molecular weight dependence, but that above r* the 

data for all molecular weights collapsed onto a single line, the slope of which was 

related to the scaling exponent by the relationship y = 2v/(2v-1). 

Takahashi, Yoshida and Kawaguchi<81•82> made use of the equation of 

state m the dilute regime to determine the theta temperature for poly (methyl 

acrylate) monolayers. By plotting 1t/rRT as a function of rat r < r* and observing 

the initial slope at various temperatures they were able to extract the molecular 

weight from the extrapolation to zero concentration and the two dimensional second 

virial coefficient A2,2 from the slope. This was found to reduce to zero at 18.2°C. 

The equivalent data in the semi-dilute regime was in complete agreement with the 

low concentration observations. At temperatures higher than the theta temperature, a 

slope of 2.85 corresponding to v = 0.77 was obtained, but at the theta temperature 

this slope became 35, for which v = 0.51, very close to the lowest theoretical 

prediction of v = 0.505. However in 1988 Vilanove, Poupinet and Rondelez<83> 
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contradicted these observations when they stated that they were unable to observe 

any theta state for poly (methyl acrylate) and indeed observed good solution 

conditions independent of temperature between 5 and 30°C. 

In the same paper, Vilanove et at reconsidered the case of poly (methyl 

methacrylate) which they had previously observed to yield a v value of 0.56. In the 

later experiments over a range of temperatures from 1 to 35°C they found that for 

two widely different molecular weights, their data agreed on a value of v = 0.53 (y :::: 

16.5). From the equation of state plot in the dilute regime they observed a negative 

slope for both polymers, corresponding to a negative second virial coefficient and 

less than theta conditions. This then was evidence for a v9 value significantly higher 

than 0.505. 

For lower molecular weight PMMA samples, Poupinet, Vilanove and 

Rondelez<84) observed a higher value of v, equal to 0.57, the difference being put 

down to the fact that the scaling predictions are made on the basis of infinite 

molecular weights. It is possible however that insufficient consideration of the 

stereotactic sequences in the earlier samples could have led to misleading results. 

Since very early work in the field, <76•77) the very different surface properties of 

spread films of syndiotactic and isotactic PMMA have been noted. Syndiotactic 

PMMA forms a liquid condensed type film but the isotactic polymer forms a liquid 

expanded type film. It is possible therefore that a degree of dissimilarity in the stereo 

sequences found in the various samples could have a significant effect on the 

structural properties of the film. 

1.5.2 Charged Monolayers 

Charge effects in ionised monolayers have been recognised for many 

years.<85) Davies<86) expressed the measured surface pressure 1t as a sum of 
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contributions from the equivalent uncharged film 1t0 and an electrical contribution 

1te· Due to the fact that fully ionised poly-electrolyte materials are typically water 

soluble and unable to form stable films, most studies were confmed to surfactants 

such as fatty acids.<87•88) Various methods have been attempted to avoid the 

problems associated with poly-electrolytes. The use of polyampholytes<89) for which 

the degree of ionisation can be controlled by adjusting the pH of the subphase, and 

random copolymers of charged and neutral monomers<90) have been reported, but a 

more recent approach is that of Bringuier et ai<91 ) who studied diblock copolymers 

of an uncharged sequence, poly (methyl methacrylate) with the quaternary 

pyridinium bromide salt of poly (4-vinyl pyridine). By studying a range of polymer 

compositions and molecular weights, and comparing the surface pressures obtained 

from equivalent PMMA homopolymers (1t0 ) and PMMA-4VPQ diblock copolymers 

(1t), they were able to demonstrate the existence of an electrical contribution 1te· 

They also demonstrated that on the addition of salt into the subphase water, the 1te 

contribution was diminished and at a salt solution concentration of greater than 

0.1M, the electrical contribution disappeared entirely. Curiously however, the 

authors did not compare the behaviour of the quatemised diblock materials with 

their non-ionised PMMA-4VP equivalents, from which it would seem logical that 

another estimate of 1te could be made. 

1.5.3 Ellipsometry 

In 1964 Zaininger and Revesz<33) reported on the state of the art of 

ellipsometry as it stood at that time. The relevant optical theories were well 

understood and established, but experimental efforts had been exclusively in areas 

where highly favourable refractive index contrast conditions occurred. These tended 

to be studies of interfaces of solid materials, for example semi-conductors and 
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conductors/92·93) liquid metal surfaces,<94) or examinations of the adsorption of 

materials onto solid substrates, for example water and organic liquids onto single 

crystal silicon and polystyrene onto chromium<95>. At that time ellipsometry was 

perceived as having most potential as an in situ probe for the examination of 

deposition, growth and dissolution processes of films from the liquid or gas phase. 

Some considerable effort had gone into the study of oxidation processes in metals 

but otherwise very little experimental progress appears to have been made. 

By the later years of the 1960's Stromberg and co-workers had turned 

their attention towards the problem of polymer adsorption at solution-solid 

interfaces. Systems studied included the adsorption of polystyrene, 

poly(ethylene-o-phthalate) and various proteins onto chromium, gold, steel, or 

copper substrates.<96•97•98) McCrackin developed experimental methods for the study 

of these systems<99> and theoretical chain distribution models to try and rationalise 

experimental observations. (lOO) 

In 1974 den Englesen and Konig demonstrated the applicability of 

ellipsometry for the study of monolayers spread on water by investigating spread 

films of a series of fatty acids and triglycerides<101) and light-absorbing biological 

type monolayers, <102> for example chlorophyll. 

Some attempts were made to apply ellipsometry in the areas of surface 

active biological materials<103.104) and synthetic polymers<105.1°6) adsorbed from 

solution at the air-solution interface, long chain acid monolayers, (lO?) and interfacial 

effects in an organic liquid, <108) but in general the much smaller refractive index 

differences between the film and the subphase made the technique rather more 

difficult than was the case for solid substrates. 

Nevertheless in 1988 Kawaguchi and co-workers published a pair of 

papers<109,1lO) describing ellipsometric measurements on spread monolayers of a 

series of polymers of expanded and condensed type, the former including 
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poly(ethylene oxide), and poly(vinyl acetate), and the latter poly(methyl 

methacrylate). These experiments demonstrated both the sensitivity and limitations 

of ellipsometry in the study of air-liquid interfacial films. Reference (109) used the 

experimental sensitivity in the phase retardation to estimate the film thickness, d as 

a function of surface concentration, and reference (110) claimed to calculate the 

refractive index of the film, n and hence the adsorbed amount. However the basis of 

independent determination of d and n by ellipsometry must be a sensitivity to both 

the measured parameters, the phase retardation and the amplitude attenuation. In 

reference (109), the authors admitted that the amplitude attenuation only exceeded 

experimental errors for high surface concentrations for two of the five polymers 

studied, poly tetrahydrofuran and poly (vinyl acetate). In all other cases the change 

in amplitude attenuation was essentially zero, therefore it is very difficult to justify 

the authors' claims to have calculated both d and n uniquely. It is perhaps more 

realistic to suggest that given a reasonable estimate in one parameter, ellipsometry 

may be used to determine the other. 

In reference (110), the possible use of a Lorentz-Lorenz type relation 

was proposed for the estimation of n given that one knew the values of the refractive 

indices of polymer and subphase or air. Thus an estimate of d1 and the adsorbed 

amount could be made by solving the Drude equation. The question of data analysis 

was addressed by Sauer et a/0 11>in a study of a polystyrene-poly(ethylene oxide) 

diblock copolymer and homo-poly(ethylene oxide). They used two approaches to 

data analysis, the Lorentz-Lorenz type macroscopic approach of weighted averaging 

of n to obtain d, and microscopic theories<93•107•112•113> which predict a linear 

dependence of the phase retardation on the fractional coverage of the surface. By 

neglecting PEO segment contributions, they constructed a model of the surface as 

partially covered with PS blobs which became squashed together on increasing the 

surface concentration. 
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The same group subsequently published a summary of their 

ellipsometric studies on polymeric monolayers including PEO, and PMMA. <114> In 

this case there was little to choose between the quality of data fitting obtained by use 

of a macroscopic or microscopic model, however Lorentz-Lorenz modelling using a 

weighted average refractive index between that of the polymer and the subphase was 

successfully used to fit the results, and the parameters obtained suggested that the 

films were well hydrated by the subphase. 

1.5.4 Surface Quasi-Elastic Light Scattering 

The experimental technique variously known as surface fluctuation 

spectroscopy, surface photon correlation spectroscopy or surface quasi-elastic light 

scattering has been greatly developed over the last fifteen years or so, although 

perhaps the earliest substantial review of the area was undertaken by Vrij.<115> Vrij 

acknowledged the earliest predictions of the presence of distinct swface scattering 

in addition to bulk scattering in colloidal solutions, caused by thermally induced 

surface corrugations, as described by Von Smoluchowski<116) and calculated by 

Mandlestam<117) to have an inverse square dependence on the light wavelength A. 

rather then the A. -4 dependence of bulk Rayleigh scattering. This prediction was 

quantitatively confirmed by Raman and Ramdas<118•119>. Vrij developed a theory for 

the scattering of light from soap films of a light beam polarised normal to the plane 

of incidence and presented some limited experimental results to support his 

interpretation of interfacial corrugations dependent on the balance of electrostatic 

and Wander Waal's stabilizing forces in the films. The experimental data presented 

were rather preliminary in nature (one of the samples used being the laboratory 

cleaner Teepol!) and further experimental progress was hindered by the optical 

technology available at that time. 
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The development of laser optics increased the practicality of surface 

light scattering and in 1967 Katyl and Ingard<120) were first able to demonstrate 

spectral modification of light scattered by a liquid surface. Further experimental 

work at that time led to resolution of the spectral data in both the frequency and time 

domains<121•122), the existence of two distinct modes of capillary evolution, termed 

propagating and overdamped, was confrrmed<113), and the validity of the dispersion 

relation was verified<123.124). Systematic deviations from the previously expounded 

harmonic oscillator type spectrum were noted<125) and accounted for in an amended 

theory published in 1971.(126) 

A major experimental advance in the detection of the small frequency 

shifts caused by surface fluctuations was the use of a diffraction grating by HID-d et 

a/<127) as a local oscillator for the generation of heterodyne beat signal enabling 

simultaneous detection of scattered and reference intensity at the same wavenumber 

value. The technique was developed for time domain surface correlation methods by 

Byrne and Earnshaw<128-130) and later HID-d and Neuman<51) improved the 

experimental aspects of the technique by placing the grating before the liquid 

surface and re-focussing the diffraction spots on the surface. Thus local beam 

mixing was achieved by a method which minimises changes in experimental 

geometry and provides a convenient method for the selection of the wave number 

studied (according to the diffraction order selected for detection). In addition, 

problems caused by curvature in the liquid surface near the meniscus edges were 

minimised, surface cleaning by barrier sweeping was simplified, and the technique 

was rendered suitable for use at physically inaccessible surfaces. This method has 

been recognised as the preferred design and has been used subsequently with much 

success<131-133), including a reported method for ultra-fast data acquisition by Winch 

and Earnshaw<134•135). 

Surface light scattering has now been applied to the study of both simple 
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liquids such as water<47·52.130·132), ethanol<47·131·132), glycerine030), and anisole(l32), 

and to liquids covered with monolayers of fatty acids(52,130,136-138), 

monoglycerides<133·139), and polymers<140-l45). 

In this last category Yu and co-workers have studied a range of materials 

including poly(vinyl acetate)<140·142.144.145), poly(ethylene oxide)<142-144), and 

poly(methyl methacrylate)044). Their studies have been carried out in the frequency 

domain, measuring the spectral peak frequency and line width as a function of 

surface concentration. They applied a form of direct data analysis in an attempt to 

overcome the familiar problem of trying to fit four viscoelastic parameters to two 

experimentally measurable quantities, by modelling a Lorentzian form from the 

dispersion relation for a selected set of film parameters until the observed frequency 

and line width were reproduced to within arbritrary limits. They were able to 

demonstrate that polymer monolayers demonstrated dynamic viscoelastic properties, 

and that condensed monolayers such as poly(methyl methacrylate) in particular 

possessed considerable longitudinal elasticity and viscosity, and that there was a 

significant difference between the static and dynamic surface pressures for this 

material. 
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CHAPTER 2 - NEUTRON REFLECTOMETRY 

2.1 Introduction 

Neutrons or X-rays may be used to investigate the density (composition) 

profile of solid thin films, adsorbed liquid surface films and spread monolayers in 

the direction nonnal to the plane of the layer by measuring the reflected intensity 

when an incident beam encounters the interface at angles greater than the critical 

(total reflection) angle. At this point the beam is partially reflected and partially 

propagated into the medium of the layer. Further successive reflections and 

refractions at compositional differences in the layer will lead to interferences in the 

reflected intensity which are characteristic of the layer composition. 

It is shown in section 2.2 that standard mathematical methods used to 

describe the reflection of light may be applied to the description of neutron 

reflection at interfaces, and by these means one may obtain information about the 

interfacial layer thickness and density profile normal to the layer. These methods 

involve the generation of matrices including terms in the refractive indices of the 

materials at the interface. The neutron refractive index at the boundary between two 

media is defined as 

2.1 

where k 1 and k0 are the neutron wave vectors inside and outside the medium. This 

may be expressed 

n = 1 - A 2Nb/2rr + iANoj4rr 

where A = neutron wavelength, 

N =atomic number density, 

b = bound atom coherent scattering length, 

and era= adsorption cross- section. 
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From Snell's Law, n may be related to ec the critical angle of total 

reflection, by 

cosec= n 

and therefore at low angles expansion of the cosine gives 

SJ'A = (Nb/n) 112 

2.3 

2.4 

For non-absorbing media the imaginary component of n in 2.2 is 

negligible, and so in the absence of magnetic interactions the neutron refractive 

index is simply related to the real part of equation 2.2. The quantity Nb is the 

scattering length density of the medium under consideration, and is hereafter 

referred to as p. For a given molecular species p may be calculated from the sum of 

the coherent scattering lengths of its constituent nuclei by the expression 

p = I:bid Navf Mm 

where d = density 

Nav =Avogadro's number 

2.5 

Mm = molecular weight of species (in the case of polymers usually one 

monomer unit). 

The coherent scattering lengths of some common nuclei are shown in 

table 2.1 (I). From these values are calculated some values of p relevant to the 

Nucleus Coherent Scattering Length, b/10-4A 

IH 0.667 

2H -0.374 

12C 0.665 

14N 0.937 

160 0.580 

Table 2.1 Coherent Scattering lengths of some common nuclei 

46 



reflectometry experiments described later in this thesis which are tabulated in table 

2.2. Particularly noteworthy are the values for H20 and 0 20 which are of opposite 

Molecule I unit Ibi I 10-4A P I 10-6A-2 

H20 -1.68 -0.56 

020 1.92 6.35 

air - 0 
methyl methacrylate 1.49 0.90 

methyl methacrylate- d8 9.82 6.02 

ethylene oxide 0.41 0.57 

ethylene oxide - d4 4.58 6.32 

4 - vinyl pyridine 2.97 1.32 

ethyl 4- vinyl pyridine 2.43 1.09 

ethyl - d5 4 - vinyl pyridine 7.64 3.64 

magnesium sulphate 3.11 4.15 

Table 2.2 Scattering Length Densities for selected materials 

sign (a negative value coiTesponding to a change of phase on scattering encounter). 

Thus it may be seen that a mixture of H20 and 0 20 in suitable proportions will 

produce water with scattering length density equal to zero, the value defined for air. 

This is in effect invisible to neutrons and is tenned air contrast matched or null 

scattering water, abbreviated to acmw. Therefore it is possible to set up an 

experiment where the polymer is studied as a visible layer between air and an 

invisible subphase. The fitted solution to the obtained reflectivity then is only 

contributed to by the polymer and is a measure of the total adsorbed amount at the 

interface. In a similar fashion the reflectivity obtained from an interface consisting 

of a hydrogenous polymer on a deuterated subphase will be dominated by the 

subphase signal but will be depressed significantly by the presence of excess 

hydrogenous material at the inte1face. 
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In this way, it can be seen that, depending on the particular nature of any 

given interfacial system one can arrange various contrast conditions which yield 

complementary information about the layer structure, and, given sufficient 

simultaneous data sets, it is possible to calculate uniquely both the layer thickness 

and composition. 

2.2 Specular Reflection at a Planar Interface 

I R 

T 

Figure 2.1 Reflection at a planar interface between regions 

of refractive index n0 and n1 

The specular reflection from the interface of two bulk media R (Figure 

2.1) is described by Fresnel's Law, which states that for incident angles greater than 

the critical angle for total reflection ec 

n0sine0 - n1sine1 2 
R= 2.6 

where the tenns of 2.6 are as shown in Figure 2.1. For the region of total reflection 

2.7 
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and so 

2.8 

For e > ec, n1
2 > n0

2cos2e0 and n1sine1 is real but for e < 90 n1
2 < 

n0
2cos2e0 and therefore 

2.9 

is imaginary, corresponding to an evanescent induced wave in the plane of 

reflection. At the point of total reflection n 1 sine1 is zero and therefore 

n1
2 = n0

2cos2e0 

2.3 Representation of Optical Stratifications by Matrix Methods 

I R 

t 
d 

• 

2.10 

Figure 2.2 Reflection and transmission from a thin film of thickness d 

and refractive index nl> at the boundary of media with refractive indices n0 and n2 

The mathematical description of reflection and refraction from 

interfacial systems has been considered by several authorsCZ.J.4). For a single film of 

thickness d at the interface of two bulk media, such as shown in figure 2.2, an exact 
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solution may be obtained for the reflectivity R such that 

2 
rOl + rlze2i~ 

where 

R= 

r·· = IJ 

Pi- Pj 

Pi+ Pj 

2.11 

2.12 

is the Fresnel coefficient at the ij interface, Pj = njsinej and ~ = (2m'A.)n1d.sine1 is the 

optical path length of the beam in the film. 

Similar exact solutions may be extracted for films of two or three such 

adjacent layers, but beyond this the complexity of the expressions involved becomes 

prohibitive and a general method must be invoked. The method described by Born 

and Wolt<2) was the earliest applied to the analysis of reflection data. This method 

uses the boundary condition that the wave functions and their gradients be 

continuous at each layer boundary, to define a characteristic matrix for each layer, 

such that for the jlh layer 

For an n layer system a resultant matrix for the total reflectivity may be 

[ 

COS~j 
M·= 

J . • 
-lpjSln~j 

2.13 

obtained by multiplication of the individual layer matrices, 

2.14 

such that 

2 

R= 2.15 

The description of reflection may be extended to interfaces which are 

not perfectly smooth, by the application of a Debye-Waller factor for a Gaussian 

distribution of the interfaceC5) such that 
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2.16 

where I(A.) and I0 (A) are the reflected intensity with and without roughness, <<J> is 

the root mean square thickness, q0 = 2ksin80, and q1 = 2ksin81. Such a method of 

treating surface roughness has been shown to be equivalent to the alternative Born 

and Wolf method of division of the interface into incremental layers of Gaussian 

density distribution which becomes unwieldy for more than a few layers. Thus the 

method of Abeles described by Heavens<3) has become favoured for the treatment of 

interfacial phenomena. In this case a characteristic matrix is defined in terms of 

Fresnel coefficients and phase factors from the relationship between electric vectors 

in successive layers such that 

ip J rm e m-1 

e- 1Pm-1 
2.17 

For N layers, the elements of the resultant matrix M 11 , M21 give 

R= 2.18 

If roughness is to be modelled at each interface then the introduction of 

a Debye-Waller factor for the modification of the Fresnel coefficients of equations 

2.13 and 2.15 of fonn 

rij = ( Pi - Pj ) 
Pi+ Pj 

allows the exact calculation of a reflectivity profile. 
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2.4 Approximate Methods for the Description of Reflection 

Lekner<4) has considered a number of approximate methods for the 

calculation of reflectivity. These are of some use in the description of the reflection 

of light but have not been applied to neutron reflection. As such they will not be 

considered further here. The most useful and illuminating approximate method is 

based on an analogy with weak elastic neutron scattering and was applied to 

reflectivity by Crowley<6), whose conclusions have since been developed 

elsewhere<7-10). The kinematic or first Born approximation for weak elastic 

scattering yields the following expression for the differential scattering cross section 

2.20 

where p(K) is the Fourier transform of p(r) over the whole sample 

00 

p(K) = J -oo eiJcr_p(r).dr 2.21 

For a macroscopically flat surface the specular reflectivity can be 

derived from equation 2.20 as 

R(Q) = 161t2 
lp(Q)I2 

Q2 
2.22 

where Q is the momentum transfer component normal to the interface and p(Q) is 

the one dimensional Fourier transform of p(z), the scattering length density proflle 

iri the direction normal to the interface. This may be expressed equivalently in terms 

of the Fourier transform of the derivative of the scattering length density profile, 

p'(z) = dp/dz, by 

R(Q) ~ '~:' IP'(Q)I' 2.23 

It is possible to derive useful expressions for a variety of commonly 

encountered interfacial scattering length density profiles. Firstly a slow continuous 
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change in scattering length density between the values for the two bulk media may 

be considered, such as the sigmoidal interface of figure 2.3(a). This is encountered 

for example in the interface of a liquid with its vapour. In this case 

p' (Q) = J oo eiQz. ~ .dz 2.24 
_
00 

dz 

or 

P'<Q) = f_= e;Q,, ctp 2.25 

When Q = 0, p'(O) = -.1pP, where .1pP is the scattering length density 

difference between the two bulk media. The reflectivity may now be written in the 

form 

2.26 

where 

2.27 

is the kinematic expression for the reflectivity of a sharp interface with a step in 

scattering length density .1pP, figure 2.3(b) and 

p'(Q) 
h'(Q) = 

p'(O) 
2.28 

is a normalised form factor which modifies RP 0 according to the shape and width of 

the interfacial region. When Q is much less than one, h'(Q) "" 1 and the surface 

profile appears to be sharp. Total reflection occurs when Q is of the order of w-2 A-1, 

and therefore the reflectivities from sharp or gradual interfaces will be 

indistinguishable in this region unless the variation is on a length scale greater than 

around lOA. At greater Q values however h'(Q) decreases rapidly and R(Q) is 

depressed below the sharp interface value, R(Q) being further depressed for a 

broader interfacial profile. 

For small Qz, in the same manner as the Guinier approximation for 

small angle scattering, a Taylor expansion in powers of Qz may be made for eiQz 
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which occurs in the expression for h'(Q) and thus 

2.29 

where cr is the standard deviation of p'(z). 

Another interfacial situation of importance in reflection from spread 

films is when the scattering length density is identical on either side of the 

interfacial layer, and in particular when the scattering length density is zero. This 

occurs when a monolayer is spread on air contrast matched water as described in the 

introduction to this chapter and is represented in figure 2.3(c). In this case the 

reflectivity may be expressed as 

where 

and 

R(Q) = R5 °(Q).h(Q) 

h(Q) = I Ps(Q) I 
PsCO) 

00 

m = J -oo p5(z).dz 

2.30 

2.31 

2.32 

2.33 

R5°(Q) is the kinematic expression for the reflectivity of an 

infinitesimally thin film of scattering mass per unit area m, analogous to sheet 

scattering in small angle scattering. h(Q) is again a modulating normalised form 

factor which is approximately unity at low Q but decays at higher Q, causing the 

reflectivity to be depressed below R5° according to the shape of the scattering length 

density profile. A similar Guinier type approximation may be made for h(Q) as for 

h'(Q) previously, and therefore for this particular contrast case 

2.34 
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Figure 2.3 Scattering length density profiles considered in the kinematic approximation 



Thus a plot of ln(R(Q).Q2) against Q2 should be a straight line whose 

intercept is proportional to m2 and whose slope is proportional to cr2. 

For the general case of an absorbed or diffuse layer (figure 2.3(d)) the 

complicated scattering length density profile may be expressed 

p(z) = Ps(z) + H( -z)llpp 2.35 

where H( -z) is the Heaviside function. The Fourier transform of the Heaviside 

function is 

where 

and 

00 

J H(-z).eiQz_dz = rro(Q) - iQ-1 

-00 

2.36 

Using equations 2.30, 35 and 36 the reflectivity may be expressed by 

R(Q) = R0(Q) + R1 (Q)llpp + R2(Q)~p/ 2.37 

R0(Q) = 16rr2/Q2.m2h(Q) 

R 1 (Q) = 32rr2/Q3 .S [Psl (Q) 

2.38 

2.39 

2.40 

R0(Q) is the reflectivity of the surface film alone and R2(Q)llp/ is the 

reflectivity attributable to the sharp interface, denoted RP0
• The linear term in llpp in 

equation 2.37 describes the cross-interference between the scattering from the sharp 

interface and that from the adsorbed layer. S[ps](Q) is the sine transform of Ps which 

may be re-expressed in terms of a normalised form factor s(Q) 

2.41 

The denominator of s(Q) reduces to <z>m, where<zn>is the nth moment 

of Ps and m is the total scattering length density as defined in 2.34. R1 can now be 

re-expressed 

2.42 
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If 2.38,39,40 and 2.42 are substituted into 2.36 and the resulting 

expression is divided by RP 0 so that the final term in 2.37 becomes unity, the 

following expression is obtained 

= 2.43 

At Q = 0 therefore the limiting value of the ratio between the actual and 

sharp interface reflectivities is unity. Above Q = 0 the Q dependence is governed by 

the two terms in h(Q) and s(Q), which vary inversely with Llp/ and LlpP 

respectively. At sufficiently large Llpp the s(Q) term dominates and the result is that 

the ratio is depressed below unity. 

At low Q, Guinier approximations may be made for h(Q) as before and 

for s(Q) "' exp( <z3>/3<z> ), and thus the measurement of the difference in 

reflectivity between the sharp subphase and film cases, LlR, contains information 

about the film thickness (cr2 or <z3>/3<z>) and structure (m or <z>m). 

For a p8(z) profile which is a smooth function except for a step in 

scattering length density at the defined z = 0 plane described by 

2.44 

at sufficiently large Q the reflectivity is given by 

2.45 

which may be compared with the expression for RP 0 and is analogous to a single 

sharp step of height (Llp8 - Llpp). Thus at large Q the measurement of LlR should 

yield the scattering length density of the film at z = 0. 

2.5 Inversion of Reflectivity Profiles 

It would only be possible to demonstrate the uniqueness of a solution to 

a reflectivity profile beyond any doubt if one was able to directly invert the profile 
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in the momentum transfer dimension into the corresponding scattering length 

density profile in the z space dimension. The complexity of the relevant optical 

matrix expressions for the reflectivity makes this type of inversion practically 

impossible but the rather simpler relationships generated by the kinematic 

approximation make this a more useful approach towards the direct deduction of the 

scattering length density profile by use of Fourier transformations. 

The form factors h(Q) and s(Q) defined above are related to the 

normalised Fourier transform of the surface scattering length density profile f(Q) by 

h(Q) = lfCQ)I2 

s(Q) = Im{f(Q) }/<z>Q 

where 

f(Q) = ps(Q) / Ps(O) 

2.46 

2.47 

2.48 

If f(Q) could be measured, then by Fourier transformation the scattering 

length density profile p8(z) could be obtained by 

-00 

Ps(z) = 2f eiQz . f(Q) . dQ 
21t 00 

2.49 

However in equation 2.46 the phase 'I'(Q) of f(Q) is lost as is the real part 

of f(Q) in equation 2.47. Thus it is not possible to invert the reflectivity uniquely to 

the scattering length density profile in general. For the special case of a monotonic 

p8(z) which is zero on one side of the dividing plane, then a single profile does 

determine p8(z) uniquely. More generally, if one had access to a range of data 

obtained at different contrasts then h(Q) and s(Q) could be determined from 2.41 or 

one of its equivalents by virtue of their different dependences on Llp8• 

In addition to the above considerations other limitations exist which 

place severe restrictions on the applicability of such methods towards the 

interpretation of neutron reflection data. Firstly the kinematic approximation breaks 

down at low Q values where the region of total reflectivity is approached. Secondly 
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the neutron reflection experiment is subject to a considerable background due to 

isotropic incoherent scatter which places a limit on the upper Q value obtainable. 

Instead of considering f(Q), it is useful to consider the Fourier 
') 

transformation of /pCQi - which gives the Patterson function for the scattering 

length density correlation, P(z), where P(z) is the average of the product of the 

scattering length densities at two points separated by a distance u normal to the 

surface, 
-oo 

P(z) = J oo p(z) p(z-u).du 2.50 

According to equation 2.22 P(z) should be obtained by Fourier 

transforming the product of the reflectivity and Q2/l67t2. An analogous Patterson 

function P'(z) for the gradient of the scattering length density profile p'(z), may be 

obtained if the reflectivity is multiplied by Q4 instead of Q2. The restrictions on 

Fourier transformation mentioned previously still apply to P(z) but it is useful to 

consider the form of the Patterson function P'(z) for a single uniform layer where the 

scattering length density of the film is intermediate with those of the two bulk 

media, such as is the case for a hydrogenous polymer spread as a monolayer on 

D')O. In this case the scattering length density and scattering length density gradient 

profiles would be as shown in figures 2.4(a) and (b). p'(z), the scattering length 

density gradient, is zero except for the two delta functions at the two edges of the 

film separated by the distance d. The resultant P'(z) function is shown in figure 

2.4( c). The Fourier transform of 8(0) is exp(O) and that of { 8( -d)+8( +d)} is 2cos(Qa) 

and the following result is obtained 

/PC~ 2 = ~P/- 2pd(~Pp-Pd)(l-cos(Qd)) 

= ~P/- 4pd(~Pp-Pd)sin2(Qd/2) 2.51 

This function has the form shown in figure 2.4(d), with maximum at Q = 

0, when the sin2 term disappears from 2.51, and a sharp minimum when the sin2 
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term is unity at Q = rr/d and so 

jp(Qi 2 = LlPp2 - 4piL1Pp-Pd) 

= (2pd - L1pp)2 

2.6 Patchy Film Modelling 

2.52 

For certain Langmuir monolayers there is some question as to whether 

the films are truly continuous on the surface or whether they are in fact distributed 

as islands of various density on the surface. It is of interest therefore to consider the 

effect of the presence of in plane scattering length density variations on the neutron 

reflectivity. Richardson and RoserCll) have recently presented a useful treatment 

based on the kinematic approximation, which provides a straightforward calculation 

for the reflectivity when the island size ~ is either smaller or larger than the 

coherence limit of the neutron experiment. In the former case the reflectivity is 

governed by the average scattering length density over the surface extent of the 

inhomogeneities but in the latter the reflectivity is affected by the contribution of 

off-specular scattering. The following summarises the pertinent results of this 

observation. 

In a similar fashion to the expression for RP 0 , the reflectivity from a 

single sharp step function in scattering length density, the reflectivity for a single 

uniform monolayer film of thickness d with scattering length density PF between air 

and subphase media with scattering length densities PA and Ps respectively may be 

given in the kinematic approximation by 

R(Q)mono = (16rr2/Q4).(L1PAi+L1pps2+2L1pAFLlPpscosQd) 2.53 

where L1p AF = P A - PF and LlPFS = PF- Ps· 

On the other hand if the film is divided into islands on the surface 

surrounded by air voids, then the reflectivity may be expressed as a weighted sum of 
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Figure 2.4 (a) Scattering Length Density Profile 

(b) Scattering Length Density Gradient Profile 

(c) Patterson Function for the Gradient 

(d) CotTesponding Fonn Factor Plot 

for a film of Pd between Pa and Ps 
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the reflectivities observed in the limit of infinitely large or infinitely small islands 

(RL and R5); 

Rislands = Rs + F(~). (RL - Rs) 2.54 

where F(~) is a fonn factor dependent on the island size and instrumental resolution 

~Qx 

2.55 

A coherence length for the neutron radiation in the experiment may be 

defined as the reciprocal of the resolution, ~Qx-1 . It may be seen that if the island 

size is very much smaller than the coherence length that F(~) "" 0. If the island size is 

very much greater than ~Qx- 1 however F(~) "" 1. The crossover between the two 

cases occurs when the island size is of the same order as the coherence length. 

Rs is determined by the kinematic expression for a monolayer with 

scattering length density averaged between that of the islands and the voids 

Rs = (167t2/Q4).(LlpAF2 + ~PFs2 + 2~PAF~PFscosQd) 2.56 

where now ~p AF = p A - fpF and ~PFs = fpF - Ps. and f is the fractional coverage of 

the surface by islands. 

RL is the average of the reflectivities obtained from a fully covered 

monolayer with scattering length density PF· equation 2.53, and the bare subphase 

RP0 = (l61t2/Q4)L\pAF2 2.57 

where ~p AF is identical to LlpP in the terminology of section 2.5. RL is then given by 

RL = f.Rmono + (1-f)Rpo 2.58 

Substituting appropriately into 2.58 yields 

RL = (161t2/Q4).[(pA-Ps)2+2f(pA-PF)(PFPs)(cosQd-l) 2.59 

For the case of a monolayer spread at the air/air contrast matched water 

interface, where p A= Ps = 0, equations 2.56 and 2.59 simplify respectively to 

Rs = (167t2/Q4).2pF2f2(1-cosQd) 2.59 

and RL = (l67t2/Q4).2pF2f(l-cosQd) 2.60 
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For intermediate island sizes, the power dependence of the reflectivity 

on f will vary according to the island size/resolution factor by 

2.61 

It can now be seen that from the reflection of a deuterated film spread on 

air contrast matched water it is possible to obtain uniquely the value of the layer 

thickness as this term is uncoupled in 2.59 and 2.60. It is also possible to determine 

the product of PF Y but not to determine either PF or f individually as the two terms 

are expressed solely in that product. 

In order to separate the two quantities, it is necessary to carry out a 

duplicate experiment at a different contrast where equations 2.56 and 2.59 apply and 

no product of PF2f2 or pif can be factorised out. If this is possible and values of PF 

and fare obtained then in principle one can estimate the island size by 

~ = ~Qx-l.tan[(7t/2).(Y-(2)/(f-f2)] 2.62 
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2.7 Review of Published Literature on Neutron Reflectometry 

The earliest observation of the total reflection of slow neutrons was by 

Fermi and coworkers in the years after the Second World War0 2>. In the intervening 

years between then and more recent times however there was very little attention 

paid towards applying neutron reflection to any practical purpose, but the 

development of neutron guide technology0 3•14> utilising total external reflection 

encouraged Steyef1C15
> and Handel0 6) to point out the potential use of reflection as a 

surface probe. 

A step nearer the modern neutron reflection experiment was made in 

1976 when Hayter, Penfold and Williams0 7) observed interference of reflected 

neutrons from magnetised metal films using the IN11 instrument on the high flux 

reactor of the Institut Laue Langevin, Grenoble, France. This was followed in 1981 

by Hayter et al0 8) which must be recognised as a watershed in the field of surface 

characterisation by neutron reflection, spelling out explicitly for the first time as it 

does a range of potential applications of interest to surface chemists which have 

since been fulfilled in very spectacular fashion. Hayter et al presented arguments 

and examples based on the optical matrix calculations for reflectivity from fatty acid 

multilayers, black films, and liquid-vapour interfaces and were able to present 

preliminary experimental data for films on solid glass substrates obtained on the 

adapted small angle scattering instrument D 17 at the ILL. 

The final element required to make neutron reflection a more generally 

feasible technique for surface analysis was the development of a dedicated reflection 

spectrometer. This was achieved in the instrument CRISP<19-22>, operating as a time 

of flight, fixed angle reflectometer, off the pulsed spallation source ISIS at the 

Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire. CRISP has since 

been used with much success for the study of a wide range of interfacial systems and 
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has prompted other neutron facilities to develop their own instrumentation, 

examples of both time of flight<23-26) and fixed wavelength<27-30) spectrometers 

existing. Following the development of successful experimental facilities, the 

experimental literature of neutron reflectometry has mushroomed in the last few 

years. Penfold and ThomasC9) and Russeu<31 ) have published excellent reviews of the 

area, the latter also considering the related area of x-ray reflection which lies beyond 

the scope of this review. 

The usefulness of neutron reflectometry in the characterisation of many 

interfacial systems has been demonstrated. Solid and liquid surfaces, solid-solid, 

liquid-solid, and liquid-liquid interfaces, magnetic, conducting and semi-conducting 

films, and biological membranes amongst others have all proved suitable for study. 

Among solid surfaces to have received attention are chemical vapour 

deposited silicon oxide and silicon nitride layers on siliconC32•33), Langmuir-Blodgett 

filmsC34-35>, and a variety of thin magnetic films, studied using spin polarised 

neutrons, for example ferromagnetsC3 6) and superconductors<37•38). A sizeable 

volume of work exists in these fields but will not be considered further in this 

review. 

Polymer surfaces have also received much attention. Solution cast 

films<39) have been investigated and surface ordering in solution spun cast films of 

poly(styrene-d-methyl methacrylate) diblock copolymers has been reportedC40). The 

polymer-polymer interface has been studied for the cases of hydrogenous/deuterated 

bilayers of polystyrene<4 1), and for immiscible<42) and miscible<43•44) polymer pairs, 

while Jones and co-workers<45.46) have measured the surface segregation of 

deuterated polystyrene in blends with its hydrogenous analogue. 

An area of important practical and industrial relevance to have been 

studied by reflectometry has been the surface chemistry of surfactants. Thomas and 

co-workers have been particularly prominent in this field, having studied surfactant 
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adsorption at the air-solution interface for decyltrimethylammoniumbromide<47), 

tetramethylammoniumdodecylsulphate<48), and sodium alkyl sulphates of various 

chain lengths<49). Longer hydrocarbon chain, and therefore water insoluble, 

surfactants have also been studied by reflectometry when spread as Langmuir 

films< 11•50•51 ), these materials being of interest as the precursors of 

Langmuir-Blodgett films. Finally Lee et al<52) have studied surfactant adsorption at 

the solution-quartz interface, utilizing the transparency of quartz to long wavelength 

neutrons to probe a physically inaccesible interface. 

The experiments can·ied out on conventional surfactants have been 

echoed by studies of polymer solutions and monolayers. Rennie et al<53) have 

studied the adsorption from solution of poly(ethylene oxide) at the solution-quartz 

interface and the same polymer has been studied at the interface of its solution with 

air<54•55). Cosgrove et al<56), Lee et ai<57), and Russell and co-workers<58) have 

examined the adsorption of various polymers at solid quartz and mica interfaces 

from solution in organic solvents. Other studies have been reported of the air-liquid 

interfacial adsorption of polymers from solution in toluene, Sun et al<26) studying 

poly(dimethyl siloxane) and Dai et a1<59) examining diblock copolymers of 

polyacetylene and polyisoprene. 

Finally the case of insoluble Langmuir type monolayers of polymers has 

been considered. In some preliminary experiments<60), the sensitivity of the 

reflection technique to these films was demonstrated for a diblock copolymer of 

polystyrene and poly( ethylene oxide), but due to concerns over the uniformity of the 

spreading properties of the polymer the study was not continued. The purpose of the 

work described in this thesis was to increase the understanding of insoluble polymer 

monolayers by neutron reflectometry and part of that work concerning Langmuir 

films of poly(methyl methacrylate) has been recently published.<61 ). 
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CHAPTER3-EXPERIMENTAL 

This chapter is divided into five sections. The fust describes the 

synthetic methods used to prepare and characterise the polymer fractions studied, 

and the other four contain descriptions of the techniques and apparatus used to study 

the physical chemistry of monolayer systems of those polymers. Hydrogenous and 

deuterated analogues have been obtained successfully for several polymer systems. 

These systems (and the acronyms which will be used for them in general hereafter) 

are listed below; 

1. syndiotactic, isotactic and atactic (polymethyl methacrylate), (SYNDIO-, ISO-, 

AND ATAPMMA); 

2. poly (ethylene oxide), (PEO); 

3. 85:15w/w diblock copolymers of poly (methyl methacrylate) with poly (4-vinyl 

pyridine), (PMMA4VP); 

4. PMMA4VP polymers quaternised with ethyl bromide to give partial 

poly-electrolyte materials, (PMMA4VPQ) .. 

The letters H and D are used to indicate hydrogenous and deuterated 

materials respectively, thus for example ISODPMMA is a deuterated isotactic poly 

(methyl methacrylate), while DPMMA4VPQ(H) is a poly (methyl 

methacrylate)/poly (4-vinyl pyridine) copolymer with a deuterated PMMA block, 

quaternised with hyrogenous ethyl bromide. It should be noted that only 

hydrogenous 4-vinyl pyridine monomer was available, and hence no explicit 

specification of the isotopic nature of 4VP blocks is included in the code. 

In addition to the samples prepared in the home laboratory the following 

materials have been used in this project; 

free radically polymerised DPMMA (ATADPMMA) was generously donated by Dr. 

D. J. Walsh of DuPont de Nemours Wilmington, Delaware, USA; 
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AT AHPMMA was fractionated from a broad distribution sample from the Rubber 

and Plastics Research Association, Shawsbury, UK; 

isotactic hydrogenous and deuterated poly (methyl methacrylate) (ISOHPMMA and 

ISODPMMA) were purchased from Polymer Laboratories Ltd., Church Stretton, 

UK. 
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3.1 Synthesis and Characterisation 

3.1.1 Anionic High Vacuum Polymerisation 

Hydrogeneous and deuterated analogues of SYNDIOPMMA, PEO, and 

PMMA4VP were synthesised using high vacuum anionic polymerisation methods, 

as this technique is convenient for controlling the molecular weight, polydispersity 

and stereotacticity of polymers. The vacuum line consisted of a tubular glass main 

manifold fitted with three valved 'o' -ring/sleeve connections allowing the 

attachment of various sub-manifold combinations. Each sub-manifold had a further 

three outlets fitted with either 'o' -ring/sleeve or balVsocket type joints. All tap 

fittings, glassware, piston barrels etc were purchased from Young's Scientific 

Glassware, Acton, England, and were standardised around a nominal glassware 

diameter of lOmm. Fast screw P1T type tap fittings were used and all vacuum seals 

were of OS teflon type. Vacuum was achieved by a combination of an Edwards 

roughing rotary pump modeLE2195 with an Edwards backing diffusion pump model 

63. Roughing on the rotary pump reduced the pressure from atmospheric to 

approximately 6xi0-2 torr and, backing down from this value, typically the diffusion 

pump achieved a vacuum of around w-6 to w-7 bar. The combined rotary/diffusion 

pump system was purchased from Edwards High Vacuum, Crawley, Sussex. 

In parallel with the vacuum line, an accompanying dry nitrogen line was 

attached at the sub-manifold connection points. This allowed convenient nitrogen 

purging of air or moisture sensitive materials whilst maintaining a high vacuum in 

the rest of the line. The combined vacuum/nitrogen line system is illustrated 

schematically in figure 3.1. 
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Preparation of Reagents 

Anionic synthesis, although providing a convenient route to the 

preparation of well defined polymers, requires extremely rigorous preparation of 

glassware and reagents in terms of cleanliness, purity and dryness. The presence of 

even trace amounts of either moisture or polar impurities in starting materials can 

lead to premature termination of reaction or the complete failure of a 

polymerisation. 

Methyl methacrylate (Aldrich, M5,590-9, 99%) is supplied containing 

lOppm hydroquinone monomethyl ether as a polymerisation inhibitor during 

storage. This was removed by liquid-liquid extraction using repeated aqueous 

sodium hydroxide and water washes. The monomer was then dried over calcium 

chloride, distilled under reduced pressure under a dry nitrogen atmosphere, and 

finally stored under vacuum while standing over calcium hydride. 4-vinyl pyridine 

monomer (Aldrich, V320-4, 95%) is supplied containing lOOppm hydroquinone as 

inhibitor and this was removed in exactly the same fashion as for methyl 

methacrylate. 

Ethylene oxide monomer is a highly volatile, poisonous liquid at room 

temperatures. As supplied (Fluka Chemika, 99.7% pure), it was immediately 

transferred (in acetone/dry ice cooled glassware) to a round bottomed flask 

containing calcium hydride and stored under vacuum. Immediately prior to 

polymerisation further more rigorous drying and purification was required. This is 

described in more detail in the description of the polymerisation procedure. 

Tetrahydrofuran (BDH standard lab reagent stored over sodium) was 

dried over calcium chloride, refluxed for an hour over fresh lithium aluminium 

hydride, distilled under dry nitrogen, and stored under vacuum over freshly squeezed 

sodium wire and benzophenone, giving a deep blue/purple coloured solution. This 
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was necessary to prevent the formation of peroxide radicals in the uninhibited 

tetrahydrofuran. Dimethyl formamide was distilled in a similar fashion, and was 

stored under vacuum over calcium hydride. 

Reagents were stored on the vacuum line in ground glass B24 necked 

round bottomed flasks with the glass joint sealed with Apiezon N type high vacuum 

grease. Depending on the volume of reagent, the flask volume was chosen such that 

the flask was never more than half full. 

Prior to use all reagents were degassed by means of freeze-thaw cycles 

on the vacuum line, that is to say, freezing the reagent by immersing the flask in 

liquid nitrogen, pumping down the frozen material, isolating the flask again, thawing 

the reagent, and stirring (by means of a magnetic stirrer placed in the flask) for 

several hours. The whole cycle was repeated many times, including one weekend of 

constant stirring, until the material was thoroughly degassed, indicated by no rapid 

rise in the measured pressure on opening the connection to the frozen material. The 

purpose of stirring is two-fold, frrstly to facilitate the release of dissolved gases from 

the liquid, and secondly to ensure intimate mixing of the liquid and drying agent 

Preparation of Glassware 

All glassware was washed with permanganic acid prior to its initial use, 

and between syntheses reaction flasks were washed repeatedly with chloroform and 

methanol. Immediately prior to distilling in reagents, the reaction flask (figure 3.2) 

was dried by flaming out with a gas/oxygen torch to remove water adsorbed on the 

glass surface and washed out with a living polystyryl-lithium solution. This solution 

consisted of a small amount of styrene monomer dissolved in benzene, initiated by 

injection of a few microlitres of 2.5M n-butyl lithium in hexanes (Aldrich, 

23,070-7). This bright orange coloured solution was stored in the small side flask of 
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the reaction vessel. 

Septum Sealed Neck 

Synthesis of Initiators 

To Vacuum line 
Temporary Monomer Receiver 

t 

t 
t 

Monomer introduced 

Living poly(styryllithium) solution 

Sample Side Flask 

Figure 3.2 Anionic Polymerisation Reaction Vessel 

.. 

9-fluorenyllithium was prepared by evacuating a simpler version of the 

reaction flask with a septum neck (figure 3.3) containing 2.2g fluorene (Aldrich, 

12,833-3, 98%). Into this was distilled 50cm3 THF and 4.8cm3 of 2.5M n-butyl 

lithium in hexanes (Aldrich, 23,070-7) was added by injection through the rubber 

septum, producing an intense dark orange coloured solution as product. For storage 
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Figure 3.3 Simple Reaction Flask 

purposes dry nitrogen was introduced into the flask. Initiator samples were 

withdrawn from the flask by use of a nitrogen purged Hamilton Gastight 

micro-syringe injected through the septum cap. 

Q Q HH 

co 00 + 2 CH2 +2K ... 2 H- c- K+ + 
.....: 

6 6 HH 

Diphenyl methyl potassium was synthesised by the following method. 

Dried distilled THF (60cm3) and napthalene (Aldrich 14,714-1, 99%) were placed in 

the bottom of a 250cm3 flask, cooled to 273K in. ice, under a dry nitrogen 

atmosphere. Potassium metal was added such that the mole ratio of napthalene to 

potassium was approximately 0.66:1. This ensures complete consumption of the 

napthalene. On addition of potassium a dark green colour appeared along with the 

evolution of heat. After refluxing for three hours with stirring until the potassium 

78 



was consumed, diphenyl methane (Aldrich, 020,931-7, 99%, mole ratio 0.66) in 

40cm3 THF was added dropwise. After a further two hours the initiator was present 

as a dark red/purple solution. This was stored in a white natural rubber suba-sealed 

bottle under dry nitrogen. 

Estimation of Initiator Concentration 

For an initial estimate of the concentration of 9-fluorenyl lithium 

initiator, 0.5cm aliquots of the solution were quenched in distilled water to produce 

an equivalent amount of lithium hydroxide, which was titrated against standard 

O.OlM hydrochloric acid using phenolphthalein as the end point indicator. A 

generally more reliable method for both initiators however was to carry out several 

polymerisations with varying amounts of initiator and to calculate the required 

volume of initiator for any molecular weight from the molecular weights of the 

polymers so obtained. For 9-fluorenyl lithium therefore several PMMA samples 

were prepared, while for diphenyl methyl potassium a polystyrene sample was 

synthesised as this is considerably more convenient to prepare than poly (ethylene 

oxide). 

Polymerisation 

During polymerisation procedures the transfer of all reagents was 

achieved by molecular distillation under high vacuum with the receiver vessel 

immersed in liquid nitrogen. 
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Poly(methyl methacrylate) 

Syndiotactic PMMA was prepared by distilling a known weight of 

monomer into a prepared reaction flask. THF was then distilled into the flask to 

make an approximately 10% v/v solution of monomer. The temperature of the liquid 

was allowed to rise to approximately 195K by immersion of the flask in a dry 

ice/acetone bath and the reaction was initiated by rapid injection of an appropriate 

volume of 9-fluorenyl lithium, according to the molecular weight required. 

Polymerisation was accompanied by a pale pink or purple colour in the solution. 

After one hour the reaction was terminated by the rapid injection of about 5cm3 

methanol which had previously been degassed by bubbling with dry nitrogen. The 

product polymer was precipitated into ten volumes of rapidly stirred n-hexane and 

dried in a vacuum oven at 343K to constant mass. Deuterated PMMA was 

synthesised in exactly the same fashion as HPMMA. 

Poly (ethylene oxide) 

PEO was synthesised by a similar process to that used for PMMA. 

However the nature of the ethylene oxide monomer necessitated the introduction of 

some further preparatory measures before the reaction would proceed successfully. 

Ethylene oxide monomer, prepared as previously described was dried 

more thoroughly immediately prior to reaction by exposure to the fresh surface of 

sodium metal. This was achieved by heating a small piece of sodium in a 250cm3 

round bottomed flask fitted with a Young's tap under vacuum with a gas/oxygen 

torch flame until it boiled, coating the surface of the flask with fresh metal. 

Sufficient monomer for the reaction was distilled into the mirrored flask and shaken 

for an hour to ensure good contact with the surface. This process was repeated until 
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the mirror was not tarnished by contact with the monomer. This typically involved 

the use of four or five sodium mirrors. Only now was the dry monomer distilled into 

a weighed, flamed (simple type) reaction flask. The appropriate amount of THF was 

distilled into the flask and polymerisation initiated by the injection of a suitable 

amount of diphenylmethyl potassium at 195K (dry ice/acetone bath), resulting in a 

pale yellow solution. The reaction flask was left to rise slowly to room temperature 

overnight, during which time a deeper pink colour developed in the solution. The 

flask was then immersed in an oil bath at 348K for four days before the reaction was 

terminated by injection of lOOj.tl of degassed glacial acetic acid. The polymer was 

precipitated into ten volumes of stirred n-hexane. 

In the case of deuterated PEO one further pre-polymerisation step was 

introduced to remove impurities from the monomer which would otherwise provide 

potential terminating species. The sodium mirror dried monomer (MSD Isotopes) 

was distilled into a freshly flamed pre-polymerisation flask (figure 3.4). The 

Figure 3.4 Pre-polymerisation Flask 

monomer was distilled into the septum fitted arm, into which had been placed a few 
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crystals of 9-fluorenone (Aldrich, F150-6, 98%). Injection of about l5Jll of 2.5M 

n-butyl lithium gave a bright yellow colour. The monomer was vacuum distilled 

rapidly into the receiver bulb of the pre-polymerisation vessel, leaving behind a 

residue of impurities. The purified monomer in the receiver was then transferred to a 

reaction flask for polymerisation by the same method as for hydrogenous ethylene 

oxide. 

Poly (methyl methactylate - 4-vinyl pyridine) 

PMMA4VP diblock copolymers were also prepared in a fashion 

essentially similar to PMMA homopolymers. Diphenylmethyl potassium was used 

to initiate the reaction as this is a better initiatior for both blocks of the system than 

9-fluorenyl lithium. Also a mixed solvent system of 85% THF/15% DMF v/v was 

used as 4VP chains of molecular weight greater than around 5000 are insoluble in 

THF alone. 4 VP was chosen as the preferred block to start the reaction with, as 

chain branching is minimise~ by this route. A known weight of 4VP monomer was 

initiated by injection of diphenylmethyl potassium and after allowing the reaction to 

proceed at 195K for a few hours, a weighed amount of methyl methacrylate was 

added rapidly from the open side rum of the reaction vessel. After several more 

hours the reaction was terminated by addition of degassed methanol. The polymer 

· was precipitated into ten volumes of n-hexane. 

3.1.2 Quaternisation of PMMA4VP to PMMA4VPQ 

PMMA4VP diblock copolymers have been quatemised with ethyl 

bromide to produce a block copolymer with a polyelectrolyte block by the following 

scheme: 
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The reaction was carried out on the high vacuum line previously 

described as this provides a convenient means of transferring reagents under 

scrupulously anhydrous conditions. Dry distilled DMF was prepared as described in 

the previous section and stored on the line over calcium hydride. Ethyl bromide 

(Aldrich, 29,360-7, 99%) and deutero ethyl bromide (MSD Isotopes) were used as 

received without further purification, but were first dried and degassed by calcium 

hydride and freeze thaw cycles on the vacuum line. 

Four syntheses were carried out using the four combinations of 

DPMMA4VP, HPMMA4VP, d5-EtBr and EtBr to give the four products 

DPMMA4VPQ(D), DPMMA4VPQ(H), HPMMA4VPQ(D), and HPMMA4VPQ(H) 

where the bracketted letter indicates whether hydrogenous or deuterated ethyl 

bromide was used. A known weight of about lg of the unquaternised polymer was 

put in a Young's tap fitted 50cm3 reaction flask (no septum neck) with a magnetic 

follower and evacuated on the line. The polymer was dried by moderate heating of 

the flask by a hot air gun. To this was added around 10 - 15cm3 DMF by vacuum 

distillation. After sufficient time had been allowed for the polymer to dissolve (at 

least 3 - 4 hours) the solution was frozen by liquid nitrogen immersion and an excess 

of ethyl bromide (around 0.5g) added by vacuum distillation. The mixture was 

stirred overnight in a water bath at 323K during which time a pale orange or pink 

colour developed. To this was added a small amount of AnalaR acetone and the 

product was precipitated into ten volumes of n-hexane. The resultant viscous 
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semi-solid material was washed free of residual DMF by re-dissolving in acetone 

and reprecipitation into hexane, followed by filtering at the pump and washing with 

more non-solvent. The product was dried to constant mass under vacuum and stored 

under dry nitrogen as a white powder. 

3.1.3 Characterisation of Polymers 

Molecular Weight Determination 

The molecular weights of PMMA homopolymers and PMMA4VP 

diblock copolymers were obtained by size exclusion chromatography using two PL 

gel lO!J.m mixed columns with THF as solvent, and a Waters differential 

refractometer as detector. By this method were obtained values for the number 

average and weight average molecular weights relative to polystyrene standards. 

Weight average molecular weights were obtained for PEO samples by 

static light scattering on a C~romatix KMX-6 photometer. By plotting the ratio of 

the solution concentration to the Rayleigh ratio (representing the excess scattering 

after the solvent contribution is subtracted) against the surface concentration, a 

Zimm plot is obtained. The linear extrapolation of this plot to zero concentration 

yields an intercept which is related to the weight average molecular weight by 

where 

and 

Mw = 1 I (Kc.Intercept) 

n = refractive index of solvent 

= 1.44 for chloroform at /.. = 632.8nm 

8n/8c =specific refractive index increment 
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= 0.0459 for PEO/eHeL3 

Nav =Avogadro's number 

e = scattering angle, usually small enough that 

1 + cos2e""' 2. 

Determination of Stereotactic Sequences in PMMA 

The tacticities of poly (methyl methacrylate) samples were detennined 

by 400 MHz 1H and Be NMR on a Varian VXR-400(S) instrument. In the proton 

spectrum the methylene proton shift region at around 1-2ppm contains splittings 

which are characteristic of the tactic nature of the polymer. Two successive 

monomers in the chain form a statistical dyad, figure 3.5. For the case of a 

syndiotactic addition the dyad is termed racemo and the unit contains a twofold axis 

of symmetry. Thus the two methylene protons are chemically similar and there is 

only a sharp methylene singlet observed. For an isotactic addition or meso dyad on 

the other hand, there is a plane of symmetry but no twofold axis of symmetry. This 

means that the two methylene protons are no longer equivalent and a geminal 

coupling into two doublets split by approximately 15Hz should be observed. This 

analysis was pioneered by Bovey and Tiers(l) and has since been refined to enable 

the attribution of longer statistical sequences (triads, tetrads, etcP). 

Similarly in the Be spectrum, the carbonyl signal at around 

176-178ppm is subject to a slight change in shift according to the chain tactic 

sequences around it. Predicted assignments up to and including heptads have been 

calculated for a variety of statistical systems, and as the field strength and resolution 

of modem NMR technology has increased, experimental resolution of these signals 

has been achieved(3)_ 
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Figure 3.5 Dyad sequences of PMMA 

Analysis of Composition of PMMA4VP Copolymers 

The relative amounts of the two monomers in the PMMA4VP 

copolymers were obtained by microanalysis and UV-visible absorbance 

spectrophotometry. In the former instance, the single nitrogen atom of the pyridine 

ring in 4-vinyl pyridine provides a convenient measurement of the amount of that 

monomer. In the latter ca$e 4VP displays a strong absorption band at 358nm 

associated with its conjugated ring system. By comparison of the relative intensities 

of this absorption for the copolymers and a poly(4-vinyl pyridine) homopolymer the 

fraction of the copolymer which is 4 VP may be inferred. 

Estimation of degree of Quaternisation in PMMA4VPQ Copolymers 

The exte.nt of quaternisation in PMMA4VPQ copolymers was obtained 

by elemental analysis for the bromine content in the molecule. The product was 

combusted in an oxygen atmosphere, then pure water was used to absorb HBr from 

the resultant gases. The acid was then estimated by titration with standard base, 

resulting in an equivalent Br content in the original material. 
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3.2 Surface Pressure - Concentration Studies 

Surface pressure- surface concentration isotherms were obtained using a 

Teflon Langmuir trough purchased from Nima Technology Ltd, Coventry, UK. The 

trough was installed on a six by three foot by four inch thick optical vibration 

isolation table purchased from Ealing Electro-optics, Watford, UK. Temperature 

control was achieved by circulation of water through a network of tubes in the 

underside of the teflon trough base using a Neslab R TE-l 00 thermostat. 

Surface pressure measurements were obtained by means of a lOmm 

wide, high grade filter paper Wilhelmy hanging plate sensor attached to a 

displacement transducer, the raw output from which was converted to a real time 

display of surface pressure against either surface concentration or area on a Dell 

System 220 PC by Nima 's commercial software, written in Turbo Pascal. The Nima 

trough is shown in figure 3.6. 

pressure sensor 

dipping well 

Figure 3.6 Nima Langmuir Trough 
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3.3 Neutron Reflectometry 

Neutron reflection experiments were carried out on two instruments, one 

a time-of-flight, fixed geometry, dedicated reflectometer, and the other a fixed 

wavelength small angle neutron scattering spectrometer specially adapted for use as 

a reflectometer. These were respectively, CRISP, operating from the pulsed 

spallation source ISIS at the Rutherford Appleton Laboratory, Chilton, Didcot 

Oxfordshire, and D 17 operating from the research nuclear reactor of the Institut 

Laue-Langevin, Grenoble, France. The data obtained from these instruments is 

equivalent in the same momentum transfer range, however the experimental 

methods used to obtain them are somewhat different and will be described in more 

detail below. 

The same Langmuir trough was used for neutron reflection experiments 

on CRISP and 017. This was built to a design of reasonably standard type, but was 

slightly adjusted for the demands of reflection experiments. The reflectometry 

trough is illustrated in Figure 3.7. The active area of the trough surface was swept by 

two mobile, stepper motor driven parallel teflon barriers aligned in the long 

dimension of the trough. The outer aluminium casing of the trough contained a fused 

silica glass window at either end to allow the neutron incident and reflected beams 

to pass through and the trough was designed so that the barrier supports did not 

impede the pathway of the neutrons. 

During neutron reflection experiments a known mass of sample was 

spread onto the surface from a volatile spreading solvent of known concentration 

onto a known area to obtain the initial concentration. Further increases in coverage 

were achieved either by the addition of more sample or slow compression of the 

barriers to a smaller area. After sample deposition or compression, around ten 

minutes were allowed to ellapse before data acquisition was commenced to allow 
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the spreading solvent to evaporate and the material in the layer to expand into the 

available area. Reflectometry experiments were carried out using ambient 

temperature conditions of approximately 298K. 

3.3.1 CRISP 

The Critical Reflection SPectrometer, CRISP at the Rutherford 

Appleton Laboratmies, Chilton, Didcot, Oxfordshire, is a time-of-flight 

reflectometer for the study of critical reflection phenomena of a wide variety of 

surfaces. It operates in a fixed incident angle mode, which is usually, but not always, 

1.5° to the horizontal. The nonnal momentum transfer range of 0.05 - 0.65A-1 is 

achieved by use of a multi-wavelength, so called white neutron beam with 

wavelengths between 0.5 - 13A. The instrument is operated from the N4 radial 

beamline of the spallation neutron source ISIS, and the raw neutron beam is cooled 

by a hydrogen moderator at 25K. Wavelength filtering is achieved by the use of a 

50Hz wavelength limiting chopper at a distance of 6m from the source, where 

wavelengths of less than 0.5A and greater than 13A are rejected. From the pulsed 

beam any stray, out of sequence, contamination originating from pulses earlier than 

the primary reference pulse are rejected by nickel frame overlap filtering mirrors 

and the radiation is collimated by cadmium shielding into a beam size of typically 

40mm width by 0.5 to 4mm height, depending on the requirements of the sample. 

The shielding components are held and adjusted by optical research quality 

micrometer positioning stages. At this point if it is necessary to measure at lower Q 

values (for example to probe to greater depths into the sample) it is possible to 

include a neun·on reflecting, non-polarising supennirror which deflects the beamline 

from its standard 1.5° geometry to shallower incident angles. At an angle of 

approximately 0.4° the lowest Q value accessible is around O.OlA-1. 
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The neutron radiation encounters the sample at a distance of 10.25 m 

from the source. The sample position is mounted on a massive concrete 

anti-vibration plinth and the sample itself is placed on a manual vertical height 

adjustment jack to allow efficient alignment of the system. The reflected signal is 

detected by a single He3 gas detector which may be moved up or down according to 

the incident angle used. The sample to detector distance is 1.75m. Sample and 

detector alignment were achieved by the use of a laser beam which was manipulated 

by mirrors to be colinear with the path of the neutron beam. 

The intensity of the reflected beam pulse was analysed as a function of 

the slightly different arrival times of reflected neutrons of different wavelengths at 

the detector, hence the tenn time of flight. This raw data was then converted to the 

corresponding reflectivity by ratioing the reflected intensity to the corresponding 

intensity in the incident pulse detected by a scintillation monitor mounted in the 

incident bearnline. Momentum transfer values were calculated by rebinning the time 

analysed data packages into corresponding wavelength sets and combining these 

with the known incident angle. Data aquisition and treatment were carried out on a 

Vaxstation 3200 workstation. Typical data acquisition times were 2-4 hours in the 

standard 1.5° geometry and 10-30 minutes at the lower angles, depending on the 

proximity to total reflection in all cases. The CRISP reflectometer as used in 

non-polarising mode is illustrated in Figure 3.8. 

3.3.2 017 

D 17 at the Institut Laue Langevin is normally used as a small angle 

scattering spectrometer. The modified instrument as used as a reflectometer for 

liquid interfaces is described briefly below. 

A curved guide from the reactor cold source conducts the incident 
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radiation to the instrument where primary collimation is carried out A velocity 

selector with 5 or 10% resolution selects a single wavelength at any time but this 

may be conveniently altered between 8.7 and 30A. The beam is collimated into a 

horizontal beam of cross-section approximately 30mm by 30mm. Shielding circular 

diaphragms are used to further reduce the beam diameter to 20mm and the beam 

passes down an evacuated guide tube towards the sample site. A rectangular beam 

of typically 20mm width by 0.5 to 2mm height is produced by micrometer -

adjustable cadmium slits at the downstream end of the guide. 

At the point normally used for the sample site during SANS experiments 

the beam is deflected downwards by a supermirror mounted in a goniometer cradle. 

The beam therefore is incident upon the sample at an angle twice the angle of the 

mirror to the horizontal. The range of incident angles on the sample was typically 

0.4 to 1.0° giving an accessible Q range of approximately 0.01 to O.lA-1. This was 

achieved by a combination of wavelength and angle changes and therefore it was 

necessary to alter the sample height frequently and reproducibly. This was achieved 

by mounting the sample on a jacking system powered by a stepper motor drive unit 

which could be driven a certain number of pulses either up or down. To exclude 

extraneous background vibrations the entire assembly was mounted on an 

aluminium supported base plate sitting on high density polyurethane foam blocks, 

essentially a large mass - flexible spring system. In later experiments, an active 

anti-vibration table was incorporated under the trough to further minimise 

background vibration. The sample area arrangement is shown in Figure 3.9. 

The reflected specular peak (and any off-specular diffuse scattering) are 

detected by a BF3 multi-detector situated at a distance of 2m from the sample. This 

consists of 128 horizontal x 128 vertical elements 5mm apart in both directions. The 

detector chamber was flushed with argon gas before and during use and the detector 

window covered by a thin aluminium sheet rather than using the detector evacuated. 
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Figure 3.9 Sample Plinth at 017 

This enabled measurement of low signal intensities, which would otherwise have 

been cut out by the more robust quartz window usually employed. 

Sample alignment was carried out by the combined use of light from a 

high intensity lamp and a low power HeiNe laser, aligned to be colinear with the 

neutron path for rough alignment, and signal maximisation with neutrons for the 

precise optimisation of conditions. The micropositioning of the supermirror and the 

sample height, the acquisition of raw data, and the conversion of raw data to 

reflectivity values were controlled by the use of a Microvax II computer, using 

software developed by the scientific staff of the ILL The collection time of each 

individual data point was governed by the magnitude of the reflected signal to the 

instrument background. Typically these ranged between 2 and 30 minutes. For a 

profile consisting of sixteen points evenly spaced in the Q interval of 0.01 to 0.1 A-1 

the total profile acquisition time was roughly equivalent to a long run on CRISP. A 

schematic representation of the D 17 instrument set up for an air-liquid interface 
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experiment is shown in Figure 3.10. 

Exact angles and Q values could be calculated from the geometry of the 

instrument according to the detected peak maximum on the multi-detector. 

Reflectivity values were obtained by ratioing the combined integral counts for the 

detector cells corresponding to the reflected peak at a given angle and wavelength 

with the equivalent integrated count for a neutron beam reflected by the superrnirror 

straight through the trough windows without encountering the liquid surface. 
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3.4 Ellipsometry 

Ellipsometric studies were carried out on an ellipsometer designed and 

built at the Max-Planck Institut fi.ir Polymerforschung, Mainz, Germany. A 

schematic representation of the ellipsometer is shown in figure 3.11. The operation 

of the ellipsometer was based on the determination of the properties of elliptically 

polarised light incident on a surface such that on reflection the resultant beam was 

plane polarised and could therefore be extinguished by a plane polarising analyser. 

The ellipsometer was mounted on an eight inch thick optical vibration 

isolation table in a black cmtained booth. The incident and detection arms were 

pivoted from a solid metal plate bolted perpindicular to the surface of the optical 

table. The design was such as to allow these arms to be rotated through a range of 

angles and fixed precisely at a given position. The incident angle chosen was the 

Brewster angle of 64.4° as this gives maximum sensitivity in the measured 

parameters. The light source used was a 436nm Ar+ ion laser, guided to the incident 

side of the polariser unit by a single mode optical fibre. A quartz quarter wave plate 

retarder (QWP) was incorporated in the incident beam line. This retarded the phase 

of the incident plane polarised beam as generated by the polariser anisotropically by 

the amount 

where 

t = plate thickness 

A. =wavelength 

and nr and n5 are the refractive indices in the fast and slow orthogonal axes of the 

QWP material. 

The plate thickness was such that when the QWP was suitably aligned to 

the incident plane beam, one onhogonal component was retarded by rt/2 (one quarter 
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wave) relative to the other. This resulted in an elliptically polarised beam incident 

on the surface. Exact quarter wave retardation was achieved by the use of three 

wedge shaped pieces of quartz which could be manipulated to produce precisely a 

given width of material, see figure 3.12. 

The reflected signal was then minimised by the analyser (an identical 

component to the polariser). Analyser and polariser settings were adjusted in tum to 

give a plane polmised reflected signal, for which a single analyser setting gave total 

extinction. From the polariser, analyser and QWP settings the disinclination of the 

elliptically polarised incident field is obtained and hence the values of~ and \jf, from 

the relationships 

tan~ = sin~ tan(rt/2 - 2P 0 ), 

cos 2L = -cos~ cos2P 0 , 

tan\j/ = cotL tan(-A0 ) 

where ~ =retardation of QWP, 

P = polariser azimuth setting, 

A= analyser azimuth setting, 

and subscript o represents the extinction setting. 

The polariser and analyser units and the detected light intensity were 

controlled and recorded by a Digital Research VAX computer using custom written 

FORTRAN software, and the polariser and analyser movements were performed 

with high reproducibility by stepper motor units driven by step commands from the 

computer. The etTor in the measured angles was estimated at ±0.003° by triplicate 

measurements. 

A classical rectangular design of Langmuir type trough was used to 

contain sample films for ellipsometric study. A single barrier driven by an electric 

stepping motor via a high gearing system swept the water surface. The liquid 

containing body of the trough and bmTier were constructed of teflon and the whole 
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was protected by a perspex outer box. The lid of this box however was partially 

withdrawn to provide just enough clearance for the entrance and exit of the light 

beam. Temperature was maintained at a steady 298±0.1K by a Lauda water 

circulator, which fed a network of channels on the underside of the teflon body of 

the trough. The trough was placed in the sample area of the ellipsometer on an 

optical quality fine screwed lab jack mounted on a three legged 30cm square marble 

optical bed. This allowed the sample height to be conveniently altered with minimal 

vibration. 

Surface pressure measurements were obtained in situ simultaneously 

with the ellipsometric studies by a Wilhelmy hanging plate sensor connected via a 

displacement transducer to a PC. Custom written Turbo Basic software controlled 

the barrier movement and displayed surface pressure data in real time as a function 

of trough area. 
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3.5 Surface Quasi-Elastic Light Scattering 

Surface Quasi-Elastic Light Scattering (SQELS) experiments were 

carried out on a spectrometer designed and built in the home laboratory at Durham. 

The apparatus is shown in figure 3.13. The instrument was constructed from 

standard components purchased from Ealing Electro-optics, Watford, UK, and 

standardised around the range of components fitting their table mounting triangular 

optical benches. The SQELS instrument was constructed around the Nima film 

balance used for surface pressure studies and mounted on the optical vibration 

isolation table on which the trough was placed. The apparatus took the form of two 

parallel 1.5m lengths of triangular optical track fixed equi-distantly either side of the 

Nima trough, one to guide and manipulate the incident beam onto the liquid surface, 

and the other to collect the reflected light and guide it to a detector. All component 

mountings were capable of three axis precision translation to ensure exact beam 

guidance. 

The light source-used was a Hughes 10mW nominal power rating He/Ne 

laser, model No. 3225H-PC, whose radiation was polarised normal to the plane of 

incidence. After passing through lens 11 the focussed beam was split into several 

orders of diffraction maxima by a transmission diffraction grating, G, purchased 

from Data Sites Ltd, UK. This consisted of a series of 10 micron silvered lines with 

an inter-line separation of 100 microns. Thus the transmission from the grating was 

approximately 90 per cent. The split beam was incident upon lens 12 which was 

positioned so that the combined effect of 11 and 12 was to image the laser source 

from the exit of the laser tube as a focussed spot at the entrance of the photo 

multiplier detector. The beam was guided onto the liquid surface by a "periscope" 

arrangement of A./10 research quality mirrors which first diverted the beam vertically 

and then simultaneously turned it to 90° from the direction of the optical track and 
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downwards onto the liquid at an incident angle of 55.0°. The combination of lenses 

and distances between 11)2 and G was adjusted so that the divergent diffraction 

orders were reconverged as a single spot of approximate diameter 2.5mm on the 

liquid surface. This was conveniently obtained with focal length lengths of lOOmm 

for 11 and 300mm for 12. 

After encountering the surface, the reflected beam was collected by a 

second periscope of mirrors and guided horizontally to a photo multiplier tube 

detector at a distance of approximately 2.25m from the sample surface. The 

reflected beam fell as a horizontal series of spots, with the brightest central spot 

being the specular reflection from the main undiffracted spot and the others the 

specular reference spots from the diffraction orders. These then provided local 

heterodyne mixing beat signals for the scattered intensity from the main spot falling 

on the detector pinhole at the same angle. Thus by tilting mirror m4 slightly, a given 

diffraction order (and hence scattering vector value) could be selected by directing it 

into the 1.5mm pinhole of the photo multiplier. A 5% transmission neutral density 

filter was used to attenuate the diffraction orders down to an intensity where the 

heterodyne beating effect was maximised. 

The output from the PMT was fed to a 128 channel autocorrelator 

(Malvern model K7025) with channel widths of about 5-lOJls, the measured signal 

being displayed as it was obtained on an oscilloscope. Operation of the correlator 

and storage of the data in ASCII file format was controlled through a Dell PC using 

GW-Basic software. 
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CHAPTER 4- POLY(METHYL METHACRYLATE) 

Summary 

Several fractions of syndiotactic poly (methyl methacrylate) have been 

synthesised. The analysis of these fractions and those of atactic and isotactic PMMA 

samples with respect to molecular weight and tacticity is described. The results of 

examination of selected fractions of each tacticity by surface pressure, neutron 

reflection, ellipsometry and SQELS techniques are reported and comparisons 

between the behaviour of the various materials are made. 

Syndiotactic and atactic PMMA are classically defined as liquid 

condensed in type while isotactic PMMA is liquid expanded, a surface pressure 

being detected at much larger areas per molecule. Analysis of the surface pressure 

data by scaling theory shows that SYNDIO and ATAPMMA exhibit behaviour 

associated with less than or near theta conditions whereas ISOPMMA exhibits good 

2-D solution behaviour. 

Correspondingly neutron reflection indicates that SYNDIO and 

AT APMMA mono layers are rather similar in structure, but that ISOPMMA contains 

a rather higher proportion of air in the film. Optical matrix fitting suggests that the 

films may contain >50% air in some cases and only around 5-10% water and so the 

use of an alternative patchy film model has been assessed. The usefulness of 

kinematic approximate expressions has been demonstrated both as an alternative to 

matrix methods for the determination of film parameters and also as a clear way of 

determining the uniqueness of the model fitted to the data. 
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4.1 Synthesis and Characterisation 

Various fractions of syndiotactic PMMA were synthesised by the 

anionic high vacuum route previously described. A summary of the molecular 

weights values obtained by Gel Permeation Chromatography for these polymers and 

for the samples of atactic and isotactic PMMA used later are is given in table 4.1. 

Sample Code MJ103 Mw/103 MwfMn 

001 75.1 184.7 2.46 
002 151.0 267.0 1.77 
003 30.8 67.4 2.19 
004 13.3 22.3 1.68 
005 17.7 47.7 2.70 
006 17.6 45.4 2.59 
007 24.2 56.4 2.33 
008 26.6 71.8 2.70 
009 50.1 69.3 1.38 
011 47.3 101.3 2.14 
012 119.3 335.9 2.81 
013 8.9 21.1 2.37 
014 29.9 46.2 1.55 

ATAHPMMA 130.4 144.9 1.11 
ATADPMMA 1706 4800 2.81 
ISOHPMMA 10.4 51.1 4.94 
ISODPMMA 9.5 134.2 14.2 

Table 4.1 Molecular Weights of PMMA Samples 

From the above samples the fractions coded 002 and 012 were selected 

for further study, along with ISOHPMMA, ISODPMMA, AT AHPMMA and 

AT ADPMMA. Hereafter these fractions are referred to as SYNDIOHPMMA and 

SYNDIODPMMA respectively. 

The stereotactic sequences in the polymer chains were estimated by 

400MHz 13c NMR, by ratioing the integral intensity of carbonyl resonance signals 
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in the 176 - 178 ppm region, which are sensitive to the statistical distribution of the 

tacticity of neighbouring chain sequences. It should be noted that the finely 

separated lines do not originate from conventional proton neighbour splitting but are 

in fact due to the slight shift changes caused by the differing stereo-sequences 

around the carbon atoms. Typical expansions of the relevant region in the spectra for 

syndio and isotactic polymers are shown in figure 4.1. From the weighted average of 

the various contributions it is possible to calculate the probability of racemo 

(syndiotactic) or meso (isotactic) dyads along the chain. These values are 

summarised in table 4.2. 

Shift 176.6 176.8- 177.2 177.7-177.9 178.0-178.2 

rmrr/mmrr 
Proportion 

Attributable to mmmm 
+ mmnn/rmrrn 

rrr mrrr in molecule 

Polymer Relative Integral Intensity Pr Ps 

SYNDIOHPMMA 0 0.32 0.56 0.12 0.85 0.15 

SYNDIODPMMA 0 0.24 0.60 0.16 0.87 0.13 
ATAHPMMA 0 0.42 0.36 0.22 0.79 0.21 
ISOHPMMA 0.84 - 0 0.16 0 0.16 0.84 

ISODPMMA 1.00 0 0 0 0 1.00 

Table 4.2 Stereotacticity of PMMA by Be NMR 

Additional evidence for the tacticity of the polymers is obtained from 

the 1 H NMR spectra which may be compared in figure 4.2. In a similar fashion to 

the Be spectra, signals in the shift range 1.0 - 2.0 ppm are attributable to methylene 

protons experiencing various neighbouring statistical sequences. In the meso dyad 

there is a plane of symmetry but no twofold axis of symmetry whereas in the racemo 

dyad there is a two fold axis of symmetry. Thus for a racemo dyad the two 

methylene protons are equivalent, and there should be a sharp methylene singlet 

peak in the lppm region. The non-equivalence of the meso dyad protons however 

leads to a splitting pattern of two doublets split by the geminal coupling of around 
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15Hz. This pattern is indeed seen in the spectra of SYNDIOHPMMA and 

ISOHPMMA, other signals being due to a variety of longer range tactic sequences 

reflecting the occasion'al occurrence of tactic defects along the chain backbone. 
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4.2 Surface Pressure - Concentration Isotherm Studies 

Surface pressure - concentration isotherms have been obtained for each 

pair of hydrogenous and deuterated polymers SYNDIO-, ISO- and ATACTIC 

PMMA, figures 4.3-5. The data were recorded at 298K, although no temperature 

dependence was observed in data measured at temperatures between 285K and 

298K. (Jaffe and co-workers<l.2) published results to support a temperature transition 

in the form of the PMMA isotherm, but Rondelez and co-workers<3) argued strongly 

that the surface pressure of atactic PMMA was temperature independent, any 

apparent effects being due to surface contamination due to leaching out from the 

trough or other difficulties associated with measurements at high temperature). 

Repeated runs under identical conditions were used to assess the uncertainty in the 

measured values. 

An estimate of the reproducibility of the data may be obtained by the 

comparison of two typical replica data sets for SYNDIOHPMMA and ISOHPMMA, 

figure 4.6(a) and (b).At low surface concentrations there is very good agreement 

between the two sets in both cases, but as the surface coverage is increased there is a 

greater spread in the data. This is due partially to increased fractional error in the 

surface coverage since a slight error in the volume spread becomes more apparent as 

the area defined by the barriers becomes smaller, and partially to factors associated 

with the high compression of the film. At high surface concentrations the film 

becomes stiffer and eventually local deformation can lead to collapse of the film. 

This is not unifonnly reproducible and can be prompted by faults in the monolayer 

such as surface contamination. Rigorous surface cleaning by aspiration minimises 

this problem but it is still present to some extent. However since the theories used to 

rationalise the data consider the semi-dilute region and this region is well within the 

reproducible part of the isothenn, high coverage effects are not a major factor. 
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Figure 4.3(b) Smface Pressure- Surface Concentration Isotherm for SYNDIODPMMA 

112 



~~----~--~r---~-----r----,-----~--~r---~ 
~ 4J 
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Figure 4.4(b) Surface Pressure- Surface Concentration Isotherm for ATADPMMA 
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Figure 4.5(b) Surface Pressure- Surface Concentration Isotherm for ISODPMMA 
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Figure 4.6(b) Repeated Smface Pressure Isotherms for ISOHPMMA 
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It is important for neutron reflection work to ascertain that the 

hydrogenous and deuterated films behave in a similar fashion, as the reflected 

signals from each are analysed together to characterise the layer. Comparison of 

figures 4.3-5 suggests that the three pairs of polymers behaved in a reasonably 

self-consistent fashion. 

Comparing the behaviour of the various tactic forms, on initial 

inspection it is evident that the isotherms of syndio and atactic PMMA are 

reasonably similar in shape to each other, and both rather different to that of 

ISOPMMA. In the light of the tactic information obtained from NMR this is to be 

expected as the atactic material is much more like the syndiotactic than the isotactic. 

The shape of the syndiotactic isotherm is that classically defined as liquid 

condensed; the surface pressure is first observed at a low area per segment (high 

surface concentration) and rises rather steeply in the first instance. ISOPMMA on 

the other hand behaves as a liquid expanded type film with a more gradual rise in 

pressure from a much smaller onset concentration. One quantity classically used to 

describe the isotherm is the~ limiting area per molecule, which is obtained by the 

extrapolation of the steep rise in surface pressure back to zero concentration. In the 

case of macromolecular films the equivalent quantity is a limiting area per monomer 

unit which may be obtained from the limiting surface concentration and the 

monomer molecular weight. Limiting surface concentrations and corresponding 

limiting areas per monomer unit of surface pressure onset for PMMA are shown in 

table 4.3. The values suggest that the average segment adopts a more extended 

conformation in ISOPMMA than SYNDIOPMMA for which much closer approach 

is possible before interactions between segments are sensed. 

In order to define further the behaviour of the layers, it is desirable to 

re-present the surface pressure data logarithmically in order to obtain values for the 

critical scaling exponent v, described in Chapter 1. Figures 4.7-9 show the data of 
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Polymer rlim apmlim 

SYNDIOHPMMA 1.05 15.8 
SYNDIODPMMA 1.05 17.1 

ATAHPMMA 0.95 17.5 
ATADPMMA 0.95 18.9 
ISOHPMMA 0.5 33.2 
ISODPMMA 0.5 35.9 

Table 4.3 Limiting Surface Concentrations and areas per monomer for PMMA 

figures 4.3-5 plotted on a double logarithmic scale in the semi-dilute region (where a 

linear dependence is observed). From a least squares fitting analysis of the straight 

line of best fit in this region, the slope y may be obtained and the value of v from the 

simple relationship, y = 2v/(2v-1). The values so obtained are shown in table 4.4. In 

addition an estimate may be obtained of the values of r* and r**, the critical 

concentrations of the transitions from dilute to semi-dilute and semi-dilute to 

concentrated behaviour by the points where the linearity of the double logarithmic 

plots is lost. These values are listed in the final columns of table 4.4. 

Polymer Slope v f*/mgm-2 r** I mgm-2 

SYNDIOHPMMA 26.2 0.52 0.91 1.10 
SYNDIODPMMA 12.3 0.54 0.90 1.17 

ATAHPMMA 12.3 0.54 0.83 1.12 
ATADPMMA 11.7 0.55 0.83 1.15 
ISOHPMMA 2.8 0.77 0.45 1.12 
ISODPMMA 2.8 0.77 0.35 1.07 

Table 4.4 Critical Scaling Exponents and Surface Concentrations for PMMA 

The values of the critical exponent v in table 4.4 demonstrate clearly that 

the various forms of PMMA exist in very different thermodynamic conditions when 
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spread as monolayers. The value of 0.52 for SYNDIOPMMA suggests a less than 

theta condition, since at collapse v = 0.5. The value for AT APMMA is slightly 

different from this, a value of 0.55 indicating a closer approximation to the theta 

condition where unperturbed two dimensional chain dimensions are expected. 

ISOPMMA on the other hand displays unambiguously the behaviour associated with 

good solvent conditions, with a v value of 0.77, in agreement with the predicted 

value. 

A further indication of the thermodynamic state of the layer may be 

obtained by consideration of the dilute regime. By presenting the data as TC/f' v r, 

the equation of state theory predicts that at extremely low surface concentrations, an 

extrapolation of the data back to zero concentration will yield values for the two 

dimensional second virial coefficient, A2,2, and the molecular weight of the polymer. 

Unfortunately under the conditions in which the trough was operated there proved to 

be a considerable amount of noise compared to the extremely low measured signal 

corresponding to the change in surface pressure. As most vibrations associated with 

nearby instrumentation and human movement were damped by the optical table, the 

main source of fluctuation was airborne, which although reduced by the trough 

casing, cannot be elimated entirely without access to much more thorough draught 

elimination than was readily available. Therefore there is some considerable scatter 

on the data in the low surface pressure regime, figures 4.10-12. As a consequence it 

has proved difficult to obtain any meaningful molecular weight and second virial 

coeffiecient values in this region, however comparing the slopes of these plots it is 

evident that there is a large positive slope for ISOPMMA whereas SYNDIOPMMA 

and AT APMMA both have small negative slopes. This indicates a positive A2,2 

value for ISOPMMA and a negative value for the other cases, confirming that 

ISOPMMA is in good solvent conditions where chain-solvent interactions are 

favourable but the other fonns are in less that theta conditions with unfavourable 
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chain-solvent interactions. This incidentally suggests that a higher value of around 

0.56-0.57 is indeed the correct theta value for the critical v exponent as there is a 

finite negative slope to the data for A TAPMMA. 

The effect of the rate of compression (barrier speed) on the shape of the 

isotherm has also been considered. It is difficult to illustrate the effect of barrier 

speed clearly, but in general terms there is little effect in the low concentration 

regime where the isotherm is well reproduced. The main occurence of 

irreproducibility was at higher concentrations where overcompression of a 

monolayer can lead to surface pressure overshoot on the one hand or premature 

collapse on the other. To some extent these mechanisms are also governed by 

defects in the surface as previously discussed and it is difficult to isolate the effect 

of barrier speed alone. A qualitative rationalisation of the effect of overcompression 

may be obtained by considering the mobility of chains in the layer and consequently 

the time taken for them to respond to the perturbation of compression. It is to be 

expected that at low surface coverages the layer will be relatively flexible and the 

chains less consu·ained and thus able to respond to compression with a relaxation 

time that is very small compared to the barrier speed. At higher concentrations the 

mobility of the chains is limited increasingly by their closer proximity to one 

another and consequently the relaxation time increases relative to the barrier speed. 

In a recent letter<4) Kato has proposed the use of constant strain rate rather than 

constant barrier speed for the measurement of surface pressures for insoluble 

monolayers, governed by the critical parameter, the so called Deborah number, 

where 

Deborah Number = 
Time of Relaxation 

Time of Observation 

Such a method might clarify behaviour in the concentrated regime to 

some extent, however to extend measurements to high surface concentrations 
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requires prohibitively long measurement times and, as previously observed, the time 

of relaxation in the dilute and semi-dilute regimes are such that if a reasonably slow 

rate of compression of around 20 cm2 min- 1 is used, then the data obtained are 

reproducible and unaffected by the rate of compression. 

An associated phenomenon observed at high surface concentrations is a 

slow decay in the smface pressure if the barriers are closed to a given value and held 

there. In this case there is a very marked difference between the behaviour observed 

for SYNDIO and ISOPMMA. Figure 4.13 shows a multiple plot of surface pressure 

as a function of time after an initial compression to a given surface pressure for 

SYNDIOPMMA. For a low initial surface pressure such as 5mNm-1 there is a more 

or less constant surface pressure recorded over a two hour period, but as the initial 

surface pressure is increased a significant drop in smface pressure after the barriers 

were stopped is observed. From an initial surface pressure of 20mNm-1 for example 

the surface pressure drops to a steady value of 14mNm-2 after two hours. This trend 

is consistent with a film possessing the properties of increasing stiffness with 

increased compression but which then has the ability to relax in a manner which 

reduces the perturbation on the system. This effect it should be noted is distinct from 

that which might be seen in the event of barrier leakage. In that case surface 

pressure would decay in a rather more drastic fashion and the recording of consistent 

surface pressure - smface area data would become impossible. 

The relaxation phenomenon observed for ISOPMMA is dramatically 

different to that obtained for the syndiotactic polymer, see figure 4.14. In this case 

holding barrier position from a low or moderate surface pressure leads to a surface 

pressure decay that is larger and more sustained with time than for SYNDIOPMMA. 

As surface pressure is increased, as one, might expect, the effect becomes greater. 

However once compressed. to an initial smface pressure of 20mNm-2, a quite 

remarkable transition occurs. In this instance the surface pressure measured with 
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time is virtually unchanging, indicative of a film that is incapable of relaxation. This 

observation will be discussed later in conjunction with evidence obtained from 

neutron reflectometry. 
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4.3 Neutron Reflectometry 

Neutron reflectometry has been used to study all three tactic forms of 

PMMA at the air-water interface. The bulk of the work has been carried out on 

CRISP but 017 has been used to probe for longer range effects for the case of 

ISOPMMA. 

Experiments have been canied out using two sets of contrast conditions. 

These were the deuterated polymer spread on water contrast matched to air (acmw) 

which gives a direct measure of the amount of material spread on the surface, and 

the hydrogenous polymer spread on 0 20 which is more sensitive to the intrusion of 

water into the layer. 

Neutron reflectivity profiles obtained on CRISP for SYNDIOOPMMA 

on acmw over a range of surface concentrations are illustrated in figure 4.15. The 

reflectivity is presented renormalised to the incident monitor counts as a function of 

the perpindicular component of the momentum transfer vector, Q, and error bars, 

which are generally within the points except near the high Q background, are 

omitted for clarity. The theory of reflection predicts a strong inverse dependence of 

reflectivity on Q, namely that it should decrease with Q4. This is indeed seen in the 

experimental data which is consequently presented on a logarithmic y scale to 

clarify the effect of surface concentration. The general shape of a reflectivity profile 

is governed by this decline until the instrumental background signal is reached. This 

background is predominantly governed by isotropic incoherent scattering and is 

dependent on the particular contrast used. Since the 1H nucleus has a larger 

incoherent scattering cross section then 2H, a higher background is obtained for 

systems containing a larger amount of hydrogen. Thus the background for air 

contrast matched subphase systems is slightly higher (at around 9x10-6-1.1x 10-5) 
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than for a D20 system (around 3x10-6). Generally this background level is reached 

by a Q value of around 0.3-0.35A-1. 

The change in the shape of the reflectivity profile can be ascribed to 

increased (nuclear) density, which causes the reflectivity to rise, and the layer 

thickness, which tends to affect the slope of the profile and increase the reflectivity 

according to the total scattering length density. The experimental reflectivity rises 

with increasing surface concentration indicating a rise in deuterated material at the 

interface. Since the subphase is air contrast matched and does not contribute to the 

reflectivity, non-linear least squares fitting of the relevant optical matrix expressions 

gives rise to values for the layer thickness and scattering length density which may 

be use to calculate the polymer density (surface concentration) in the interfacial 

regwn. 

Experimental reflectivity profiles for SYNDIOHPMMA/D20 at the 

same surface concentrations are shown in figure 4.16. In this case the effect of 

increasing the surface concentration of polymer is to increase the amount of 

hydrogenous material at the interface. Consequently the reflectivity profile is 

depressed slightly from the reflectivity obtained from pure 0 20. The layer scattering 

length density fitted in this case is contributed to by the polymer and the subphase 

material. 

Equivalent reflectivity profiles for ATAPMMA and ISOPMMA at the 

same contrasts are illustrated in figures 4.17-20. The same general features· are 

observed, but it should be noted that at similar surface concentrations there is less 

effect on the reflectivity profile for the the isotactic film than the syndiotactic. 

A simple model has been used as a first approximation, namely a single 

solid slab. The Rutherford Appleton Laboratory GENIE suite program L_MULFIT 

and the program DR YDOC by A.R. Rennie have been used to fit the data by 

non-linear least squares analysis according to Abeles metl)od. By scanning a fixed 
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layer thickness in the fit and allowing the scattering length density to float for each 

thickness to obtain a minimum in the residual error for the fit, values of layer 

thickness and scattering length density have been obtained for each surface 

concentration and for both contrasts for each polymer. These values are summarised 

in table 4.5. 

A measure of the uncertainty associated with the fits may be made by 

considering the behaviour of the residual of the fit (the sum of the squares of the 

difference in the data and fitted function values) when one of the fitting parameters, 

for example the layer thickness, is held constant and the other, the scattering length 

density, allowed to float to minimise the residual. By plotting the value of the 

residual as a function of the fixed layer thickness when the scattering length density 

is the only floating variable, the depth and breadth of the curve so obtained reflects 

the quality of the best fit to the data. Figures 4.21 and 4.22 show some typical 

residual curves superimposed on one another, and figures 4.23 and 4.24 show the 

corresponding reflectivity profiles and curves of best fit. 

The value of the residual is somewhat dependent on the individual 

features of the profile (for example scatter in the points at high Q due to shorter run 

times can arbritarily increase the value), but the features observed in the examples 

were typical. At very low surface concentrations both residual curves, the D/acmw 

curve in particular, tended to become very broad and shallow and the positions of 

their minima were rather far apart. The reflectivities in this case were, on the one 

hand only just above background, and on the other only slightly different from that 

obtained for clean 0 20. There is a considerable correlation between the values of d 

and p so and so their individual values can only be determined with a fairly large 

uncertainty. As the surface concentration is increased however the minima become 

both better defined and closer together. Thus at moderate surface concentrations 

both the thickness and scattering length density can be determined with reasonable 
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Syndiotactic 

1/mg m-2 
0/acmw H/020 

ct/A p/10-6A-2 residual/! o-2 d/A p/10-6A-2 residual! I o-2 

0.2 - - - 22 0.58 1.010 
0.3 20 1.07 0.4083 - - -
0.4 19 1.25 0.3785 22 0.72 0.4037 
0.5 18 1.70 0.3963 - - -
0.6 12 3.12 0.4780 21 0.84 0.8693 
0.8 16 3.82 0.5581 21 0.93 0.9636 
1.0 19 3.99 0.4407 21 1.09 0.5741 
1.5 23 4.50 0.5700 21 1.09 0.7322 
2.0 23 4.54 0.7937 22 1.26 0.7961 

Atactic 

0.2 18 0.64 0.3809 - - -

0.5 16 2.15 0.4655 19 0.90 0.6167 

0.75 15 3.57 0.2646 - - -
1.0 18 3.76 0.5988 17 1.31 0.6141 

1.2 17 4.04 0.4162 - - -
1.7 17 4.15 0.3895 - - -
2.0 17 3.91 0.5004 17 1.85 1.007 

2.1 20 4.47 0.6753 - - -

2.5 19 4.22 0.5447 - - -
3.5 23 4.59 0.6466 19 1.75 1.336 

4.95 25 5.31 0.7751 20 1.69 0.9333 

Isotactic 

0.2 36 0.22 0.5466 21 0.54 0.7558 

0.3 11 1.12 0.4829 20 0.55 0.7085 

0.4 14 1.05 0.4861 19 0.53 0.4610 
0.5 24 0.64 0.5521 20 0.52 0.6287 
0.6 - - - 19 0.52 0.8549 
0.8 15 2.67 0.4861 18 0.75 0.9730 

1.0 15 3.18 0.5123 17 0.84 0.7418 

1.5 17 2.60 0.7477 17 0.87 0.8323 

Table 4.5 Residual Minimum fitted values for PMMA on water 
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confidence. 

From these observations it seems reasonable to estimate an error on the 

fitted values of the layer thickness and scattering length density according to the 

differences between the minima, and in the absence of any better estimate, to fix the 

layer thickness at an intermediate value between the two minima. Using these 

figures as a basis for refitting the scattering length density the values obtained are 

shown in table 4.6 and illustrated graphically in figures 4.25-30. 

The use of different contrast systems may be used to estimate the 

volume fraction composition of the surface layer in terms of the various components 

that could be present in it. For a single layer system one can describe the 

composition in terms of volume fractions of polymer, air, and subphase (water) in 

the interfacial region. The contributions to the measured scattering length density 

may be expressed by an appropriately weighted sum of the individual scattering 

length densities of these species such that 

Player= <l>pPp + <PaPa + <l>sPs 

where <P = volume fraction of species 

p = scattering length density of species 

p =polymer 

a= air 

s = subphase. 

Remembering that the value of the scattering length density of air is 

zero, this simplifies to 

Player= <l>pPp + <PsPs 

For any contrast Pp and Ps are known and Player may be measured by a 

reflectometry experiment. Therefore by studying at two different contrasts, <l>p and <Ps 

may be obtained by simultaneous equations and <Paobtained by the difference 

<Pa = 1 - (<J>p + <Ps) 
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S yndiotactic 

rJmg m·2 
D/acmw HID20 

d/A p/1o-6A-2 residua.l/1 o-2 p/1o-6A-2 residua.l/1 o-2 

0.4 20 1.20 0.3815 0.75 0.6147 

0.6 16 2.44 0.5698 0.98 1.315 

0.8 18 3.50 0.6464 1.02 1.090 
1.0 20 3.86 0.4774 1.12 0.7096 
1.5 22 4.60 0.6136 1.15 1.031 
2.0 23 4.54 0.7937 1.22 0.8610 

Atactic 

0.5 17 2.05 0.4752 0.97 0.6508 

1.0 18 3.76 0.5988 1.24 0.6544 

2.0 17 3.91 0.5004 1.85 1.007 

3.5 21 4.75 0.9873 1.59 1.467 
. 4.95 22 5.54 1.203 1.59 1.122 

-

!so tactic 

0.2 29 0.25 0.5530 0.44 0.9450 

0.3 16 0.80 0.4871 0.63 0.7769 

0.4 16 0.93 0.4890 0.59 0.5070 

0.5 22 0.68 0.5534 0.49 0.6492 

0.8 16 2.53 0.4874 0.82 0.9975 

1.0 15 3.18 0.5123 0.84 0.7418 

1.5 17 2.60 0.7477 0.87 0.8323 

Table 4.6 Optimum Fitting parameters for PMMA on water 
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Applying this method to the data of table 4.6, the volume fraction values 

obtained for the three polymer tacticities are shown in table 4.7. 

The volume fraction composition for each tacticity are presented 

graphically as a function of surface concentration in figures 4.31-33, where errors 

are estimated by the considerations of the residual minima discussed above. 

A comparison of the trends in the layer thickness and composition 

curves suggests that,as one might expect, the syndiotactic polymer has very different 

properties from the isotactic and that the atactic polymer lies in an intermediate 

position, but is somewhat similar to the syndiotactic. The layer thickness for 

SYNDIOPMMA is approximately constant at around 19-20A, rising slightly to 23A 

at the higher surface concentrations. An isolated measurement on AT APMMA at a 

much greater surface concentration (Smgm-2) indicated a very similar thickness 

value suggesting that very little multi-layer type deformation occurred in the film, 

however due to the factors concerning reproducibility of very high surface coverage 

data too much emphasis should not be placed on this point. There is a rather larger 

uncertainty in the low coverage values than those obtained at higher surface 

concentrations and this probably accounts for the scatter in the thickness values 

obtained from measurements on one contrast at low surface concentrations. The 

layer thickness obtained for ISOPMMA seems to be more or less constant at a value 

of 16-17 A whatever the surface concentration. 

Again, comparing the film composition data for the various tacticities, 

some marked differences are apparent. The same general pattern of increasing 

polymer content with surface concentration is observed in all cases, however for 

SYNDIOPMMA the volume fraction of polymer increases to a limiting value of 

around 0.8, much higher than for ISOPMMA which reaches a limit of around 50% 

polymer in the layer. The increase is at the expense of air, the volume fraction of 

which decreases in a more or less direct correspondence with the increase in 
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SYNDIOTACTIC 

r/mg m-2 
Volume Fraction 

polymer water air 

0.3 0.18 - -
0.4 0.20 0.09 0.71 

0.5 0.28 - -
0.6 0.41 0.10 0.49 
0.8 0.58 0.08 0.34 
1.0 0.64 0.09 0.27 
1.5 0.76 0.07 0.17 
2.0 0.75 0.09 0.16 

ATACTIC 

0.2 0.11 - -
0.5 0.34 0.10 0.56 

0.75 0.59 - -
1.0 0.62 0.11 0.27 

1.2 0.67 - -
1.7 0.69 - -
2.0 0.65 0.20 0.15 
2.1 0.74 - -
2.5 0.70 - -
3.5 0.79 0.14 0.07 
5.0 0.92 0.12 -0.04 

ISOTACTIC 

0.3 0.13 0.08 0.79 
0.4 0.15 0.07 0.78 
0.5 0.11 0.06 0.83 
0.8 0.42 0.07 0.51 
1.0 0.50 0.07 0.43 
1.5 0.43 0.08 0.49 

Table 4.7 Volume Fraction Composition Variation for PMMA on Water 
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polymer. Thus for the isotactic polymer, there is a significant amount of air in the 

layer even at the highest surface coverages. The volume fraction of water in the 

layer is low and virtually unchanging in all cases at around 7-8%. 

From the product of the fitted thickness, d, and scattering length density, 

p, for the DPMMNacmw contrast, where the polymer is the only material 

contributing to the signal, it is possible to calculate area per monomer (apm) values 

at a given surface concentration and hence derive apparent surface concentration 

values, r a· These values are obtained by the simple formulae 

and 

where 

the unit 

Area per monomer= Lbjp.d 

ra = Mm!Nav·apm 

Lbi = sum of the coherent scattering lengths of the constituent nuclei in 

Mm = molecular weight of unit 

Nav =avogadro constant. 

Applying these formulae to the data of table 4.6, the values in table 4.8 

and figures 4.34-36 are obtained. 

For SYNDIO and AT APMMA the apparent surface concentration 

values, r a• are generally about the same or slightly greater than the spread amount, 

rs, but for ISOPMMA the values become significantly less, particularly at higher 

surface coverages. This can be seen clearly if ra is plotted against rs. For 

ISOPMMA the experimental values deviate from the ra = rs diagonal. Evidently the 

fit obtained does not account for the total amount of polymer spread on the surface 

in this case. Given that PMMA is insoluble in water and is therefore unlikely to be 

lost to bulk, another explanation for this "missing" polymer must be found. 

The neutron reflectivity is sensitive to all the syndiotactic polymer but 

seemingly not the isotactic. In addition, from surface pressure data, it is known that 

ISOPMMA is in good 2-D solvent conditions but SYNDIOPMMA is near collapse. 
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Tacticity f/mg m-2 Pd·d/A-1 a. p.m./A 2molecule-1 r Jmgm-2 

0.2 9.6 102.3 0.18 
0.3 21.4 45.9 0.39 

0.4 25.0 39.3 0.46 
0.5 30.6 32.1 0.56 

SYNDIOTACITC 0.6 39.0 25.2 0.71 

0.8 63.0 15.6 1.15 

1.0 77.2 12.7 1.41 

1.5 101.2 9.7 1.85 

2.0 104.4 9.4 1.91 

0.2 11.5 85.2 0.21 

0.5 34.9 28.2 0.64 

0.75 53.6 18.3 0.98 

1.0 67.7 14.5 1.23 

1.2 68.7 14.3 1.25 

ATACTIC 1.7 70.6 13.9 1.29 

2.0 66.5 14.8 1.21 

2.1 89.4 11.0 1.63 

2.5 80.2 12.3 1.46 

3.5 96.4 10.2 1.76 

4.95 116.8 8.4 2.13 

0.3 12.8 76.7 0.23 

0.4 14.9 65.9 0.27 

0.5 15.0 65.5 0.27 
ISOTACTIC 0.8 42.7 23.0 0.78 

1.0 47.9 20.5 0.87 

1.5 44.2 22.2 0.81 

Table 4.8 Apparent Surface Coverages for PMMA 
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One possible explanation for the observed behaviour then, might be that in order to 

minimise unfavourable subphase contacts, the syndiotactic chains exist in a dense 

configuration near to the interface whereas the isotactic polymer extends by looping 

and tailing into the subphase to maximise contacts. Presumably this looping is rather 

diffuse and therefore it is difficult to improve the fit and model by the introduction 

of a second layer, particularly for the hydrogenous polymer on D20 where diffuse 

polymer effects would tend to be swamped by subphase signal. Additionally one 

might expect looping and tailing to occur on rather a long length scale, 

corresponding to a lower Q range than was experimentally available. 

In an attempt to investigate this speculation, ISOPMMA has been 

studied at the same contrast conditions using the ILL instrument D 17. Reflectivity 

profiles showing the effects of increasing surface concentration are illustrated in 

figures 4.37 and 4.38. It should be noted that the Q range studied is much lower and 

narrower than for CRISP. Each point on the profile represents an individually 

measured point at a single selected wavelength and angle, obtained by the ratio of 

the integrated peak reflected signal to the corresponding straight through unreflected 

beam. The data for which corresponding CRISP runs were carried out have been 

appended onto the higher Q data. Unfortunately due to limitations on instrument 

time only two sets of data for the D/acmw contrast, at 0.8 and 1.0 mgm-2, and one 

for the HJD20, at 0.8mgm-2, were available for such treatment The resulting 

reflectivity profiles in the range 0.01 < Q;A-1 < 0.65 are shown in figures 4.39- and 

4.40. 

Since there are so few data sets to work on and only one pair of profiles 

at both contrasts, it is difficult to assess the usefulness of this approach towards the 

development of an improved model. However applying the method .previously used 

to obtain a residual scan for a single layer model, the values summarised in table 4.9 

are obtained. The full Q range data are fitted by an almost identical set of values as 
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d/acmw H/D20 
r/mgm-2 

d/A p/10-6A-2 res/l0-2 d/A p!lo-6A-2 res/lo-2 

0.8 14 2.74 1.132 22 0.59 0.9408 

1.0 13 3.53 0.8571 - - -

Table 4.9 Fitted Values from combined CRISP/Dl7 data for ISOPMMA 

the CRISP data alone. However this is not particularly surprising as both surface 

concentrations are reasonably low and lie within the region where the apparent 

surface coverage obtained is more or less the same as the dispensed amount. 

Comparison between Surface Pressure and Reflectometry Data 

As a brief addendum to the observations made earlier concerning the 

surface pressure behaviour of SYNDIO and ISO PMMA, evidently the results of 

neutron reflectometry are gei]erally consistent with the model of SYNDIOPMMA as 

a more condensed film than ISOPMMA, as reflected by the higher polymer content 

of the former film. The observed time dependence of the surface pressure must 

however be considered when dealing with reflectometry results. Given that 

significant surface pressure decays were noted for both tactic forms it should be 

stated clearly that the neutron reflectometry signals obtained showed absolutely no 

sign of any alteration over the 2-4 periods typically used to collect data. This then 

suggests that some form of film relaxation rather than desorption from the interface 

is responsible for the surface pressure loss, but the overall thickness and 

composition of the film at the resolution of the neutron experiment is maintained. 

Neutron reflectometry measurements for ISOPMMA provide a possible 

explanation for the remarkable contrast in properties observed for SYNDIO and 
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ISOPMMA films held over a period of time whereby no pressure decay was 

observed for ISOPMMA held at 20mNm-1• From reflectometry ISOPMMA was 

observed to exist as a film of very constant thickness around 16A and, although the 

polymer content of the film increased, even at high surface coverages the volume 

fraction of air in the film remained significant. One possible conformation which 

could explain this result is the isotactic PMMA helical coil, which has a diameter of 

around 13A, and whose regular structure could account both for a large entrapped 

air content and an unwillingness to rearrange on the surface. It is speculated that the 

overall form of the ISOPMMA film at high surface concentrations would then be a 

series of crystalline regions separated by crystal defects in the form of amorphous 

loops or tails projecting into the subphase, due to favourable segment-subphase 

interactions, figure 4.41. 

Air 

Figure 4.41 Speculative Model for ISOPMMA monolayer 
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4.3.1 Analysis of Reflectometry by the Kinematic Approximation 

The analysis of reflectometry data has thus far been based on film 

parameters generated by least squares minimisation methods for the appropriate 

optical matrix calculations. The best fit profile generated in this case is an exact 

solution for the model employed and can be applied over an unrestricted momentum 

transfer range. Above very small Q values however the kinematic or first Born 

approximation described in Chapter 2 becomes valid and various kinematic 

formulae may be used to derive an understanding of the nature of the surface layer. 

Additionally the more straightforward relationships between the interfacial 

parameters of film thickness, scattering length density, air and substrate scattering 

length densities etc, make the kinematic method very valuable in anticipating any 

correlations of fitted parameters, and therefore determining the uniqueness of the 

solutions evaluated. Kinematic methods have therefore been used to refit the 

experimental reflectivity data from CRISP for SYNDIO- and ISOPMMA. 

According to equation 2.34, for the special case where there is no 

contrast between the two bulk media separated by the interfacial region, such as is 

the case for the air/air contrast matched water interface, a plot of ln(R(Q).Q2) 

against Q2 should be a straight line of slope -cr2 and intercept ln(161t2m2) where 

R(Q) has had the background signal subtracted, cr is the standard deviation of the 

rate of change of the scattering length density with respect to depth and m is the 

total surface excess scattering length density. In practice the region over which this 

linearity is observed is limited by the breakdown of the kinematic approximation at 

low Q (less than about Q = 0.05A-1) on the one hand, and the scatter in the data as 

the background is reached on the other (above about Q = 0.2A-1). Within these limits 

however it has been possible to fit the experimental data with the values summarised 

in table 4.10. Some typical fitted experimental data are shown in figures 4.42 and 
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4.43. The total scattering length density values obtained agree very well with those 

obtained from the products of the layer thickness and scattering length density 

values obtained by matrix calculation and shown in table 4.8. In addition, the 

thickness parameter cr may be seen to be directly related to the equivalent thickness 

values of table 4.8. 

An important aspect of the neutron reflectometry technique is the ability 

to use contrast variation to provide simultaneous data sets in order to establish a 

unique solution for the film structure. Consideration of the relevant kinematic 

formulae give a useful demonstration of both the effectiveness and limitations of 

this technique. In order to determine an interfacial structure uniquely, it would be 

necessary to invert the reflectivity into the corresponding scattering length density 

profile. However it has been shown in Chapter 2 that even if the low Q and 

background limitations of the kinematic theory are neglected that it is impossible to 

invert R(Q) to p5(z) by the normalised Fourier Transform f(Q) of the surface 

inhomogeneity, as the relationships between the two are incomplete in the imaginary 

part of f(Q) and in its phase. 

By use of equation 2.51 for the transform of the Patterson function of the 

gradient of p(z), it is possible to bypass these difficulties somewhat, by considering 

the Patterson function for a two step profile in scattering length density where the 

film slab scattering length density, pp, lies between the values of the two media, p1 

and p2 (figure 2.4(a)). This is the case encountered for HPMMA on 0 20 where 

medium 1 is air. As shown in Chapter 2, lp'(Q)I2 may be generated by plotting the 

background subtracted reflectivity multiplied by Q4/16rr2 against Q. This plot should 

be characterised by a sharp minimum of (2pct-~Pp)2 at a Q value of rr/d where d is 

the film thickness, and ~Pp is the contrast of the system, equal to p2 - p1• Typical 

Patterson plots for SYNDIOHPMMA and ISOHPMMA on 0 20 are illustrated in 

figures 4.44 and 4.45 and the parameters derived from their minima are listed in 
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SYNDIODPMMNacmw 

f/mgm-2 Intercept Slope m/10-6A-2 () 

0.3 -16.4 -37.3 19.8 6.1 

0.4 -16.2 -34.1 24.2 5.8 
0.5 -15.7 -36.7 31.0 6.1 

0.6 -15.3 -18.0 37.9 4.2 

0.8 -14.3 -31.2 65.7 5.6 

1.0 -13.9 -34.1 76.3 5.8 

1.5 -13.3 -48.1 103.0 6.9 

2.0 -13.2 -56.1 108.3 7.5 

ISODPMMA/acmw 

f/mgm-2 Intercept Slope m/10-6A-2 () 

0.3 -17.3 -51.2 13.9 7.2 

0.4 -17.1 -49.3 15.4 7.0 

0.5 -16.9 -24.2 17.0 4.9 

0.8 -15.1 -23.2 41.9 4.8 

1.0 -14.8 -22.3 48.6 4.7 

1.5 -15.0 -22.1 44.0 4.7 

Table 4.10 Results of Analysis of plots ofln(R(Q).Q2) v Q2 for PMMA 

table 4.11 

The experimental Patterson plots agree qualitatively with the predicted 

form. From the x co-ordinate of the minimum in the curve, layer thickness values 

are obtained which are rather similar to those of table 4.5 for hydrogenous polymer 

on D20. On the other hand the scattering length density values obtained from the 

depth of the minima appear to be very different from those obtained previously. This 

is a demonstration of the limitation of the neutron reflection technique under these 

particular contrast circumstances. According to equation 2.52 the minimum value of 

R(Q).Q4 is 167t2(2pct-LlPp)2 and it is the solutions for this term which are listed in 

table 4.11. However, noting that Llpp is simply the difference between the scattering 
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SYNDIOHPMMA I D20 

r/mgm-2 X min Ymin d/A pJ10-6A-2 6.35-pJ10-6 A-2 

0.2 0.18 -19.4 17.5 5.61 0.74 

0.4 0.15 -19.4 20.9 5.61 0.74 

0.6 0.15 -19.5 20.9 5.49 0.86 

0.8 0.16 -19.6 19.6 5.38 0.97 

1.0 0.17 -19.8 18.5 5.17 1.18 

1.5 0.18 -19.8 17.5 5.17 1.18 
2.0 0.18 -19.9 17.5 5.07 1.28 

r!mgm-2 X min Ymin d/A pJI0-6A-2 6.35-pJI0-6 A-2 

0.3 0.17 -19.2 18.5 5.84 0.48 
0.4 0.17 -19.2 18.5 5.87 0.48 

0.5 0.17 -19.25 18.5 5.80 0.55 

0.6 0.17 -19.3 18.5 5.74 0.61 

0.8 0.17 -19.4 18.5 5.61 0.74 

1.0 0.18 -19.5 17.5 5.49 0.86 

1.5 0.18 -19.6 17.5 5.38 0.97 

Table 4.11 Results of Analysis of plots ofln(R(Q).Q4) v Q for HPMMA 

length densities of the two bulk media it is easily seen that 

2pct-LlPp = 2pd- (PrPI) = 2pd- (ps-PJ 

= 2pd - Ps = 2(pd-Ps) + Ps 

= -1 X (2(ps-Pd) - Llpp) 

Therefore on squaring this term these two solutions are indistinguishable 

and an equally valid set of solutions with Pct equal to 6.35x10-6 minus the Pct values 

of table 4.11 exists. These values are found in the final column of table 4.11 and 

may be seen to agree fairly well with the data of table 4.5. In fact another two 

solutions exist which generate the same Patterson function but as these imply a 

negative film scattering length density they may be eliminated on the grounds of 
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being physically unrealistic. 

In order to justify the choice of one of the two remaining possible 

solutions it is necessary to consider both contrast sets together. The two solutions 

represent two cases, one indicative of a high water uptake in the layer and the other 

a low uptake with polymer more or less floating on the subphase. The scattering 

length density values obtained from the D/acmw contrast indicate a dense film with 

a high polymer volume fraction and when one uses this value to solve with the first 

set of H/020 PF values the result is large negative air volume fractions. For the 

second case, where a small water uptake is indicated the volume fraction values 

calculated are physically possible and are those of table 4.7. Therefore although 

strictly speaking a unique solution cannot be obtained by reflectometry for the layer 

thickness and composition, the use of multiple contrast can help to eliminate most 

possible solutions. 

The Patterson plot can therefore be used as a means to estimate the layer 

thickness and scattering length density although in practice it is easier to obtain both 

d and p from other methods as there is often a considerable uncertainty in the exact 

position of the minimum in R(Q).Q4. 

4.3.2 Patchy Film Modelling 

An alternative method has been used to account for the observed 

behaviour of PMMA films. There has been some conjecture as to whether 

poly(methyl methacrylate) spread on water forms a continuous monolayer or 

whether the film exists as dense patches of polymer floating on the subphase 

surrounded by voids of air. The previous homogeneous slab treatment indicated a 

layer containing only around 10% water, and the increase in polymer content was 

seen to correspond with the gradual exclusion of air. At low coverages in particular, 
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the high air content indicated by the fits might be described sensibly by a patchy 

system characterised by a fractional coverage of the surface. 

As previously discussed in chapter 2, the methods of analysis based on 

the kinematic approximation provide a suitable method for the description of the 

reflection from a monolayer of patchy islands. For the special case of an interface 

with zero air-subphase contrast (eg deutero polymer on air contrast matched 

subphase) the best fit to the reflectivity data provides an uncorrelated value of the 

layer thickness (d) and values for the scattering length density of the film patches 

(pp) and the fraction of the total surface covered (f) which are correlated by the 

product pp2f for infinitely large islands and pp2f2 for infinitely small islands. In order 

to determine PF and f independently it is necessary to solve a second data set for the 

more general case where there is a non-zero air-subphase contrast, such as the 

hydrogenous polymer spread on 0 20. In this case a product of PF and f do not 

factorise from the relevant kinematic expressions, and hence given the layer 

thickness as determined from the first contrast, it is possible to solve the two data 

sets together to determine the fractional coverage. If bulk scattering length density 

values (indicative of perfect polymer islands floating on the subphase surrounded by 

air voids) can be assumed, then it is possible to determine the island size ~ uniquely 

by finding the value of the island size factor F(~) that gives the same fractional 

coverage on both contrasts. 

This approach was used in an attempt to fit the experimental data for 

SYNDIO- and ISOPMMA, however on assuming bulk scattering length densities it 

proved impossible to fit both contrasts with physically viable values for the 

fractional coverage (O~f~l). In order to produce a simultaneous solution it was 

necessary to model the islands as a binary mixture of polymer and subphase and 

determine simultaneous scattering length density values for the two contrasts 

according to a weighted sum of the scattering length densities of these two 
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constituents according to their respective volume fractions in the mix. Introducing 

this additional unknown of composition means that it is no longer possible to 

determine the island size uniquely, however it is possible to determine solutions for 

the two limiting cases, namely infinitely small and infinitely large islands where 

F(~) is defined as zero and unity respectively. The fitted values are listed in tables 

4.12 and 4.13. These sets represent the extreme cases where a realistic solution is 

possible, and an infinite set of equivalent solutions exist for compositions between 

these limits where the island size varies from the very small to the very large. 
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-00 
VI 

SYNDIO- Large Islands 

D/acmw H/020 

r/mgm-2 d!A p/10-6A-2 res/10-2 p!lo-6A-2 res/10-2 <l>p <l>s f f.pd aprn!A2 

0.4 19 1.75 0.3787 4.72 0.5293 0.29 0.71 0.51 17.0 57.9 

0.6 17 3.43 0.5326 3.24 1.268 0.57 0.43 0.45 26.2 37.4 
0.8 18 4.70 0.4768 2.09 1.163 0.78 0.22 0.59 49.9 19.7 
1.0 19 4.76 0.3907 2.04 0.5658 0.79 0.21 0.70 63.3 15.5 
1.5 23 5.30 0.5688 1.55 1.255 0.88 0.12 0.73 89.0 11.0 

2.0 23 5.18 0.5142 1.66 0.8280 0.86 0.14 0.77 91.7 10.7 

SYNDIO - Small Islands 

D/acmw H/020 

r/mgm-2 d/A p/10-6A-2 resno-2 p/10-6A-2 res/l0-2 <l>p <l>s f f.pd aprn!A2 

0.4 19 4.33 0.3787 2.43 0.5293 0.72 0.28 0.29 23.9 41.2 
0.6 17 4.94 0.5326 1.88 1.268 0.82 0.18 0.42 35.3 27.8 
0.8 18 5.42 0.4768 1.45 1.163 0.90 0.10 0.64 62.4 15.7 
1.0 19 5.30 0.3907 1.55 0.5658 0.88 0.12 0.75 75.5 13.0 
1.5 23 5.60 0.5688 1.28 1.255 0.93 0.07 0.81 104.3 9.4 

2.0 23 5.48 0.5142 1.39 0.8280 0.91 0.09 0.82 103.4 9.5 
-·--

Table 4.12 Results of Patchy Film Analysis for SYNDIOPMMA 

rafmgm-2 

0.31 
0.48 
0.91 
1.16 
1.62 
1.66 

~--

r Jmgm-2 

0.44 
0.64 
1.14 
1.38 
1.91 
1.89 



........ 
00 
0\ 

ISO - Large Islands 

D/acmw H/D20 

r/mgm-2 d/A p;I0-6A-2 res/l0-2 p/1o-6A-2 res/10-2 ~p ~s f f.pd 

0.3 11 1.32 0.4833 5.15 0.7865 0.22 0.78 0.71 10.3 
0.4 14 1.57 0.4861 4.93 0.4488 0.26 0.74 0.45 9.9 
0.5 12 2.20 0.6029 4.30 0.7830 0.37 0.63 0.41 10.8 
0.8 15 4.03 0.4857 2.70 0.9769 0.67 0.33 0.44 26.6 
1.0 15 4.51 0.5132 2.26 0.7072 0.75 0.25 0.50 33.8 
1.5 17 3.97 0.7511 2.75 0.8004 0.66 0.34 0.43 29.0 

- - - - - - -- - ------ -- -- ------- ----

ISO - Small Islands 

D/acmw H/D20 

rtmgm-2 d!A p/10-6A-2 res/10-2 p/10-6A-2 resno-2 ~p ~s f f.pd 

0.3 11 1.32 0.4833 5.15 0.7865 0.22 0.78 0.71 10.3 
0.4 14 1.57 0.4861 4.93 0.4488 0.26 0.74 0.45 9.9 
0.5 12 2.20 0.6029 4.30 0.7830 0.37 0.63 0.41 10.8 
0.8 15 4.03 0.4857 2.70 0.9769 0.67 0.33 0.44 26.6 
1.0 15 4.51 0.5132 2.26 0.7072 0.75 0.25 0.50 33.8 
1.5 17 3.97 0.7511 2.75 0.8004 0.66 0.34 0.43 29.0 

---------

Table 4.13 Results of Patchy Film Analysis for ISOPMMA 

I 

aprn!A2 r Jmgm-2 
I 

95.3 0.19 
99.2 0.18 
90.7 0.20 
36.9 0.49 
29.1 0.62 
33.8 0.53 

-

aprn!A2 rafmgm-2 

95.3 0.19 
99.2 0.18 
90.7 0.20 
36.9 0.49 
29.1 0.62 

33.8 0.53 



4.4 Ellipsometry 

Ellipsometric data have been obtained for syndio and isotactic PMMA 

using the ellipsometer described in Chapter 3. For SYNDIOHPMMA, the 

experimentally determined values of the parameters o~ and O'Jf, representing the 

phase difference and amplitude attenuation, are shown in figures 4.46 and 4.47 for a 

complete compression I expansion cycle. The simultaneously recorded surface 

pressure is shown as a function of trough barrier position (proportional to the area 

per segment) in figure 4.48. 

From figure 4.47, it is clear that there is no sensitivity in 'I' to a change 

in the surface concentration, and hence it is only possible to estimate a film 

thickness by assuming a reasonable refractive index value for substitution into 

equations 1.33 and 1.34. Figure 4.49 shows a calculated thickness variation based on 

a film refractive index of 1.49, corresponding to a weighted average of the refractive 

indices of PMMA (1.502) and water (1.3390) at 436nm using a polymer volume 

fraction of 0.93. 

Just as hysteresis is observed in the surface pressure isotherm so there is 

hysteresis in the observed phase difference for syndio PMMA, leading to a smaller 

layer thicknesses for equivalent barrier positions on expansion. Of course this simple 

approach takes no account of any possible compositional effects in the film and it is 

impossible to decouple the thickness I refractive index effect given insensitivity in 

amplitude attenuation. 

It is possible however to make relative comparisons between the 

behaviour of syndio and iso PMMA by treatment of the equivalent ISOPMMA 

compression I expansion data, figures 4.50 and 4.51. Again no sensitivity in \jf was 

observed, due to the non-absorbing qualities of the substrate and film. Using the 

same assumed refractive index of 1.49 the thickness values shown in figure 4.52 
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were obtained. There was no hysteresis in the film properties and the layer thickness 

is rather less for iso PMMA than for the syndio at an equivalent concentration 

except for very high compressions, although in both cases the value at high areas per 

molecule is rather low to be realistic. This probably reflects the arbritrary selection 

of a refractive index value. 

In the light of the information obtained from reflectometry, it might be 

more appropriate to treat the ellipsometry results with a varied refractive index, 

according to an estimate for the variation in film composition with surface 

concentration, in order to obtain a more realistic film thickness. In addition the 

refractive index value used clearly estimated the polymer content of the film, given 

the composition information obtained from reflectometry (which was only obtained 

in its final form after the analysis of the ellipsometry data). Unfortunately due to the 

fact that the analysis was dependent on software at the MPI-P, Mainz, it has not 

proved possible to reanalyse the results. Nevertheless it can be seen that, given a 

reasonable assumption of the film composition, ellipsometry can be used to obtain 

an estimate of the film thickness that is of the same order of that obtained 

independently by neutron reflectometry. 
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4.5 Surface Quasi-Elastic Light Scattering 

SQELS has been used to examine the viscoelastic properties of 

monolayers of syndiotactic and isotactic poly (methyl methacrylate), and to examine 

the free surface of water. The use of heterodyne mixing has enabled the collection of 

suitable data within times as short as a few tens of seconds. By use of non-linear 

fitting methods, values have been obtained for the propagation frequency and 

damping rate of the experimental correlation function over a range of surface 

wavenumbers for water. 

For syndio and isotactic PMMA, a single wavenumber value has been 

used to obtain correlation data. Film viscoelastic parameters have been derived both 

by fitting the full form of a doubly exponentially damped cosine function to the 

experimental data, and by the so called direct data analysis or Fourier transform 

route. 

4.5.1 SQELS from Water 

Before studying polymer monolayers, surface light scattering was used 

to examine the propagation of capillary ripples on the surface of clean water, in 

order to determine the surface wavenumbers corresponding to the scattered light 

coincident with each diffraction order at the pinhole of the photomultiplier tube. The 

first three, smallest angle spots were omitted to avoid flare associated with edge 

effects at the neutral density filter, and the high q limit was determined by the drop 

off in the scattered intensity with scattering angle. By non-linear least squares fitting 

of an appropriate doubly exponentially damped cosine function (equation 1.61) to 

the experimental data, values were obtained for t~e propagation frequency and wave 

damping for each run. Fitted data of typical quality are shown in figure 4.53. In 
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addition it is possible to determine the relative intensities of the reference (lr) and 

scattered (Is) light giving rise to the heterodyne beat pattern. Values for water over a 

range of diffraction orders are summarised in table 4.14 and figures 4.54-4.56, 

where errors are estimated from the standard deviation of the average of ten repeated 

measurements. 

Order I /Is IJ10·4 wJs·1 r;s·1 q/cm·1(from wo) q/cm·1(from f) 

4 4114 9.165 41407 1905 286 306 

5 5228 6.677 53596 2352 340 340 

6 131156 4.787 66762 3365 394 407 

7 8667 4.284 70335 3416 408 410 

8 106844 6.505 85004 4910 463 491 

Table 4.14 Estimation of q from SQELS on water 

As the diffraction order is increased the propagation frequency decreases 

and the wave damping increases, both in a more or less linear fashion. Using the 

appropriate approximation formulae, equations 1.45 and 1.46, it is possible to use 

the values of W0 and r to estimate the surface wavenumber corresponding to each 

diffraction spot as shown in the final columns of table 4.14. 

These values are seen to vary in a linear fashion with the diffraction 

order, the wavenumber obtained from the damping being marginally higher than the 

value estimated from the frequency. This may be due to slightly insufficient 

scattered intensity leading to an overestimate of the damping, but given the 

reproducibility of the data, this is not a major error. From the relative uncertainties 

on the measurement of W0 and f, the value obtained from W0 is the more reliable 

value and it is that value that is employed henceforth. 

The scattered intensity falls off with increasing scattering angle (spot 
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number), and so the data acquisition time was greater for higher diffraction orders. 

For the fourth order for example, reasonable data could be collected in under one 

minute, while at the eighth order a time of around five minutes per run was required. 

It was decided therefore to use the fourth diffraction spot as a convenient point at 

which to measure the surface viscoelastic properties of poly(methyl methacrylate) 

monolayers. 

4.5.2 SQELS from PMMA Monolayers 

Correlation functions have been obtained for SQELS from monolayers 

of syndiotactic and isotactic PMMA spread on water as a function of the surface 

concentration of polymer. Measurements were made during compression of the 

films at room temperature (298K), and for each surface concentration at which the 

film was held, five repeated correlation functions were recorded. The fitted values 

quoted are averages of five repeated measurements. 

Concentrating on SYNDIOPMMA firstly, from the best fitted form of 

equation 1.61, the values of the ratio of the reference to scattered intensity, the 

scattered intensity, the propagation frequency, and the wave damping as a function 

of surface concentration shown in figures 4.57 -4.60. 

The scattered intensity is seen to rise considerably with surface 

concen~ation and this was accompanied by a noticeable increase in the ease of data 

acquisition, enabling run times of as little as twenty seconds to be used for 

moderately high surface concentrations. 

The wave damping and propagation rate are observed to decrease with 

increasing coverage apart from ver.y low surface concentrations when there appears 

to be a slight rise in the parameters for the film covered surface over those of the 

free liquid. These results may be usefully re-presented as a function of the 
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simultaneously measured surface pressure of the film, figures 4.61 and 4.62. 

Turning to ISOPMMA, the fitted values of I/15 , I5 , W0 , and r are shown 

in figures 4.63-4.66. Considering the values of the I/Is ratio and the scattered 

intensity firstly, it is apparent that these values are of the order of one hundred times 

greater and less respectively than their equivalents for SYNDIOPMMA. The reason 

for this is instrumental in origin rather than being associated with the nature of the 

spread films. It has been found that the heterodyne effect was very sensitive to the 

alignment and focussing of the various optical components in the apparatus, and 

even very slight changes in the set-up led to the loss of optimum performance. The 

1/Is values are indicative of rather insufficient heterodyne mixing and this was 

reflected in the difficulty associated with the collection of suitable data at the time 

when the ISOPMMA monolayer was studied. Consequently rather larger run times 

were required to acquire even moderately acceptable correlation functions. 

Nevertheless it was still possible to obtain the frequency and damping values shown 

in figures 4.65 and 4.66. 

One consquence _of the rather poor quality of the data obtained was to 

increase the uncertainty in the values of ro0 and r. However the propagation 

frequency was still fitted with reasonable reproducibility, and a similar trend in the 

frequency shift to that observed for SYNDIOPMMA was obtained. The damping 

appears to rise through a maximum and then decrease slightly, but in this case the 

errors are increased considerably, and no definite trend can be determined. By 

plotting ro0 and r as a function of surface pressure, figures 4.67 and 4.68, an almost 

linear plot is obtained for the variation of the propagation frequency. 

By substitution of the appropriate values of W0 and r into the dispersion 

equation it is possible to calculate corresponding values for the film viscoelastic 

moduli, y
0

, y', E0 , and E'. The uncertainty in these values is determined to a large 

extent by the sensitivity of the dispersion equation to each modulus, and also by the 
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quality of the experimental data. As previously mentioned the data for ISOPMMA is 

much poorer than for SYNDIOPMMA due to instrumental problems and so it has 

only proved possible to fit values for all four moduli for SYNDIOPMMA. For 

ISOPMMA only the surface tension was reliably fitted. All values are summarised 

in figures 4.69-4.73, where errors are estimated by the standard deviation in the 

results of five repeated experiments. 

For the isotactic polymer the SQELS data is in good agreement with the 

Wilhelmy plate measured surface. For SYNDIOPMMA however, at low surface 

coverage the surface tension is apparently greater than the surface tension of clean 

water! This would indicate a negative surface pressure and is consistent with an 

experimental observation made during recording of SYNDIOPMMA isotherms. 

When spreading this film onto a clean water subphase with zero surface pressure, a 

depression to a slightly negative surface pressure was often seen. This depression 

was removed by arbritary rezeroing (as has presumably been done so by other 

workers with the same material) but given that SQELS appears to confirm the effect 

future studies may have to take this into consideration. Certainly it would be of 

interest to obtain more data at low surface coverages in order to elucidate this effect 

which presumably is due to some sort of intermolecular cohesive force. Earnshaw 

and Winch reported similar data for a pentadecanoic acid monolayer, for which laser 

light scattering estimated a slightly negative surface pressure at a point where the 

classically measured pressure was zeroC5). 

Direct Data Analysis 

The data interpretation method used so far relies on the non-linear least 

squares fitting of the correlation function G('t) to the measured correlation signal. 

From the fitted values of W0 and f, the dispersion equation may be employed to 
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estimate values for the film viscoelastic parameters. Indeed it is possible to estimate 

the surface tension as above, but only by the fortunate fact the the form of the 

dispersion equation makes it predominantly sensitive to the value of Yo· The other 

three parameters become increasingly less well defined and in general the use of two 

measured experimental variables to determine four required parameters cannot be 

successfully carried out. 

In order to get around this difficulty an alternative method of data 

analysis has been employed. Instead of fitting the mathematical form of the 

measured correlation function to the experimental data, a Fourier transformation 

routine has been used to calculate a correlation function from the power spectrum 

generated by a given set of film viscoelastic parameters in the dispersion equation. 

By altering the values of the four film parameters least squares minimisation has 

been used to directly fit their values to the experimental data. Figures 4.74-4.78 

summarise the film parameters so obtained using the experimental data of the 

previous section, with the five replicated experiments appended onto one another to 

improve statistics. Note that in this case errors are estimated statistically from the 

sensitivity of the fit to the variation of each individual parameter. 

The strong dependence of the signal on surface tension is reflected in the 

very small errors on the data of figures 4.74 and 4.78, the most notable feature again 

being the anomalous low surface concentration increase in surface tension for 

SYNDIOPMMA. In figure 4.75 a decreasing trend in transverse shear viscosity is 

clearly discernible for SYNDIOPMMA. Earnshaw has noted such a trend at 

moderate surface concentrations for other monolayers to be proceeded by an 

apparent initial sharp increase at low coverages<5•6). The range of the present data 

does not extend to a sufficiently low coverage to confirm this for the case of 

PMMA, but this provides another compelling reason for further attention to this 

area. 
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The data of figures 4.76 and 4.77 clearly demonstrate that at the present 

level of data quality it has not been possible to reliably fit values to the surface 

transverse viscosity and surface elastic modulus even for SYNDIOPMMA. Error 

bars have been omitted from these plots but are of a greater order than the data 

values, and no attempt will be made to ascribe any meaning to the data values. Thus 

it has not been possible to compare the dependence of the dynamically measured 

film elasticity with the statically measured Gibb's elasticity, defined as r.dJt/ctr, 

where r is the surface concentration and 1t is the classically measured surface 

pressure. The dependence of this function on r for SYNDIO and ISOPMMA are 

shown in figures 4.79 and 4.80, where a maximum turning point may be seen in 

each case. 
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CHAPTER 5 - POL Y(ETHYLENE OXIDE) 

Summary 

A matched pair of poly (ethylene oxide), samples, one protonated and 

the other deuterated, have been synthesised by high vacuum anionic methods and 

characte1ised for molecular weight by gel permeation chromatography. The results 

of examination of spread monolayers of these polymers by surface pressure, neutron 

reflection and ellipsometry techniques are reported. 

Classically defined as liquid expanded 111 type, on scaling law type 

treatment the surface pressure isotherm of PEO yields a characteristic exponent 

indicative of good two dimensional solvent conditions with favourable segment -

subphase interactions. Neutron reflectometry characterised the film as being much 

more diffuse and associated with the subphase than was the case for PMMA. Low Q 

reflectometry data was collected in order to u·y to characterise the film further. 

Ellipsomeu·y provided further evidence for the expanded nature of the PEO film, as 

there was much less contrast and hence sensitivity in the experimental parameters 

than for other samples studied. 
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5.1 Synthesis and Characterisation 

The methods of high vacuum anionic synthesis described in Chapter 3 

were employed to prepare samples of hydrogenous and deuterated poly (ethylene 

oxide). The weight average molecular weights of these polymers were determined 

by light scattering, by interpolation of the appropriate Zimm plot to zero 

concentration, for example Figure 5.1. From the interception on the y-axis the 

molecular weight values in Table 5.1 were obtained. 

Polymer Intercept Mw 

HPEO 1422 39800 

DPEO 1575 35600 

Table 5.1 Weight Average Molecular Weights for PEO, 

estimated from light scattering 

Gel permeation ~hromatography using water as the system solvent was 

used to obtain estimates for the number and weight average molecular weights of the 

PEO samples. These values and polydispersity indices are summarised in table 5.2. 

Polymer Mn Mw Mw/Mn 

HPEO 25800 41000 1.59 

DPEO 21600 44000 2.04 

Table 5.2 Molecular Weights for PEO, 

estimated from gel permeation chromatography 
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5.2 Surface Pressure - Concentration Isotherm Studies 

Surface pressure - concentration isotherms have been obtained for 

HPEO and DPEO at 25°C, figures 5.2 and 5.3. The isotherms were found to be very 

similar for hydrogenous and deuterated PEO and the reproducibility was excellent 

provided suitable care was taken in the preparation of the surface. However the 

plateau region in the isotherm of DPEO occurred at a slightly lower surface 

pressure, 9mNm-2, than for HPEO, which gave the classically accepted value of 

lOmNm-2. 

Considering the isotherm of HPEO, the shape of the isotherm is very 

different in many ways to those described in the last chapter for poly (methyl 

methacrylate) and is classically defined as liquid expanded in type. The surface 

pressure is of much smaller magnitude, with a plateau value of around 10 mN m-1 

reached at a surface concentration of around 0.6 mg m-2 and the surface pressure 

onset occurs at a much lower surface concentration. Indeed at even the lowest 

surface concentrations for which data were recorded there is a small but finite 

surface pressure measurable. When the rapidly rising part of the surface pressure 

variation is extrapolated back to zero pressure a limiting area per segment of 43A 2 is 

obtained. The very large area per segment suggests that PEO chains at the interface 

adopt a much more expanded configuration than PMMA as segments exert an 

influence on one another while still far apart. 

The data of figures 5.2 and 5.3 are presented on a double logarithmic 

scale in the semi-dilute regime in figures 5.4 and 5.5. Linear plots with slope y = 

2.91 and 2.90 for HPEO and DPEO respectively are obtained. These correspond to a 

value of 0.76 for the critical scaling exponent v. The value is unambiguously that for 

a film in good solvent conditions which has been widely predicted as 0.77. This is 

indicative of favourable segment - solvent interactions, suggesting again that the 
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chains are likely to favour as expanded a form as possible in order to maximise such 

interactions. Further support for such a picture of the PEO film is obtained by 

examination of the dilute regime by equation of state plotting, figures 5.6 and 5.7. 

The slope of the plot of 1t/f' v [' is positive in this case, corresponding to a positive 

two dimensional second virial coefficient for the segment - solvent interaction. As 

previously discussed for PMMA it has not been possible to produce any meaningful 

extrapolation of this data to zero concentration in order to obtain a molecular weight 

value or numerical value of the second virial coefficient. 

5.2.1 Kinetic and Hysteresis Effects in PEO Monolayers 

The surface pressure isotherms reported thus far have been exclusively 

compression isotherms, that is after initial spreading and a delay of approximately 

ten minutes to ensure evaporation of the solvent and expansion of the film to cover 

the available area, the surface pressure is recorded as the film is compressed slowly 

by bringing the trough barriers together. Given that PEO is bulk soluble in water 

some questions must arise as to the stability of PEO monolayers over a period of 

time when spread on water. To try and elucidate this matter PEO monolayers have 

been subjected to compression and expansion cycles to various limiting surface and 

concentrations and the degree of hysteresis (difference between successive 

compression and expansion isotherms) observed. 

Compression-expansion cycle isotherms for HPEO compressed to 0.8, 

0.6, 0.4, and 0.3 mgm-2 are shown in figures 5.8 to 5.11. The hysteresis is seen to 

depend upon the surface pressure/concentration to which the film is compressed. At 

[' = 0.8 mgm-2 there is a large effect and on subsequent repetition of the cycle there 

is further hysteresis whereas at [' = 0.4 mgm-2 the effect is much smaller. At lower 

compressions such as [' = 0.3 mgm-2 there is no hysteresis at all suggesting that the 
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effect may be associated in some way with the change in the slope of the 

compression isotherm between r = 0.3 and 0.4 mgm-2. The hysteresis effect is such 

that at a given surface concentration there is a lower expansion surface pressure than 

measured on compression. This suggests either a larger area per segment becoming 

available by some dipping or relaxation mechanism or else loss of material by 

dissolution over the time scale of the measurement. 

The surface pressure of compressed HPEO monolayers was studied as a 

function of time by carrying out a normal compression isotherm to a given surface 

concentration and then recording the surface pressure with time as the barriers were 

held still. Figure 5.12 shows superimposed data for surface concentrations held at r 

= 0.8, 0.6, 0.4, 0.3, and 0.2 mgm-2 over periods of time ranging from one to three 

hours. 

At the highest surface concentration there is a dramatic time dependence 

in the surface pressure which decays aways in a function of approximately Gaussian 

appearance. The same shape is evident at r = 0.6 mgm-2 although the rate of decay 

appears to be considerably reduced given the relatively small difference in the 

starting t = 0 surface pressure. At intermediate surface concentrations the decay 

shape seems to change slightly to a more exponential form and the rate of decay is 

reduced again. Finally at r = 0.2 mgm-2 there is virtually no decay in the surface 

pressure and it would appear that at large time values the other curves are tending to 

drop towards this limit in the surface pressure. 

It would appear therefore that there are considerable time dependent 

effects in PEO monolayers which cannot be explained solely in terms of overshoot 

arguments concerning the rate of compression of the film. Either dramatic 

rearrangements of film structure which result in a lower surface pressure are 

occurring or there is loss of up to 75% of the film material to bulk solution over the 

period of one to three hours. These observations will be reconsidered together with 
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neutron reflectivity data. 
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5.3 Neutron Reflectometry 

Neutron reflectometry studies on monolayers of PEO were carried out 

exclusively on CRISP. Given that surface pressure measurements indicated that it 

was likely that the polymer was present in some sort of expanded configuration at 

the interface, reflectivity data was recorded over the Q range 0.01 s QJA-1 s 0.65 in 

order to provide sensitivity to long range effects. This was achieved by carrying out 

identical experiments at three different incident beam angles to provide three 

individual profiles with overlapping Q values such that when combined they 

provided one reflectivity profile. Studies were carried out at two contrasts, DPEO on 

air contrast matched water, and HPEO on D20. 

The experimentally determined profiles for a series of surface 

concentrations in the range 0.2- 0.8 mg m-2 are shown in figures 5.13 and 5.14. For 

the case of the deuterated polymer on air contrast matched water there is an increase 

in the measured reflectivity with increasing surface concentration, and conversely 

for the hydrogenous film on D20 the subphase reflectivity signal is depressed 

somewhat by the addition of polymer. It should be noted however that the 

magnitude of these effects is rather smaller than for poly(methyl methacrylate). It is 

noticeable that for the deutero polymer on air contrast matched water there is a 

rather steep initial decay in reflectivity, indicative of a rather thick layer. 

Applying a similar rational to data fitting as previously employed for 

PMMA a single layer residual scan has been used as the initial basis of calculation. 

The fitted values so obtained are summarised in table 5.3. The layer thickness and 

scattering length densities based on these fits are listed in table 5.4 and figures 5.15 

and 5.16. Corresponding volume fraction composition and apparent surface 

coverage values are shown in table 5.5 and figures 5.17 and 5.18. 

It is evident from these figures that the model fails to describe the 
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r;mg m-2 
D/acmw H/020 

d/A p/I0-6A-2 res/l0-2 d/A p/10-6A-2 res/lo-2 

0.2 62 0.26 0.3838 17 6.08 0.4626 
0.3 37 0.50 0.4464 22 5.60 0.7210 

0.4 37 0.77 0.5689 21 5.53 0.8923 

0.5 29 0.96 0.5480 21 5.41 0.8595 

0.6 32 0.98 0.5452 17 5.69 0.5952 

0.7 30 1.04 0.6444 - - -
0.8 24 1.15 0.4924 21 5.42 1.083 

Table 5.3 Single Slab Model Fitted Parameters for PEO on water 

r;mg m-2 
D/acmw H/020 

d/A p/10-6A-2 res/10-2 p/1o-6A-2 res/l0-2 

0.2 40 0.37 0.7728 6.17 0.5421 

0.3 30 0.59 0.4936 5.74 1.126 

0.4 29 0.94 0.7201 5.63 1.040 

0.5 25 1.08 0.5857 5.49 1.032 

0.6 25 1.26 0.7329 5.91 0.7023 

0.8 23 1.20 0.5020 5.42 1.071 

Table 5.4 Single Slab Model Fitted Parameters for PEO on water -residual optima 

system very satisfactorily. There is an extremely large difference between the 

positions of the residual minima for the two contrasts at the same surface 

concentration, particularly at low coverages, and the back calculated values of the 

surface concentration are a slight overestimate at low coverages and an 

underestimate at higher coverages. 

In the light of infonnation gained about the structure of solution surface 
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Volume Fraction 
rtmg m·2 

polymer water air 
p.d/1o-6A-r a. p.m./ A 2monomer·1 r Jmgm·2 

0.2 0.06 0.97 -0.03 14.8 30.9 0.26 

0.3 0.09 0.90 0.01 17.7 25.9 0.31 

0.4 0.15 0.87 -0.02 27.3 16.8 0.47 

0.5 0.17 0.85 -0.02 27.0 17.0 0.47 

0.6 0.20 0.91 -0.11 31.5 14.5 0.55 

0.7 0.16 - - 31.2 14.7 0.54 

0.8 0.19 0.84 -0.03 27.6 16.6 0.48 

Table 5.5 Layer Composition and Apparent Coverage Variation for PEO on water 

excess adsorbed poly(ethylene oxide) from neutron reflectometry<l), an attempt was 

made to fit the data with a two layer model constraining the first layer thickness and 

density by the best single layer fit values. However no sensible fit was possible by 

this route for which a better fit (according to the residual value) was obtained. 

Consequently a third strategy was adopted. Arbitrarily fixing the first 

layer thickness d 1, the three parameters p1, d2 and p2 were allowed to float from 

reasonably estimated values. By a similar residual scan process to that used for the 

single layer model, optimum values for the four model parameters were obtained for 

both contrasts. d1 was the preferred variable to scan as it was found that the shape of 

the residual minimum curve was slightly steeper when scanning d1 than d2. In 

addition, carrying out similar scans from fixed values for the other parameters in 

tum, the minima in these fits were found to converge on the same solutions obtained 

by the method just outlined, suggesting that a consistent solution was reached for 

each minimisation route. 

It was found that the quality of the fit was more sensitive to moving the 

model further from the best fit values for DPEO/acmw than those for HPEO/D20, 
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Figure 5.16 Variation of Scattering Length Density with Surface Concentration for PEO 
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Figure 5.18 Apparent Surface Concentration against Dispensed Surface Concentration for PEO on water 



and hence those layer thicknesses were selected as the optimum fitted values. The 

final two layer model parameters are summarised in tables 5.6 and 5.7. Figures 

5.19-24 show the trends in the two layer fitted values. The uncertainty in the layer 

thicknesses is probably of the order of the scatter in the values and may be seen to 

be fairly large for the lower layer in particular. Similarly the scattering length 

densities obtained are subject to some uncertainty due to the coupling of layer 

thickness and density. However the values of tables 5.6 and 5.7 provide reasonable 

estimates within the limit of the measurement. 

A final approach to data fitting was adopted in which instead of using a 

slab model for the film, an attempt was made to use a physically more realistic 

model by treating the film as a scattering length density gradient from the air film 

interface to the bulk subphase scattering length density value. Two such diffuse 

gradient models were used, namely a Gaussian (normal) distribution and an 

exponential decay. The diffuse gradients were generated by splitting the thickness of 

the film into twenty incremental slab layers. The decay was characterised in each 

case by the scattering length density of a nominal "top" layer at the air - film side, 

(the value of p decaying in a Gaussian or exponential fashion from this value to that 

of the bulk subphase) and by a "characteristic length", conceptually the equivalent of 

the slab thickness in the simpler model. 

The characteristic length was defined for the Gaussian decay to be that 

distance equivalent to two standard deviations of the distribution (corresponding to 

95% of the total integral of the distribution) and for the exponential decay as twice 

that distance from the air- film interface by which the value of the scattering length 

density had fallen to 1/e of its original value. These definitions were chosen to 

provide characteristic lengths for each distribution which were roughly comparable 

in terms of the depth at which the scattering length density had reached a value 

which was essentially that of the subphase. 
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lv 
0\ 
0 

D/acmw H/020 
r;mg m-2 

ddA d2/A p
1
/l0-6A-I pf10-6A-I residual/! o-2 pd10-6A-I P2!1o-6A-I residual/! o-2 

0.2 17 47 0.20 0.27 0.3825 6.08 6.30 0.4564 I 

0.3 24 49 0.69 0.08 0.2765 5.59 6.19 0.7084 

0.4 22 35 1.07 0.17 0.4290 5.43 6.10 0.9219 

0.5 24 55 1.13 0.09 0.3373 5.41 6.15 0.9058 
0.6 23 43 1.23 0.12 0.2951 5.84 6.28 0.6619 

IS 
0.7 24 48 1.19 0.10 0.3333 - - -
0.8 - - - - - - - -
----

Table 5.6 Two Layer Fitted Parameters for PEO on water 

Volume Fractions (Layer 1) Volume Fractions (Layer 2) 
:Lp.d/I0-6A-1 

a. p.m. 
r Jmgm-2 r/mg m-2 

polymer water air polymer water air A2 monomer-1 

0.2 0.03 0.95 0.02 0.04 0.99 -0.03 16.1 28.5 0.28 
0.3 0.11 - - 0.01 - - 20.5 22.4 0.36 
0.4 0.17 0.84 -0.01 0.03 0.96 0.01 29.5 15.5 0.51 

I 

! 

0.5 0.18 - - 0.01 - - 32.1 14.3 0.56 

0.6 0.19 0.90 -0.09 0.02 0.99 -0.01 33.5 13.7 0.58 
0.7 0.19 - - 0.02 - - 33.4 13.7 0.58 
0.8 - - - - - - - - -

---------

Table 5.7 Volume Fraction and Apparent Surface Coverage values for PEO on water -two layer model 
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The form of diffuse scattering length density profile used for an n 

incremental layer model was 

p(i) = p(1).expon + p(n + 1).(1 - expon) 

where p(i) = scattering length density of ith layer, and the subphase corresponds to 

the n+ 1 th layer. The incremental step length s is given by 

s = dchar·{e/n) 

where e = 2. 71828 and dchar is the characteristic length of the profile. 

For an exponential profile, the modifying term expon is given by 

expon = exp(1.5 - i) x e/0.5n 

while for a gaussian profile 

expon = exp(-x2/2(dchar/2?) 

where x = s x (i- 1.5). 

Example density profiles for both contrasts, generated using these forms, 

are illustrated in figure 5.25. The Gaussian and exponential functions shown have 

the same initial scattering length density values and characteristic lengths to give 

some idea of how the values obtained on fitting compare to one another. 

Residual scanning as a function of dchar while floating PI established 

stable residual minima for DPEO/acmw for both decay functions, and the 

characteristic length values so obtained were used successfully to fit the scattering 

length densities for HPE0/020 at equivalent surface concentrations. It was found 

that neither the addition of a thin slab to the best fit model of either type nor the 

addition of a diffuse decay to the best fit single slab modelled to an improvement in 

the quality of the fit. In the latter case the general effect was to decrease both PI and 

dchar and increase the residual, and it was also found that the solutions tended to 

reduce to physically impossible values (eg negative characteristic lengths) for a top 

layer thickness greater than about 10 or 15 A, without passing through a residual 

minimum. 
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From the value of the respective scattering length densities and 

incremental thicknesses it is possible to calculate, 

a) the variation in polymer, air and subphase volume fractions as a function of depth 

from the interface, and 

b) the total back calculated surface excess from the sum of the incremental Pi·di 

products obtained from the DPEO/acmw contrast. 

These values are summarised in tables 5.8-10, where d refers to the 

characteristic dimension of the distribution and p (and therefore derived quantities 

such as volume fractions) refer to the values fitted for the uppermost layer of the 

distribution. Layer thickness, scattering length density, composition and apparent 

surface concentration variations are illustrated in figures 5.26-5.33. 

It is necessary to try and evaluate the four fitted models for PEO in 

terms of the quality of the fits, the parameters obtained from the fits and the physical 

reality of the models employed. Comparing the data of tables 5.3-10 it is apparent 

that in all of these categories the simple single slab model is least successful. The 

residual values to the best fits are rather higher than for the other three cases, there is 

no great agreement in the back calculated surface coverages and a simple slab is not 

as appropriate a model for PEO, which is water soluble and appears to form a 

diffuse film, as it was for insoluble, condensed PMMA films. In the case of the 

other three models the situation is rather less clear. None of the three generates the 

best fits exclusively, but the two layer model seems to give considerably lower 

residuals in the majority of cases. It did however fail to provide a physically sensible 

fit at the highest surface coverage of 0.8mgm-2. There is some improvement in the 

calculated surface coverages but none of the models removes the large disagreement 

between r and r a at large surface concentrations. Given that the best quality fits to 

the experimental data were obtained by a two layer model it seems reasonable to 

adopt this as a working description of the diffuse PEO surface film. 
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Gaussian 

r;mg m-2 
D/acmw H/D20 

d/A p/10-6 A-2 res/l0-2 d/A p/10-6A-2 res/lo-2 

0.2 67 0.40 0.4274 17 5.86 0.4614 
0.3 41 0.74 0.3863 34 5.40 0.8060 
0.4 41 1.13 0.4780 41 5.38 0.8227 
0.5 32 1.42 0.4745 31 5.08 0.7793 
0.6 36 1.43 0.4337 21 5.38 0.6148 
0.7 35 1.45 0.4657 - - -
0.8 26 1.72 0.4956 48 5.24 0.8876 

Exponential 

r;mg m-2 
0/acmw H/D20 

d/A p/1o-6A-2 res/l0-2 d/A p/10-6A-2 res/lo-2 

0.2 51 0.67 0.5136 11 5.18 0.4612 

0.3 33 1.22 0.3206 49 5.14 0.8410 

0.4 31 1.93 0.4347 111 5.33 0.6748 

0.5 25 2.38 0.3992 34 4.51 0.7785 

0.6 28 2.31 0.3262 20 4.82 0.6256 

0.7 26 2.50 0.3732 - - -
0.8 17 3.31 0.5216 119 5.15 0.7017 

Table 5.8 Residual Mirnimum fitted Parameters for diffuse models of PEO on water 

In the light of the observed hysteresis and time dependent decay in the 

surface pressure of PEO rrionlayers some concern must be expressed over this 

discrepency and over the neutron reflection measurement which take on average two 

to three hours to record. Given that there seems to be a rather large alteration in the 

state of the monolayer over that period of time at moderate to large surface 

concentrations it is difficult to define what layer thickness and density is being 

recorded by the reflection experiment. Presumably some sort of average structure 

270 



Gaussian 

r/mg m-2 
D/acmw HJD20 

d/A p/10-6A-2 res/10-2 p;10-6A-2 res/10-2 

0.2 42 0.57 0.7561 6.12 0.4886 

0.3 38 0.78 0.3947 5.38 0.9360 

0.4 41 1.13 0.4780 5.38 0.8227 

0.5 31 1.46 0.4760 5.08 0.7793 

0.6 28 1.76 0.5796 5.59 0.6320 

0.8 37 1.28 0.7864 5.13 0.9056 

Exponential 

rtmg m·2 
D/acmw HJD20 

d/A p/10-6A-2 res/10-2 p/10-6A-2 res/10-2 

0.2 31 0.99 0.7479 5.91 0.4716 

0.3' 41 1.06 0.3692 5.04 0.8458 
0.4 71 1.11 1.442 5.18 0.6925 

0.5 29 2.13 0.4264 4.32 0.7952 

0.6 24 2.69 0.3846 5.05 0.6283 

0.8 78 1.12 2.515 4.99 0.7142 

Figure 5.9 Residual optimum values for diffuse models of PEO on water 

over the period of measurement might result, however two important observations 

must be made. 

Firstly the smface pressure decay would suggest that, if material is lost 

from the film to bulk, that about 75% of the spread material was disappearing from 

the surface before a limiting surface pressure was reached. The discrepency in the 

back calculated surt·ace coverage from neutron reflection does indeed suggest a 

limit, but of around r = 0.6mgm·2, much higher than the value of around r = 
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Gaussian 

r/mg m-2 
Volume Fraction 

polymer air 
p.d/10-6 A-1 a.p.m./A2monomer-1 r Jmgm-2 

water 

0.2 0.09 0.96 -0.05 15.0 30.5 0.26 
0.3 0.12 0.84 0.04 18.6 24.7 0.32 
0.4 0.18 0.83 -0.01 29.0 15.8 0.51 

0.5 0.23 0.78 -0.01 28.4 16.2 0.49 
0.6 0.28 0.86 -0.14 30.9 14.8 0.54 
0.7 0.12 - - 31.8 14.4 0.55 

0.8 0.20 0.79 0.01 29.7 15.4 0.52 

Exponential 

r/mg m-2 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

Volume Fraction 

polymer air 
p.d/10-6 A-1 a.p.m./A2monomer-1 r Jmgm-2 

water 

0.16 0.92 -0.08 15.2 30.1 

0.17 0.78 0.05 21.6 21.2 
0.18 0.80 0.02 39.1 11.7 
0.34 0.65 0.01 30.7 14.9 
0.43 0.76 -0.19 32.0 14.3 
0.40 - - 32.3 14.2 

0.18 0.77 0.05 43.4 10.6 

Table 5.10 Volume Fraction and Apparent Surface Coverages 

obtained from diffuse model fitting 

0.27 

0.38 

0.68 

0.53 
0.56 

0.56 

0.75 

0.2mgm-2 'suggested by surface pressure decay. 

Secondly, if significant loss of material took place over the period of the 

reflection experiment, then one would have expected to observe a visible shift in the 

measured reflectivity with time, particularly for DPEO/acmw. However during 

neutron reflectometry measurements no time drift of the measured reflectivity was 

observed at any surface concentration. A reflectometry experiment was carried out 

on CRISP to investigate this point using PEO spread on a 0.4M solution of aqueous 
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MgS04, and over an eight hour period a succession of profiles recorded over half an 

hour each at a surface coverage of 0.8mgm-2 were observed to be virtually identical. 

5.3.1 Application of the Kinematic Approximation 

The use of kinematic formulae enables some further observations about 

the behaviour of PEO films to be made. As previously discussed for the case of poly 

(methyl methacrylate), a Patterson analysis may be made by plotting the background 

subtracted reflectivity multiplied by the scattering vector to the fourth power against 

the scattering vector. A sharp minimum in the Patterson plot is predicted at a Q 

value equal to rr/d, where d is the thickness of a single sharp edged film at the 

interface. An example of a Patterson plot for HPEO on D20 is shown in figure 5.34. 

The minimum in R.Q4 is much less sharp than was the case for PMMA, 

indicating a less sharply defined film thickness. From the minima at various surface 

concentrations the thickness values shown in table 5.11 and figure 5.35 were 

obtained. 

Comparing the Patterson function for the D/acmw situation, for example 

figure 5.36, the plot is seen to show qualitative agreement with the theory at low Q 

values, where the value of R.Q4 rises from a virtually zero value. At higher Q values 

the error values associated with background subtraction tend to swamp the minimum 

position in R.Q4; however the point at which the plot levels off is seen to be in 

approximate agreement with the value obtained from the Patterson plot for 

HPEO/D20. 

A Guinier plot of ln(R.Q2) against Q2 for DPEO/acmw at moderate Q 

values should be a straight line with slope related to cr, the second moment of the 

scattering length density distribution at the interface. The zero Q intercept of this 

plot is related to the total scattering length density over z space, m. An example plot 

281 



-18.00 .------------------.,------.------, 

-
-

-18.33 -

I 

-18.67 -

.,..--... 

1rri . 
....r 
< 
0' 

I 
,.........:... -19.00 1 I 

-'-0' ..____.. 
0::::: 

j_ -'-..____.. 
...E 

tv III -
00 
N -19.33 

IIII I I 
-19.67 -1 T 1 -L. 

-20.00 I I I I I I I I 
I 

I I I I I I I I I--. I I 
0.00 0.10 0.20 0.30 0.40 

Q I A"-"1 

Figure 5.34 Patterson Plot for HPEO I D20, Surface Concentration = 0.5mgm-2 



r/mgm-2 
X min Ymin d/A pp'I0-6A-2 

0.2 0.17 -19.2 18.5 5.94 

0.3 0.15 -19.4 20.9 5.61 

0.4 0.17 -19.5 18.5 5.49 

0.5 0.18 -19.5 17.5 5.49 

0.6 0.18 -19.4 17.5 5.61 

0.8 0.22 -19.6 14.4 5.38 

Table 5.11 Results of Analysis of Patterson Functions for HPEO on 0 20 

is shown in figure 5.37 and values of m and cr are tabulated in table 5.12. By 

assuming a Gaussian distribution, for which cr corresponds to d divided by "'-112, a 

layer thickness may be estimated. These values are shown in the final column of 

table 5.12 and in figure 5.37. These values are clearly very different from those 

obtained by Patterson analysis, being thicker, particularly at low surface 

concentrations. 

In order to account for this difference, one must note that, while the 

Patterson function is valid for a single step scattering length density profile, the 

Guinier plot is valid for a continuous scattering length density gradient. It will 

therefore be particularly sensitive to any diffuse region in the interfacial structure 

unlike the Patterson function which will respond to any denser, more step-like 

profile. Noting also that the layer thickness for the Patterson analysis is of the order 

of the upper layer thickness obtained by two layer matrix modelling, and the Guinier 

plot thickness is rather more like the lower two layer model thickness, it is suggested 

that the kinematic analysis for PEO spread on water supports the diffuse two layer 

structure already proposed. 
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r/mgm-2 Intercept Slope m/10-6A-2 cr d 

0.2 -17.0 -326.9 16.2 18.1 62.7 
0.3 -16.5 -95.2 20.8 9.8 33.9 

0.4 -16.4 -42.1 21.9 6.5 22.5 

0.5 -16.1 -45.2 25.4 6.7 23.2 

0.6 -16.0 -53.5 26.7 7.3 25.3 

0.7 -16.0 -44.0 26.7 6.6 22.9 

0.8 -15.9 -59.6 28.1 7.7 26.7 

Table 5.12 Results of Analysis of Guinier plots for DPEO on acmw 
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5.4 Monolayers of PEO on Salt Subphases 

In addition to studying PEO monolayers spread on pure water the case 

of PEO spread on aqueous subphases containing various concentrations of 

magnesium sulphate has been considered, using the same PEO samples as in the 

pure water experiments. Surface pressure - concentration isotherms have been 

recorded at salt concentrations approaching and including bulk theta solvent 

conditions, and two salt concentrations have been employed in neutron 

reflectometry experiments. 

5.4.1 Smface Pressure - Concentration Studies 

Surface pressure - concentration isothetms are presented for HPEO 

spread on aqueous solutions of magnesium sulphate at room temperature (298K) 

with salt concentrations of 0.4,0.6, and 0.81\1, and for a salt concentration of 0.39M 

at 315K, corresponding to an accepted theta solvent condition for bulk PEO 

solution(2), figures 5.38. The data of figure 5.2 for PEO on pure water are 

superimposed for comparison. Increasing the salt concentration is seen to slightly 

increase the slope of the rapidly rising portion of the isotherm, and to cause the 

plateau on the isotherm to become less horizontal, rising above the salt free isotherm 

plateau value of 10mNm·1. The limiting area per monomer unit, obtained by linear 

extrapolation of the surface pressure to the concentration axis was reduced slightly 

by the addition of salt to the subphase, table 5.13. 

The critical scaling exponent v derived from the slope of the double 

logarithmic plots of semi-dilute regime surface pressure data is also affected by the 

addition of electrolyte to the subphase. These values are shown in table 5.14. As the 

value of the slope y increases, the scaling exponent value is depressed from that 
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Conditions rlim apmlim 

pure water 0.17 43 

0.4M MgS04 0.18 41 

0.6M MgS04 0.18 41 

0.8M MgS04 0.19 38 

0.39MMgS04, 315K 0.19 38 

Table 5.13 Limiting areas per monomer unit for PEO on MgS04 subphases 

Conditions Slope v 

Pure water 2.91 0.76 

0.4M MgS04 4.37 0.65 
0.6M MgS04 4.84 0.63 
0.8M MgS04 5.57 0.61 

0.39M MgS04, 315K 4.78 0.63 

Table 5.14 Critical Scaling Exponents for PEO on salt subphases 

obtained in good 2-D solution conditions (v = 0.77 as for PEO on water). The 

addition of more salt to the subphase is seen to reduce the scaling exponent value, 

but as the salt concentration is increased a law of diminishing return on the amount 

of salt added is observed. Comparing the differences between the isotherms at salt 

concentrations of 0.4 and 0.6M, and 0.6M and 0.8M for example, the change in the 

isotherm is much greater in the former than the latter case. Finally, the isotherm 

obtained at room temperature and with a salt concentration of 0.8M is seen to be 

very similar in appearance to that obtained for a monolayer spread on the bulk theta 

solvent. 

A final comparison between the various isotherms may be made by an 
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equation of state plot in the dilute regtme, where a positive initial slope is 

anticipated for good 2-D solution conditions. Equation of state plots of the ratio of 

the surlace pressure to the surface concentration against the surface concentration 

are shown for the four salt concentrations in figures 5.39-42. There is indeed a 

positive slope at the two lower room temperature salt concentrations, but at 0.8M 

MgS04 and with bulk theta conditions, there is an initial negative dip before a 

positive gradient is achieved. This is at odds with the results of scaling law plotting 

in the semi-dilute region, which implies that, although the scaling exponent is 

depressed by the addition of salt, it is never reduced to as low as 0.56, the 

approximate value for theta conditions. A negative slope 111 the dilute region 

equation of state plot implies less than theta, near collapse conditions and hence a 

scaling exponent of between 0.5-0.55. However, the similarity between the 

isotherms at room temperature and 0.8M and bulk theta conditions is again striking. 
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5.4.2 Neutron Reflectometry 

Neutron ret1ectometry was used to study how and if the surface pressure 

effects just detailed were reflected in the film structures. Concerns over the 

possibility of subphase evaporation and the fact that the neutron reflection trough 

employed had no means of enabling high temperature thermostatting meant that it 

was impractical to study monolayers spread on the bulk theta solvent system, 

however it was decided to use two salt concentrations at room temperature, these 

being 0.4M and 0.8M respectively, the former having given an isotherm slightly 

changed from the pure water case, and the latter being rather similar to the bulk 

theta case. As for PEO on water, CRISP was employed in multi-angle mode giving a 

momentum transfer range of O.Ol-0.65A- 1. 

Reflectivity profiles for DPEO on salt subphases made up in air contrast 

matched water and HPEO on 0 20 salt solutions were recorded at identical surface 

concentrations to those used for PEO on pure water. These were fitted in a similar 

fashion to the pure water data using four models; a single slab, a double layer, and 

gaussian and exponential decays. 

Compa1ing the general trends in the fitted values for the layer thickness 

and scattering length densities for any of the models with the data for PEO on pure 

water reported earlier, one can see that in general for a given surface concentration 

the film spread on a salt subphase is best modelled by a much thinner layer with a 

more dense packing of polymer in it. Perhaps unexpectedly, the films spread on 

0.8M MgS04 are if anything slightly thicker than those on 0.4M, but they are also 

modelled as being more dense in polymer. 

Of the three models exhaustively applied to the data, namely single film, 

gaussian and exponential decays, no one model is obviously superior to the others. 

At low coverages the single film model appears to be most successful in terms of 
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residual to fit, but as the surface concentration is increased the gaussian or the 

exponential model seems to be more favoured, perhaps suggesting that there is still 

some ability for the film to loop into the subphase on compression, although not to 

such an extent as was the case for the pure water subphase. 

A full two layer analysis across both contrasts was not achieved, but 

tables 5.33 and 5.34 give best fitted values to the 0/acmw data which give very low 

residuals indeed. The film thinning on salt addition is retlected in the collapse of d1, 

the upper film thickness, in this case, but forcing these layer thicknesses onto the fit 

for H/020 data did not produce a successful fit. One might expect that the second 

layer thickness would be the one to collapse on addition of salt and it is possible that 

the fits obtained were launched from misleading initial estimates. However attempts 

to locate an equivalent solution with reversed layer thicknesses were unsuccessful. 

r;mg m-2 
0/acmw H/020 

d/A p/I0-6A-2 res/l0-2 d/A p;I0-6A-2 res/l0-2 

0.2 7 2.00 0.4728 19 5.31 0.5202 

0.3 11 1.75 0.3653 20 5.23 0.7208 

0.4 11 2.33 0.4090 19 4.97 1.162 

0.5 17 1.75 0.5891 20 5.10 0.9195 

0.6 22 1.47 0.5128 19 4.93 0.5522 

0.7 24 1.35 0.4801 19 4.92 0.6334 

0.8 24 1.16 0.5588 20 4.97 0.6850 

Table 5.15 Single Slab Model Fitted Parameters for PEO on 0.4M MgS04 
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r/mg m-2 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

r/mg m-2 
polymer 

0.2 0.17 

0.3 0.19 

0.4 0.28 

0.5 0.25 

0.6 0.24 
0.7 0.23 

0.8 0.20 

0/acmw H/020 

d/A p/10-6A-2 res/lo-2 p/10-6A-2 res/l0-2 

13 1.09 0.4831 4.80 0.5728 
16 1.22 0.3925 4.96 0.7597 
15 1.76 0.4008 4.65 1.208 

19 1.56 0.6037 4.94 0.9028 

21 1.53 0.5182 5.05 0.5808 

22 1.47 0.4850 5.08 0.6977 

22 1.25 0.5662 5.07 0.7118 

Table 5.16 Single Slab Model Fitted Parameters for 

PEO on 0.4M MgS04 residual optima 

Volume Fraction 
p.d/10-6 A-I a. p.m./ A 2monomer-1 

water air 

0.74 0.09 14.2 32.3 

0.76 0.05 19.5 23.5 

0.71 0.01 26.4 17.3 

0.76 -0.01 29.6 15.5 

0.77 -0.01 32.1 14.3 

0.78 -0.01 32.3 14.2 

0.78 0.02 27.5 16.7 

ra/mgm-2 

0.25 

0.34 

0.46 

0.52 

0.56 

0.56 
0.48 

Table 5.17 Single Slab Composition and Apparent Coverage for PEO on 0.4M MgS04 
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r/mg m-2 
0/acmw H/020 

d/A p/I0-6A-2 res/1 o-2 d/A p/I0-6J..-2 resno-2 

0.2 9 2.50 0.4178 24 4.77 0.4602 
0.3 13 2.39 0.3560 31 4.86 0.6532 

0.4 12 3.44 0.3910 69 5.08 1.089 

0.5 19 2.53 0.5277 31 4.57 0.8224 

0.6 25 2.10 0.4162 26 4.32 0.4766 

0.7 25 2.10 0.3934 26 4.31 0.5728 

0.8 26 1.73 0.4637 31 4.52 0.6308 

Table 5.18 Gaussiari Model Fitted Parameters for PEO on 0.4M MgS04 

f/mg m-2 
0/acmw H/020 

d/A p/10-6A-2 res/10-2 p/10-6J..-2 res/10-2 

0.2 17 1.35 0.4884 4.01 0.5173 

0.3 22 1.46 0.4496 4.42 0.7075 

0.4 41 1.17 1.234 4.87 1.092 

0.5 25 1.99 0.5918 4.25 0.8492 

0.6 26 2.04 0.4206 4.32 0.4766 

0.7 26 2.03 0.3943 4.31 0.5728 

0.8 28 1.63 0.4740 4.42 0.6360 

Table 5.19 Gaussian Model Fitted Parameters for PEO on 0.4M MgS04, residual optima 
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Volume Fraction 
r;mg m·2 

polymer air 
p.d/10-6A-l a. p.m./ A 2monomer·1 ra/mgm·2 

water 

0.2 0.21 0.61 0.18 14.4 31.9 0.25 

0.3 0.23 0.68 0.09 20.1 22.8 0.35 
0.4 0.19 0.75 0.06 30.1 15.2 0.52 

0.5 0.31 0.64 0.05 31.2 14.7 0.54 

0.6 0.32 0.65 0.03 33.2 13.8 0.58 

0.7 0.32 0.65 0.03 33.1 13.9 0.58 

0.8 0.26 0.67 0.07 28.6 16.0 0.50 

Table 5.20 Gaussian Model Composition and Apparent Coverage for PEO on 0.4M MgS04 

r/mg m·2 
D/acmw H/020 

d/A p/I0-6 A-2 res/10-2 d/A p/I0·6A-2 res/l0-2 

0.2 8 3.57 0.4704 23 3.78 0.4269 
0.3 10 3.94 0.3436 39 4.35 0.5864 
0.4 9 5.84 0.3677 120 4.82 0.9150 

0.5 15 4.13 0.4559 40 3.98 0.7356 

0.6 19 3.56 0.3074 26 3.12 0.4380 

0.7 19 3.55 0.3167 25 2.99 0.5472 

0.8 20 2.90 0.3559 34 3.72 0.5728 

Table 5.21 Exponential Model Fitted Parameters for PEO on 0.4M MgS04 
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r/mg m-2 
D/acmw H/020 

d/A p/I0-6A-2 res/lo-2 p/1o-6A-2 res/lo-2 

0.2 16 1.85 0.4919 2.39 0.4599 
0.3 25 1.73 0.6637 3.60 0.6230 
0.4 65 1.24 1.972 4.49 0.9310 

0.5 28 2.76 1.102 3.26 0.7574 
0.6 23 3.04 0.3787 2.68 0.4469 

0.7 22 3.15 0.3516 2.48 0.5561 
0.8 27 2.29 0.4966 3.18 0.5903 

Table 5.22 Exponential Model Fitted Parameters for PEO on 0.4M MgS04, residual optima 

Volume Fraction 
f'/mg m-2 p.d/l0-6A-l a. p.m./ A 2monomer1 r Jmgm-2 

polymer water air 

0.2 0.29 0.35 0.36 14.7 31.2 0.26 

0.3 0.27 0.54 0.19 21.5 21.3 0.37 
0.4 0.20 0.69 0.1 I 40.0 11.6 0.70 

0.5 0.44 0.47 
-

0.09 38.4 11.9 0.67 
0.6 0.48 0.38 0.14 34.7 13.2 0.60 

0.7 0.50 0.35 0.15 34.4 13.3 0.60 

0.8 0.36 0.47 0.17 30.7 14.9 0.53 

Table 5.23 Exponential Model Composition and Apparent Coverage for PEO on 0.4M MgS04 
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r/mg m-2 
0/acmw H/020 

d/A p/10-6A-2 res/l0-2 d/A p/10-6A-2 res/l0-2 

0.2 10 1.65 0.4214 20 5.76 0.4308 
0.3 9 2.37 0.2910 22 5.69 0.3830 

0.4 15 2.15 0.4723 20 5.48 0.4790 
0.5 16 2.04 0.5114 20 5.49 0.4578 
0.6 26 1.46 0.7295 21 5.29 0.4946 

0.7 25 1.65 0.8065 23 5.30 0.4587 

0.8 26 1.46 0.7295 21 5.27 0.3769 

Table 5.24 Single Slab Model Fitted Parameters for PEO on 0.8M MgS04 

f/mg m-2 
0/acmw H/020 

d/A p/I0-6A-2 res/l0-2 p/10-6A-2 res/10-2 

0.2 15 1.13 0.4587 5.65 0.5151 
0.3 16 1.37 0.4391 5.55 0.4971 
0.4 17 1.91 0.4838 5.39 0.5264 

0.5 18 1.84 0.5254 5.42 0.4752 

0.6 23 1.61 0.7567 5.37 0.5209 

0.7 24 1.70 0.8618 5.33 0.4737 

0.8 24 1.64 0.7611 5.38 0.4505 

Table 5.25 Single Slab Model Fitted Parameters for PEO on 0.8M MgS04, residual optima 
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Volume Fraction 
rJmg m-2 

polymer 
p.d/10-6 A-I a. p.m./ A 2monomer-1 r Jmgm-2 

water mr 

0.2 0.18 0.87 -0.05 17.0 26.9 0.30 

0.3 0.22 0.85 -0.07 21.9 20.9 0.38 

0.4 0.30 0.82 -0.12 32.5 14.1 0.57 

0.5 0.29 0.83 -0.12 33.1 13.8 0.58 

0.6 0.25 0.82 -0.07 37.0 12.4 0.64 

0.7 0.27 0.82 -0.09 40.8 11.2 0.71 

0.8 0.26 0.82 -0.08 41.8 11.0 0.72 

Table 5.26 Single Slab Composition and Apparent Coverage for PEO on 0.8M MgS04 

r;mg m-2 
0/acmw H/020 

ct;A p/10-6 A -2 res/l0-2 0 p/10-6A-2 res/lo-2 d/A 

0.2 10 2.62 0.4217 25 5.53 0.4972 

0.3 8 4.27 0.2887 29 5.44 0.4589 

0.4 17 3.06 0.4143 25 5.12 0.5821 

0.5 18 2.94 0.4496 26 5.16 0.5142 

0.6 30 2.07 0.5825 29 4.94 0.6204 

0.7 29 2.33 0.7019 32 4.94 0.5760 

0.8 31 2.26 0.8240 28 4.86 0.5017 

Figure 5.27 Gaussian Model Fitted Parameters for PEO on 0.8M MgS04 
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1/mg m-2 
D/acmw H/020 

d/A p/10-6A-2 resno-2 p/10-6 A-2 res/lo-2 

0.2 17 1.58 0.4582 5.23 0.5492 
0.3 19 1.87 0.5185 5.13 0.5404 
0.4 21 2.54 0.4712 4.93 0.6026 

0.5 22 2.47 0.5086 4.99 0.5714 

0.6 29 2.13 0.5841 4.94 0.6204 

0.7 31 2.21 0.7139 4.91 0.5770 
0.8 30 2.32 0.8267 4.93 0.5062 

Table 5.28 Gaussian Model Fitted Parameters for PEO on 0.8M MgS04, residual optima 

Volume Fraction 
1/mg m-2 

polymer water air 
p.d/1 o-6 A -1 a.p.m./A2monomer-1 1 Jmgm-2 

0.2 0.25 0.80 -0.05_ 16.8 27.2 0.29 

0.3 0.30 0.77 -0.07 22.3 20.6 0.39 

0.4 0.40 0.74 -0.14 33.4 13.7 0.58 

0.5 0.39 0.75 -0.14 34.1 13.5 0.59 

0.6 0.34 0.75 -0.09 38.7 11.8 0.67 

0.7 0.35 0.74 -0.09 42.9 10.7 0.75 

0.8 0.37 0.74 -0.11 43.6 10.5 0.76 

Table 5.29 Gaussian Model Composition and Apparent Coverage for PEO on 0.8M MgS04 
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r;mg m·2 
D/acmw HID:P 

d/A p/10-6 A -2 res/l0-2 d/A p/I0·6A-2 res/lo-2 

0.2 7 4.74 0.4219 22 5.02 0.5432 

0.3 6 7.21 0.2919 31 5.07 0.4898 

0.4 13 5.12 0.3510 22 4.32 0.6408 
0.5 13 5.19 0.3825 24 4.47 0.6096 
0.6 24 3.37 0.4135 28 4.18 0.6938 

0.7 23 3.82 0.5220 34 4.32 0.6398 

0.8 26 3.56 0.6243 26 3.96 0.5892 

Table 5.30 Exponential Model Fitted Parameters for PEO on 0.8M MgS04 

Volume Fraction 
r!mg m·2 

polymer 
p.d/l0-6A-1 a. p.m./ A 2monomer·1 r jmgm·2 

water atr 

0.2 0.39 0.64 -0.03 17.0 26.9 0.30 
0.3 0.41 0.66 -0.07 23.0 20.0 0.40 
0.4 0.64 0.53 -0.17 34.3 13.4 0.60 
0.5 0.62 0.55 -0.17 35.0 13.1 0.61 
0.6 0.50 0.59 -0.09 40.9 11.2 0.71 

0.7 0.52 0.56 -0.08 45.9 10.0 0.80 

0.8 0.56 0.57 -0.13 45.9 10.0 0.80 

Table 5.31 Exponential Model Composition and Apparent Coverage for PEO on 0.8M MgS04 
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rJmg m-2 
0/ucmw H/020 

d/A p/10-6A-2 res/l0-2 p/10-6A-2 res/l0-2 

0.2 14 2.45 0.4730 4.29 0.5583 
0.3 18 2.57 0.7201 4.41 0.5367 
0.4 17 4.06 0.4608 3.72 0.6548 

0.5 18 3.92 0.5042 3.87 0.6279 

0.6 26 3.17 0.4215 4.04 0.6950 

0.7 28 3.30 0.5884 3.88 0.6558 

0.8 26 3.56 0.6243 3.96 0.5892 

Table 5.32 Exponential Model Fitted Parameters for PEO on 0.8M MgS04, residual optima 
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r/mg m·2 dt!A ct2;A p,!lo-6A-' P2/l0-6 A-I residuavw-2 

0.2 - - - - -
0.3 4 45 4.42 0.59 0.2192 

0.4 4 29 5.69 0.14 0.2545 

0.5 - - - - -
0.6 9 29 2.85 0.28 0.1803 

0.7 9 25 2.74 0.35 0.2611 

0.8 9 30 2.40 0.25 0.2784 

I 

Table 5.33 Two Layer Fitted Parameters for DPEO on 0.4M MgS04 in acmw 

r!mg m·2 d/A d2/A Ptll0-6A- 1 P2/10-6A-I residuaV10-2 

0.2 - - - - -
0.3 - - - - -
0.4 5 23 5.20 0.31 0.2196 

0.5 5 24 5.23 0.33 0.2600 

0.6 5 36 5.48 0.36 0.3699 

0.7 6 33 4.82 0.46 0.3059 

0.8 7 37 4.29 0.44 0.4576 

Table 5.34 Two Layer Fitted parameters for DPEO on 0.8M MgS04 in acmw 

Analysis by the Kinematic Approximation 

In the same way that the kinematic approximate method was applied to 

the reflectometry data for PEO on water, Patterson and Guinier plots have been 

obtained for PEO on MgS04 subphases. From the minima in the Patterson functions, 

the dsharp values in figures 5.67 and 5.68 have been estimated. From the slope and 

intercept of the appropriate Guinier plots values of m and cr tabulated in tables 5.37 

and 5.38 were obtained corresponding to the ddirr values for a Gaussian scattering 

length density distribution shown in figures 5.69 and 5.70. It is very noticeable that 
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the ddiff values are very much reduced from rhose obtained for PEO on pure water, 

while the dsharp values obtained from the Patterson plots remain fairly similar to 

those obtained from the pure water su bphase experiments. 
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5.5 Ellipsometry 

Ellipsometry has been used to examme PEO when spread as a 

monolayer on pure water. As previously discussed for the case of poly (methyl 

methacrylate), the lack of refractive index contrast in air-liquid interface 

experiments leads to a lack of sensitivity in one of the experimental parameters (the 

amplitude attenuation) and hence no unique calculation of both film thickness and 

refractive index is possible. 

The variation of the phase retardation, L18 with the trough barrier 

position is shown in figure 5.71. The equivalent surface pressure plot is shown in 

figure 5.72. By assuming a constant refractive index in the film of 1.45, the 

thickness variation shown in figure 5.73 is obtained. 

The thickness values in this case are very much lower than those 

estimated from ellipsometry for PMMA, and also much smaller than those estimated 

from neutron reflectometry for PEO. Indeed these thickness values are around the 

size or smaller than the cross-section of the wander Waal's radii of the constituent 

atoms in the ethylene oxide monomer unit. 

These differences arise mainly from the simple approach used to analyse 

ellipsometry data. One major difficulty is the correct choice of a reasonable estimate 

for the film refractive index. In this case the value of 1.45 was used, corresponding 

to a polymer volume fraction in the film of approximately 0.96 (the refractive 

indices of PEO and water are 1.455 llnd 1.339 respectively). From neutron 

reflectometry however it has been determined that the polymer volume fraction in 

PEO monolayers is of the order of 0.1 - 0.2. Using a polymer volume fraction of 0.2 

for example, a refractive index of 1.36 is obtained, which would lead to 

correspondingly higher layer thicknesses when substituted into the relevant optical 

expressiOns. 
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Additionally from the information obtained by reflectometry, the 

appropriateness of a single film model for the description of PEO films is 

questionable. However the extension of the formulae describing ellipsometric 

phenomena to the case of diffuse interfacial fonns is not readily achieved. A model 

based on a patchy layer of pure polymer islands suiTounded by air voids has been 

suggested but the appropriateness of this model for. the highly diffuse and 

hydrophilic PEO film seems dubious. 

The very thin layer thickness obtained for a roughly equivalent 

refractive index to that used in PMMA analysis suppons the notion that the PEO 

film is very much more diffuse in polymer than a PMMA film. This is also reflected 

in the magnitude of the phase retardation effect which is much smaller than was the 

case for poly (methyl methacrylate) at a similar smface concentration. 
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CHAPTER 6 -POLY (METHYL METHACRYLATE- 4-VINYL PYRIDINE) 

DIBLOCK COPOLYMERS 

Summary 

The synthesis of diblock copolymers of poly (methyl methacrylate) and 

poly (4-vinyl pyridine) is described. A description of the conversion of these 

products to partially polyelectrolyte materials by alkylation with ethyl bromide and 

the methods used to characterise both sets of mate1ials chemically are given. 

Surface pressure measurements have been used to characterise the 

thermodynamic state of PMMA4VP and PMMA4VPQ monolayers, suitable 

precautions having been taken to ensure that the polymer was deposited in a simple 

non-aggregated fom1 from solution. PMMA4VPQ partial polyelectrolytes were 

found to form a rather more expanded film at the surface than their uncharged 

counterparts (as classically defined), but the critical scaling exponents obtained for 

the quatemised material was 0.53 - 0.55, near the value expected for a theta system. 

PMMA4VP gave a value of 0.60 - 0.65, intermediate between those of theta and 

good solvent behaviour. 
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6.1 Synthesis and Characterisation 

High vacuum anionic synthesis was used as previously described to 

prepare PMMA-4VP diblock copolymers with hydrogenous and deuterated PMMA 

blocks. Molecular weight analysis of these polymers by gel permeation 

chromatography gave the results set out in table 6.1. 

Polymer Mn MIV Mw/Mn 

HPMMA4VP 521500 2146000 4.1 

DPMMA4VP 503000 1470000 2.9 

Table 6.1 Molecular Weight Characteristics of PMMA4VP copolymers 

The samples have rather broad molecular weight distributions and the 

measured chromatograms contained much noise in the measured signal indicating 

that they there were poorly dissolved in the system solvent, THF. This was thought 

to be due primarily to difficulties associated with introducing the second monomer, 

methyl methacrylate to the living 4VP solution in the reaction flask. 

Microanalysis may be used conveniently to assess the composition of 

the diblock copolymer by using the single nitrogen atom of the 4-vinyl pyridine ring 

as a criterion for its proportion in the polymer. Microanalysis results are summarised 

in table 6.2. 

Another method of estimating the relative proportions of the two blocks 

in the polymer is to make use of the UV -visible absorption at 358nm associated with 

the pytidine 1ing of 4-vinyl pyridine. Table 6.3 presents concentration corrected 

relative absorbances for both diblock copolymers and the equivalent absorptions for 

a homo poly(4-vinyl pyridine). By ratioing the absorption for the block copolymer to 

that for the homopolymer, the 4-vinyl pyridine equivalent in the copolymer is 
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Weight Mole Ratio 
Polymer 

%C %H %N c H N PMMA 

HPMMA4VP 61.99 7.29 3.18 5.17 7.29 0.23 0.76 

DPMMA4VP 54.72 6.65 1.78 4.56 6.65 0.13 0.85 

Table 6.2 Analysis ofPMMA4VP copolymers by Microanalysis 

Polymer Relative Absorption f cm2g-1 

HPMMA4VP 7885 

DPMMA4VP 6071 

4VP (homo) 47778 

Table 6.3 Analysis of PMMA4VP copolymers by 

UV-visible Absorption Spectroscopy 

obtained. 

%4VP 

17 

13 

-

P4VP 

0.24 

0.15 

From the combination of information from microanalysis and 

UV-visible spectroscopy the composition of HPMMA4VP may be estimated as 

approximately 80:20 PMMN4VP, and DPMMA4VP as 85:15 PMMN4VP. 

Copolymers with partially polyelectrolyte character have been prepared 

by quaternisation of PMMA4VP copolymers with ethyl bromide. Four combinations 

of the two diblock copolymers above and hydrogenous and deuterated ethyl bromide 

have been used to prepare the polymers HPMMA4VPQH (abbreviated further to 

HH), HPMMA4VPQD (HD), DPMMA4VPQH (DH), and DPMMA4VPQD (DD). 

Bromine elemental analysis provides a convenient route to demonstrate the 

completeness of the quatemisation reaction, Table 6.4, the experimentally obtained 

values being very close to the theoretically expected amounts in all cases except 
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one, where a large excess bromine content may possibly have been caused by 

residual reactant impurity. 

Polymer % Br %Br(theor) 

HPMMA4YPQH 13.16 13.3 
HPMMA4YPQD 14.25 13.2 
DPMMA4VPQH 15.51 9.7 

DPMMA4YPQD 9.57 9.6 

Table 6.4 Bromine Elemental Analysis of PMMA4VPQ copolymers 
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6.2 Surface Pressure - Concentration Isotherm Studies 

6.2.1 HPMMA4VP Copolymers 

Surface pressure- surface concentration isotherms for HPMMA4VP and 

DPMMA4VP are presented in figures 6.1 and 6.2. The shape of the isotherms is that 

of a liquid condensed type monolayer, with a relatively large limiting surface 

concentration of approximately lmgm-2. This corresponds to a limiting area per 

segment of 18A2. The surface pressure onset however is rather gradual, starting 

from a surface concentration of only 0.5mgm-2• In the semi-dilute regime a steep, 

steady rise in surface pressure is observed, but this rise is not as steep as in, for 

example, an atactic-PMMA monolayer. 

The reproducibility of the surface pressure data for these materials was 

found to be rather poor, particularly at high surface concentrations. This was thought 

to be due to the sensitivity of the polymer to the presence of acidic gases absorbed 

into the subphase from the a_ir above the interface. By the use of an inert atmosphere 

(nitrogen blanket over the liquid surface) it was possible to minimise the dissolution 

of carbon dioxide in the subphase and the associated reduction in subphase pH. 

Isotherms recorded under these conditions were much more consistent, indicating 

considerable sensitivity of PMMA4VP copolymers to subphase pH conditions. This 

observation was also valid for PMMA4VPQ polyelectrolyte films. 

From the slopes of double logarithmically plotted semi-dilute regime 

surface pressure data, figures 6.3 and 6.4, the scaling exponent values of v = 0.65 

(slope y = 4.3) and v = 0.60 (y = 5.9) were obtained for HPMMA4VP and 

DPMMA4VP respectively. The difference in these values is a reflection of the 

dependence of v on y, which is very sensitive to changes in y when y ~ 6. Scaling 

exponent values in the range of 0.6 to 0.65 are intermediate between those of 
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monolayers in the theta condition (v :::: 0.56) and those in good 2-D solvent 

conditions (v = 0.77). From equation of state plots, figures 6.5 and 6.6, there appears 

to be a very slightly negative initial slope at low surface concentrations, indicative 

of poor solvent conditions, but no definite trend is easily seen. 

6.2.2 PMMA4VPQ Copolymers 

For the purpose of spreading Langmuir films, it is important that the 

polymer is spread from a well dissolved, dissociated state. For all the other systems 

described in this thesis, chloroform provides a good solvent for preparing spreading 

solutions. Solutions of quatemised PMMA4VPQ copolymers in chloroform however 

were observed to be slightly cloudy, giving rise to suspicion as to whether the 

polymer was fully dissociated as single chains or aggregated in micelles. 

In order to investigate this question, particle size analysis on dilute 

solutions of HPMMA4VPQ(H) in chloroform, and in an 80/20 v/v mixture of 

chloroform and methanol was carried out by quasi - elastic light scattering. From the 

average of ten repeated experiments a particle size of 159±1.7nm was obtained for 

the chloroform solution, while the mixed solvent value was 37±18nm. The 

uncertainty in this latter value was due to the relatively low intensity of excess 

scattering from the mixed solvent solution, which was typically a factor of 50 less 

than for the cloudy chloroform solution. From these values it is clearly seen that the 

amphiphilic polymer is associated into aggregates of micellar dimensions when 

dissolved in chloroform, but when dissolved in the mixed solvent a particle size is 

obtained which is of the order of the value expected for isolated single coils. 

Surface pressure - surface concentration isotherms for PMMA4VPQ 

copolymers spread from the mixed chloroform I methanol mixture are shown in 

figures 6.7 - 6.10. By comparison with figures 6.1 and 6.2 for the unquaternised 
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n1aterial it may be seen immediately that the quaternised polymer films have a much 

larger surface concentration of pressure onset and limiting area per segment, around 

r = 1.2mgm·2 and A1im = 11 - 12 A2 respectively. The limiting area values for each 

material are shown in table 6.5. 

Polymer rlin/mgm-2 A ;A2 . -1 lim unIt r*; _? mgm - r**; ? mgmm·- y v 

HH 1.54 11 1.41 1.78 12.3 0.54 

HD 1.55 11 1.41 1.78 12.0 0.54 

DH 1.50 12 1.35 1.70 13.0 0.55 

DD 1.55 12 1.41 1.78 12.9 0.53 

Table 6.5 Analysis of Surface Pressure Isotherms for PMMA4VPQ Monolayers 

As was the case for unquaternised PMMA4VP polymers, the high 

pressure data was rather iiTeproducible, but a common feature of the isotherms was 

the presence of a point of inflection at around 2mgm·2, at a surface pressure of 

around 15- 20mNm·1. 

From the scaling law double logarithmic plots, eg. figure 6.11, scaling 

exponent values tabulated on the right hand side of table 6.5 were obtained. The 

values are much lower than those of the unquaternised material, the typical value of 

0.54 being around the order associated with theta or just less than theta conditions. 

This is reflected in the equation of state plot, figure 6.12, which has a clearly 

negative initial slope, indicative of a negative two dimensional second virial 

coefficient. This behaviour was observed for all four polymers. 
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6.3 Neutron Reflectometrv 

6.3.1 PMMA4VP 

Neutron reflectivity profiles for OPMMA4VP on air contrast matched 

water and HPMMA4VP on 0 20 are shown in figures 6.13 and 6.14. The general 

trends in the profiles are rather like those seen for PMMA. The 0/acmw contrast 

gives a rise in reflectivity for a given momentum transfer with rising surface 

concentration, although the profiles become closer together at higher concentrations. 

For the H/020 conn·ast there is considerable depression of the reflectivity indicative 

of a condensed film structure like PMMA's, rather than a subphase expanded film 

like PEO. 

A single film modelling approach has been applied to PMMA4VP 

monolayers, the best fitted values being summarised in table 6.6, and the optimum 

values in table 6.7.The position of the residual minima for both contrasts at a given 

surface concentration are very close together giving low errors on the optimum 

thickness values. From the optimum scatteJing length density values, volume 

fractions may be estimated by approximating "average" scattering length density 

values for the hydrogenous and deuterated polymers of PH= 0.96x10·6A-2 and Po= 

5.32xl0·6A-2, these values being calculated from the scatteJing length densities of 

the two monomer components in the polymer and weighted according to the relative 

block sizes. The composition variation is shown in table 6.8, along with derived 

apparent surface concentration values. 

PMMA4VP may be seen to exist as a very dense film with a similar 

thickness to that observed for syndiotactic poly (methyl methacrylate). The variation 

of the film thickness is relatively small with surface concentration, but the polymer 

volume fraction increases to around 0.8 at high smface concentrations. 
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rJmg m-2 
D/acmw H/020 

d/A p/10-6A-2 resno-2 d/A p;I0-6A-2 res/10-2 

0.5 15 2.05 0.6441 17 1.84 0.6676 
1.0 17 3.14 0.5865 16 3.29 0.6114 
1.2 17 3.72 0.5076 17 3.72 0.5076 

1.5 19 4.29 0.6303 19 4.29 0.6303 

1.8 21 4.49 0.6524 20 4.61 0.6596 

2.5 21 4.17 0.8268 20 4.28 0.8941 
2.75 21 4.04 1.072 21 4.04 1.072 

3.0 22 4.11 0.7029 22 4.11 0.7029 
3.5 23 4.29 0.6313 23 4.29 0.6313 

Table 6.6 Single Slab Model Residual Minima for PMMA4VP on water 

rJmg m-2 
0/acmw H/010 

d/A p;I0-6A-2 resno-2 p/Io-6A-2 res/10-2 

0.5 16 1.94 0.6502 0.88 0.6977 
1.0 16.5 3.18 0.6044 0.85 0.7014 

1.2 17 3.72 0.5076 0.79 0.6955 

1.5 19 4.29 0.6303 1.40 0.6757 

1.8 20.5 4.55 0.6442 1.56 0.7180 

2.5 20.5 4.23 0.8524 2.18 0.9877 

2.75 21 4.04 1.072 2.06 0.6261 

3.0 22 4.11 0.7029 2.13 1.110 
3 .. 5 23 4.29 0.6313 1.97 1.149 

Table 6.7 Single Slab Model Optimum Fitted Parameters for PMMA4VP on water 

At low and moderate surface concentrations the apparent surface 

concentration is in excellent agreement with the dispensed amount. It is only at high 

surface concentrations (around 2.5mgm-2) that a systematic discrepancy becomes 

obvious, with apparent sUJface concentrations deviating below the linear diagonal. 

This is again similar to the behaviour of syndiotactic PMMA. 

In general the good agreement of the residual minimum thicknesses for 
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Volume Fraction 
r/mg m-2 

polymer air water 
p.d/lo-6A-l a. p.m./ A 2monomer-1 rafmgm-2 

0.5 0.36 0.08 0.56 31.0 28.4 0.63 
1.0 0.60 0.04 0.36 52.5 16.7 1.07 
1.2 0.70 0.02 0.28 63.2 13.9 1.29 

1.5 0.81 0.10 0.09 81.5 10.8 1.65 
1.8 0.86 0.12 0.02 93.3 9.4 1.90 
2.5 0.80 0.22 -0.02 86.7 10.1 1.77 
2.75 0.76 0.21 0.03 84.8 10.4 1.72 
3.0 0.77 0.21 0.02 90.4 9.7 1.84 
3.5 0.81 0.19 0.00 98.9 8.9 2.01 

Table 6.8 Layer Composition and Apparent Surface Coverage Variation 

for PMMA4VP on water 

both contrasts, the apparent and dispensed surface concentrations, and the 

reasonably low residual values suggest that a single film model is a reasonable 

description of the PMMA4VP monolayer, and effo1ts to improve on it by an 

additional layer were not successful, using the criterion of an improvement in the 

residual of the fit to the experimental data. 

Kinematic Analysis 

The kinematic fonnulae of section 2.2 have been applied to reflectivity 

from PMMA4VP monolayers. A typical Guinier plot of ln(R(Q)2.Q2) v Q2 for 

DPMMA4VP on air contrast matched water is shown in figure 6.15. From the slope 

and intercept of the linear portion of this plot, determined by the low Q breakdown 

of kinematic theory and high Q experimental background, the values in table 6.9 

were obtained. 

The layer thicknesses obtained from the Guinier plots are in broad 

agreement with the values obtained from a single film matrix model, although at low 
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r/mgm-2 Intercept Slope m/1o-6A-2 a d 

0.5 -15.7 -24.4 31.0 4.9 17.0 
1.0 -14.6 -28.8 53.8 5.4 18.7 
1.2 -14.3 -25.5 62.5 5.1 17.7 
1.5 -13.7 -39.6 84.3 6.3 21.8 
1.8 -13.4 -47.7 98.0 6.9 23.9 
2.5 -13.5 -48.3 93.2 6.9 23.9 

2.75 -13.6 -45.2 88.6 6.7 23.2 
3.0 -13.5 -48.1 93.2 6.9 23.9 
3.5 -13.3 -59.4 103.0 7.7 26.7 

Table 6.9 Results of Analysis of Guinier plots for DPMMA4VP on acmw 

coverages the values are slightly higher than the matrix model values and at the 

highest coverage the Guinier plot gives a slightly higher thickness, possibly 

explained by some diffuse projection from the film into the subphase. 

Patterson plots for HPMMA4VP on D20 and DPMMA4VP on arr 

contrast matched water are shown in figures 6.16 and 6.17. In each case a minimum 

is observed at the characteristic rr/d point It is very striking that the minima in both 

types of plot are well defined, indicating a relatively dense, slab-like layer. The 

thickness values obtained for a single film are shown in table 6.10. 

The .values are essentially similar for both contrasts, and similar to those 

previously obtained from other methods, except at surface concentrations of 

2.5mgm-2 and above, where the H!D20 contrast values increase but the D/acmw 

values remain approximately constant. This may be due to background truncation of 

the high Q data for the D/acmw contrast or possibly a reflection of greater 

sensitivity in the former contrast to diffuse polymer projection into the subphase. 

In summary then, both optical matrix and kinematic treatments of the 

reflectometry data for PMMA4VP copolymers seem to suggest that the film is 
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H/020 D/acmw 

1/mgm-2 X min Ymin d/A PF/1 o-6 A -2 X min d/A 

0.5 0.23 -19.5 14 0.86 0.20 16 

1.0 0.23 -19.4 14 0.67 0.23 14 

1.2 0.20 -19.3 17 0.61 0.25 13 

1.5 0.18 -20.0 18 1.37 0.20 16 

1.8 0.17 -20.1 19 1.46 0.21 15 

2.5 0.17 -20.8 19 1.93 0.25 13 

2.75 0.15 -20.9 21 2.02 0.22 14 

3.0 0.14 -20.9 22 2.02 0.22 14 
3.5 0.13 -20.7 24 1.90 0.23 14 

Table 6.10 Results of Analysis of Patterson Functions for PMMA4VP on water 

essentially a single simple film, except possibly at very large surface coverages. 

Two reasons may be given to account for this. Possibly the scattering length density 

of (hydrogenous) 4VP segments is insufficient to show up in the case of these 

segments projecting into the subphase. On the other hand, it is likely that 

preferential desorption of 4 VP segments from the interface is not taking place for 

the unquaternised polymer. Although po1y-4VP might be expected to display a 

slightly greater affinity for the aqueous subphase than PMMA, it is by no means the 

readily water soluble material of its polyelectrolyte quatemised form. The stmctural 

effects of the inclusion of a dissociated, water soluble poly-4VPQ block will be 

considered in the next section. 

6.3.2 PMMA4VPQ Copolymers 

Neutron reflectivity profiles for DPMMA4VPQ(D) on air contrast 
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matched water (DD/acmw) and HPMMA4VPQ(H) on D20 (HH/020) over a range 

of surface concentrations are shown in figures 6.18 and 6.19. By comparison with 

the reflectivity profiles for the unquaternised material, figures 6.13 and 6.14, the 

same general features of a condensed monolayer are observed. However on 

attempting to fit a single layer model of the type used successfully for PMMA4VP, 

differences between the two cases become apparent. Residual minimum values for a 

smooth edged, single layer model at both contrasts are shown in table 6.11, and 

optimum values in table 6.12. 

The residual minimum positions for the two contrasts are rather further 

apart for the quaternised monolayers than for the unquaternised (which gave 

excellent agreement) but the most notable difference is in the quality of the best 

fitted functions, as reflected by the residual values. For the quaternised films these 

are generally higher than acceptable for a good fit to the data, and at higher surface 

concentrations in particular, the fitted line is a very poor match indeed for the 

experimental data (cf data at r = 3.0 mgm-2). For the lowest surface concentration 

data it was not possible to fit physically sensible values for the D/acmw contrast. 

The reason for this is not apparent but may be associated with the small amount of 

deuterated material at the surface leading to an unreliable measurement 

A dramatic improvement in the quality of the fitted data may be 

achieved by the use of a two layer model, using the strategy of fitting previously 

described in the studies of PMMA monolayers. The results of such an analysis are 

shown in table 6.13. 

A plausible explanation for the apparent two layer nature of the 

PMMA4VPQ monolayer is the solubilisation of hydrophilic poly (4-vinyl 

ethylpyridinium) segments in the subphase while poly (methyl methacrylate) 

segments remain attached more closely to the surface, in a fashion similar to their 

homopolymer monolayers. Such a segregation would lead to an effective decrease of 
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rJmg m-2 
D/acmw H/020 

d/A p;I0-6A-2 res/10·2 d/A p/I0-6A-2 res/10"2 

0.5 - - - 24 0.72 0.8789 

1.0 14 3.09 0.4764 23 0.83 0.8309 
2.0 19 3.98 0.6497 22 1.13 1.048 

3.0 32 4.20 1.041 25 1.83 1.633 

Table 6.11 Single Slab Model Residual Minima for PMMA4VPQ on water 

f/mg m-2 
D/acmw HID:P 

d/A p;I0-6A-2 res/10·2 p/10·6A·2 res/10-2 

0.5 - - - - -

1.0 18 2.47 0.5561 0.90 1.105 
2.0 21 3.71 0.6940 1.15 1.069 

3.0 28 4.49 1.1186 1.78 1.875 

Table 6.12 Single Slab Model Optimum Fitted Parameters for PMMA4VPQ on water 

f/mg m-2 
D/acmw H/020 

d 1/A d2/A Ptfi0·6A- 1 P21 I o-(,A-I resid/10·2 Ptfl0·6A- 1 pz/l0-6 A-t resid/I0-2 

0.5 - - - - - - - -

1.0 9 34 4.38 0.19 0.2924 0.64 5.82 1.37 

2.0 14 23 4.78 0.60 0.2962 0.31 5.46 1.010 

3.0 23 23 4.77 1.47 0.4859 0.94 5.45 1.303 

Table 6.13 Two Layer Fitted Parameters for PMMA4VPQ on water 
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segment density at the interface, accounting for the much higher surface 

concentration of surface pressure onset observed in the surface pressure isotherm of 

PMMA4VPQ copolymers. 

In order to confirm the structure of the PMMA4VPQ film it would be 

desirable to investigate different contrast conditions, and in particular the case of a 

block copolymer of hydrogenous poly (methyl methacrylate) with deuterated poly 

(4-vinyl pyridine) on a low scattering length density subphase. Unfortunately 

deuterated 4-vinyl pyridine monomer was not available and these experiments have 

not been attempted. 

Some limited work was can·ied out usmg an HPMMA4VPQ(D) 

copolymer on air contrast matched water (where of course the bracketted D refers to 

deuterated ethyl bromide, not 4-vinyl py1idine). This however met with little 

success, apparently due to the combination of the small amount of deuterated 

material in the polymer and its diffuse distribution in the film. 

With the proposed two layer model in mind, and given the lack of 

complementary information from different contrasts to uniquely determine the 

distribution of the two polymer types at the inte1face, it is not possible to calculate 

compositional variation of the PMMA4 VPQ film. From the fitted scattering length 

densities it appears that the upper layer has relatively constant segment 

concentration whereas the lower layer becomes more concentrated in polymer 

(probably 4VPQ segments) as surface concentration is increased. 

Kinematic Analysis 

Kinematic analysis of the retlectometry data for PMMA4VPQ 

copolymers has been carried out in a similar fashion to that employed for previous 

systems. An example of a Guinier plot for the DD copolymer on air contrast 
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matched water is shown in figure 6.20, and from the full set of plots the parameters 

in table 6.15 were obtained. A large increase in the thickness obtained is seen at a 

surface concentration of 3mgm·2, consistent with the notion that more hydrophilic 

portions of the polymer chain may project into the subphase. 

Patterson functions obtained at both conn·ast conditions studied are 

shown in figures 6.21 and 6.22. Relevant quantities derived from the plots are shown 

in table 6.16. From the plots it can be seen that in this particular case the minima in 

the Patterson plots are very shallow and that it is not at all easy to determine the 

minimum position with great accuracy. In the case of the 00/acmw contrast the 

minimum is smoothed to such an extent that it is only definitely discernible at the 

highest surface concentration studied, and the layer thickness obtained in this case is 

rather less than that obtained from the from the HH/020 contrast. This and the fact 

that the minima are rather less sharply defined than for the unquaternised films are 

further evidence for the extension of 4VPQ segments into the subphase, as the 

Patterson function is generated for a single film bounded by two sharp steps in 

scattering length density. 
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1/mgm·2 Intercept Slope mno-6A-2 cr d 

1.0 -15.1 -14.8 41.9 3.8 13.2 

2.0 -14.3 -17_4 62.5 4.2 14.5 

3.0 -13.2 -76.0 108.3 8.7 30.1 

Table 6.15 Results of Analysis of Guinier plots for DPMMA4VPQ(D) on acmw 

HH/0..,0 DD/acmw 

r/mgm·2 X min Ymin ct/A PFno-6A-2 X min ct/A 

0.5 0.15 -19.3 20.9 0.61 - -

1.0 0.15 -19.5 20.9 0.86 - -

2.0 0.15 -19.7 20.9 1.08 - -

3.0 0.12 -20.4 26.2 1.70 0.18 17.5 

Table 6.16 Results of Analysis of Patterson Functions for PMMA4VPQ 
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6.4 Ellipsometry 

Unquatemised PMMA4VP copolymer has been studied by ellipsometry 

during a barrier compression/expansion cycle. Plots of phase retardation and surface 

pressure as a function of barrier position are shown in figures 6.23 and 6.24. As 

usual no sensitivity in amplitude attenuation was observed and consequently an 

intermediate refractive index of 1.48 was used to estimate the layer thickness. The 

thickness values so obtained are shown in figure 6.25. 

On comparison with the u·ends observed for PMMA and PEO (sections 

4.4 and 5.5), PMMA4VP is seen to be much more like the former. The film 

thickness rises from a rather low value of about 7 A to around 21A. Of course no 

account is taken of compositional effects leading to an alteration in the refractive 

index. However it can be seen that, with the possible exception of low surface 

concentrations, a realistic layer thickness can be obtained using a refractive index 

corresponding approximately to a polymer volume fraction of around 0.9. This is in 

agreement with the results obtained from neutron reflectometry, which suggested 

PMMA4VP existed as a dense, well defined single film. 
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CHAPTER 7- CONCLUSIONS 

In conclusion, it is useful to briefly highlight some of the main points of 

similarity and difference to have emerged between the various materials examined 

during this study. 

A major objective of this project was to examine the relationship 

between the thermodynamic nature of polymer monolayers as observed by surface 

pressure studies and their structure as observed by neutron reflectometry. In this 

regard, the usefulness of the latter technique has been demonstrated clearly. 

Monolayers of PMMA of various stereotacticity have been shown to have very 

different structure and composition as well as thermodynamic properties. Within the 

resolution of the technique a systematic modelling procedure has been applied to the 

reflectometry data to assess these changes and give a measure of the errors involved. 

Additionally evidence has been obtained of the existence of a two dimensional 

smface crystallisation phenomenon for isotactic PMMA monolayers, a result 

independently suppmted in a publication released shortly after the initial submission 

date of this thesis.Cl·2) 

The thermodynamic evidence describing PEO as a highly expanded 

monolayer has been supported by structural information obtained from reflectometry 

and ellipsometry. In this case the film is best modelled as a diffuse thick film. The 

use of various methods for the description of diffuse films in matrix calculations has 

been compared and the usefulness of the kinematic expressions for structural 

elucidation has been demonstrated. Structural and thennodynamic effects on the 

PEO films caused by the addition of electrolyte to the subphase have been examined 

in tandem for the first time, and again the various models employed have been 

considered critically. 

Finally PMMA4VP copolymers and partially polyelectrolyte 
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PMMA4VPQ copolymers have been examined. In the uncharged form the film has 

been shown to behave as thin monolayer rather in the fashion of syndiotactic 

PMMA. In the quaternised form however neutron reflectometry results indicate a 

rather different behaviour, possibly indicative of tailing hydrophilic segments, a 

result which might explain the anomalous surface pressure behaviour of these films. 

Unlike previous studies, in this case no additional electrostatic contribution to the 

surface pressure has been observed, indeed there appears to be a lesser surface 

pressure at any given surface concentration. This may be due to either segment 

redistribution away from the interface (in the form of looping and tailing PVPQ 

blocks) or a counterion bridging mechanism leading to greater lateral cohesion in 

the film. 

It is perhaps worthwhile to point out, and reassuring for anyone wishing 

to apply two dimensional theories to Langmuir films, that in all of the cases 

mentioned above neun·on reflectometry consistently indicated layer thicknesses that 

were much less than one might predict for the three dimensional radius of gyration 

of any of the sample materials. This dimension is of importance as a widely 

accepted transition point between two and three dimensional behaviour. 

The sensitivity of surface quasi-elastic light scattering to the presence of 

polymer monolayers has been graphically demonstrated for the case of PMMA, and 

results obtained may be related to information obtained from the classical surface 

pressure measurement. Clearly much work remains to be done in the optimization of 

the SQELS technique, but it is equally clear that the development of such a 

technique and the possible growth of the study of non-specularly reflected scatter in 

neutron experiments represent major opportunities for an increased understanding of 

polymer monolayers and many other surface structures. 
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Moscow) 

New Syntheses in Fluoroaliphatic Chemistry: 
Recent Advances in the Chemistry of Fluorinated 
Oxiranes 

GRAHAM, Dr. D. (B.P. Reserch Centre) 
How Proteins Absorb to Interfaces 

GREENWOOD, Prof. N.N. (University of Leeds) 
Novel Cluster Geometries in Metalloborane 
Chemistry 

1st November, 1989 

13th November, 1989 

;jt 
lOth November, 1989 

21st February, 1990 

23rd March, 1990 

7th December, 1989 

8th March, 1990~ 

22nd February, 1990 

* 29th November, 1989 

15th February, 1990 

31st January, 1990 

25th October, 1989 

9th July, 1990 

* 4th December, 1989 

9th November, 1989 
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HOLLOWAY, Prof. J.H. (University of Leicester) 
Noble Gas Chemistry 

HUGHES, Dr. M.N. (King's College, London) 
A Bug's Eye View of the Periodic Table 

HUISGEN, Prof. R. (Universitat Miinchen) 
Recent Mechanistic Studies of (2+2] Additions 

KLINOWSKI, Dr. J. (Cambridge University) 
Solid State NMR Studies of Zeolite Catalysts 

LANCASTER, Rev. R. (Kimbolton Fireworks) 
Fireworks - Principles and Practice 

LUNAZZI, Prof. 1. (University of Bologna) 
Application of Dynamic NMR to the Study of 
Conformational Enantiomerism 

PALMER, Dr. F. (Nottingham University) 
Thunder and Lightning 

PARKER, Dr. D. (Durham University) 
Macrocycles; Drugs and Rock 'n' roll 

PERUTZ, Dr. R.N. (York University) 
Plotting the Course of C-H Activations with 
Organometallics 

PLATONOV, Prof. V.E. (USSR Academy of Sciences­
Novosibirsk) 

Polyfluoroindanes: Synthesis and Transformation 

POWELL, Dr. R.L. (ICI) 
The Development of CFC Replacements 

POWIS, Dr. I. (Nottingham University) 
Spinning off in a huff: Photodissociation of 
Methyl Iodide 

ROZHKOV, Prof. LN. (USSR Academy of Sciences­
Moscow) 

Reactivity of Perfluoroalkyl Bromides 

STODDART, Dr. J.F. (Sheffield University) 
Molecular Lego 

SUTTON, Prof. D. (Simon Fraser University, 
Vancouver B.C.) 

Synthesis and Applications of Dinitrogen and Diazo 
Compounds of Rhenium and Iridium 

THOMAS, Dr. R.K. (Oxford University) 
Neutron Reflectometry from Surfaces 

THOMPSON, Dr. D.P. (Newcastle University) 
The role of Nitrogen in Extending Silicate 
Crystal Chemistry 

1st February, 1990 

30th November, 1989 

15th December, 1989 

13th December 1989*-

8th February, 1990 

12th February, 1990 

17th October, 1989 

·~ 
16th November, 1989 

24th January, 1990 

9th July, 1990 

6th December, 1989 

21st March, 1990 

9th July, 1990 

* 1st March, 1990 

14th February, 1990 

28th February, 1990~ 

7th February, 1990 



APPENDIX B- RESEARCH CONFERENCES ATTENDED DURING 

PERIOD OF STUDY 

ESF Discussion Workshop on Interfaces and Reflectivity, 8-lOth June 

1989, Max Planck Institut fUr Polymeiforschung, Mainz, Germany*. 

Structural Evaluation of Polymers, Macro Group UK, 10-llth April 

1990, University of Strathclyde, Glasgow*. 

33rd IUPAC Intemational Symposium on Macromolecules, 8th-13th 

July 1990, Montreal, Canada*. 

Neutron Scattering 1990, SERC UK Neutron Beam Users Community 

Meeting, 11th-12th September 1990, Churchill Hall, University of Bristol*. 

Neutron Reflectivity at Inte1faces, Neutron Scattering Group, 13th-14th 

September 1990, University of Bristol. 

Macro Group UK Meeting, 26th-2Rth March 1991, University of Bristol. 

Polymer Surfaces and Interfaces II, Intemational Symposium, 22nd-26th 

July 1991, Durham. 

Speciality Polymers '91, Supramolecular Aspects of Polymer Synthesis 

and Polymer Structure, 30th September- 2nd October 1991, Max Planck Institut fiir 

Polymerforschung, Mainz, Gennany*. 

* Denotes presentation by the author 


