
Durham E-Theses

A control methodology for automated manufacturing

Nahavandi, Saeid

How to cite:

Nahavandi, Saeid (1991) A control methodology for automated manufacturing, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6067/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6067/
 http://etheses.dur.ac.uk/6067/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A Control Methodology for Automated Manufacturing

A thesis presented for the degree of

Doctor of Philosophy

By

SAEID NAHAVANDI

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

University of Durham

School of Engineering and Applied Science

April 1991

ABSTRACT

The application of computers in the manufacturing industry has substantially

altered the control procedures used to program a whole manufacturing process.

Currently, one the problems which automated manufacturing systems are experi­

encing is the lack of a good overall control system. The subject of this research has

been centred on the identification of the problems involved in current methods of

control and their advantages and disadvantages in an automated manufacturing

system. As a result, a different type of control system has been proposed which

distributes both the control and the decision making. This control model is an

hybrid of hierarchical and heterarchical control systems which takes advantage of

the best points offered by both types of control structures.

The Durham FMS rig has been used as a testbed for an automated man­

ufacturing system to which the hybrid control system has been applied. The

implementation of this control system would not have been possible without the

design and development of a System Integration Tool (SIT). The system is capa­

ble of real-time scheduling of the system activities. Activities within the system

are monitored in real-time and a recording of the system events is available, which

allows the user to analyse the activities of the system off-line. A network indepen­

dent communication technique was developed for the Durham FMS which allowed

the manufacturing cells to exercise peer-to-peer communication. The SIT also

allowed the integration of equipment from different vendors in the FMS.

SUMMARY

This thesis presents a control methodology for an automated manufacturing

system. The proposed control system is a hybrid of hierarchical and heterarchical

control system which utilises the best points of both systems. This control system

was implemented on the experimental FMS rig at Durham university. The control

system distributes both the decision making and the control.

The hybrid control system was applied to the FMS by means of a System

Integration Tool (SIT) which was designed and developed as part of this research.

The SIT allows the programmable devices from a wide variety of vendors to be

integrated into a single system. The SIT is comprised of several modules, each

responsible for a specific type of functionality in the system. It is designed and

developed in a modular fashion where the interfacing of each module to another

is performed with the minimum amount of effort.

The SIT allows the user to define its own manufacturing environment with a

variable number of manufacturing cells. This type of data, which can be prepared

off-line, is entered into the static database, whilst the dynamic database holds

all of the real-time system and cell specific data. The dynamic database utilises

Common Addressed Memory in distributed Processors (CAMP).

The user can perform the building of specific cell control softwares which

are later used as the cell supervisors or controllers. The communication module

within the SIT, "Cell Talk", allows the manufacturing cells to exchange infor­

mation directly with one another. The communication technique utilised in the

Durham FMS is network software and hardware independent. Both the overall

activities of the system and the in-cell activities are scheduled and coordinated in

real-time by the cooperation of the system scheduler and sequence control within

ii

the cell controllers.

The proposed control methodology was implemented on the Durham FMS

where the real-time operation of the system events was demonstrated by making

the physical elements of a milling cell function as a real system would, whilst

at the same time interacting with three other cells which were computer emu­

lations. The system scheduler took charge of supervisory control to synchronise

and orchestrate the overall operation of the FMS.

The implemented network for the Durham FMS was built using BBC micro­

computers. An area of memory in each BBC was reserved and utilised as network

common memory. This network wide distributed memory provided a mechanism

for the Cell Talk software to carry out information exchange among entities in

the FMS.

iii

ACKNOWLEDGEMENTS

I should like to express my grateful thanks to my most knowledgeable supervisor,

Doctor Clive Preece, for his continuous encouragement, assistance and guidance.

I should also like to mention my gratitude towards the very helpful technical

staff of the School of Engineering and Applied Science of Durham University.

iv

STATEMENT OF COPYRIGHT

The copyright of this thesis rests with the author. No quotations from it should

be published without his prior written consent and information derived from it

should be acknowledged.

v

DECLARATION

No material from this thesis has previously been submitted for a degree at

this or any other university.

vi

TABLE OF CONTENTS

Abstract

Summary . • . . • • • • . . . • • • • • • . • . • • . . . • . • • • • . • 11

Acknowledgements .. 1v

Statement of copyright . v

Declaration . v1

Table of Contents . vn

List of figures ·. xu

List of Abbreviations . XIV

Chapter One. An Introduction to the Proposed Control Methodology

and its Implementation

1.1 Introduction . 1

1.2 Control Architecture in Automated Manufacturing 4

1.3 The System Integration Tool . 7

1.4 Research Objectives . 9

1.5 Thesis Structure . 11

Chapter Two. Control Organisation in Flexible Manufacturing Sys­

tems

2.1 Introduction . 18

2.2 Current Manufacturing Trends . 19

2.3 The Durham University FMS Rig . 21

vii

2.4 Control Methodology for FMS . 22

2.5 Hierarchical Control Structure . 26

2.6 Heterarchical Control Structure . 29

2. 7 Comparison of Hierarchical and Heterarchical Control Structures . . 31

2.8 A Hybrid Control Structure for the Durham FMS 33

2.9 Remote Control of Programmable Manufacturing Devices 36

2.10 Conclusion . 38

Chapter Three. Computer Based Information Systems

3.1 Introduction . 48

3.2 Information Organisation in a FMS . 48

3.3 Manufacturing Database . 51

3.4 System Static Data . 53

3.5 System Dynamic Data . 58

3.6 Representaion of Part Design information . 60

3. 7 Postprocessing of CAD Data . 63

3.8 Conclusion . 64

Chapter Four. Production Planning and Control

4.1 Introduction . 68

4.2 A Structure for Production Planning and Control 69

4.3 FMS Capacity Planning . 72

4.4 Production Activity Control . 76

viii

4.4.1 The Scheduler . 76

4.4.2 The Dispatcher . 77

4.4.3 The Monitor . 78

4.5 Shop Floor Scheduling . 78

4.6 Real-time Scheduler for the Durham FMS . 81

4. 7 Cell Controller Module and Scheduling of the Intra-cell Activities 85

4.8 Conclusion . 88

Chapter Five. Communication in Flexible Manufacturing Systems

5.1 Introduction . 93

5.2 Manufacturing Communication and OSI . 94

5.3 Local Area Networks . 97

5.3.1 Network Topology . 98

5.3.2 Transmission Medium . 99

5.3.3 Signalling Technique . 100

5.2.4 Accessing Method . 102

5.4 Manufacturing Automation Protocol (MAP) . 104

5.5 Enhanced Performance Architecture (EPA) and miniMAP 108

5.6 Econet a LAN for the Durham FMS . 110

5. 7 Communication Technique

5.8 Communication Primitives

113

119

5.9 Conclusion . 122

ix

Chapter Six. System Information Collection and Representation

6.1 Introduction . 136

6.2 Real-time System Scheduling Report . 137

6.3 On-line Recording of the System Events . 139

6.4 Graphical Presentation of the System and Scheduler's Activities ... 143

6.5 Obtainable Information from the System-wide Scheduling Chart 146

6.6 Up-load Information on FMS Cells . 150

6. 7 Conclusion . 153

Chapter Seven. Discussion and Conclusions

7.1 Introduction . 159

7.2 An Overall Control System for Automated Manufacturing 159

7.3 The Proposed Hybrid Control System

7.4 Integration of Multivendor Equipment

161

164

7.5 Conclusions and Suggestions . 165

References .. 168

Appendices

Appendix A. Design of an Interface Module for Programmable Devices 181

A.1 Design of an Expansion Board for the BBC Microcomputer . 181

A.2 Expansion Board Functionality Test . 185

A.3 Test Programs for the Expansion Board . 187

X

A.4 Design of a Remote Control Board for the CNC Miller 187

Appendix B. Data Organisation and Representation in FMS 199

B.l Manufacturing Database . 201

B.2 From Design to Manufacture . 204

Appendix C. Inter-cell Real-time Scheduler . 212

Appendix D. Cell Controller Specific Software (CCSS) 216

Appendix E. The Seventh Layer of the OSI Model 222

E.1 Application Layer . 222

E.l.1 File Transfer, Access and Management (FTAM) 222

E.l.2 Manufacturing Message Service (MMS) 223

Appendix F. The Listing of Programs . 230

xi

Figure (1-1)

Figure (1-2)

Figure (1-3)

Figure (1-4)

Figure (2-1)

Figure (2-2)

Figure (2-3)

Figure (2-4)

Figure (2-5)

Figure (2-6)

Figure (2-7)

Figure (2.8)

Figure (3-1)

Figure (4-1)

Figure (4-2)

Figure (4-3)

Figure (5-1)

Figure (5-2)

Figure (5-3)

Figure (5-4a)

Figure (5-4b)

Figure (5-5)

Figure (5-6)

Figure (5-7a)

Figure (5-7b)

Figure (5-8)

LIST OF FIGURES

The building blocks of the System Integration Tool (SIT).

Tasks performed by a Cell Controller Specific Software (CCSS).

Options available within the MASTER program.

The research objectives.

The experimental FMS set up at Durham University.

FMS with (a) Centrlised, (b) Distributed control architecture.

The hierarchical control architecture for CAM-I and AMRF models

A system with hierarchical control structure.

A system with heterarchical control structure.

(a) Hierarchically, (b) Heterarchically controlled FMS.

Comparison between hierarchical and heterarchical control structure.

Control organisation in the Durham FMS.

The structure of system static data.

Production Planning and Control structure.

FMS cell capacity check.

The cell controller operations

OSI reference model.

The interrrelationship of a layer entity.

Network topology, (a) Star, (b) Ring, (c) Bus.

Signalling techniques on a broadband with single cable midsplit.

Signalling techniques on a broadband with dual cable.

MAP 3.0 layer protocols.

MAP networks; (a) MAP/EPA, (b) MiniMAP, (c) A typical MAP network.

Arrangements for FMS controllers requiring deterministic network.

Arrangements for FMS controllers requiring non-deterministic network.

The logical position of CAMP and CellTalk in the Durham FMS.

xii

14

15

16

17

40

41

42

43

44

45

46

47

66

90

91

92

124

125

126

127

127

128

129

130

130

131

Figure (5-9)

Figure (5-9a)

Figure (5-9b)

Figure (5-10)

Figure (5-11)

Figure (6-1)

Figure (6-2)

Figure (6-3)

Figure (6-4)

Figure (6-5)

Figure (A-1)

Figure (A-2)

Figure (A-3)

Figure (A-4)

Figure (A-5)

Figure (A -6)

Figure (A-7)

Figure (A-8)

Figure (B-1)

Figure (B-2)

Figure (B-3)

Figure (C-1)

Figure (D-1)

Figure (E-1)

Figure (E-2)

Figure (E-3)

Figure (E-4)

Figure (E-5)

Researved memory for the cell specific data.

Common-memory based system.

CAMP based system.

Data exchange between client and server entities.

Hierarchy of information exchange in the CellTalk.

A flow chart for the system-wide activity chart program.

System-wide scheduling chart for JOB6 with batch size of 10.

System-wide scheduling chart for JOB2 with batch size of 10.

System-wide scheduling chart for JOB1 with batch size of 3.

Historical information on FMS cells for JOB6.

The cell controller interface module.

1 MHz bus timing showing page select signals.

The clean up circuit.

Derivation of valid page select signal.

The 1 MHz bus timming.

The modified circuit for the interfacing module.

Derivation of valid page select signal using a first order filter.

The keyboard encoder bypass circuit.

A flowchart for manufacturing database structure.

A flow chart for design for manufacture module.

A part design screen dump produced by the drwing package.

A flow chart for the FMS scheduler.

A flow chart for Cell Controller Specific Software.

Logical position of SASE and CASE in the Application layer.

File Access and Management between client and server.

Client I Server and MMPMs interaction.

Confirmed MMS services.

Logical position of VMD within the client I server interaction.

xiii

132

132

132

133

134

154

155

156

157

158

192

193

193

194

195

196

197

198

208

209

210

215

221

227

227

228

229

229

LIST OF ABBREVIATIONS

AE Application Entity

ASN .1 Abstract Syntax Notation one

AFMCS Advanced Factory Management and Control Systems

AI Artificial Intelligence

AMRF Automated Manufacturing Research Facility

AGV Automated Guided Vehicle

AP Application Process

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CAM- I Computer Aided Manufacturing International

CAMP Common Address Memory in distributed Processors

CASE Common Application Service Element

cess Cell Controller Specific Software

CCU Central Control Unit

CIM Computer Integrated Manufacture

CNC Computer Numerical Control

CSMA/CD Carrier Sense Multiple Access with Collision Detect

CS Companion Standard

DBMS Data Base Management System

EFT Earliest Finishing Time

EMUG European MAP User Group

xiv

EPA Enhanced Performance Architecture

ESPRIT European Strategic Programme for Research and Development in

Information Technology

FMS Flexible Manufacturing System

FSK Frequency Shift Keying

FTAM File Transfer, Access and Management

GM General Motors

GT Group Technology

ISO International Standard Organisation

JIT Just-In-Time

LAN Local Area Network

LP Linear Programming

MAP Manufacturing Automation Protocol

MMPM Manufacturing Message Protocol Machine

MMS Manufacturing Massage Service

MPS Master Production Schedule

MRP Material Requirement Planning

NIST National Institute of Standards and Technology

NEMA National Electrical Manufacturers Associations

OR Operational Research

PAC Production Activity Control

PLC Programmable Logic Controller

PPC Production Planning and Control

XV

xvi

RF Radio Frequency

RPC Remote Procedure Call

SASE Specific Application Service Element

so System Definition

SIT System Integration Tool

SMM System Monitoring Module

SQL Structured Query Language

TOM Time Division Multiplexing

VIA Versatile Interface Adaptor

VMO Virtual Manufacturing Device

WIP Work-In-Progress

1

CHAPTER ONE

An Introduction to the Proposed Control Methodology and its Implementation

1.1 Introduction

The last few years have seen dramatic changes in manufacturing. Information

technology is no longer limited to the office environment. On the shop floor com­

puters to assist in control, manufacturing and management are emerging. Due to

the ever greater number of product types and shorter product lives, new demands

are being made on companies in the manufacturing industry. Also, companies

are being increasingly forced into rationalising all operational sequences by the

demand for a quick and cost efficient adaptation to changing market conditions.

Modern computers and production techniques must be utilised to support the

development of a product from conception through planning and manufacturing

to the successful market sale, in order to achieve the highest degree of flexibility

and productivity in a company.

Today this situation calls for manufacturing facilities by means of which small

batch sizes can be economically produced with high productivity and quality. The

Flexible Manufacturing System (FMS) is the focus of attention for the performance

of these tasks. The objective is a computer integrated and flexibly automated

production facility for the manufacture of a variable range of products. This

requires a combination of hardware, software including an integrated control of

production and job scheduling, communications systems, databases and also a

dynamic provision and allocation of material, tools, conveyors, clamping fixtures

and quality control systems/equipment.

The Flexible Manufacturing System is the current level of applied automa-

tion in the field of manufacturing. The application of FMS is time-consuming and

expensive, necessitating advanced technical knowledge. A FMS is an automated

production system created to achieve various benefits in part (component) man­

ufacture. One such benefit is more beneficial productivity in terms of the unit

costs of the components being produced. Another important benefit of FMS is

flexibility as regards the component types that can be manufactured. This can

be further defined as:

a. long term flexibility - the ability of the system to adapt to totally different

component type mixes over the years that the FMS is in use.

b. short term flexibility- the ability of the system to change from hour to hour,

or day to day, the component mix being manufactured at any one time.

c. instantaneous flexibility- the ability to reschedule components to alternative

machines immediately a machine breaks down.

A FMS can be realised by many configurations of hardware for the machines

and controllers and their relevant software. It consists of one or more production

cells comprised of groups of automatic work stations (i.e. machining centres) or

programmable devices (CNCs) served by a robot or part handling system. These

cells are linked by one or more automatic part handling systems all under a

production management control computer (overall control system). The overall

control system plays a major role in the efficiency and cost effectiveness of a FMS.

Sound strategies that enable the achievement of production requirements,

minimisation of inventory levels and effective exploitation of manufacturing re­

sources are required in order to accomplish an overall control system for Flexible

Manufacturing Systems. The provision of a vast amount of production data which

must be processed by a fast and reliable computer based system is necessary if

2

these strategies are to be generated. Currently, to achieve this in real-time is a

challenging subject of research attempted by several organisations [Achatz 1987],

[Albus 1981], [Duffie 1986], [Weston 1989], [Alting 1989].

Because reduction in processing times and setup durations have not been

translated into a corresponding reduction in inventory levels, little has been

gained, since the production of numerical control technology, as regards man­

ufacturing control. The labour content of jobs were apportioned the blame for

this until recently. Now however there is a strong feeling that this may no longer

be true. Slack production control is at present considered to be the correct re­

cipient of most of the responsibility for the problem. To overcome this therefore,

there is an urgent need for a control methodology.

There are two major obstacles to a successful FMS installation both of which

affect the overall control system in a FMS. The first obstacle is the communication

problem. In a FMS, every programmable device (machine) must be intelligent

enough to communicate with others in the system, since most manufacturing re­

quires multiple machines. Therefore, communication is very important to provide

the coordination needed to match the sequence of activities within a FMS. Ven­

dors tend to make programmable devices with their own proprietary protocols,

complicating communication within the network. To solve this problem, protocol

translating software is often developed to run in the vicinity of the devices.

Secondly, there is no unified FMS strategy which is applicable across the board

covering all types of manufacturing. Since each manufacturing operation uses

different programmable devices and different communication protocols, it is very

difficult to make a unified FMS approach work. To overcome these problems several

bodies, both in Europe and USA, have put much effort into the proposal of an

3

architecture for shop floor control and management.

1.2 Control Architecture in Automated Manufacturing

There are two approaches which have been proposed to control shop floor

activities: hierarchical and heterarchical.

The most famous hierarchical models are proposed by the Automated Manu­

facturing Research Facility (AMRF) of the National Bureau of Standards (NBS) in

USA [Albus 1981], [Brown 1988] and the Advanced Factory Management and Con­

trol System (AFMCS) of the Computer Aided Manufacturing International (CAM-I)

[Bunce 1988]. Both models are very similar and divide the manufacturing system

into several levels according to their functions and information flow. The levels

are introduced to reduce complexity and limit responsibility. The control modules

for these systems are organised into a hierarchy, i.e. a tree structure. Each mod­

ule has only one supervisor, but may have several subordinates. Control modules

in the middle of the hierarchy are both supervisors and subordinates. The upper

level requirement is decomposed at each control level before a command is issued

to the next lower level. The planning horizon becomes smaller at the lower levels

of control. There are two major principles which are implicit in these hierarchical

structures.

a. decisions are made at the lowest possible level;

b. control resides at the next highest level.

The disadvantages of a hierarchal control system include; no peer-to-peer

communication is allowed; the system heavily relies upon the production schedule

prepared by the higher levels, a crash at some levels will bring the entire system

below to an abrupt halt.

4

An alternative to hierarchical is a heterarchical control architecture [Duffie

1986]. In such a control structure there is no supervisor and no direct control.

All entities are equal and take part in a negotiation process to plan, schedule

and manufacture products [Duffie 1987]. Control decisions are reached through

mutual agreement and information is exchanged freely among the participant

entities. There is no need for a scheduler and production of parts takes place by

the cooperation of intelligent entities. The disadvantage of such a system is that

free data exchange is imperative at all times and can lead to very slow decision

making. Furthermore, a misread communication between entities may cause a

system deadlock.

NBS and AFMCS are not the only organizations which have been addressing

the problem of shop floor control and management; there are other development

efforts given by and including the ESPRIT project 4 77, ESPRIT project 418 and

University College Galway. There are also other projects [Graefe 1989], [O'Grady

1989] but only a few are selected for a brief description.

The ESPRIT project 477 was carried out under the "Control Systems for

Integrated Manufacturing: The CAM solution" title [Esprit 1989]. The objective

of this project was to design, develop and test the software modules required

for the production activity control of small batch manufacturing. The aim was

to close the loop between production planning and execution, reducing human

intervention and reaction time as much as possible and relying on automatic shop

floor data collection.

The ESPRIT project 418 was executed under the title of "Open CAM System

Allowing Modular Integration into Factory Managem(;nt of a Workshop Struc­

ture in Functional Cells with Various Levels of Automation". The objective of

5

this project was to develop a CAM system with an open architecture which could

integrate and monitor on-line batch production planning and control activities,

such as shop floor control, handling and quality control, for the manufacture of

mechanical products.

A Research team at the University College Galway in the Republic of Ireland

has been active in areas such as job shop control decision making and scheduling

in a batch or job shop production environment. The objective is to resolve the

problem of real-time planning and control on the shop floor.

However, none of the above research works combines the hierarchical con­

trol structure with the heterarchical control system. Since it is believed [Naha­

vandi 1990] that a control system could take the best points of the these two

dissimilar control structures, a hybrid control architecture was proposed for the

Durham FMS. This control structure combined hierarchical and heterarchical con­

trol methodologies and was implemented on an experimental FMS rig. The control

system for the FMS was divided logically into three levels of hierarchy (master, cell

and equipment) with the Master at the top level. The system and jobs definition

took place at the master level and when an order was put into the Master to pro­

cess a job, commands were sent to the lower levels by the Master to process the

job. Entities at the cell level decomposed the commands before making decisions

on how to manufacture the parts in their cells. Thus exhibiting the hierarchical

behaviour of the model.

The heterarchical behaviour of the model was shown by the ability of entities

to exchange information with their peer (other cell controllers) and other entities

(i.e. Master). Cell controllers only needed to obtain an order from the Master

on what job to be processed and in what quantity and from then onwards they

6

would exchange information with one another and from time to time get a system

overview from the Master to make decisions locally until the job was successfully

processed. Therefore the decision making was distributed among the entities but

at the same time since the Master had an overview of the system as a whole,

entities could refer to the Master to gain a better view of what was going on

without too much exchange of information amongst themselves.

To apply the proposed hybrid control model to the experimental FMS rig a

System Integration Tool (SIT) was designed and developed to exhibit the flexi­

bility and vendor independency of techniques proposed and developed.

1.3 The System Integration Tool

The idea of implementing a hybrid control system on the Durham FMS has

been put into practice with the System Integration Tool (SIT). This collection

of designed and developed software modules is comprised of four main building

blocks, Fig. (1-1). The manufacturing database module has two parts, one

holding system static and the other system dynamic data. The Static database

holds all of the information regarding the system, resources and jobs. It allows

the user to define its own manufacturing environment and also define jobs. The

dynamic database is responsible for the holding of information on job processing,

during a period of part production. For example, information such as the status

of devices in a cell is held here. The dynamic database utilise a Common Address

Memory in distributed Processors (CAMP). As this allows rapid access to data by

various entities throughout the FMS.

The second element of SIT is the communication module. It allows all of the

entities to communicate with each other via a Local Area Network (LAN) in the

7

FMS. The LAN in the Durham FMS is Econet which is similar to an Ethernet system.

The developed network communication protocol, "Cell Talk", takes advantage of

the direct memory access of the different entities' CAMPs. Cell controllers being

able to communicate directly with one another, will demonstrate the heterarchical

nature of the overall control system.

The third building block of the SIT is the cell control builder module. Since

the signal required to control a manufacturing cell is highly application and device

specific, the control command sent to the device controllers in each cell has to

be translated and formatted in a suitable form for that entity. Hence, a software

was developed which allowed the user to insert the device specific code for each

control command. For example, a cell controller, to start the operation of a

programmable device (milling, turning, washing, etc.), each device controller may

require a different control signal for the same function. Therefore, generic routines

were defined for each control function (start, stop, reset, etc.) where the specific

control signal was included. In this way, one Cell Controller Specific Software

(cess) was built for each cell controller. Figure (1-2) illustrates the tasks which

a cess has to perform during and at the end of a part production period.

Finally, the fourth and last building block of SIT is the Scheduling module.

During a period of part production, activities within the FMS must be scheduled.

This is done by two collaborating entities one at the master and the other at

cell levels. The entity in the master level utilises the scheduling algorithm to

synchronize the Intra-cell activities while the scheduling and sequencing of in­

cell operations is carried out by the different cell controllers. This method was

adapted to introduce some level of autonomy to the cell controllers while they,

at the same time, exchange information with the entity at the master level for

8

an overall view of the operation, and exchange data with other cells for specific

data required to perform certain tasks. This is achieved by the overall scheduler,

dispatching parts for production to the different cells in a user defined sequence.

Once a cell is in possession of a part, it exchanges information with other entities

to obtain the required data before processing the part.

For example, parts leaving a cell may be placed on a pallet. The receiving

cell will then need the location and orientation of each part being placed onto the

pallet by the previous cell robot. Cells can utilise the Cell Talk to obtain this

information from one another. Hence leading to the term "heterarchical" control.

For the user to apply SIT to the FMS correctly, various system parameters have

to be defined at the master level through the execution of the MASTER program

which is a menu driven module. Figure (1-3) illustrates some of the options

available in the MASTER program. The user must first define the manufacturing

environment before starting to build the cess for different cells. Next, jobs can

be defined together with the sequence in which the parts are allowed to visit

the cells. Jobs may then be executed for production and while parts are being

manufactured in different cells, a system and job status report can be obtained.

These reports are collected by the system and archived for historical analysis.

All of the system activities are also recorded in real-time and can be viewed

graphically for off-line system analysing. A further description of each of these

options is given in the subsequent chapters.

Applying the System Integrating Tool (SIT) to the FMS was carried out to

achieve a preset goal for this research.

9

1.4 Research Objectives

Although in recent years several industrial packages have become available

for the control and monitoring of manufacturing processes [PC Hardware and

Software Guide 1990], many small companies cannot justify the implementation

of such systems to their plants. Furthermore, once such packages have been

implemented, they tend to make the company vendor-dependent and often do

not allow for easy integration of modules from different vendors.

The objective of this research was to overcome such problems whilst at the

same time offering a low-cost solution. Figure (1-4) outlines the objectives of

this research which are divided into five categories, described in turn. A control

system was required to allow for an effective overall control of a manufacturing

environment. A hybrid control architecture was designed to cater for this need.

The Durham FMS was to be used as a test-bed to demonstrate, so that the practical

aspects of the developed software were not overlooked. The software was to be

designed in such a way as to facilitate for easy system redefinition and expansion.

Another objective was to develop a system which allows equipment from a

wide variety of vendors to be able to integrate into one system. Also, since the

cost of a baseband network is lower than that of a broadband, implementation

on a baseband system was set as an objective. Finally, in order to make the

controllers of various devices in the FMS communicate with each other irrespective

of their make and model, the design and development of a network independent

communication technique was set as an objective.

Work carried out during this research targeted achieving these objectives and

this thesis attempts to forward a comprehensive report on the proposed ideas and

designed and developed modules. The structure of the thesis can be considered

10

as a logical division of the work into several modules which are the representative

of certain activities in the SIT software.

1.5 Thesis Structure

The thesis is comprised of seven chapters. Chapter one gives an introduction

on the subject of the research, current methods in use and the proposal of what

is thought to be a better solution to the problems involved in manufacturing

control. Chapters two through five describe different modules of the System

Integration Tool (SIT) which is utilised as a means of applying the proposed

control methodology to the experimental FMS.

Different types of control systems together with their advantage and disad­

vantages are described in chapter two. The physical setup of the Durham FMS is

examined to highlight the need for a vendor-independent control strategy. Next a

hybrid control architecture comprising hierarchical and heterarchical structure is

proposed. Finally, the importance of the control of programmable devices with­

out human intervention (remotely controlled) in a FMS is shown. A programmable

device (CNC miller) of the FMS was chosen as an example and a method of how such

a relatively non-flexible CNC machine could be adapted for a FMS environment (to

operate remotely under the control of supervisory computer) is demonstrated.

Chapter three looks at how information should be organised in a highly au­

tomated environment such as a FMS and what advantages could be obtained by

this. A manufacturing database is designed and developed, comprising of two

parts, static and dynamic databases. Each of these are examined and the type

of system information which is contained in them is also given. Next, a simple

drawing package developed for the design of simple shapes is described as this

11

shows how the information relating to a part design can be presented and for the

design information to be understandable to a programmable device the informa­

tion is post processed (for the CNC miller). It is also mentioned that this software

is developed as an example for representing the design and associated table code

for CNC machines and therefore is application specific. However, the system has

the potential to receive design information from other sources.

A Production Planning and Control (PPC) system is described in chapter four.

Planning and control of a FMS is highlighted and a mathematical model which

computes the FMS cell capacity check is described. Next, the scheduling of shop

floor activities is explained. Following this the real-time scheduler which coordi­

nates the Durham FMS inter-cell activities is described. The intra-cell activities

are coordinated by the cell controllers, therefore the functions of cell controllers

together with their operation sequencing are described here.

In chapter five the communication problem in manufacturing is described.

The idea of an open system and its advantages is explained which is then followed

by a description of Local Area Networks (LAN)s. Next, the General Motor's

solution to the problem of shop floor communication is explained. Following this

is the LAN utilised in the Durham FMS and its advantages and disadvantages over

other types of networks. A communication technique and the service primitives

developed for the Durham FMS is then described. The network independency of

such a communication technique is also highlighted.

The collection of system information and monitoring is described in chapter

six. Different ways of information representation are discussed. A description

of the on-line report generation of the system scheduler is given. This is fol­

lowed by the on-line recording of system events and the graphical representation

12

(System-wide scheduling chart) of the system scheduler's activities. Next, all of

the obtainable information from the chart is presented. It is then described how

the up-load file is prepared and generated in the system.

Finally, the discussion and conclusion chapter states what objectives have

been achieved. The advantages and disadvantages of the implemented ideas are

discussed and also suggestions for further work are given.

There are five appendices which provide further information on the designed

modules. For example, Appendix D describes the detailed programming of the

Cell Controller Specific Software (CCSS).

13

Cell Control
Builder
Module

Figure (1-1) The building blocks of the System Integration Tool (SIT).

1-' ,.

&

Control of In-cell
Activities

Exchange Information
With Other Entities

cess
Tasks

Remote Control
of Devices

Generate Report

Figure (1-2) Tasks performed by a Cell Controller Specific Software (CCSS).

'""' a-

START

System Definition I

Building of CCSS)

I
Jobs Definition

...___.I Process a Job J

''----------------------------J

' ' ~-----1

Historical Reports on Jobs I

Off -line Analysis of
System-wide Activities for Jobs

~--------------------------------------

.. _____________________________________ ..

Figure (1-3) Options available within the MASTER program.

16

Integration of Multivendor I
Equipment J

Easy System Redefinition

and Expansion

Operation in a Baseband

Communication Network

An Effective Control

Structure for the FMS

A Network Independent

Communication Technique

Figure (1-4) The research objectives.

17

CHAPTER TWO

Control Organisation in Flexible Manufacturing Systems

2.1 Introduction

Flexible Manufacturing Systems {FMSs) consist of a variety of automated

manufacturing equipment linked together with a communication network and a

part transfer system. Production planning, Computer Aided Design (CAD) and

other management and engineering support systems can be integrated into the

FMS. Flexible Manufacturing Systems typically are designed to manufacture a

variety of part types in jobs with batch sizes of down to one. As a result FMS may

be able to produce complex parts with higher quality and short throughput time

at a reasonable cost.

Short throughput times with frequently changing batch sizes require machines

and systems which can quickly be reset and reprogrammed. This makes the con­

trol of a FMS very complex, with a large number of interrelationships between

machines, tools, parts and materials. The problem is compounded by the re­

quirement for short manufacturing lead times and the need to provide detailed

control of all manufacturing operations.

This chapter addresses the problem of designing control architecture for Flex­

ible Manufacturing Systems. Section 2.2 describes the current manufacturing

trend and cellular manufacturing. Next, the physical elements of the experi­

mental FMS is described. This information is given in section 2.3 which is then

followed by section 2.4 centring the discussion on a different control structure for

the overall control of a FMS. In the next two sections 2.5 and 2.6, a closer look

is given to two control architectures, hierarchical and heterarchical, which have

18

been the subject of some research, to overcome the problem of decision making

and control in automated manufacturing systems. Section 2. 7 highlights the ad­

vantages and disadvantages of the two control structures and their comparison.

This is then followed by section 2.8 proposing a hybrid structure for the control of

the Durham FMS. Finally, section 2.9 describes the need for an interface module

to enable the implemented control architecture to function fully and in real time.

2.2 Current Manufacturing Trends

As automation brings higher productivity to the manufacturing industries,

attention must be focused on the selection of the automated system. Such sys­

tems must be flexible enough to accommodate short and mixed production runs,

combined with a requirement for very short product-development and manufac­

turing lead times. Prototypes are needed not in weeks but within hours, and

modification to the prototypes must also be available within hours.

A Flexible Manufacturing System (FMS) can provide the basis for a versatile

production and assembly operation whose control is provided by an integrated

computer system [Nagarkar 1988], [Tchijov 1989], [Adams 1988], [Nordsten 1989].

One of the currently accepted FMS structures is to divide the manufacturing and

assembly process into cells [Wemmerlov 1989], [Martin 1989], [Al-qattan 1990].

This method of cellular manufacturing is sometimes referred to as one of the best

strategies in use to implement the Just-In-Time (JIT) production [Helmut 1988].

A typical cell may be comprised of two or more programmable devices served

by a robot. Each manufacturing cell can provide a range of potential operations

which can be selected by the controlling computer. Note that at present some

production cells may require the intervention of a human operator as opposed to

19

being fully automated cells. These may fall into the category of manned cellu­

lar manufacturing, where the objectives include reduction in material handling,

elimination of Work-In-Progress (WIP), improvement of scheduling and reduction

of overall throughput time and, most importantly, full utilisation of the human

resources [Black 1988]. Here the human operator serves a multifunctional purpose

and is decoupled from the machines, so that the utility of the human operator

is no longer tied to the utility of the machine. As a result there may be fewer

human operators in each cell than machines.

Alternatively, in unmanned cellular manufacturing, utilisation of the equip­

ment becomes more important since the flexibility offered by the human opera­

tor is eliminated by robots and other programmable devices. Although Flexible

Manufacturing Systems will incorporate the idea of cellular manufacturing, it is

expected that the cells within a FMS be unmanned (i.e. fully automated).

Many manufacturing companies build their FMS from cells which are capable

of operating stand alone. A FMS may be comprised of one or two cells at the be­

ginning, but there must exist the potential for capability of integration of further

cells [Kovacs 1988]. This brings the problem of compatibility between products

from different vendors at cell or at system level, requiring modification every time

new equipment from a different vendor is added. As a result, most of the existing

installed FMS plants comprise a series of integrated units from one supplier.

The Durham University FMS is a good example of such a system where multi

vendor products are utilised to make the operating elements of different cells.

Before discussing the different control strategies which could be employed in the

control of such a system, the hardware elements of this FMS are explained.

20

2.3 The Durham University FMS Rig

An experimental Flexible Manufacturing System has been set up at Durham

University. The available resources include; a CNC milling machine, a CNC lathe,

five robots, a sawing machine together with the associated part feeder mechanism,

a part transfer system, and a vision system, Fig. (2-1). The raw materials are

stocked in the warehouse and the finished parts are transferred to the finished

goods store. Also, part of this store is dedicated to the reject parts.

In order to reduce a machine's idle time, and to reduce the chances of a

machine waiting for a part rather than a part waiting for the machine, each cell

is equipped with two part buffers. Parts, on arrival at a cell, are deposited on

the cell input part buffer, and, after processing, the parts are transferred from

the machine's table to the cell output part buffer, to await transfer from the cell.

To keep the inventory low, the size of these buffers is kept small.

The part transfer between the cells is performed by a device (pneumatic

trolley) which provides part transfer from a cell to any other cell selected by

the control functions. In this way, the order in which the cells have to perform

operations on a job is not confined to a particular fixed sequence for all the

jobs, hence increasing the overall system flexibility. The SIT system software was

tested on the experimental plant in order to ensure that practical aspects of its

operation were not overlooked. In defining the operations of the experimental

FMS the following assumptions were made.

The available resources were to be utilised in such a way that the manufac­

turing tasks performed by each cell were defined by their function. The FMS is

divided into several cells, each defined as executing a certain type of task, for

example, an assembly cell will be unable to perform a milling operation. Each

21

cell is further defined in more general terms as having one or more programmable

devices served by a robot. Hence, the turning cell comprises a CNC lathe together

with a robot. With this definition of a cell the FMS can be expanded more easily

since each cell performs its tasks autonomously, although its operation may rely

on information exchange between itself and other cells.

Having established the autonomal behaviour of the cells, each cell can then

be further partitioned by functions into stations, since the functionality of cells is

independent of each other. Work stations could then receive orders from their cell

controllers to process a part but how to go about it would be the responsibility

of the station controllers. Therefore a FMS can be set up as simple and small with

the potential for easy future expansion.

In the experimental FMS, each cell possesses a microcomputer which acts as

a cell controller to which various programmable devices are linked by means of

point-to-point connection. Each cell controller is linked to a backbone local area

network using Ethernet-like (Econet) protocols. The networks provide the means

for all the cell controllers to exchange information with the system scheduler and

each other.

The effective operation of a FMS reqmres an efficient control structure to

operate the system in the desired manner. The design of the control structure is

therefore critical to the overall performance of a FMS.

2.4 Control Methodology for a FMS

The functionality of a FMS is often reflected through the way in which it is

controlled [Greenwood 1988], [Maimon 1987]. Installing computer controlled and

programmable devices in a manufacturing environment does not necessarily bring

22

the ultimate system flexibility anticipated by the system managers and system

implementors, unless the correct strategy towards the control of the system as a

whole is taken [Anstiss 1988].

The overall control strategy [Maley 1988] plays a major role in utilisation of

the system to its best, and it should allow for easy expansion of the system entities.

Entities here are defined as the system hardware, software or a combination of

both modules. The problem involved with the overall control of entities in a FMS

is far greater than the problems involved with the control of individual entities.

This is because the complexity of system control grows rapidly with the number

of individual entities.

As demand increases for high reliability and performance of FMS control, the

need for a system with efficient data processing and real- time error recovery

becomes unavoidable. Centralised and distributed control are two fundamentally

different methods of controlling the FMS.

Flexible Manufacturing Systems with centralised control architecture are char­

acterised by the existence of a Central Control Unit (CCU) which may be a host

computer [Achatz 1987] together with a number of programmable devices built

around it, Fig. (2-2a). The arrangement of the FMS could be in the form of a

star and the central control unit estabilishes a strong relation of master-slave to

the devices attached to it. Decisions are centralised at CCU and also made by it.

With this type of control structure it is guaranteed that the central control unit

can have access to all the programmable devices in the system, thereby enabling

it to execute a production schedule. A system with hierarchical control structure

(discussed in the next section) could also exercise this type of centralised deci­

sion making. Decisions are then made at higher levels before being passed down

23

to lower levels to be carried out. The advantages of systems with a centralised

control structure are:

a. broader view of the system. It is possible for better decisions to be made

by the CCU because of its broad view of the system. This broad view is due

to the fact that it has the status feedback from all entities (programmable

devices).

b. the problem of complex inter activity between decision makers is eliminated

because there is a central decision maker (i.e. ccu).

There are a number of disadvantages with centralised control systems which over­

shadow the advantages. These being;

a. the CCU may have to handle large amounts of data on each status change in

the FMS and also the volume of data becomes enormous with larger FMS's.

b. the CCU has to make decisions on every activity within the FMS. The level of

detail required can be overwhelming for any medium or large scale FMS and

some congestion can occur at the CCU leading to slow response times.

c. the entire FMS will come to standstill in the case of a central control unit

failure.

d. a decrease in reliability results as the size of an installation increases and the

complexity and software overheads increase.

e. a backup computer is often used to eliminate the possibility of total system

crash. This will introduce extra complexity and cost as further monitoring

devices must be incorporated to detect a system failure.

These disadvantages have prompted attention to be focused on more decen­

tralised decision making. This alternative to the above control structure is a FMS

with distributed control architecture [Wang 1989], [Villa 1988]. Geographically

24

distributed intelligent modules (processors) are connected to a LAN to share the

processing load of the control system. There are no master-slave relationships

or central supervisory. Supervisor activities are performed by the distributed

processors as a group in an orderly and cooperative manner.

Work in the Delft University of Technology [Bakker 1988] demonstrates the

operation of a FMS with a distributed control architecture, Fig. (2-2b). Each

programmable device is interfaced to an intelligent module, which controls the

sequence of its operations. The intelligent modules negotiate with each other over

the LAN to arrange which operations are to be performed by each programmable

device. There exist no production schedules and the operations are allocated to

the devices during the actual period of part production, not before. The intelli­

gent modules in effect act as an agent on behalf of the programmable devices and

are rPsponsible for the availability of the materials, required tools and programs.

Since the intelligent modules do not attempt to optimise the devices' productiv­

ity by changing the sequence of operations, this may count as a disadvantage for

such control systems. The operation and control structure of a distributed FMS

resembles, in many ways, the heterarchical control system, which is discussed in

section 2.5.

One alternative way of considering the overall control problems for a FMS

and to provide solutions is to either introduce a hierarchical [Albus 1981] or

heterarchical control structure. Introducing a hierarchical control structure would

allow control problems to be partitioned into manageable modules regardless of

the complexity of the complete structure [Brown 1988], [Golenko-Ginzburg 1988].

On the other hand, a heterarchical control structure gives equal rights to all of

the entities within the FMS and decisions are reached through mutual agreement

25

between the entities. The following describes each control structure in turn.

2.5 Hierarchical Control Structure

Since the control of a FMS is a very complex problem with a huge number of

interrelationship parameters between resources, jobs and machines, one approach

which may accommodate such complexity is that of breaking the control into a

hierarchy [Albus 1981], where each level of hierarchy has narrower responsibility.

As the hierarchy is descended, the time period considered shortens whilst the

level of detail considered increases [Brown 1988], [Golenko-Ginzburg 1988]. The

common names for these levels include factory, shop, cell, area, and equipment.

Hierarchical control for manufacturing industries is often found under a wider

area of Computer Integrated Manufacture (CIM) [Kusiak 1988].

The design of a hierarchical control structure is based on three guidelines:

a. levels are introduced to reduce complexity and limit responsibility;

b. each level has a distinct planning horizon which decreases as the hierarchy

descends;

c. control resides at the lowest possible level.

The application of these guidelines has led to the design of a variety of dif­

ferent architectures. The differences include the number of levels and functions

assigned to each level. There are two separate bodies which have made a major

contribution towards the proposals for hierarchical control of automated manu­

facturing systems. These are the Computer Aided Manufacturing International

(CAM- I) with its Advanced Factory Management and Control System (AFMCS)

model and the Automated Manufacturing Research Facility (AMRF) of the Na­

tional Bureau of standards (NBS) in the USA [Simpson 1982] with its own archi-

26

tecture. The work by these organisations has resulted in the development of two

similar standards. Both standards divide the complex planning and control func­

tions of a manufacturing system into four levels, Fig. (2-3). In the AMRF model

the levels from four to one are: Facility, Shop/Cell, Workstations and Equipment

respectively, and in the CAM-I model these levels are: Factory, Job shop, Work

centre, Manufacturing unit. In both models, level 4 is the highest level of control

where the system-wide control is applied by the management executives. The

only difference between these two models is that in the Shop/Cell level (which

is sometimes divided into two separate levels) of the AMRF model a concept of

"Virtual Cell" is introduced. This is an abstract cell for planning and control

which allows the actual size of real cells to be varied.

In the CAM- I model the factory level is concerned with the determining of

end product requirements, product structure definitions and individual shop ca­

pacities and capabilities and is the top level of control. The level below this is

the job shop level which takes end product production rates and explodes them

into processing operations. Shop order events can then be scheduled and com­

mands passed to the work center level. This generates and schedules detailed

task requirements. These requirements are passed to the lowest level of the CAM­

I hierarchy, which is the unit level. This breaks the tasks into subtasks which

are then impleniented.

In the AMRF model there exists the facility level at the top which includes

process planning, global management and information management. Below this

is the shop level which manages the coordination of resources and jobs and the

operation of individual manufacturing cells on the shop floor. The grouping of

parts belonging to certain jobs using the Group Technology (GT), [Hyer 1989], is

27

one of the functions conveyed at this level. The concept of a virtual manufac­

turing cell is introduced at this stage. These virtual manufacturing cells contain

machines which are grouped together in a dynamic fashion. In addition tasks

such as allocating tooling, jigs, fixtures and materials to specific workstations are

the responsibility of this level. Below the shop level is the cell level, where the

cell control system schedules and controls jobs, material handling systems and

tools through the cell. Jobs at this point have already been divided into groups

and, depending on their similarities, are allocated to each cell.

The next lowest level is the workstation level which is responsible for the

coordination of activities within a workstation. This includes the arrangement of

sequence of operations for successful completion of jobs allocated to a particular

cell controller system. A workstation may consist of programmable devices such

as an NC machine tool, a robot, a control computer and material buffer storage.

There is equipment at the lowest level of the control hierarchy which consists of

the controller for individual resources and programmable devices.

For a Flexible Manufacturing System utilising a hierarchical control structure,

the control and planning functions may be divided into several levels. Communi­

cation will play a major role amongst the various levels since information gathered

at one level is used in another. The volume of data, and the amount of data pro­

cessing will vary in each layer of hierarchy, and it is good practise to design the

control system in such a way that only the most relevant data is passed on to

the next level up in the hierarchy. Entities at lower levels require a shorter re­

sponse time, as opposed to the ones at higher levels which are controlled by the

management executives.

Each level will receive upper level requirements, and the real-time feedback

28

information from the level below, before making decisions and issuing the control

commands to the next level below [Mclean 1988]. The control commands are

then decomposed to the appropriate tasks, before being allocated to the various

entities in that level. Each level is able to operate autonomously to achieve its

own objectives, executing the orders from the upper levels.

In a strict hierarchical control structure, entities at each level can be inter­

connected to the immediate level above by means of point-to-point connection,

without requiring a factory LAN, Fig. (2-4). However, this method of interconnec­

tion will restrict the system expansion and prove an inefficient utilisation of useful

common resources within the manufacturing environment. Therefore, installation

of a system-wide LAN would be advantageous.

An alternative to hierarchical control is a non-hierarchical control structure

(heterarchical), [Duffie 1986] which takes a different approach to the overall con­

trol problem.

2.6 Heterarchical Control structure

The implementation of a hierarchical control system means that a crash at

some level can cause the entire system below to come to an abrupt halt. As a

result researchers have looked for an alternative control system to eliminate this

deficiency [Duffie 1986]. In this approach there is no supervisor, hence no direct

control. The autonomous intelligent entities interact to satisfy their needs. All of

the entities are equal in the negotiation process to obtain services, and cooperate

with each other to obtain mutual satisfaction. If cooperation is used as a control

strategy then devices must meet the following requirements; firstly, they should

be able to operate independently of the rest of the system, secondly, while being

29

an effective integral part of the system, at the same time should be able to refuse

requests for services from other devices.

In the heterarchical system the modularity of the system control is improved

and global information is reduced by locating decision-making where the data

originates, consequently, the source code for the control program in such systems

are smaller and simpler [Duffie 1987]. Another great advantage offered by the

heterarchical system is in its fault tolerant approach towards faulty machines,

since faulty machines simply will take no part in the negotiation process with

the rest of the system. However, the presence of a LAN in a system is absolutely

vital since the intelligent entities use the LAN to arrange transactions with other

entities, Fig. (2-5).

Heterarchically controlled manufacturing systems are constructed in such a

way that each part and workstation is programmed as an intelligent entity that

uses the communication network to arrange transactions with other entities. In­

telligent workstation refers to that which is able to execute machine coordination,

planning and monitoring. Furthermore, the ideal system of the future will be the

one which carries out the aforesaid tasks at the machine itself from a product

description.

Workstations may hold part programs for NC machine tools and information

on tool management, production capacity, processing capability and maintenance

records. Parts and workstations are then able to exchange information relating

to the processing capability, historical quality characteristics, current load and

estimated completion time for the required operation, type of material and type

of operation to be performed.

Typical operation of a heterarchical control structure is as follows; Activities

30

commence when a part broadcasts a request repeatedly on the network for a

particular type of machine until a response is received from a free machine. The

part will then reserve that machine before making arrangements with a robot for

its transportation and transmission of part data to the reserved machine.

Since both hierarchical and heterarchical control systems have advantages

and disadvantages, a comparison may be necessary.

2. 7 Comparison of Hierarchical and Heterarchical Control Structures

Since the overall control system for many FMS is only two or three levels deep,

the comparison here will be based on systems with the most popular levels i.e.

the cell, workstation and equipment levels. Figures (2-6a) and (2-6b) illustrate a

manufacturing cell organised by hierarchical and heterarchical control structures.

In the hierarchical system there is a strong master-slave relationship between

the levels. High level goals are successively decomposed by lower level control

modules until a sequence of coordinated primitive actions is generated. These

primitive actions will be simple machine level commands which can be executed by

the programmable devices. In such systems sophisticated planning and schedul­

ing tend to be done only at the higher levels. Lower levels typically are left to

execute one instruction at a time. This means that there are, in fact, only two

distinguishable levels. One to do the decision making and one to do the con­

trolling. The others merely reduce the information handling and coordination

performed by a single computer. A typical example of such a hierarchical control

system is the AMRF.

In the hierarchical system, each controller on the same level is connected to

the controller in the level above. For a controller to find out the status of the

31

others on the same level, it has to go through its superior level. As a result, no

entity can communicate with its peer entity without going through their superior

level first. With the heterarchical system this problem is overcome, since all the

entities are intelligent and use the network communication as a channel through

which to talk directly.

The hierarchical control system heavily relies upon the production schedule,

which is prepared earlier by the higher levels in the control hierarchy, whereas

in the heterarchical system there is no need for a scheduler, as the production

process takes place by the cooperation of intelligent entities (parts and machines).

The expansion of the system and its resources in heterarchical systems is

simple. It only requires the addition of extra entity programs to the network as

opposed to the hierarchical system where the overall control program has to be

edited. Also in a hierarchically controlled system since no negotiation process

takes place among the entities, they (entities) do not require a high level of

intelligence, as opposed to those of the heterarchical system.

In the hierarchical system, if an entity fails to function correctly, it will disable

the functionality of all the entities below it, unlike the heterarchical system where

the failed entity will simply dissociate itself from the rest of the system allowing,

wherever possible, the rest of the entities to achieve their goals without it. How­

ever, in heterarchically controlled systems there exists a fear of system deadlock,

to a large extent from a message ambiguity. In addition free data exchange and

negotiation is imperative.

To determine a performance comparison of manufacturing cells with the hi­

erarchical and heterarchical control structure, an experiment at the University of

Wisconsin-Madison [Duffie 1986] has resulted in the compilation of the following

32

information.

The lines of source code and the cost towards its development for the hier­

archical cell control was nine times greater than that of the heterarchical. The

machine utilisation in the heterarchical system was lower than hierarchical, since

scheduling is performed using a cooperative communication protocol which con­

sequently slowed the algorithm. The memory requirements in the heterarchical

system was seven times less than that of the hierarchical. This was due to the

fact that the scheduling algorithm is more memory efficient and functions as the

cooperation of distributed entities. The average CPU utilisation was at least three

times higher in the heterarchical system, since in a heterarchical system infor­

mation is processed in distributed processors, owing to the distributed intelligent

entities.

The hierarchical control system showed to have high complexity and flexibility

but low fault tolerance, whereas the heterarchical control system demonstrated

to have very low complexity and very high flexibility, modifiability and fault

tolerance, Fig. (2-7), adapted from Duffie.

2.8 A Hybrid Control Structure for the Durham FMS

Two types of dissimilar control structures, hierarchical and heterarchical for

the Durham FMS were studied. A Hybrid control model is proposed for the con­

trol of the Durham FMS. Such a control system combines the best points offered

by both hierarchical and heterarchical control structures and it distributes both

decision making and control. Recently, in parallel to this research NBS [Jones

1990] has made a proposal for a hybrid control system for the shop floor control

in CIM.

33

To exhibit the hierarchical nature of the control system for the Durham FMS,

the entire system is logically divided into three levels Fig. (2-8). The master level

is the highest level in the hierarchy. Part designs, system definition, scheduling

and sequencing of jobs are carried out at this level. Commands and manufacturing

messages are issued to the lower level where they are then translated to machine

control commands. The cell level is the middle level, it contains the controller

for various cells. Each cell controller is responsible for the activities of machines

within its own cell. Commands issued by the master level are translated here

and the appropriate commands are then issued to the machine at the lower level.

Cell controllers can monitor activities within the cells and commands issued by

them will be based on these sensory feedback signals.

The lowest level represents the equipment level. Equipment such as an NC

machine tool which possesses its own controller, requires the ability to translate

commands from the cell level in order that it may be integrated into the system.

This facility allows each cell to receive part program information from the CAD

system and to be able to translate commands from cell level. This translation

facility requires an additional software module which resides in the memory of

each cell controller.

The heterarchical behaviour of the control system is effected by the direct

communication between one cell controller and another. Cell controllers can re­

quest information directly from each other about the status and progress of part

production. All the system communication takes place by a software module

namely, 'CellTalk'. This module utilises Common Address Memory in geo­

graphically distributed Processors (CAMP) to perform communication, described

in chapter five. Cell controllers could exercise their heterarchical behaviour by

34

taking part in a negotiation process with one another for part production. This

method of part production by 'bidding', could commence once each cell had put

a bid in order to claim the job, and the one with the best offer (e.g. earliest

finishing time) would then win the claim [Shaw 1988].

One of the important features of the control architecture is that it can be

used with a variety of manufacturers' CNC machines. If a particular machine

has restricted memory capability the control function is capable of allowing the

cell controller to 'drip feed' the part program details into the CNC machine's

controller as the part is being manufactured. Cell controllers process parts until

the manufacturing order is satisfied. Should a cell manufacture a defective part,

the alarm is raised, the exact status of operation is registered before running

diagnostics and then another raw part is taken from the warehouse in order

to meet requirements for the production of good number of parts. Both the

master and the cell level obtain their information from a common manufacturing

database (dynamic and static) which is explained in chapter three.

The overall control system allows the termination of a part production session.

In order to terminate the operations in different cells the hierarchical behaviour

is exercised. This is done by the entity at the master level (scheduler) issuing

control commands to all the cells to terminate their part production at the earliest

time it is safe to do so. This shows that the master can exercise its direct control

over the cells and programmable devices whenever it deems it beneficial to the

system as a whole.

Once the overall control structure was designed and implemented on the ex­

perimental FMS rig the full flexibility and capability of the hybrid control model

could not have been demonstrated unless the current programmable devices

35

within the rig were modified so that control commands could be sent to them

remotely without the intervention of a human operator. Each programmable de­

vice was interfaced to a cell controller where the appropriate control command

received from the higher level were decomposed before issuing machine level in­

structions to the controller of the programmable devices. This required the design

and building of interfacing modules which is described in the following section.

2.9 Remote Control of Programmable Manufacturing devices

Programmable devices in a FMS are expected to function both in manual and

remote mode. Here, remotely controlled devices refers to those devices which

are capable of receiving control commands from the outside world without the

intervention of a human operator. Remote operation is particularly needed if a

programmable device is to be integrated in a FMS environment. Unfortunately,

none of the devices used in the Durham FMS exhibited such ability, therefore an

interfacing module had to designed and implemented.

Although the programmable devices (CNC machines) were equipped with a

RS 232 serial link, they were unable to accept control commands such as LOAD,

START, STOP etc. Knowing that the upgrading of the machines would be very

high in cost (half the prices of a new machine of the same type), interfacing

modules were designed to mimic the keyboard operation (function keys) of the

CNC machines. In particular, the interfacing modules were implemented on a CNC

miller namely, TERC0-1000 manufactured by the TERCO AB of Sweden.

The microcomputers available for use for this research project were BBC mi­

crocomputers, and for a BBC to adopt the role of a cell controller, in its standard

form, possessing only a limited input/output capability, it could not satisfy the

36

demands. Therefore, an expansiOn board had to be designed to enhance the

input/output capability of the BBCs.

The hardware of the interfacing module has two separate modules. One mod­

ule provides a multipurpose input/output facility which enables a BBC microcom­

puter to send or receive digital signals to or from any other devices. It resides in

a separate isolated box with its own power supply and connectors. This module

takes advantage of two Versatile Interface Adaptors (VIA 6522), each providing

two 8-bit bidirectional ports. Since the BBC microcomputer has an 8-bit external

data bus, the expansion board was designed in such a way as to enable it to

receive or transmit up to 16-bit in parallel, Appendix A.l.

The other module is more application specific. It may reside in the controller

of the programmable device, and provide an interface with the outside world. The

idea behind this module is to bypass all the unnecessary protocol conversion, data

formatting and communication problems by simply tapping the information in

the I/0 of the programmable device at its keyboard interface. To the device

this appears to be an operator actually inputting the control command via its

controller's keyboard which is described in Appendix A.4.

The circuit diagram for the CNC controller was studied and its keyboard en­

coder circuit was identified. The circuit tracks where the keyboard encoder is

routed to the CNC' s Peripheral Interface Adaptor (PIA) were tapped off. A man­

ual switch was installed on the CNC's controller to provide the toggling between

the manual and remote operation. When the CNC is in remote control mode,

control information can be sent to the tapped off channel, enabling the device

to operate without human operator intervention. Appendix A explains all the

necessary features of the interfacing module, design and its implementation.

37

2.10 Conclusion

Different control strategies for the overall control of the Durham FMS were

described. These are listed under centralised, decentralised, hierarchical and het­

erarchical control structures. The advantages and disadvantages of each were

highlighted. Also, two hierarchical structures for the control of automated manu­

facturing systems have been described. These two structures were the Advanced

Factory Management and Control System (AFMCS) of Computer Aided Manufac­

turing International (CAM-I) and that of the Automated Manufacturing Research

Facility (AMRF) of the National Bureau of Standards (NBS).

A hybrid control architecture for the Durham FMS which utilises the best

points of hierarchical and heterarchical control structures was proposed. The

hybrid control structure was implemented on the Durham FMS rig where it was

demonstrated to function successfully in real time. The hierarchical behaviour of

the system is shown by division of the entire system into three levels of master,

cell and equipment. Each level receives the requirement from the level above

and the feedback signal from the level below before issuing control commands

to the next level below. Entities at the master level have an overall view of the

system and its performance and where possible decisions are dictated to the cell

controller/s for the benefit of the system as whole.

The heterarchical behaviour is demonstrated by cell controllers exchanging

information with one another. Control decisions are made based on information

obtained from other controllers via information exchange. Hence, control is dis­

tributed by the centre of decision making being passed from one controller to

another. If a cell breaks down it will avoid having an immediate impact on the

other cells by simply dissociating itself from the rest of the system. Cell con-

38

trollers do not rely totally on the information exchange among themselves for job

processing but receive some information on what job to process next from the

master level. This will reduce the volume of data traffic in the network since the

cell controllers need not talk to one another to obtain such information.

Once a cell controller had received a job name from the scheduler at the master

level it would not need further instruction on how to manufacture the part and

such a decision is made by the cell controller itself. This showed that the cell

controller had some autonomy on the production of parts in the FMS. Interfacing

modules had to be designed and implemented so that the controllers of different

programmable devices were able to receive control commands from higher levels.

These modules enhanced the operation of the FMS making the intervention of a

human operator redundant.

39

Assembly/
Vision

rn
[Lat~:--- J [Miller] [S~=-]

CQJ • rn CQJ • rn [QJ • rn
Ware­

house

K ~~~~~~~~~

------------------------================~! lr-------) inished

.,,,,,,,, Defect
~.;L.L.,/.w~~~:H~::III:II:~: Parts Q Port output buffer

store I Port inpt buffer

Figure (2-1) The experimental FMS set up at Durham university.

"" Q

(Robot

AGV

(a)

LAN

(b)

Figure (2-2) FMS with (a) Centrlised control architecture
(b) Distributed contol architecture.

41

,I

42

Model name

Facility Factory Level4

Shop/Cell Level3

Work Centre
level 2

Manufacturing Unit Levell

Figure (2-3) The hierarchical control architecture for CAM-I and AMRF models.

Cell Level Cell Controller
.... ·.·.·.·.·.·.·.

- - - -

Workstation Workstation
Controller Controller

Workstation Level

-

D D D D D
e e e e e
v v v v v
i i i i i
c c c c c

Equipment Level
e e e e e

Figure (2-4) A system with hierarchical control structure.

""' w

Machining
Center

Assembly J.'''=""'=·
Cell Y<<:.... :

L_A_l'J

Figure (2-5) A system with heterarchical control structure.

~
~

Cell level

Workstation level
------,...........~.-.....

Workstation
Controller

(4)

Workstation
Controller

(4)

Workstation
Controller

(3)

Cell Controller

{Supervisor)

(a)

Workstation
Controller

{3)

(b)

Workstation
Controller

(2)

Workstation
Controller

(2)

Workstation
Controller

(1)

LAN

Workstation
Controller

(1)

Figure (2-6) (a) Hierarchically controlled FMS (b) Heterarchically controlled FMS.

45

Qlierarchical ~

High

[Complexity

High

(Flexibility

High

Modifiability

Low

J
~-~

-l

Fault tolerance

<:JHeterarchicaf::>

[~~~- 1 Low
Complexity

Very High

Flexibility

Very High
Modifiability

Very High

Fault tolerance

Figure (2-7) Comparison between hierarchical and heterarchical control structure.

~
C)

(system scheduler) File Server CAD/CAM

~

Figure (2-8) Control organisation in Durham FMS.
Broken line indicates boundary of the hardware implementation; activities in other

cells were emulated for demonstration.

""' ~

3.1 Introduction

CHAPTER THREE

Computer Based Information System

Each system relies on certain basic information. In Flexible Manufacturing

Systems this information is needed for the part production planning, control and

also managerial decision making. The volume of this information is very large and

the manual handling of it will prove the system deficiency. Flexible Manufacturing

Systems require a technique or system which can provide rapid and accurate

access to the desired information. Currently, a manufacturing database provides

such services. Information within the database is updated regularly so that high

quality data may be obtained by the system modules.

This chapter explains the techniques used for information organization. Sec­

tion 3.2 gives an overall view of a database system which is then followed by the

manufacturing database designed for Durham FMS in section 3.3. The manufac­

turing database is comprised of two modules, one holding the system static data

and the other keeping the system dynamic information. These are described in

sections 3.4 and 3.5 respectively. Section 3.6 describes a more application specific

representation of some information. This is the presentation of a part's geometry

during a design period. Finally, section 3. 7 explains how the part geometry is

encoded in the form which can be utilised directly by a CNC machine as input

data.

3.2 Information Organisation in a FMS

In a Flexible Manufacturing System the value of information is determined

48

by the way that it is organised and used [Shaw 1988], [Hutchinson 1987]. Infor­

mation may add value to an FMS if it is applied in support of a decision (i.e. it

is being used to control a process). Decisions that cannot be made because of

insufficient data are often a common source of problem in manufacturing environ­

ments. Alternatively, having too much data without it being organised in some

way can also cause difficulties.

A database can be used to organise and store information in an efficient way

[Managaki 1988]. The data is shared among different applications, but a common

and controlled approach is used for adding, modifying or retrieving data. The

application programs which access the data do not need to be aware of the detailed

storage structure. In this way the data can be used as the basis of an information

system.

A database may be defined as a collection of stored data organised such that

all users' (application program) data requirements can be satisfied. This contrasts

with traditional systems where the data required by an application program is

bound to that application program, and the data structure is declared within the

application. A database is often used as a means of interfacing various modules

of a system together [Nemes 1987].

The two main considerations when implementing a database for a FMS are

its structure and contents. The way in which individual items of data are inter­

nally stored in the computer defines the structure of the database. This in turn

determines the ease with which various application programs can interface with

the database in order to modify, retrieve or add data. Since the database is to

be utilised in a manufacturing environment, its content must include information

for the successful part production. This may be a digital representation of the

49

geometry and technology of the part designs, which is stored to a high precision.

For a database to be able to store, process, transmit and display graphical

data as well as the alphanumeric data, a distributed approach may have to be

taken [Jablonski 1988]. This is because of the sheer size of the database and, the

changing nature of software practices will make utilisation of a single database

impractical. A distributed database assures data structure compatibility among

independently developed application programs [Berra 1990]. Each application

may request data or supply data to a distributed base regardless of its brand or

model. The data may be stored on a single shared computer (i.e. a file server)

or different portions of it may be stored on different computers throughout the

network.

As the expectation of efficient part production at reduced cost by the FMS

increases, the need for efficient management of data in the FMS becomes more

apparent. A Database Management System (DBMS) can provide the means for

supporting and managing of any number of independent databases. Its function

is to provide an interface between the application programs and the database.

DBMS will ensure that application programs are no longer sensitive to changes

in the structure of the database, unlike traditional file-based systems, where a

change in the structure of data requires change in the application program.

A DBMS should allow data to be easily and quickly retrieved, added, searched,

copied or deleted. It should also support a data security mechanism where it

limits the access of unauthorised users [Hughes 1988].

Database Systems are generally based on one of four data models, namely:

Hierarchical, Network, Multi-user distributed and Relational data models [Ranky

1986]. Relational database gains its popularity among FMS and CAD/CAM systems

50

due to its flexibility over other databases and relative ease of design and modifica­

tion of its data structure [Upchurch 1988]. The relational database is structured

from files consisting of records, and records of files. Files are linked by the fields

of records, allowing for the establishment of new links between files at any time

during the lifetime of the database.

The areas involved in a Flexible Manufacturing System include design, pro­

cess planning, machining, inspection and assembly. In order to ensure efficient

utilisation of such data a manufacturing database may be incorporated.

3.3 Manufacturing Database

A typical manufacturing database contains several major sources of infornla­

tion. These include the part design , routing, operation sequencing and tooling

information. The part design information contains a detailed description of the

part design and type of operations to be performed on it. During the process of

part production some cutting tools may be more scarce than others and in order

to keep the cost of tooling low, information on utilisation of alternative tools

may be stored. This information gives the system greater flexibility, since the

production of a part will no longer be restricted on the availability of a particular

tool. Routing information defines the route or possible alternative routes that a

part can take during the process of part production. This information will play

a major role in the utilisation of machines and efficiency of the system to its

best. Operation sequencing information provides data on the actual sequence of

operations which a part has to undergo. Here the sequencing referred to is the

sequence of operation within a manufacturing cell, or sometimes better known as

intra-cell sequencing.

51

Tooling information provides data on the tools which are available. This

data may include the tool number, its type, length, life, material, cost, status,

accumulated usage time and its supplier. For a manufacturing company which

is engaged in metal cutting, this information may be vital [Hollingum 1989].

Designing a database to include all this information requires both a powerful

software package and the hardware on which the database could function fast

and reliably. The hardware in the Durham FMS imposes restrictions in the design

and utilisation of those kind of database packages, therefore a separate database

module was designed to be suitable for the existing setup.

A manufacturing database has been designed and developed for the Durham

FMS to ensure efficient utilisation of common system information. There exists an

interface between the application programs and the database, which consists of

a general set of routines to allow the user to perform functions such as deleting,

adding, modifying data, etc., from the database. Data files are made of records

and the records of field. Each data file comprises a header record followed by the

records. The software provides the user with a tool similar to a simple Structured

Query Language (SQL). Application programs residing on distributed processors

are all allowed simultaneous read access to a datafile, however, only one applica­

tion at a time is allowed to write into a record. A number of the SIT modules

utilise the database to satisfy their needs.

The information within the manufacturing database is divided into two parts,

"static" and "dynamic" [Ketcham 1988]. The static information refers to the in­

formation which is comparatively unchanged and gives information about part

production specifications. The dynamic information relates to the information

which changes as the status of the production system changes. Such manufactur-

52

ing database has also been proposed by AMRF of NBS [Simpson 1982].

3.4 System Static Data

In AMRF model the system static data contains part dimension data, desired

grip points for robot handling, material and tooling requirements, process plans

for routing and scheduling, cutter location data files needed for various machining

operations, and data related to feeds and speed for programmable devices. Such

databases contained high volumes of detailed part and system information for

management, control and production of parts in a manufacturing environment.

However the hardware in the Durham FMS could not cope if all this information

was included and therefore the system static data was defined in a different way

which is explained in the following paragraphs.

In the Durham FMS the system static data module resides at the master level

and allows the user to define the manufacturing environment. The output from

this module is written into a file called the System Definition (SD) file. System

information such as cell type, cell controller address for communication over the

LAN, name of cell controller software, cell condition, status and cutter location

data file names are entered at this level. The content of the SD file is referred to as

static data since it is not permitted to change once the process of part production

begins.

The experimental FMS comprises four different physical cells, and one record

1s allocated to each cell to hold all the relevant cell data. The size of these

records is arbitrary and can be set differently at the commencement of system

definition if necessary. This will give the flexibility to define the systems with

various complexity, and in the case of expanding the existing set up, it will allow

53

unlimited system parameters to be included.

One System Definition (SD) file is created per job and once a SD file has been

created it cannot be changed, only the contents of associated static data files

may be modified. Within the Durham FMS a job is defined as a product to be

designed and manufactured through single or multiple stages. At each stage one

or a number of operations may be performed. The design process is carried out in

the CAD module (described in 3.5) and the process of part production takes place

in one or a number of manufacturing cells depending on the description of part

design. Each job may have a different batch size according to the requirements.

All the software modules within SIT are developed in such a way as to pro­

vide the user with menus, making it as user friendly as possible. There exists a

main program namely "MASTER", Appendix F, which is loaded into a computer

(i.e. master computer at the master level) at the start of system initialisation.

Executing this program offers the user choices from the menu. Each option on

the menu may load and execute other programs, and it always returns to a menu

when the execution of the current task has been completed.

New jobs can be created by choosing option No. 1 of the MASTER program.

The user is then entered into the manufacturing database routine of "MAN-DBASE"

program, Appendix F, where it is provided with a$ prompt and a second menu

showing a list of commands which are allowed to be used. Commands are only

accepted if the correct syntax is entered. For example, to create a new job

with a JOB7 job name, the following must be entered after the prompt; CREATE

JOB7. User may enter only the first character of the command (i.e. C JOB7).

The command list is made to be self explanatory and the list of commands can

appear on the screen every time character M is entered (for menu) at the prompt.

54

A detailed description of the database can be found in Appendix B.l.

In order to simplify the process of job definition, the user is allowed to choose

for the new job to be similar to an existing one. Then by editing only the record

or records of the created job, the new job can be defined. Since the system

static data of each job is held in records of SD file, and if one record is used per

production cell to contain the information related to that cell, jobs can have up

to n number of cells.

Each physical cell may be defined logically more than once with a different

name but the same network address. This feature of SIT enables non-flexible NC

machines with small memories to be utilised in a more powerful way to accept

large part programs in the 'Drip-feed' mode.

Defining a new job will involve first to create a SD file and then the contents

of records within the SD may be filled. The SD file consists of a header record

which identifies the information about the fields of the records, containing system

static data. This information is about the number of fields used in each record,

the name of the fields, their type (numeric or character), width and number of

decimal places (if numeric) and finally the number of records contained in the

datafile. Figure (3-1) shows the structure of system static data. One record is

allocated per each production cell (physical or logical), and each record contains

eleven fields. Each field holds a specific type of information which is used in the

process of part production and are described as following.

Operation type (OP. TYPE) is held in field one to identify the nature of the

operation within the cell, whether is milling, assembly etc. Each cell posses a cell

controller program which controls the activities within that cell and is specific to

that cell, this information is held in field two as cell controller name (CC. NAME).

55

The condition of a cell (CC. COND) is defined in field three, whether the production

cell is active or inactive.

All the controlling computers (e.g. cell controllers at the cell level) are con­

nected to the LAN. Each computer has an unique address on the network (i.e.

station id) which may be addressed by others. This address (STAT. NO) is defined

in field four. Fields number five and six hold information on the number of part

program (NOF. PP) to be used in the cell and the name of part program (PP. NAME)

or part programs.

During a typical period of part production a part (parts) has to visit one or

several manufacturing cells, depending on the description of part design. The

order in which a part is allowed to visit different cells is very important. Every

manufacturing cell will have a sequence (sequences) number which designates its

position to accept a part in the process of part production. For example milling

and turning cells with sequence numbers of 3 and 4 respectively, means that a

turning operation on the part cannot be performed until the milling operation

has been carried out on the part. This sequence number (SEQ. NO) is held in field

seven.

The average setup time (SETUP. T), which is defined as the time spent for work

(part) mounting or pallet changing, is held in field eight. The downtime (DOWN. T),

that is the total time that a manufacturing cell is not doing productive work, is

contained in field nine. The time taken for a part to be processed (PROCES. T

in a manufacturing cell is held in field ten. Finally field eleven holds the defect

rate of the cell. Information such as setup time, downtime, processing time and

defect rate of cells are utilised in the FMS cell requirement check modules which

are discussed in chapter four.

56

Each field holds a certain type of information about the FMS, and all the

programs utilising the manufacturing database rely on this information. For the

database to find a certain type of information on FMS it has to search through the

fields of records. For example to obtain the STAT. NO for a particular cell, it first

searches for the record in which the data is held about that cell, and knowing

that the relevant data is held in field number four, it then obtains the data from

that field.

However the user may wish to define the fields in a different order. This has

been made possible by the database utilising a numeric variable namely "key X" to

identify what fields contain which type of information. This information is preset

at the beginning of the database program (e.g. 'STAT.N0=4', 'key4=STAT.NO' for

station number, and whenever the manufacturing database requires data on the

station number it uses numeric variable key4). Should the user change the order

in which the data fields are defined, then the value assigned to the keyX has

to be adjusted accordingly at the start of the database program. For example

if the order of data field is changed in such a way that the data is to be held

in field six, to be the station number then the following change must be made;

'STAT. N0=6'. In this way the routine within the database will require no change

since the numeric variable key4 is also set automatically to give information about

the station number.

System static data is used to define jobs and resources, and to initialise and

start a process of part production, however, the overall control of the FMS and

control of manufacturing cells heavily relies on the system dynamic data.

57

3.5 System Dynamic Data

Since all the controllers of manufacturing cells have access to the manufac­

turing database, real-time control data may be accessed from or written to the

database. System dynamic data are those data with frequent changes, such as

programmable machine status, part location, resources status etc. The system

static data may be prepared off-line but all dynamic data is to be gathered on-line

in real-time.

In a typical system with a dynamic database cell controllers will monitor the

status of devices, process, parts etc. within the cell and this information is then

stored onto appropriate records of files in the dynamic database. All the decisions

made by the cell controllers are based on the feedback information held in the

dynamic database after being checked against predefined rules in a state table

[Drolet 1989]. If the requirement is satisfied, the cell controller will issue the next

command from its list to the programmable device; otherwise it will compare this

state with those of states defined for errors and malfunctions. Should it find an

error or malfunction, it checks through the error recovery routine for the salvage

of equipment operation or possible total termination of the operation.

Since each cell controller, after a monitoring cycle, writes the state of the

monitored signal into the dynamic database , the cells can pass information to one

another via the database. Therefore the database acts as a common memory and

it makes the system modular and as long as an entity (i.e. a programmable device

controller) can read from or write to the database it can be added or eliminated

from the system with the minimum of impact on the other components of the

system. In this way the database (static and dynamic) can provide the means for

integrating resources supplied from different vendors.

58

However if the dynamic database is implemented in the aforementioned way,

each cell controller requires the use of the LAN for both writing and reading

various status to or from the database, since it resides in the file server or any

other type of data storage system and access to it can only be made via the

network communication. As a result the volume of traffic on the network could

rise severely and if the LAN does not have the deterministic feature (i.e. token

rig or token bus, explained in chapter five) control functions may suffer in their

decision making procedures. For this reason a dynamic database which utilises

Common Address Memory in distributed Processors (CAMP) was designed and

implemented for Durham FMS.

An area of memory with the same base address is reserved in all cell controllers

so that the cell's dynamic data can be held in a distributed manner. In this way

each cell controller has its own dynamic database to which it writes various cell

states locally. Should a cell require information on other cells' status, it uses

the communication protocol to gain direct access to the dynamic database of

the desired cell before performing a read operation. Since the system's dynamic

data storage does not reside in a database (i.e. in a file server) but rather in

the memory of the cell controllers, data transfer over the LAN is not needed for

a write cycle. Hence the volume of network traffic is halved. Another advantage

of dynamic database is that reading from or writing to a memory location is far

faster than that of a disc drive where a dynamic database could have been held.

The base address of the memory in BBC which has been set aside for system

dynamic data is 7BOO (hex). There are at least two hundred bytes beyond the

base address which can be used to store cell dynamic data. The same base

address is used for all controllers (cells and master) and a name is given to each

59

memory location above the base address. For example, the name "in-partbuf"

is given to memory location 7B06 (hex) and the content of this memory location

is representative of the status (number of parts) of input part buffer in that

cell. The name "in-partbuf" will have the same address and meaning in all

cell controllers. In this way all the reserved memory locations with a common

address will have the same name and their contents will have the same meaning

throughout the controllers (cells or master). Table (3-1) gives a list of reserved

memory locations together with their contents.

The content of reserved memory locations in the cell controllers are set by

different entities. For example, the memory location to represent the status of a

robot within a cell is set by the robot controller. The status may be shown as

"busy" or "free" by setting the contents to 00 and FF (hex) respectively. The

content of each memory location may be set to 256 different states. This will

give the opportunity for the definition of new states as the complexity of device

increases. The dynamic database is used by SP.Veral modules such as cell controller

software, the scheduler and CellTalk which are discussed in the appropriate

sections.

Since the control of part production in a FMS is largely dependent upon the

information gathered from the part design and the description of how it is to

be manufactured, a simple drawing package, together with the post processing

facility, was developed.

3.6 Representation of Part Design Information

A simple drawing package has been developed to allow the user to design

simple shapes in 2! D, that is, having full freedom in two axes (X andY direction

60

in one horizontal plane) and limited freedom in Z (vertical plane). This module

is named "CAD10", Appendix F and resides at the master level and information

from it is written into the system static data.

The BBC microcomputer has eight different "modes", five of which can be used

for graphics, with different screen resolutions. Depending on the particular mode,

10K or 20K of the available memory (32K) is used. Mode four was chosen since it

requires lOK of memory, giving high resolution (for graphics) as well as leaving

space for the program itself. The screen resolution in mode four is 320x256 with

two colours.

CAD10 module takes advantage of two separate windows; text and graphic.

The screen is divided vertically into two sections. The portion on the right is the

text window, where a part design menu, together with the design information,

is present. The portion on the left is the graphic window, where design of the

part takes place. CAD10 has been developed to allow the user to design simple

prismatic shapes and the design information is converted into a form which is

understandable to the milling machine of Durham FMS. Appendix B.2 describes

the detailed programming of CAD10.

The design process commences once the user has executed the CAD10 pro­

gram and inputted the design name and the blank part dimensions. The design

procedure is simplified by allowing the user to draw the shape of the part to be

manufactured. Drawing of lines or curves in the graphic window can be con­

sidered as the representation of the cutting path of the CNC machine tools. The

cursor (flashing dot) on the graphic screen may be moved around by using the ar­

row keys and, by choosing the appropriate keyword from the text menu, a simple

shape can be designed.

61

As the utilised screen size is small, and in order to maximise possible resolu­

tion, a scale factor has been calculated. This enables a workpiece of any size to

fit as closely as possible onto the screen in at least one dimension. In addition, a

grid is printed onto the graphic window to ease the design process for the user.

The position of the cursor is continuously updated while it is manoeuvred about

the screen and is shown on the text window.

During a design process the user can send the cursor from one point to another

on the screen. Depending on the letter chosen from the menu in the text window,

no line, a curve or a straight line can be drawn. Depressing letter 'M' from the

menu for "MOVE" will cause the machine tool's cutter to move from one position to

another without cutting. This is known as a rapid feed for the machine tool by the

CNC-1 000 (controller for the milling machine). A curve may be drawn by sending

the cursor to a position and then entering letter 'C' at the keyboard. This is the

quadrant of a circle, the start and end position of which has been defined and

which represents the circular interpolation of a quadrant of CNC-1000. A straight

line can be drawn between two points by depressing letter 'L'. For CNC-1000 this

will have the meaning of linear interpolation between the two points.

Removing of lines or curves can be performed by depressing letter 'R', as

this can delete up to five previous lines and curves. The depth of cut or the

feedrate may also be changed at any stage of the design by entering letter 'D' or

'F' respectively. The current setting of feedrate and depth of cut is shown on the

text windows at all times.

Once the part design has been completed, depressing letter 'E' will end the

session and user is given option of having a hard copy of the design. Note that

the package does not build a mathematical model of the part, rather it gathers

62

sufficient information to enable the machining process to be executed, therefore

once the image has disappeared from the screen, it can not be brought back onto

the screen. The data from the design stage is formatted and stored in such a way

that it can be utilised directly by the CNC controller of the manufacturing cell.

3. 7 Postprocessing of CAD data

Throughout the process of part design the drawing is post-processed for the

CNC miller and the generated data is stored. There are two ways in which this can

be carried out. One, to store the data in arrays within the available memory to the

user, the other to write the data onto disc. Due to the shortage of memory within

the BBC microcomputer the former way of storing data is considered wasteful of

memory if any significant amount of it is used. Hence, the data was stored in the

form of strings onto a file on the disk. The file handling capability of BBC allows

random access of data within the data file and this proved useful for the editing

purposes.

As with many other CNC machine tool controllers, CNC-1000 will accept the

part design data in the form of a part-program. This is in the form of a series

of data blocks that defines which control signals the controller has to send to the

motors (i.e. axes motors, spindle motor, actuators) next. In each block a number

of "functions" must be set to define the specific operation for the controller. These

are; "N" for block number, "G" for type of interpolation (circular, linear, etc.),

"F" for feedrate (mm/min), "S" for spindle speed (high or low), "T" for tool

number, "M" for auxiliary (e.g. spindle rotation direction), "X Y Z" for absolute

coordinate of the end of the path and "I J K" for quadrant center (for circular

interpolation only).

63

For the CNC-1000 to be able to receive the part design data (part-program)

so that it can generate the control signals to the milling machine tool to machine

the part, the data should be formatted in the following way. The data must

start with a '%' followed by the first block of the part-program. The first block

of data must contain codes for functions such as spindle speed, tool number,

spindle rotation and feedrate. Positional information is only accepted if a letter

(X, Y, Z, I, J) signifying to the CNC-1000 which coordinate is being referred

to, is followed by a five digit number. For example, to represent a position of

20mm in the Y-direction of the workpiece surface, the string has to be encoded

as "Y02000". The last data block will reset all the functions, such as switching

the spindle off and going to home position followed by a linefeed and a ":".

When data is being stored on the disc it is not required to include a block

number at the start of every block, as incrementing the block can be done when

the data block is being sent to the CNC-1000, by sending the code for linefeed at

the end of every block.

3.8 Conclusion

An information handling system module was developed to organise the data

required for the management, control and production of parts. This module

is comprised of two parts, one keeping the system static data and the other

holding all of the system dynamic data. It was found that the utilisation of

Common Address Memory in distributed Processes (CAMP) was a very efficient

way of dynamic information handling. The system allowed the users to define

their own manufacturing environment. The software has the potential to be

applied to any type of manufacturing environment. It provides users with the

64

flexibility to define n number of manufacturing cells. The software also allows

equipment from different vendors to be integrated into a FMS without encountering

communication problems.

The system can accept part design information from any design package as

long as it has been provided with a postprocess datafile of the design. However,

sections 3.6 and 3. 7 describe a small package developed for Durham FMS, which

can be utilised by users for design and postprocessing purposes. As an example,

design data was postprocessed for the milling machine of the FMS. Therefore, the

subject of discussion in section 3.6 is application specific. This was chosen to

demonstrate how design data can be adapted for the manufacturing purposes of

a specific machine. There exist several commercial packages which can be utilised

to perform design (e.g. AUTO CAD) and then to postprocess (e.g. SMARTCAM) the

design information into a format suitable to specific programmable devices.

65

c---- Header Record)

F}eld 2

Record 1
(F1 I ~2 r;; I I Fn)

Record 2 (F1 I ~2] F; I ··················=······· I J ········· Fn

Record 3
(;1-~-F~-~ F3 ~---.=-·-~---~-~- ... ~ ... ~ I Fn)

Record n (;1-~-F2 -~ F; ,-.=-=···~-~-~---············· I Fn)

Figure (3-1) The structure of system static data.

Cell 1

Cell 2

Cell 3

Cell n

C)
C)

67

Table (3-1) Reserved memory locations for system dynamic data storage.

Address Address Set by Read by Memory content
(Hex) name desc1'iption (Hex)

7800 logi-assoc MA cc OO=disconnect
FF=Connect

7801 client-st-no MA cc station number
7802 client-port MA cc port (communication channel no.)
7803 server-resp-mes cc MA&: CC OO=not-ready

FF=ready
7804 mass-stat cc MA&: CC OO=processed

FF=processing
01=message-not-recognised

7805 prog-stat cc MA&: CC 01=down-load successful
FF=program running
OO=completed

7806 in-partbuf cc MA&: CC number of parts in the input buffer

7807 out-partbuf cc MA&: CC number of parts in the output buffer

7808 production-period MA&: CC MA&: CC OO=completed
FF=started
09=default state

7809 upload-prep MA&: CC MA&: CC OO=completed
FF=in-progress

780A part-trans MA cc FF=part to be transferred to/from the cell
OO=part transfer completed

780B where-part-trans MA cc 01=part transfer from the trolley to the cell
02=part transfer from the cell to the trolley
09=default state

7BOC server-reap-part cc MA&: CC 00-not-ready for a part transfer
FF=ready for a part transfer

780D robot-stat R cc 00-free
FF=busy

780E trolley-stat cc MA OO=free
FF=busy

7BOF device-stat MA cc 00-completed
01=idle
02=stopped
03=critical operation in progress
04=device reset
OS=device inoperable
06=uncorrectable error detected
07=correctable error detected
OB=diagnostic running

7B10 defect-part-stat MA&: CC MA&: CC FF-part defecti~e
09=part is not defective

7811 nof-defect-part MA&: CC MA&: CC number of defective parts

7812 total-nof-parts cc MA&: CC total number of parts in the cell

7813 nof-processed-parts MA& CC MA& CC number of processed parts

Key: CC Cell Controller
Master MA

Address Reserved memory locations address

4.1 Introduction

CHAPTER FOUR

Production Planning and Control

Production Planning and Control (PPC) is concerned with all of the activities

from acquisition of raw materials to delivery of completed products. It also

deals with management problems and techniques for their solution, as well as

with the linkages or interactions among particular problem areas. Production

planning may be described as the process of organising material and component

availability and of optimising the use of productive capacity in a manufacturing

organization [Weatherall 1988]. It provides the control strategy in accordance

with requirements received from the higher planning functions and feedback on

the real status of the manufacturing process [Foote 1988].

The subject of this chapter focuses on production planning and the real-time

control of Durham FMS. Section 4.2 gives the logical position and a brief descrip­

tion of each of the main building blocks of a PPC system. Having given an overview

of the PPC system two of its modules are then expanded further. These are the

Capacity planning and the Production Activity Control. Section 4.3 describes

the developed FMS cell capacity check module, the offered services of which in­

clude utilisation as a simulation tool for checking the equipment requirements.

This is followed by section 4.4 describing the building blocks of a PAC system.

Some of the algorithms which are currently used in shop floor scheduling are ex­

plained in section 4.5. The functionality of the real-time scheduler developed for

the Durham FMS is described in section 4.6 and finally the cell controller module

which takes charge of the in-cell operations is discussed in section 4.7.

68

4.2 A Structure for Production Planning and Control

There exist, in any manufacturing company, three distinct activities or phases

for the Production Planning and Control (PPC) system [Vollmann 1988]. The

Production Planning and Control structure described here is a very brief overview

of a PPC system and does include some of the elements which are used in a real

manufacturing environment. The reason behind this is to give an introduction and

to establish the logical position of two of the modules which have been designed

and developed for the Durham FMS. These modules are the FMS capacity planning

and a scheduler for the FMS activities which are described in the subsequent

sections to follow.

Establishment of the overall direction for the company is the first activity

of a PPC system. This phase establishes the company objectives for production

planning and control. The management plan is stated here in manufacturing

terms, such as product options or end items. The manufacturing plan must be

consistent with the company's direction and the plans for other departments of

the company. A game plan that links and coordinates the various departments of

the company provides the overall direction. The responsibility for this game plan

is of top management. The second PPC system activity is the detailed planning

of material flows and capacity to support the overall plans. The third and final

PPC system activity is the execution of these plans in terms of detailed shop floor

scheduling.

Figure (4-1) shows a simplified structure consisting of four levels for Pro­

duction Planning and Control (PPC) system. Level four represents the top man­

agement which is responsible for managerial objectives to develop an integrated

game plan for which the manufacturing portion is the production plan. The game

69

plan reflects the strategy (e.g. increased market share) and tactics (e.g. increased

inventory for improved service) that used by the company. The manufacturing

part of the game plan is the production plan and is illustrated in the third level.

The production planning problems are generally divided as aggregate and

disaggregate planning. In aggregate planning a single variable representing the

total production of all products using some natural unit such as volume, weight,

units, machine-hours etc., is used as a measure of aggregate output. Disaggregate

planning is concerned with production plans for each product and is better known

as Master Production Scheduling (MPS) which is explained later.

The production planning module as shown in the third level of Figure (4-1)

provides a direct and consistent dialogue between manufacturing and top man­

agement. The production plan is not a forecast of demand. It is the planned

production, stated on an aggregate basis, for which manufacturing management

is to be held responsible. The production plan for manufacturing is a result of the

production planning process. Inputs to the process include sales forecasts; but

these need to be stated on the basis of shipments, not bookings. This is necessary

in order for the inventory projections to match physical inventories and in order

that the demands on manufacturing are expressed correctly with respect to time.

The demand planning also exists in the third level of the PPC system and it

encompasses forecasting customer/end product demand, order promising, order

entry, etc. Basically, demand planning coordinates all activities of the business

that place demands on manufacturing capacity.

Master Production Schedule (MPS) is the disaggregate version of the produc­

tion plan. MPS is a listing of what end products are to be produced, how many of

each product are to be produced and when to be delivered [Groover 1984]. The

70

MPS takes into account capacity limitations, as well as desires to utilise capacity

fully. This means that some items may be built before they are needed for sale,

and other items may not be built even though the marketplace could consume

them. The master production schedule must be based on an accurate estimate of

demand and a realistic assessment of its production capacity. The MPS serves as

an input to the Material Requirement Planning MRP module and resides at level

two of the PPC system.

The MRP determines (explodes) the period-by-period plans for all component

parts and raw materials required to produce all products in MPS [Westerdale 1988].

This material plan can thereafter be utilised in the capacity planning system to

compute machine center capacity (and/ or labour) required to manufacture all the

component parts. MRP acts as a translator of the overall plans for production into

the detailed individual steps necessary to accomplish those plans and it provides

information for capacity plans.

The development of capacity plans is a critical activity which coincides with

the development of the material plans. The benefits of an otherwise effective

production planning and control system cannot be fully realised without the

provision of adequate capacity or recognition of the existence of excess capacity.

· Capacity requirements planning means the comparison of the available capacity

with the required capacity. Productive capacity is measured in units, and it refers

either to the maximum output rate for products or services or manufacturing

resources available in each operating period, i.e. shift [Ranky 1986].

Finally, the Production Activity Control (PAC) having the role of the execu­

tion system, exists at the level one of the PPC system. PAC is sometimes referred

to as the gateway between the execution layer on the shop floor and the remain-

71

der of the manufacturing and production management system. PAC establishes

priorities for all shop floor orders at each work centre (or cell) so that the orders

can be properly scheduled [Browne 1988]. It also deals with the management of

the detailed flow of materials on the shop floor. An effective PAC system can lead

to due date performance that ensures meeting the company's customer service

goals and also reductions in Work-In-Progress (WIP) inventories and in production

lead-times.

Having established an overview of a PPC system, the following describes the

FMS capacity planing module for which a mathematical model was developed.

4.3 FMS Capacity Planning

Capacity planning is a crucial decision since it affects both short and long term

planning and control of a manufacturing organisation. Although capacity plan­

ning in general can be utilised in many levels of PPC system, here it is attempted

to show its effect on the manufacturing side of the FMS. Capacity planning can be

applied to the planning process to decide whether the existing capacity is large

enough to take on a newly arrived order and also for controlling capacity in the

existing manufacturing system.

A mathematical model was used to calculate a measure of capacity that would

enable FMS cell and system requirements to be identified for each batch for a

selected production route in the FMS [Ranky 1986]. The program can be used as

a simulation tool for FMS cell requirement and efficiency planning. It enables the

bottleneck cells to be identified for each different production route and also the

number of components that FMS can produce to be determined for each production

period.

72

73

The way in which the model functions is to consider all the production cells

used, in any order which the user has defined for the production of a particular

batch. Currently the Durham FMS can only process a single batch of any size at a

time and once the order of cells to be utilised for a specific batch has been defined

by the user it cannot be changed during the period of the batch production.

However, the overall control software for the Durham FMS has the potential for

further development to allow for batch mixing and job processing with variable

production routes.

The mathematical model calculates the requirement, output rate and defec-

tive rate for all the cells which are to be used for a specific batch. The formulae

employed to calculate each of these are explained in turn. The determination of

the FMS cell requirement is carried out by successive use of the following formula:

. No. of loaded parts X Time worked
Reqmrement = Eff. . Sh .1 60 x zczency x z t

Where:

Requirement= the FMS cell requirement, I.e. number of specific cells is re-

qui red.

Shift = the duration of an operating period defined by user in hours.

No. of loaded parts = the raw parts required per cell per shift.

Time worked = the processing time per part per cell in minutes.

and the FMS cell efficiency is calculated as follows:

. . _ _ Setup time+ Downtimeo/c
E f f zczency - 1 A l d . d 0

na yse perzo

Where:

Analysed period = the time utilised for the evaluation of the average setup

and downtime values in hours (i.e. total period).

Setup time = the time spent for part mounting or pallet changing (if one

exists) and is given in minutes per cell per analysed period of time.

Downtime = the time which the cell is not doing productive work (e.g. be-

cause of breakdown or maintenance) in minutes per cell per analysed period

of time.

To estimate the number of raw parts required per production cell an assump-

tion is made that defective parts cannot be salvaged and all parts in a batch must

visit all the cells in the current production route. Although the defect rate for

FMS are very low, it is a common practice to calculate the total number of parts

produced on the FMS for each cell in the given production route as this considers

that because of defective parts, there are less and less good parts transferred to

the next cell. The following formula is used to obtain this.

Total part requirement = (Defective parts + Good parts)

The defect rate is also calculated for each successive cell in the selected pro-

duction route and it is assumed that both the number of defective parts and the

total number of parts are measured during the same analysed period of time. The

formula used to calculate the defect rate is as follows:

Number of defective parts
Defect rate = ----~-----­

Total number of parts

To satisfy the demand for the "good" parts during a shift the initial number

of parts to be loaded to a cell the following formula is used.

74

Good parts
No. of loaded parts = ------

1- Defect rate

The algorithm calculates this value successively for each cell, following the se­

lected production route. The functionality of the algorithm can be demonstrated

through an example which shows what information could be provided to the user

if the system was asked to produce a given number of parts. The example chosen

here is for the production of 75 parts where each part in turn has to visit three

production cells namely sawing, turning and milling. The module which performs

this is within the MASTER program (MASTER-S1, Appendix F) . The information

required of user entry is the number of finished good parts required, the length

of the production period and the analysed period of time.

Figure (4-2) shows the output for FMS cell capacity check for a job namely

"JOB5". The analysed period was chosen to be 8 hours and the system was

asked to calculate for production of 75 good parts with a production period of

2 hours. The capacity program utilises the manufacturing database to obtain

further information about the particular job. This information is then shown on

the input data section of each of the cells, Fig. (4-2). The algorithm analyses the

capacity needs and shows cell loading levels. The results show that the system

requires more raw parts than the volume of the "good parts" and that is due to

the non-zero defect rate of the cells. There exists one FMS capacity check output

for each cell and in the calculated result section the following are computed; the

number of raw parts required per production period, this number is different

for each cell depending on the defect rate of that cell; the cell's efficiency; the

adjusted equipment requirement which is equal to one for all the cells at the start

and finally the unadjusted equipment requirement. The unadjusted requirement

75

indicates the cell utilisation levels for the selected part production route. As the

example indicates, since the turning cell has a higher setup and downtime, and

also the processing time per part is longer it is less efficient than the other cells

and more of this cell is required to be able to cope with the capacity requirements.

So far what has been described in this section only deals with the planning

side of the part production and for real time control of the FMS a module namely

Production Activity Control (PAC) is required.

4.4 Production Activity Control

Production Activity Control (PAC) is often seen as the execution of the long

term plans developed from the master production schedule and materials plan

at the production cell level. It plays an important role in linking the shop floor

with the other elements of the Production Planning and Control (PPC) system

[Lyons 1990]. Production plans received from the higher levels are transformed

into control commands for the production process. Another role of PAC may be

the translation of data from the shop floor into information which is useful to the

higher level planning function in the PPC system.

The essential building blocks of Production Activity Control are: scheduler,

dispatcher and monitor. The following description of these three highlights the

important principle that decision making is passed down to the point where most

knowledge and information is available.

4.4.1 The Scheduler

The scheduler develops schedules for each individual production cell based on

the known manufacturing process routings and expected available capacity from

76

the list of required orders produced by the MPS and MRP systems. The goal is

to schedule activities so that only what is actually required is produced when it

is needed and in the correct quantity. To achieve this the scheduler may try to

optimise to several criteria, e.g.:

- the machine tool's idle time, machine tool's setup time, the average time that

products are in the system, and the number of products waiting in the system

for an operation must be minimised.

- the throughput of the system must be maximised.

4.4.2 The Dispatcher

The dispatcher can be viewed as a real-time scheduler which executes the

final order of the job sequence for the workstations of each production cell. The

dispatcher forms its orders on the basis of information received from the scheduler

(i.e. the schedule) and the current status of the system. The information required

includes: the workstation schedule; the routing data on each part; the workstation

status; the part transporter status and the part locations.

An additional function of the dispatcher is to coordinate the individual work­

station schedules and material movement control. However, the schedule is based

on assumptions concerning the duration of operations, and not all events in the

system will take place in exact accordance with the scheduler's assumptions. For

example, due to unexpected problems, operations may take longer than the an­

ticipated time. This could lead to unnecessary discrepancies of time between

the availability of product and the readiness of the next workstation. It is up

to the dispatcher to make intelligent decisions for as precise an execution of the

schedule as possible. The dispatcher has to minimise the system disruption in

11

the event of a local problem. Should a disturbance occur, it is the responsibility

of the dispatcher to resequence jobs within the constraints of the given schedule.

However, if the predicted schedule differs greatly from the real system status the

dispatcher may request a new schedule from the scheduler.

4.4.3 The Monitor

The monitor collects data of the events which have already taken place such as

process times, material availability, part status, scrap data, failure and downtime

data etc. It then translates this data into information which is fed back to the

scheduler and dispatcher and on this basis the decisions for the real-time control of

activities are made. Such a data collection system has to be reliable, accurate and

quick. The three building blocks of Production Activity Control can provide the

basis for real-time scheduling and control of shop floor activities. In developing

a scheduling system for the shop floor different techniques are possible and these

are discussed in the next section.

4.5 Shop Floor Scheduling

One of the vital steps in planning and controlling the production environment

is the scheduling of the production of orders. Scheduling may be defined as the

assignment of jobs or work orders to production cells and workstations on the

shop floor for a given period.

Typically, there exist several jobs awaiting processing at any given time and

their routings depend upon the availability of required resources and the rela­

tive importance of time and cost. The dynamic variation of factory status can

mean unpredictable changes with which the scheduling system must deal, usually

78

resulting in rescheduling requirements.

The problems involved in the scheduling of a FMS are more of a general case

of job shop scheduling problems, although factors such as additional resources

constraint and real time operation makes FMS scheduling more complicated than

classical job shop scheduling [Rabelo 1989].

In the operation of a scheduling process five key components, which must

be closely coordinated, are identified on which a proposed methodology is based

[Maley 1988]. These are: guidance from a historical knowledge base, forecasting

of imminent occurrences, real-time feedback from the operation of the facility,

direction of objectives and constraint from management and world data and im­

provement of the process from a planning module. The proposed system utilises

real-time feedback from the operating facility, direct feedback from a simulation

of the facility and guidance from a historical knowledge base to optimise the

control of an automated manufacturing system.

Traditional Operational Research (DR) tools such as Linear Programming (LP)

have been combined with queueing network models in an iterative procedure to

make optimal use of the part mix and routing mix flexibility of the FMS [A vonts

1988]. The LP model determines a static solution based on operation times and

available resources capacity. This solution then undergoes a queueing model

examination in order to evaluate some dynamic effects. Finally, a more realistic

solution is achieved by feeding this information back into the LP model.

Shop floor scheduling problems can be solved by distributing the decision

making and scheduling tasks. The approach taken by the distributed scheduler

is essentially a multi-agent problem-solving method [Shaw 1988]. Because of its

complexity the scheduling problem is solved collectively among the production

79

cells. It is considered to have two scheduling levels. The first level assigns jobs

to the most appropriate cells and the second level scheduler executes intra-cell

scheduling. Distributed scheduling utilises a bidding mechanism to coordinate

the execution of tasks among the production cells. In this case a cellular manu­

facturing system in which cells are connected to a LAN. When a cell completes an

operation (task), it announces a request for another cell to process the remaining

operations. Each cell sends a message to indicate the Earliest Finishing Time

(EFT) of the candidate task if processed in that cell. The cell controller assigns

the task to the best bidder.

A scheduling algorithm has also been developed for Just-In-Time (JIT) pro­

duction systems [Miltenburg 1989]. A JIT production system involves the simple

concept of controlling the production of parts so that parts are only produced

at one workstation such that will be available at the next as and when they are

needed [Vail1988]. One objective of a JIT system is to achieve a constant flow of

parts with a minimum of waiting time between operations, and thus a minimum

Work-In-Progress (WIP) inventory.

In addition Artificial Intelligence (AI) techniques are being used to solve shop

floor scheduling problems [Bel1989], [Copas 1990], [Sarin 1990], [Sepulveda 1988].

Several AI disciplines such as distributed decision making, data interpretation,

optimisation and constraint-search may have to be utilised in order to provide a

real-time solution to the scheduling problem [Rabelo 1989].

Although many of the aforementioned developed scheduling systems provide

solutions to the scheduling problems, often these are based on several assumptions

and may bypass some of the shop floor problems such as machine breakdown

and maintenance, batch splitting, material availability etc. [Gupta 1989]. An

80

interactive scheduler combines the human expertise with computing power as

a decision support system to overcome this problem [Jackson 1989]. It utilises

the principles of socio-technical design to achieve a "best match" solution. The

human interaction provides the necessary input to generate a solution which more

closely models a particular system and the computing power deals with the bulk

of the tedious scheduling tasks.

For the purpose of this research a real-time scheduling system has been de­

veloped which is not as elaborate as some of those have been mentioned in above

and this was due to the restriction that was imposed by the available system

hardware to this research i.e. a network of BBC microcomputers (model B).

4.6 Real-time Scheduler for the Durham FMS

In the Durham FMS the process of part production begins once the user exe­

cutes the "MASTER" program. This is in the form of a menu driven module, which

provides the user with several options, including processing of a job. Choosing

this option the user is asked to enter the name of a job together with the number

of parts required (i.e. the batch size). This information is then passed to the

scheduler module (SCHEDULER program, Appendix F). The scheduler resides at

the master level, and is in effect the shop floor supervisor. It incorporates the

database module together with its scheduling algorithm, and partially utilises the

hierarchical behaviour of the system.

In developing the scheduler the following assumptions were made. The avail­

able production cells are dissimilar in their functionalities i.e. an assembly cell

cannot perform a machining operation. Each production cell has its own cell

controller. A job may have to visit several cells before reaching its final stage

81

of processing. Production of any number of parts belonging to a particular job

type is possible i.e. jobs can have any batch size. The route or possible routes

of part production for any job is already defined in the manufacturing database.

Jobs are processed one at a time. Defective parts cannot be salvaged. The FMS

is equipped with a warehouse for raw material (parts), finished and defect part

stores. Parts can be passed from one cell to any other cell according to the part

production route for that job by means of an inter-cell part transport system (e.g.

an AGV).

Once the system control is passed onto the scheduling module it initiates the

operation of the system in two phases. In phase one, it searches the manufacturing

database to obtain the relevant information regarding the job and the required

manufacturing cells. It then downloads the Cell Controller Specific Software

(cess) to the participant cells, and runs them remotely. The scheduler sends

messages and control commands to the cell controllers, where they are translated.

Each cell controller receives the name of a job and the number of parts to be

manufactured from the scheduler. Communication between the various control

levels of the system, (i.e. Master, cell, equipment), takes place via the Cell Talk

module which is explained in chapter five.

In phase two, with information about the sequence of operations and cell

utilisation from the database, the scheduler executes the following tasks until the

production of parts is completed:

a. supplying the cells with the parts from the previous cell as defined in the

sequence,

b. if the cell is the first cell in the sequence, a raw part from the warehouse is

sent to it,

82

c. if it is the last, parts are sent from that cell to the finished goods store.

The scheduler incorporates Cell Talk to scan the progress of part production

in all of the active cells for the current job, and if it finds the operation on a

part is completed in a cell, it transfers that part to the next logical cell (which

is not necessarily the next physical cell). The scheduler keeps a record of the

number of parts taken from the warehouse. When this number is the same as

the desired batch size to be manufactured, it continues to coordinate the part

transfer between the cells until the batch is fully processed. If a defective part is

detected in a cell by the scheduler, it sends that part to the defective part store,

and fetches a raw part from the warehouse for the defective part replacement.

The scheduler does not attempt to prepare an operation schedule for the

system resources, rather it allocates parts (and operations) to the cells during the

actual production period (in real-time), utilising the System Monitoring Module

(SMM) before making decisions according to a set of predefined rules and the

availability of the cell for acceptance of the part. In this way, the scheduler does

not need to make assumptions about e.g. the length of operation in each cell

for each part. The operation of the scheduler is similar to a simple dispatcher

which is capable of making decisions in real-time as and when the behaviour of

the system changes, (i.e. a defective part may occur at any cell).

As parts are being processed in different cells the scheduler records the oc­

currences time of the system activities together with their types in real-time

for off-line analysis. Information gathered here will provide input data for the

System-wide activity chart discussed in chapter six.

After the successful processing of parts in each cell, the scheduler sends control

commands to the cell controllers to end their part production session. The user is

83

allowed to terminate the process of part production at any time, and this can be

done at the master level. Once the scheduler receives instructions to terminate

part production, it issues commands to the cell controllers, which are actively

processing the current job, to terminate the operations of their cells. Each cell

controller will then terminate the cell operation if and only if the current operation

has been completed. In this way, the uploading of intermediate data is prevented

during the termination phase of production.

The heterarchical behaviour of the system can be highlighted at the cell level,

where the operation of each cell is autonomous and once the part production has

started, each cell controller will take charge of the cell, and does not require any

further commands from the scheduler to perform the in-cell operation. Every

time a cell completes the operation on a part, it will indicate its availability to

operate on further parts and will pull another part from the previous logical

cell. If a failure occurs in a cell it need not have an immediate impact on the

operation of the rest of the system. If another cell exists which can perform

the required operation, then the faulty cell can be bypassed, and the system

can continue in operation. This information interchange is done at the cell level

through Cell Talk.

The scheduling system has a potential to be utilised in a bidding mode, for

the system with machining centres, or cells with similar functionalities. The

scheduler will then request bids from different cells. Each cell will compute when

it would be ready to accept a job, and a job is allocated to the cell with the

shortest bidding time.

The scheduler module does not optimise the productivity of the FMS resources

(machine tools) by changing the sequence of operations. Furthermore, no attempt

84

is made to perform multijob processing or batch mixing. Appendix C provides a

detailed description of the scheduling system.

The control and scheduling of activities within each production cell is per­

formed by the Cell Controller Specific Software (cess) which is examined more

closely in the next section.

4. 7 Cell Controller Module and Scheduling of the Intra-cell Activities

In general, the expected tasks of a cell controller may be divided into the

following groups; to control, to monitor and to report. A cell controller should be

capable of to receiving work orders from levels two and three of the PPC system or

a plant scheduling system. It must also be able to start, stop and pause machine

tools send alarms, indicate status, give reasons for failure and give the user the

ability to intervene with the system [Bertok 1989]. The definitions of cell control

vary by industry, company and systems integrator and a distinction between cell

monitoring and cell control has to be made. National Electrical Manufacturers

Association (NEMA) in the USA is currently making an attempt to arrive at a set

of standard definitions for cell controllers [Labs 1989]. At the moment, a large

number of cell computers perform monitoring functions as opposed to control

functions and do not operate in or near real-time [Larin 1989].

The functionality of the cell controller in the Durham FMS is defined as an

entity which is in charge of monitoring, control and coordination of intra-cell

operations. BBC microcomputers (model B), being the only hardware resources

available for this research project, were to be utilised as an experimental set up to

exhibit the practical aspect of designed modules. Since the programmable devices

in each cell of the FMS are made by different manufacturers, they require different

85

control signals for the same function throughout the cells (i.e. the control signal

to 'STOP' the milling machine in milling cell is different from 'STOP' in sawing

cell). Hence, there exists a need for a common interface to unify the meaning

of control commands. A general purpose cell controller software is developed to

produce Cell Controller Specific Software (cess). It contains common purpose

routines such as INITIALISE, START, STOP, RESET, DOWNLOAD, UPLOAD, etc., and

all the user has to do is include the control signals within the routines. This

process is performed at the system definition stage, and a cess is required for

each cell. New cess is created at the master level, but once in operation it resides

at the cell level.

The CCSS has the role of a cell supervisor in the FMS and its functions can be

divided into four groups;

a. issue control commands to the programmable devices,

b. coordinate the intra-cell activities,

c. generate production progress report,

d. communicate with other entities (i.e. cells and the system scheduler).

Once the process of part production begins, each cell controller receives the

name of a particular job and the number of parts to be manufactured, from

the system scheduler. It then utilises the manufacturing database to obtain the

related job and cell information. From now on the cess of different cells commu­

nicate directly to one another to gain knowledge about the parts currently being

entered to their cells. A cess may require information such as part orientation

and part dimension etc., directly from the previous logical cell, which has just

completed operation on the part. Each cess is capable of checking the status

of part production in any other cell directly at any time. An important feature

86

of the CCSS is that cells can interrogate each other directly without reference to

the master level. This direct intercommunication between cells leads to the term

"heterarchical" control.

Operation of cess can be described as follows: perform a monitoring cycle, if

there is a status change check it against the predefined rules before performing the

task and issuing the commands to the cell resources (i.e. programmable devices,

machine tools etc.), Fig. (4-3).

During each monitoring cycle cess will check for the following; whether there

is a message to be received from other entities, a part to be transferred to or from

the cell, production of parts to be terminated and finally, whether or not the

current operation under progress has been completed. This is done by cess

scanning through its dynamic database (CAMP) to identify change of stat us in

various memory locations within the CAMP (described in chapter five). Every time

CCSS performs a task, for example, receives a part from other cells, it updates

the status of the appropriate memory location (i.e. input part buffer in this

case) within the CAMP. This feature will allow the cell dynamic information to be

updated without the necessity of passing information over the network, and at the

same time make this information available to any other entity. The monitoring

cycle is executed every time a task is completed.

cess makes decisions only after a monitoring cycle has been executed, and

its monitored condition checked against a set of predefined rules. The rules

are defined in the form of a series of conditional statements. For example, if

the monitoring module identifies that the current operation (e.g. machining or

assembly) has been completed, criteria such as the state of output part buffer,

being not full has to be met before the decision of part transfer from machine's

87

table to output part buffer can be made.

Currently, the rules are defined and placed at many places throughout the

cess program, Appendix F. It was possible to develop modules which would

search for rules in a database but which needed decisions to made in real-time.

A search in a database with computing facilities such as BBC micros would have

slowed the process of decision-making. A detailed description of the cess program

is included in Appendix D.

4.8 Conclusion

This chapter was concerned with the introduction of an architecture for Pro­

duction Planning and Control. A module was developed which allowed the user

to analyse the system capacity on a simulation basis and to identify the level of

cells' utilisation for a job with a specific production route. Currently, this module

can only consider the processing of a single job with a user defined production

route, however its benefits can be enhanced once it has been developed further

to cater for multi-job with variable production route. Furthermore another im­

provement may lie within the integration of this module to the system scheduler,

obtaining on-line capacity information from it for maximising utilisation of the

resources within the FMS.

A real-time scheduler was developed which controls the overall activity of the

FMS. It reacts to the changes of the real system and issues commands to the cell

level thereby exhibiting the hierarchical behaviour of the system. The scheduler

utilises Cell Talk for its communication with other entities and records the ac­

tivities of the system in real time. The control and sequencing of the activities

within a cell is carried out by the cell controller module. Once the production

88

cells have started their operations, they will continue to operate autonomously

and exercise the heterarchical control methodology by directly exchanging infor­

mation with one another. This simplifies the scheduling task of the system as

the scheduler does not need to schedule the in-cell activities. This has two ad­

vantages: firstly the decision making is located where the data is originated and

secondly the volume of global information is reduced.

89

(Demand Planning ·~ .. J
I - l

(

Top Management

"The game plan"

,lr

Production Planning

'

MPS

Level 4

~

----------------~-----J~~ ,.
MRP

(Capacity Planning n).,.. .. l-_-~f
~~~~~·! ~~~~~ 

______________________ __.Level _g_ 

' 
Production Activity ~ 

Control System J 

______________________ __.Level _1_ 

Figure (4-1) Production Planning and Control Structure. 

90 



***** SAWIHG cell ***** 
Input data 

Finished part required per production period 
Length of production period 
Analyzed period of tiM! 
Averaqe setup tiMe 
Rveraie downtiMe · 
Processing tiMe per coMponent 
Defect rate of the cell 

Calculated results 
------------------
Raw parts required per production p~riod 
FHS cell efficiency 
Unadjusted eguipMent requireMent 
Adjusted equipMent require~ent 

***** TURHIHG cfll ***** 
Input data 

Finished part required per production period 
Lenqth of production period · 
Analyzed period of tiMe 
Average setup tiM~ 
Average downtiMe 
Processing tiMe fer coMponent 
Defect rate of the cell 

Calculated results 
------------------
Raw parts required per production period 
FHS cell eff1cienc~ 
Unadiusted equipMe~t requireMent 
Rdju~ted eqUIPMent requlreMfnt 

***** MILLIHG cell ***** 
Input data 

Finished part required per production-period 
Length of production period 
Analyzed period of tiMe 
Average setup tiMe 
Average downtiMe 
Prqcessinq tiM~ per cofflpon~nt 
Detect t'ate of the c~ll 

~alculated l'esults 

Raw parts required per production period 
FMS cell efficiency 
Unadjusted equipMent requireMent 
Adjusted equipMent requireMent 

=75188 
=2 I 88 HOUI'S 
=BIBB HoUI'S 
=8~28 Mins 
=!.BB Mins 
=B~58 Mins 
=4~88 % 

=Bl~BB 
-Q" "'t' ~ 
- J ~I ( ..J I 

=8~33 FMS cel-ls 
=1.89 FMS c:~lls 

=75~88 
=2 I 89 Hout's 
=BIBB Hout's 
:? sn l,li ~~· "". v n •• ~ _. 
=3~B8 Mins 
=3~12 Mins 
=LiB % 

=78~88 
=9B~B5 % 

! 
i 
\. 

I ~ 
' 

=2~ BB FMS c:ells 
=1.99 FHS cells 

-"'t' Ll!i 
-(J.~v 

= 2 I BB Hour's 
=B I ea Hout's 
=B~SB Hins 
=1.19 Mins 
=1.88 Mins 
=3~98 % 

=77199 
=99168 % 
=8~65 FMS cells 
=1.89 FMS c~lls 

Figure ( 4-2) FMS cell capacity check for JOB5. 

91 



Check Against ~. . 
Rules r-

Non it or • 
Make Decisions 1 Real-time 

data 
..... 

.... 
Real System 1 I 

Figure ( 4-3) The cell controller operations. 

Data 

Colection 

= N 



93 

CHAPTER Five 

Communications in Flexible Manufacturing Systems 

5.1 Introduction 

Today's Flexible Manufacturing Systems are composed of various programmable 

devices such as numerical controllers ( CNCs ), robots, programmable logic con­

trollers (PLCs ), etc. Effective use of these resources requires that they be in­

terconnected by a communication system. Utilising Local Area Networks may 

reduce the cabling problems and improve access to distributed information while 

at the same time increasing the flexibility of the system. 

Currently, one of the problems with which many manufacturing companies 

and system designers are faced, is the introduction and integration of equip­

ment from vendors other than the one from whom they have purchased their 

existing equipment. Integrating multivendor equipment requires custom built 

software and hardware which in turn leads to a high expenditure. As a result 

many smaller manufacturing companies, once they have been set up, may suffer 

from being unable to choose the best equipment from a variety of vendors and 

being stuck with the product of a single vendor. This chapter highlights the 

problems related to the intercommunication of systems within a manufacturing 

environment and how these problems may be solved. Section 5.2 points out the 

importance of the open system and how the manufacturing environment can ben­

efit from it. In section 5.3 an introduction, the role and different types of Local 

Area Networks are introduced. Section 5.4 talks about MAP, a solution proposed 

and developed by General Motors. The collapsed communication architecture, 

Enhanced Performance Architecture (EPA) and miniMAP are discussed in section 



5.5, this is then followed by a description of the LAN utilised for Durham FMS in 

section 5.6. A communication technique, namely CellTalk, allowing the direct 

communication between entities in the FMS was developed and implemented on 

the experimental Durham FMS and is discussed in section 5.7. CellTalk takes ad­

vantage of a hierarchical structure for information exchange among entities in the 

FMS and incorporates a series of communication primitives which are described 

in section 5.8. 

5.2 Manufacturing Communications and OSI 

There have been fundamental changes in the application of automation to the 

manufacturing industry in the past two decades. This is due to the application of 

computers to the control of the equipment and processes involved. As the number 

of programmable devices within the manufacturing organization grow, the lack 

of communication standards leads to the frustration of those wishing to integrate 

the operation of such devices in the interest of manufacturing efficiency [Sumpter 

1985], [Street 1989]. 

System designers who build computer based automated systems often must 

decide how to integrate effectively system modules into one system. One way 

of achieving this objective has been to choose all the equipment from the same 

vendor. Although all the equipment from one vendor can communicate with 

one another, such communication is considered to be "closed" since there exists 

a need for a special custom designed protocol convertor to allow communication 

with equipment of another vendor if implemented. Alternatively, an "open" com­

munication standard can overcome the interconnection problem, because all the 

vendors will develop their systems according to the same standard, which defines 

94 



all types of information transfer between various elements of the systems [Weston 

1986]. 

As it would be extremely difficult to arrive at a general description of the com­

munication process which covers the behaviour of every type of communication 

system, an international standard model, namely Open System Interconnection 

(OSI), is necessary [Zimmerman 1980]. The prime task of OSI is to overcome the 

communication problem between computers and associated devices, so that each 

is able to exchange information with the other regardless of make, model, age or 

level of complexity [Tangney 1988]. 

One of the factors responsible for bringing OSI to its present stage of develop­

ment was the realisation of major manufacturers of computers and programmable 

devices (intelligent entities) of the internetworking problems, resulting from the 

development of different communication architecture by each manufacturer [Freer 

1988]. The disadvantages that these manufacturers were foreseeing included; the 

user discouragement due to problems involved with compatibility of their systems 

and the threat to the size of the communication market, the attraction of users to 

the biggest manufacturers. From the user's point of view, it was a great danger to 

be limited to one supplier for their communication requirements. As a result the 

International Standard Organisation (ISO) proposed a standard reference model 

to provide a framework so that standard protocols could be developed. 

The OSI reference model breaks down the network and support services into 

a modular fashion producing a seven layer hierarchy shown in Figure (5-1). The 

model is concerned only with the external behaviour of computer systems and the 

communication's functions are partitioned by it into the seven layers [Zimmerman 

1980]. An important part of this partitioning is that it separates communication-

95 



oriented functions at the lower layers from more user/ application-orientated func­

tions at the upper layers. The communication-oriented functions are concerned 

with the use of the physical data transmission network and the rules associated 

with its use are the low-level protocols. The user-oriented functions are concerned 

with the ability of two systems to exchange information and to understand it. The 

rules required to achieve this cooperation are called high-level protocols. 

There are two types of standards associated with each layer of the OS! ref­

erence model namely, service specification and protocol definition. The service 

specification [Beauchamp 1987] of each layer (layer N) defines the facilities and 

functions offered to the layer immediately above it (layer N+l), and the layer 

N, in turn, uses the services provided by the layer below (layer N-1), Fig. (5-2). 

The protocol definition of a layer (layer N) defines the rules and conventions for 

communicating with a corresponding layer (layer N) on another system. 

Note that two systems, each of which can rightly claim to conform to the OS! 

seven layer reference model, will not necessarily be able to communicate with 

each other directly. To accomplish direct compatibility there must be an agreed 

implementation specified for each of the seven layers [Weston 1986]. This is what 

the Manufacturing Automation Protocol (MAP) is aiming for and is discussed in 

section 5.4. 

Since MAP is about networking and is mostly concerned with Local Area Net­

works (LANs ), which are the private channels used within the manufacturing en­

vironment, [Wright 1987], some concept and terminology of LANs is discussed 

first. 

96 



5.3 Local Area Networks 

A Local Area Network (LAN) is primarily a data transmission system, intended 

to link computers and associated programmable devices within a restricted ge­

ographical area [Frenzel 1987]. LANs are used in industry at several different 

levels which may serve different purposes. Thus it is not surprising that the most 

efficient type of networks for one application may not be the most suitable for an­

other. What is important is the intercommunication ability of different network 

with the requirement for minimum effort. 

Office automation and factory automation are the two major areas in which 

LANs are highly valued [Hohner 1989]. Some of the particular benefits that LANs 

are capable of offering to office automation are: resource sharing such as mass 

storage, gateway, high quality printers; users can have easier access to information 

and information stored at any one point can be accessed by all those who have 

the need and the authority; most LANs can be reconfigured, changing both cable 

length, the position and number of devices attached to them. Factory automation 

is concerned with the interconnection of devices for the control and monitoring 

of a manufacturing operation. Local area networks here will allow a distributed 

set of programmable devices such as sensor, CNC machines, robots, etc. to be 

monitored and the appropriate control action to take place if necessary [Allan 

1989]. 

A wide variety of relevant factors may be used to differentiate the many types 

of LAN available today i.e. reliability, price, performance, the maximum size of 

the area they can cover and so on. To best describe a particular LAN design 

[Hutchison 1988] from a technical point of view, one must adopt the approach 

taken in each of the following technological areas; network topology, transmission 

97 



medium, signalling technique and accessing method, which are examined in turn. 

5.3.1 Network Topology 

The topology of a network describes the way in which the stations (nodes) of 

the network are interconnected and gives the logical shape of the network. The 

star, ring and bus are the three basic LAN topologies. 

In the star topology all the stations (nodes) comprising the network are con­

nected to a common central switch, Fig. (5-3a). The central switch provides a 

path between any two stations, either logically in a packet switch, or physically 

in a circuit switch. This topology exhibits a centralised communication control 

strategy. Failure of the central switch will stop all communication in the entire 

network. Throughput is limited by the rate of acceptance of the central switch, 

which may form a bottleneck. 

A ring network consists of a number of stations linked to its neighbour by a 

point-to-point unidirectional link via a repeater to form a closed ring [Ross 1987], 

Fig. ( 5-3b ). The data is sent in packets or frames around the ring in one direction 

from station to station. Each packet contains a destination address. Within each 

station there exists a controller board responsible for access control to the ring 

and the packets addressed to that station. 

Repeaters carry out three main functions which are; data insertion, data 

reception and data removal. As the packet circulates past a repeater, the desti­

nation address is checked, if it corresponds to that station to which the repeater is 

attached, the remainder of the packet is also copied before being regenerated and 

retransmitted bit by bit within the packet frame to the next/another repeater on 

the ring. 

98 



Throughput is determined by the media and the capability of the repeaters. 

Techniques available to access a ring network include the slotted ring, which 

involves circulating a number of empty data packets around the ring, and the 

token ring in which short, unique data packets may be exchanged for much longer 

data packets. 

Bus networks have a very different approach than ring and star. These are 

comprised of a shared linear communication medium (bus) to which stations are 

attached by special hardware interfacing or tap to the bus, Fig. (5-3c). Each 

tap must be capable of delivering the signal to all stations in the network. Data 

from one station is transmitted in packets to all other stations on the bus in both 

directions at the same time. Each station listens to the transmission and picks 

up the one to which it is addressed. If the active component of one station fails, 

it does not effect the rest of the network. For this reason bus networks are often 

referred to as "passive". 

5.3.2 Transmission Medium 

The transmission medium is the physical medium linking the stations (nodes) 

in a LAN. There are two main types of transmission media; terrestrial media and 

free space. Transmission through free space may be by digital, microwave, radio 

and infra red light beam communication. Terrestrial media include twisted pair 

wire, coaxial cable and fibre optic cable, which is widely used in commercial 

LANs. A twisted pair wire consists of two insulated wires arranged in a regular 

spiral pattern. Twisted pair wire is suitable for both analogue and digital data 

transmission [Freer 1988]. 

Coaxial cable consists of a conducting wire inside a second, hollow conductor 

99 



and separated from the hollow conductor by an insulator. The hollow conductor 

is earthed and shields the signals on the central conductor from interference. 

Two modes of data transmission are possible using a coaxial cable: baseband and 

broadband, which are explained in the 5.3.3 sub section. 

Finally, the fibre optic cable is a thin flexible strand of glass or plastic ( typ­

ically 0.2mm in diameter) surrounded by a PVC jacket capable of conducting an 

optical ray. Its advantage over traditional electrical transmission media includes; 

low attenuation, very high bandwidth, immunity to electrical interference and 

crosstalk. 

5.3.3 Signalling Technique 

There are two major classes of signalling technique employed by LANs, namely: 

baseband and broadband. A baseband system uses digital signals on single fre­

quency, (i.e. the signal is transmitted on its original frequency without any 

modulation) in half duplex mode only (i.e. in one direction at a time only). 

Transmission media such as twisted pair, coaxial cable and fibre optic can be 

used for baseband signalling. 

Time Division Multiplexing (TDM) techniques may be used to allow multiple 

messages to travel simultaneously on a baseband medium. Stations are attached 

to the transmission medium by means of taps. A terminator may be used to 

prevent signal reflection on twisted pair and coaxial cable. 

In broadband systems analogue signalling is used, in Radio Frequency (RF) 

range, and coaxial cable is employed as a transmission medium which can support 

transmission over a wide range of frequency (generally bandwidth of up to 300-400 

MHz). These analogue signals are also known as carrier signals. The bandwidth 

100 



of a transmission medium can be divided into narrower bands (channels) by 

Frequency Division Multiplexing (FDM) and each can be utilised independently 

to provide a range of services. The available channels on a broadband system are 

logically independent of each other and may utilise different accessing methods 

and operate at different speeds. 

Each station requires a modem to modulate and demodulate the digital sig­

nal onto the carrier signal for transmission over the network. Frequency agile 

modems are special types of modems which can operate on several different fre­

quencies, and are capable of being switched locally or remotely, from one to 

another. Unlike the baseband, however, broadband is a unidirectional medium. 

Signals inserted onto the medium can propagate in only one direction so separate 

transmit and receive channels must be provided. There are two methods for con­

figuring broadband networks: Single cable and dual cable approaches. In a single 

cable system, often referred to as a mid-split system, the bandwidth of the media 

is split into transmit and receive band with a guard band in between. The guard 

band prevents interference between the transmit and receive frequency bands. 

Signals amplifiers separate and amplify the two bands in different directions and 

a headend is used to receive the signals in the transmit band and retransmit them 

on the receive frequencies, Fig. (5-4a). 

In a dual cable system, one cable is used to transmit information while the 

other is employed to receive the information. Here the entire bandwidth of the 

cable may be used for data transmission, and the two cables are simply looped 

around at the headend. Each station is connected to two cables transmitting all 

data on one cable and receiving on the other, Fig. (5-4b ). In the broadband 

system Time Division Multiplexing (TDM) may be used to allow several users 

101 



access to a channel in quick succession. 

The advantages offered by broadband system are many, including: the ability 

to carry a wide variety of traffic on a number of channels (voice, video and data 

channels); with the use of amplifiers a wide area of coverage is achieved; channel 

bandwidth allocation may be changed to match changing requirements. 

The disadvantages include: the average propagation delay between stations 

for broadband is twice that of a comparable baseband system. This may reduce 

the performance and efficiency of the system. There is a risk of total failure, due 

to a short circuit on the cable or failure of a headend. The cost of implementation 

of a broadband system is higher than other LANs. 

5.3.4 Accessing Method 

The way in which a station can get access to a LAN is defined by a set of 

procedures called access method or protocol. Some of the most popular accessing 

methods include the distributed access methods which employ some form of TDM. 

Here, each station obeys certain fixed rules in order to know how and when to gain 

access to the LAN. Token passing, empty slot and Carrier Sense Multiple Access 

with Collision Detect ( CSMA/CD) are the most popular examples of distributed 

accessing methods. 

The token passing can be implemented on both ring or bus LANs. In the 

token bus topology the stations form a logical ring and each station is aware of 

its logical successor and predecessor addresses. The operations of token bus and 

token ring are similar to each other. The right to use the transmission media is 

determined by a free token which continuously circulates from station to station 

in the logical ring (token bus) or physical ring (token ring) [Pitt 1987]. 

102 



To transmit data a station awaits the arrival of a free token. It then marks the 

token as busy and sends a data packet. As the token has passed around the ring 

it arrives back at the sender where it is marked as free before being sent to the 

next/another station on the ring. Note that each station must stop transmitting 

and pass on the token after a set maximum time. This method gives a definable 

maximum time for data transfer and for this reason token passing LANs are said 

to be deterministic. The deterministic behaviour of token passing LANs makes 

them particularly important in the industrial real-time control and in analysing 

critical factory data flow. 

The empty slot or Cambridge ring access method utilises a ring that is divided 

into a number of fixed size slots. A station wishing to transmit data waits to use 

a circulating empty packet (slot) as it passes by. It then marks the packet full 

and inserts its own address and data, and the destination address before passing 

it around the ring. The destination station recognises its address, reads the data, 

marks the packet as read and then passes the packet on around the ring. When 

the packet arrives at the transmitting station, it marks the packet as empty and 

the transmitting station is not permitted to reuse the packet twice or more in 

succession, hence the empty packet would be sent to the next station on the ring. 

The CSMA/CD method of accessing relies on carrier sense to ensure that only 

one station is transmitting on the medium at any one time. A station wishing 

to transmit listens to the transmission channel to detect if any other station is 

transmitting. Since it takes a short time for a signal to travel along the trans­

mission medium, it is possible for one or more station to begin transmission 

simultaneously, in which case a collision will occur. To prevent this and to de­

tect any collision the transmitting station will listen during transmission as well 

103 



as before transmission. Should a collision occur, the transmitting station will 

abort transmitting data, wait for a random period of time and will commence 

retransmission only if no other station has begun transmission in the meantime. 

CSMA/CD is restricted to bus LANs. 

Local Area Networks are appearing more in the manufacturing environment 

where most of the computers reside within the programmable devices (machine 

tools) on the shop floor [Breeze 1990]. However, factory automation is still some 

way behind the computer industry in the process of standards' adoption. As a 

result the equipment on the shop floor lacks the power of "plug-in compatibility". 

General Motors (GM) has been trying to solve this problem by introducing its 

own set of standards called Manufacturing Automation Protocol (MAP) which is 

discussed in the following section. 

5.4 Manufacturing Automation Protocol (MAP) 

In any one factory automation project, somewhere between a third and a half 

of the total expense may be incurred in the special wiring and custom hardware 

and software interfaces required to enable the various programmable devices to 

communicate with one another [Dwyer 1987]. 

General Motors ( GM) of the USA was one of the first companies to anticipate 

the scale of the ever-growing problem with communication among shop floor 

programmable devices in the manufacturing industry. By 1986, of 40,000 pro­

grammable devices, instruments and systems installed at General Motors ( GM) 

facilities, only 15 percent were able to talk to one another. Hence, unless the 

idea of using a set of standard communication protocols was embraced by the 

manufacturers of various programmable devices, the problem of communication 

104 



in the manufacturing industries would soon get out of hand [Gillespie 1988]. As 

a result, in 1980 GM initiated work on Manufacturing Automation Protocol (MAP). 

MAP is a set of communication protocols, intended to be the standard basis 

for a factory-wide communication. It is an implementation of the OS! reference 

model which uses a set of selected standards from the OS! model and operates 

in LANs. The solution proposed by MAP, imposes a single, vendor-independent 

communication network standard on all manufacturers. Consequently, this will 

result in freedom of choice in selecting devices for the factory without special 

consideration for communication needs. Since the first release of MAP specifica­

tion in 1982, it has evolved through several versions, the last version of which, 

3.0, was released in June 1987 [MAP 1987], [Folts 1988]. Figure (5-5) illustrates 

the MAP 3.0 selection of standards within OS! model. By 1984 MAP dominated 

the interest of many manufacturers and users in the USA. One year later, the 

European MAP user group (EMUG) was formed in Europe, which revealed the inter­

est of European manufacturers. The Communication Network for Manufacturing 

Applications ( CNMA) project, as a sub project of (ESPRIT) i.e. the European 

Strategic Program for Research and development in Information Technology, is 

mainly concerned with CIM system applications and started at the beginning of 

1986. One task of the CNMA project has been the definition of protocol profiles 

for communication services supporting CIM and to demonstrate internetworking 

of multi-vendor equipment benefiting those companies which are looking for low­

cost multi-vendor MAP communication capabilities [Daigle 1988]. 

In order to eliminate any ambiguity towards the understanding of MAP stan­

dards, which may result in internetworking problems, everything from hardware 

to the meaning of exchanged messages is being specified within the MAP specifi-

105 



cation [Jones 1988]. As the layer seven (application layer) of the OSI reference 

model plays an important role in a MAP based network, it is examined more closely 

in Appendix E. Since the MAP products must be fully OSI compatible, MAP will 

have associated with each of its protocol layers a set of tests which will ensure 

absolute compliance with that particular OS! standard. 

MAP discourages the use of bus protocols operating under CSMA/CD (e.g. Eth­

ernet), because the non-deterministic nature of such a system may degrade the 

communication service to below the standard required by manufacturing systems. 

Hence, a broadband token bus system such as a logical ring with a data rate of 

1 OMbi tIs has been chosen for a number of reasons including; the deterministic 

nature of logical ring, i.e. calculable maximum waiting time for a given station; 

the ability for communication of several devices simultaneously; reliable operation 

with high traffic loading, etc. 

However, recent reports show that CSMA/CD Ethernet has become the domi­

nant LAN for the manufacturing environment [Adams 1990]. It is stated that the 

success of CSMA/CD lies within the satisfaction of four basic requirements which 

are: cable media be capable of spanning shop floor and factory wide distances; 

good price performance on several cable media types; quick/ easy access to the 

LAN channel under fluctuating network traffic loads; uninterrupted service in shop 

floor area where electromagnetic fields radiate from production equipment. 

Furthermore, the head of the CNMA project at Aerospatiale [Communique 

1990] also addresses the wide use of Ethernet as a common problem among many 

Europe manufacturers. He states that Ethernet is totally incompatible with US 

MAP specification and it is not possible to scrap all existing systems and start 

from scratch with a MAP compatible system. Therefore CNMA is attempting to 

106 



find ways to incorporate Ethernet into an open systems communication hierar­

chy. Currently a gateway is used to allow factory control network (Ethernet) to 

communicate with the implemented shop floor carrier band (discussed next) MAP 

network. 

Since the cost of the broadband system implementation is high, MAP specifica­

tion intends to be media independent, giving the opportunity for a single channel 

MAP network to be utilised. This alternative MAP system is called carrier band MAP 

[Ioannou 1987] which does not require a headend remodulator. In carrier band 

MAP two frequencies are used, one to represent logic zero and the other, logic 

one, and utilising "Frequency Shift Keying" (FSK) treats the two frequencies as a 

single frequency and by shifting it up and down creates the zero and one signals. 

The single channel carrier band is, lower-cost and slower than the full MAP ver­

sion, operated at 5Mbit/s. The carrier band MAP may be used at cell level of the 

manufacturing organisation to connect the various programmable devices within 

a cell, where multi-channels is not required [Coleman 1988]. 

Although implementation of full MAP communication spine, (often referred to 

as the backbone network), may seem ideal for covering great distances around 

the factory, it does exhibit some weakness for time critical applications. A typical 

assembly cell, which may be comprised a few robots and a vision system, requires 

simplified and rapid communication. The data transfer within the cell is often 

restricted to small amounts in order to obtain short messages at frequent intervals 

for real time applications. Hence, a full MAP system on broadband would both 

be expensive and very slow in terms of response time. The solution for such 

application lies within the use of a collapsed communication architecture namely 

Enhanced Performance Architecture (EPA) and miniMAP, on a baseband cable to 

107 



provide fast responses [Weston 1987]. 

5.5 Enhanced Performance Architecture (EPA) and miniMAP 

To arrive at a collapsed communication architecture is to dispose of some of 

the layers, Fig. (5-6a), which add data to the message as they pass through the 

OS! model. One way of achieving this would be to provide some means of direct 

link to layer 2, which would allow the application to communicate without going 

through the top five layers of the seven layer OS! model. A system which has on 

one side all seven layers and layer 1, 2 and 7 on the other side, is called Enhanced 

Performance Architecture (EPA). This allows communication on one side with its 

peer entity on the MAP backbone, as it contains all the seven layers and rapid data 

transfer on the collapsed side. 

Some systems which only provide the collapsed architecture such as EPA with 

no seven layer architecture on the other side is called mini MAP, Fig. (5-6b ). It 

must be stressed that miniMAP cannot communicate with an OS! system and is 

not OS! compatible. However, a miniMAP system may choose to communicate 

with an OS! system via EPA. 

Finally, there is one more type of communication for which MAP may have to 

allow, namely fieldbus [Pleinevaux 1988]. Connecting every switch and sensor on 

the shop floor to a carrier band may result in high expense. Therefore, at sensor 

level there exists a need for a simple, low-cost and effective single link (fieldbus) 

which replaces the point to point links from each switch and sensor to its con­

trolling equipment. The architecture of a fieldbus is comprised of layers 1, 2 and 

7. The communication between the fieldbus and MAP on the carrierband requires 

a gateway. Figure ( 5-6c) shows a typical MAP network. It demonstrates the capa-

108 



bility of a typical MAP network, satisfying all the communication requirements of 

various programmable devices within a plant. 

However, for a small manufacturing company, neither would it be possible to 

invest money on the full MAP broadband, nor is there a need for multi channels. 

Hence, it seems logical to start with implementing EPA on carrier band MAP since 

it is both lower in cost than broadband and has the potential to become an 

integral part of a full MAP system later. Should there be a need for a multi 

channel broadband system in future, the existing communication network will be 

able to communicate with it via a bridge or router. To this effect there exists 

an opportunity for every manufacturing company, irrespective of their size and 

capital, to take advantage of the standard environment that MAP networks create, 

thus pressurising the manufacturers and vendors of computer-based equipment 

to move towards the 'plug-in compatibility' of their products. 

It is believed that communication techniques which are network independent 

will have great value in the manufacturing industry. Therefore the research car­

ried out for the Durham FMS is aiming at the development of a communication 

technique which may be applied to any type of baseband LAN as the starting point 

for the integration of resources within a manufacturing facility but at the same 

time allowing the system to have the potential to be integrated with the more 

industry accepted standard (i.e. MAP). Although MAP at the present time may 

not be implemented to many industrial systems as was first anticipated, in near 

future this will change once the MAP product becomes more widely available and 

also at lower cost. Hence, it is important that current efforts be put towards the 

preparation and, or adaptation of current systems to a well accepted standard 

and not the introduction of a further new set of standards. The way this can 

109 



be achieved is by the development of a communication technique which solves 

the immediate problems in the manufacturing environment at a low cost (i.e. 

utilising the available network and resources instead of investing heavy sums in 

a full MAP system). Such an attempt has been made for the FMS rig at Durham. 

The network utilised as an experimental system to which the developed commu­

nication technique may be applied was a low-cost baseband LAN which existed 

prior to the start of the research. This LAN is called "Econet" which allows BBC 

microcomputers to be utilised as stations (nodes) in the network. 

5.6 Econet a LAN for Durham FMS 

Econet is a low-cost local area network for BBC microcomputers. This com­

mercially available product allows all the computers on the network to share 

facilities such as printer and disc drive as well as the transfer of data between the 

computers. Only a minor addition to each BBC will enable it to operate on the 

network and that BBC is then called a "station". Econet uses an eight bit address 

which allows up to 255 stations to be interconnected over distances of up to 1 km. 

Each station on the network only responds to a unique number (station id) 

which is hardwired onto its Econet interface card. The main cost of such a system 

is the wiring between the stations and the file server, a dedicated BBC to operate 

the disc drive. A station acting as file server cannot function as a user station 

at the same time. The file server software manages the files of all the users on 

the network. There are various levels of file server programs and level two which 

requires a 6502 second processor is used for Durham FMS. It supports a hierarchical 

directory structure. The route directory contains each user's directory which, in 

turn, can contain sub-directories. Simple protection facilities are provided to 

110 



ensure that the user's file can be protected from other users. 

Econet is a bus network using cable transmission over two pairs of wires which 

connect all of the stations together. Each station on the network is connected to 

the bus via a short spur. The network is terminated at each end by means of a 

terminator box which is a combination of power supply and circuits to prevent 

reflection of signals. Information travels in a serial bit form over one pair of wires 

and the other pair carries the network synchronization signal or "clock". The 

maximum rate of this clock is 210 KHz and if the clock is set for a transmission 

speed of 210 kbps (210K baud), a 64K of data block would monopolise the network 

for just under two and a half seconds. However, if a station needs to read data 

from a disc the effective data transmission rate is much lower than this. It takes 

16 ms to read 256 bytes from a disc, and a further 6 ms for network transfer to 

occur [Cheong 1983]. 

Econet incorporates an access protocol similar to Carrier Sense Multiple Ac­

cess with Collision Detect ( CSMA/ CD). The system will continue to operate if other 

stations are not working. The bus approach allows stations to communicate with­

out involving a third party and the interface hardware is simple. 

Econet takes advantage of a balanced line system [Napier 1984]. This means 

that the two wires of each pair always carry opposite voltages. When the signal 

goes positive on one, it goes equally negative on the other. The signal is detected 

by a differential receiver (i.e. one that operated only on the potential difference 

between the pair of wires). In this way two benefits are obtained as following: 

a. in each twisted pair, the RF radiation from one wire cancels out the other. 

Radiated signals which could interfere with other electrical equipment are 

negligible. 

111 



b. external interference (e.g. inductive pick-up) is likely to affect both wires 

equally so will be ignored by the system. 

The control of communication in the network is carried out by a system of 

interrupts. An interrupt is either generated by a local station's operating system 

or by the interface card when it detects the appropriate station number on the 

network. It then stops the computer's original task so that it can deal with the 

transmission or reception of data. These occurrences constitute a background 

task, the only effect of which, on the performance of a station, is a small drop 

in speed. Since the operation of one interrupt disables any other, the use of 

interrupts in the control of peripherals should be avoided. 

Econet cannot provide the advantages offered by a deterministic type network 

since it utilise a contention method of accessing (CSMA/CD). This could have been 

a major drawback in its use for the FMS if all the elements of each cell (i.e. pro­

grammable devices) were attached directly to the network, Fig. (5-7 a). Then the 

control of time critical operations by cell controllers would have been impossible. 

For example for a cell controller to stop the machining operation on a CNC due 

to a tool breakage, it had to wait until the network allowed it to transfer the 

appropriate control command to the CNC controller. As this could have fatal con­

sequences a LAN with a deterministic nature (i.e. token rig or token bus) has to 

be employed to connect all the elements of cells to the FMS if above arrangement 

is used. 

However if only the cell controller were interfaced to the LAN and all the 

devices within each cell were attached by means of a point-to-point connection 

to the cell controllers then the above problem is eliminated, Fig. (5-7b). The 

Durham FMS is arranged in this way where all the programmable devices are 

112 



connected to their cell controller which they in turn are interfaced to the LAN. 

In this way each cell controller does not require the network to pass information 

to the in-cell devices. Therefore cell controllers could control the programmable 

devices within their cells in real-time and in a deterministic manner and not 

dependent on the volume of traffic in the network. Note that this method of FMS 

arrangement is dependent on the input/output capability of each cell controller 

resulting in a limitation on the number of programmable devices which could be 

attached to the cell controllers. This is where a token bus or ring MAP network 

would have an advantage over this method at the cell level. However in most 

cases depending on the definition of manufacturing cell they do not have more 

than a handful of programmable devices. 

Econet was found to be entirely satisfactory for the laboratory based sys­

tem. The communication technique developed for Durham FMS described in the 

following section is not LAN specific, therefore other architecture could also be 

employed. 

5. 7 Communication Technique 

A communication software module, namely "Cell Talk", was written to pro­

vide information exchange between different entities throughout the system. The 

aim of the technique developed was mainly to provide a solution for those man­

ufacturing companies wishing to integrate multivendor equipment into their ex­

isting programmable devices, while at the same time leaving the option open for 

easy integration to a MAP based network. This technique could be particularly 

useful for those companies which possess earlier models of programmable devices 

(i.e. NC and CNC machines) that cannot take advantage of direct interface to a 

113 



LAN or a MAP system. 

In general there exist two main solutions to the problem involved in the in­

terconnection of shop floor devices [Weston 1989]. Firstly, a "backplane" solution 

which requires the incorporation of a network interface card into the hardware 

of the machine controller and consequently extensive modifications to the soft­

ware structure of the controller. This solution is entirely dependent upon the 

cooperation of the programmable devices' manufacturers, however it will take a 

considerable time for such manufacturers to recognise the demand and provide 

such features as directly MAP compatible devices. Secondly, a "gateway solution" 

which can link those programmable devices that only support vendor specific 

protocols to the MAP based network. Hence, utilisation of gateways may provide 

an immediate solution to the problem of interconnection of shop floor devices. 

In parallel to this research, the System Integration (SI) research group at 

Loughborough University [Weston 1989] has used gateways to connect together 

the elements of a manufacturing cell. These gateways were located in the vicinity 

of the programmable devices and acting as a front-end processor which provide the 

protocol conversion between the proprietary protocols and standard MAP network 

protocol. An example of such gateways were shown by SI in action at the CIMAP 

exhibition at the NEC, Birmingham, UK, in December 1986. 

Although a gateway can provide an immediate solution, smce it converts 

proprietary protocol to the standard MAP network protocol, it may slow down 

the process of direct information exchange among the entities. Therefore it was 

thought that a communication technique which could provide a mechanism for 

direct information exchange between the entities may benefit those entities requir­

ing rapid data exchange. The designed and developed communication technique 

114 



is called "Cell Talk". 

Cell Talk uses a reserved area of memory for communication in each entity. 

This reserved area of memory has the same address in all entities and is therefore 

named CAMP (Common Address Memory in distributer Processors). Figure (5-

8) shows the logical position of the CAMPs in the FMS. At the cell level each cell 

controller has a communication module comprised of Cell Talk and CAMP which 

allows the information to be freely exchanged among entities. 

Each memory location within the CAMP is given a unique name and a range 

of system states are held in coded form in this memory area. Assigning names 

to memory locations is carried out at the beginning of all of the programs which 

utilise the communication module. Each cell controller has one CAMP to which it 

writes the status of the cell activities. For instance, the content of memory loca­

tion "program-stat", within the CAMP in the milling cell represents the equivalent 

information about the milling cell as of that in the vision cell (i.e. whether it is 

running, completed or stopped). In this way each cell controller avoids requir­

ing to utilise the network to update the various cell states in its CAMP, as this 

is done at the cell local processor and therefore the volume of network traffic is 

considerably reduced. However, during the period of a data transaction between 

two entities on the network, entities must use the network as a means of data 

transfer. 

Since the computers used as cell controllers are BBC microcomputers, they 

are set to operate in MODE 7 so that the area of memory beyond 7BOO (hex) can 

be reserved for CAMP. There are at least two hundred memory locations which 

could each hold a particular system state in the form of an encoded number (255 

different binary states). Table (5-1) shows part of the listed memory locations 

115 



used for holding cell states data. The table gives the information on the names and 

addresses of each memory location within the CAMP. It also shows what states can 

be written to or read from these memory locations and by whom. For example, 

an entity at master level, to establish a logical association with a cell controller, 

has to write a FF (hex) (for connect) into the memory location called "logi-assoc" 

with the 7BOO (hex) address. The cell controller will then read this location to 

find out whether or not an entity wishes to talk to it. Once the information 

exchange is completed between the entities, the logi-assoc will be set to 00 (hex) 

(for disconnect) by the entity at master level to signify the end of the session. 

An alternative to the CAMP based system would have been to reserve an area 

of memory in a "common-memory" residing in the file server or in a separate 

entity on the network for each cell controller, Fig. (5-9a). In a common-memory 

based system, for a cell controller to update different cell states, it has initially 

to find the memory base address allocated to it in the common-memory, before 

passing the information over the network and writing it above that address. For 

example, cell controller 2, to update the status of the memory allocated for the 

programmable device state (i.e. whether it is completed, idle, stopped etc.), with 

indexed address of OF (7COF absolute address), it first has to find the base address 

which has been allocated to it by the system. The base address in this case is 

chosen to be 7COO (hex). Once this information is obtained it uses the network to 

pass the information over to the common-memory before registering the desired 

state to the memory location. Note that the least two significant figures in the 

address represent the memory location addresses for cell specific data (status) 

and the two most significant figures of the address represent the specific cell base 

address in the common-memory. 

116 



In the CAMP based system, unlike the common-memory based system, the base 

addresses are the same in all of the cell controllers and the common memory is 

distributed in the cell controllers, Fig. ( 5-9b ). For the cell controller 2 to update 

the device state in 7BOF address all it needs to do is write the desired state to 

the absolute 7BOF address locally, i.e. passing the information over the network 

is not required. Therefore the volume of network traffic is halved in a CAMP based 

system and will improve the efficiency of CSMA/CD type LAN in a FMS. 

Furthermore, information exchange between entities in a common-memory 

system requires the obtaining of the base address for the desired entity in the 

common memory. As the number of cell controllers is increased in the system, 

problems will arise for allocation of new memories in the common-memory. How­

ever, in both types of systems reading of the information from another entity 

(cell controller) requires utilisation of the network. From this it is evident that 

the distribution of the common-memory among entities will provide the FMS with 

several advantages and this is the way in which entities in the Durham FMS hold 

their system status. 

Each entity in the FMS polls its CAMP to find out whether it is invoked for a 

particular service by the other entities in the network. The method of polling 

is adopted since each entity in the FMS is involved in the real time operation of 

programmable devices, which must not be interrupted. Therefore, a policy is 

encorporated which polls the network following the execution of the current task, 

to look for any requests by other entities. 

Entities in the FMS can get a snapshot of the activities and status of various 

devices with the aid of CellTalk. For example, a cell controller can get the 

status of a single device, a number of devices, or all of the devices and activities 

117 



of any other cells. The way in which this is performed is that the Cell Talk of 

the cell controller carries out a direct memory access of the CAMP of the distant 

cell controller before providing the information to the local cell controller. This 

is one of the important features of Cell Talk, as it can be utilised as a monitoring 

tool of different entities for the user. A program namely, "MONITOR", Appendix 

F, was developed to demonstrate this. A user can monitor the activities of any 

of the entities in the FMS by only entering the name or the logical address of the 

desired entity. This program was found to be very useful during the debugging 

and testing of software modules and, due to the nature of the system software, 

tasks being processed in distributed processors concurrently without it would 

have been extremely difficult. 

CAMP holds information in a convention similar to that laid down by the 

Manufacturing Message Service (MMS) of MAP. This allows easy interface of the 

FMS to the MAP network, since the information within the FMS is handled in a 

similar way and uses comparable syntax to MMS. In this way Cell Talk can offer 

the same functionality as that of MMS. The MMS standard was used to provide the 

basis for the selection of functions implemented here. Hence, if a MAP network 

is connected to the FMS, and for example, the status of a device is required by 

the MAP compatible entity, the CAMP, with the aid of CellTalk, will provide the 

entity with information in a MAP-like syntax and format. 

As it is not necessary or desirable for most systems to implement the complete 

MMS service the following services were chosen as adequate for the Durham FMS: 

Up-load and Down-load to CNC from computers; Dynamically down-load programs 

to CNCs ; Report change of status from NCs; Start and Stop program execution in 

NCs; Request status information from NCs; Transfer files between computers. 

118 



The network communication protocol developed within the CellTalk, Ap­

pendix F, functions according to a "client-server" model shown in Figure (5-1 0). 

Cell Talk resides within the entities of both master and cell level, and it allows 

assumption of position of either a client or a server. Cell Talk initiates the com­

munication process between the client and server by first establishing a logical 

association between the two parties. The client provides the server with infor­

mation such as its logical address in the network (i.e. node identifier) and the 

channel on which it is transmitting. Once the server receives a request for an 

association, it sends a response to the client to confirm its readiness. The client 

can then either send messages or control commands, transfer files to the server, 

or request a service from it. During a data transaction between the client and 

server, the party which is sending the data will perform a combination of software 

and hardware checking to ensure whether or not the data sent is being corrupted. 

Should a data frame get damaged during the transmission process, the transmit­

ting party will retransmit the same data. Hence CellTalk provides a measure of 

fault tolerance in the noisy manufacturing environment. 

In order to make the process of utilisation and development of communication 

routine as simple and as user friendly as possible, a hierarchical structure for 

information exchange was introduced, Fig. (5-11). As this made it possible for 

the lower level services and primitives to be transparent to the user. 

5.8 Communication Primitives 

All the entities in the FMS which take part in the process of communicating 

with one another have a series of routines enabling them to exchange information. 

These routines are referred to as communication primitives. Figure ( 5-11) shows 

119 



the hierarchy of information exchange for the FMS. All information on the network 

is sent in packets or frames and these are assembled and disassembled by an ADLC 

chip [Acorn Econet 1983]. At the lowest level in the communication hierarchy, 

during a single "data transmit" operation, four frames are exchanged. This is 

known as a four-way handshake and works as follows; 

- the initiator entity sends out an "are you there?" frame, called a scout, 

- the responder entity sends back an acknowledgement, 

- the initiator sends its data, 

- the responder returns a final acknowledgement. 

At the next level up, direct memory access takes place by two procedures 

namely, PROCpeek and PROCpoke. These procedures allow information to be read 

from or written to the CAMP of a remote entity respectively. At this level there 

exists an error checking routine which can identify the nature of communication 

hardware problems during a read or write session. Transfer of messages between 

entities is also carried out at this level and is performed by PRDCkeyboard-poke. 

At the highest level of file transfer, information exchange and mailing are 

carried out. Routines at this level use the services offered by lower levels which 

are transparent to the user. For example, if at some point during the process 

of part production the scheduler wanted to order a cell controller to end the 

process of part production and reset devices in that cell, all that is required of 

the scheduler is that it sends a series of messages for the devices to be stopped and 

reset. This is done by utilising procedure PRDCtx-message. This procedure in 

turn makes use of services at the lower levels (i.e. PRDCpeek, PROCpoke etc.). At 

the cell controller the message is received by PROCget-mail before being tested 

by PRDCmail-test to obtain the type and nature of the message. Once the 

120 



message is recognised, the appropriate control command is then issued to the 

devices involved by the cell controller. 

Cell Talk can perform file transfer in two modes. In mode one the transmit­

ting party sends the length of file to be transferred to the recipient party, before 

sending its content byte by byte. In mode two, the transmitting party sends the 

name of the file to be transferred and the other party itself loads the file from a 

network common data storage (i.e. file server). This is a more efficient way of 

transferring files from one entity to another, but it relies entirely on the presence 

of a file server or network common data storage. 

Sending messages from one entity to another can also take place in two modes. 

In the first mode the message length has to be specified before transmission of 

the message. In this mode there is no limit to the message length. However, in 

the second mode there is no need to specify the message length but there is a 

limit on the size of message transmitted ( 255 bytes) at a time. 

Cell Talk can perform Remote Procedure Calls (RPC). This commences once 

a client establishes a logical association with a server. The client then sends 

a request for a particular service from the server on the network and this is 

performed by PROCinfo-request. After the server has received the request it 

processes it and acts upon it accordingly. The server will then send the computed 

result to the client and this is done by PROCrespond. Application of RPC can be 

demonstrated when a cell controller (client) requests the part orientation from 

the previous cell (server), and the server, after obtaining and computing the part 

orientation, provides the client with the X and Y coordinates, together with an 

angle which is referenced to the datum. This idea can be taken further where the 

cell controllers would negotiate with each other and arrive at a decision on the 

121 



basis of mutual agreement among themselves on how to process a part. In this 

way decision making at the cell level is decentralised considerably and the global 

information is reduced by locating decision making where the data originates. 

5.9 Conclusion 

A communication module was developed which enabled rapid and direct in­

formation exchange among all of the entities within a FMS. This module was 

implemented on the experimental FMS at Durham which possessed a baseband 

LAN, namely Econet. An attempt was made to produce a communication tech­

nique to be network independent and Econet was chosen to produce a working 

laboratory system. Common Address Memory in distributed Processors, (CAMP), 

was used to provide the system with the capability for distribution of informa­

tion and decision making. CAMP was also used as a dynamic database, holding the 

system status data and being updated rapidly. Cell Talk together with CAMP en­

abled different cell controllers to exchange information freely and directly leading 

to the term "heterarchical" control. 

Since each cell controller made use of its own processing capability and up­

dated the cell states within the cell's CAMP without passing the information over 

the network, the volume of network traffic was reduced considerably. The idea 

of CellTalk can be taken further to be employed in environments which require 

integration and intercommunication of non-standard intelligent devices. 

Although Cell Talk is a communication technique and it is hardware and op­

erating system independent, easy implementation of this technique to the Econet 

resulted in making evident one advantage of Econet over other types of networks. 

This advantage lies in the easy memory access of entities in the system and 

122 



CellTalk took full advantage of such a facility. However, other networks may 

not allow direct access to the memory of entities in the system. Therefore, the 

following method could be employed instead. 

Each entity would use the Remote Procedure Call (RPC) to obtain information 

from other entities. CAMP could then reside in a separate RAM interfaced to each 

entity (cell controller) input/output facility (i.e. I/0 RAM). The size of this RAM 

is very small as 1K of RAM can hold 1024 separate system/cell specific data with 

each memory capable of holding 256 different states. Each cell controller will 

then, instead of storing various states into memory locations (in CAMP), encode 

the data in the form of a binary signal (bit pattern) before outputting it to the 

I/0 ports where this data is then written to the I/0 RAM. A cell controller could 

use a RPC to obtain specific data from another cell as the RPC allows the entities 

of a cell controller to make procedure calls on other cell controllers across the 

network. For a cell controller to obtain specific data on another cell it first calls 

a procedure to send a request to the distant controller. Upon receipt of the 

request, the distant cell controller will read the content of the desired memory 

location (one location assigned for each cell specific data) in the I/O RAM. Once 

the distant cell controller has obtained the requested information it will send 

a reply to the requesting cell controller. Since all systems have some kind of 

input/output capability the developed software and I/0 RAM could then function 

in any system hardware or operating system. 

123 



Application Program 

Interface to application programs 

Restructures data for network 

Data synchronization 

End to end data transfer 

Packet routing 

Local data transmission 

Electrical signalling 

Physical transmission medium 

Figure (5-1) OSI reference model. 

Outside 
- _Q_SJ_ 

_L9.1er 7 

Layer 6 

Layer 5 

Layer 4 

Layer 3 

Layer 2 

Layer 1 

124 

J I 



System A 
System B 

__ Laye_r ~+_1 _ _ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A22SX?¢SX: 

Service provided 

to layer N+l 

- ~yex_: ~--- ~---- ---------- -- - .d:~~~~~ISISI5l5<h..- --

/ 

-Layer interface services / 

__ La~e~:-!__ ~ ---------------~ ___ _ 

Figure (5-2) The interrelationship of a layer entity. 

~ 
t.) 
Cl1 



cs 

(a) 

(b) 

(c) Key: 
S: Station 
CS: Central Switch 
R: Repeater 
T: Tap 

Figure (5-3) Network topology, (a) Star, (b) Ring, (c) Bus. 

126 

l i 



Headend Tap Tap 
f - - · - · - · Amplifiers f - - - - - -, 

Frequency 1---_..:_-----1--------_:__-----+--~~-
1 ~ I Receive 

- ~ I · · · ·; t:7 .- 1 ----, band 
I - -·--- _J _I_------...!.... __ -~ L __ _ 
. r-- _ + ___ -;--- .....:.... ______ -I- ___ ,_,Guard ban_d 

L__ ·...,.. .. , · I ~ .....--1.,. · : I 
I , ' "'J 1 ...... ·, , • Transmit 

Conversion L---r-----,......,._-,--,-' ,......,'1--------.----.....,...,.'-,--,....!.• ...-+-~b~anwdL_ 
' I :I I' I :I I' I 

--- ~Ll!.J --- 'JJ J 
I I I I 
I I I I 
I I I I 

ITransceiverl 
Modem 

I I 
[ Station l 

I I 
I Station I 

(a) 

(b) 

I Transceiverl 
Modem 

I I 
[ Station I 

!Transceiver I 
Modem 

I I 
I Station I 

Figure (5-4) Signalling techniques on broadband with 
(a) Single cable midsplit, (b) Dual cable. 

127 



128 

Application 

Presentation 

Session 

Transport 

Network 

Data link 

ISO 8802.4 token bus (broadband) 
Physical 

Figure (5-5) MAP 3.0 layer protocols. 



129 

MAP ... Time Critical 
Application Applications 

Layer 7 Layer 7 

Layer 6 

Layer 5 
Direct 

Layer 4 
Link 

Layer 3 , 
Layer 2 Layer 2 

Layer 1 Layer 1 

(a) 

Time Critical 
I . 

Applications 

Layer 7 

~ 

Direct 
Link 

,, 
Layer 2 

Layer 1 

(b) 

I Sales I I Planning I I CAD/CAM I I Marketing I 
I I I I MAP backbone 

I (Broadband) 

Router/ Bridge 

I MAP Carrierband 

I I 
Gateway (MAP/EPA 

I I 
I I I I -

I I 
I Sensor I -I Actuator 1 Sensor I I CNC I I Robot I - - 1 Vision I 

(c) 

Figure (5-6) MAP networks; ~~l MAP /EPA, (b) MiniMAP, 
A typical MAP network. 



'' 

... - ... -------------- .. - _. '----- ..... -- .. -- ... - .... --

(a) 

Cell 1 Cell 2 

I 
:uN 

1- .. - .. - .. - .. - .. - .. I 1- .. - .. - .. - .. - .. - .. I LAN 

(b) 

Key: 

CC: Cell Controller 

PD: Programmable Device 

Figure (5-7) Arrangements for FMS controllers; ( al requires deterministic 
(b requires non-deterministic network. 

130 



File Server CAD/CAM 

Figure 

Remote Procedure Calls may take place between any two cell controllers and between 
the master controller and any other controller bv means of the LAN. .... 

~ .... 



LAN 

I I I 1 
~ ® @]) @ 

OF 
' 

a.a~e- <!d.!i~::e~s- ' 
7000 

OF 
' 
' 

ija~e- <!d.!i~::e~s- ?COO 
OF 
' 
' 

a.a~e- <!d.!i~::e~s- 7800 

a.a~e- <!d.!i~::e~s-

Figure (5-9) 

.----
MB 

~ t-"--!"-

MB 

rr f.."--!"-

MB 

rcr-"""'--'--

{a) 

LAN 

@ @ @ 
?COO ;-- ?COO r-- ?COO r--

: c ' c : c 
' 

' A ' A ' A 
OF M OF M OF M 
' 
' p ' p ' p 

7800 a.a~e- <!d.!i~::e~s- 7800 L-- ija~e- !!dsh:e~s- 7800 L-

Key: 
C: Cell 

(b) 
CC: Cell Controller 

MB: Memory Block 

Reserved memory for the cell specific data; 
(a) Common-memory based system 
(b) CAMP based system. 

132 



Client Server 

6 6 

' · (1) Request ___ _j [ _____________ _ 

' L _ _ _ _ (2) Respond 
--------·--------------

Figure (5-10) Data exchange between client and server entities. 

.... 
~ 
~ 



·;..-

File Transfer & 
Electronic Mail 

~2~i.-;!l?i'!i{i{i;.~i{i{i{i{i?i~i{i{i?SW'i'!RSP[)i-"l.opi-"Pi?i?i.;.i"Pi1.;.i{. 
Level 3 

--------------------------------------------------------------------- .. -

,~\ Direct Memory Access &' 
i~~ Message Transfer 
~-t;$\$\$\$\$-$;h$ti1i1$G;h tSilh$;$;$;$$-.1$\$\$\$\$Wi$\$\$;$\$\$l$\{t$'!$5l$S 

Level 2 ------------------------------------------------------------------------

~ Packet Transmission 

t'ammmt!t>mammmtmmMt>m>t>t>t>tmt>t>t>t-tS>m>tmt>t 

Level 1 

Figure (5-11) Hierarchy of information exchange in the Cell Talk. 

..... 
w 
~ 



135 

Table (5-l) Common Addressed Memory in distributed Processors (CAMP). 

Address Address Set by Read by Memory content 
(Hex) name (Write) description (Hex) 
7800 logi-assoc MAt CC cc DO-disconnect 

FF=Connect 
7801 client-st-no MA cc station number 
7802 client-port MA cc port (communication channel no.) 
7803 server resp mes cc MAt CC 00-not-ready 

FF=ready 
7804 mass-stat cc MAt CC OO=processed 

FF=processing 
01=message-not-recognised 

7805 prog-stat cc MAt CC 01-down-load successful 
FF=program running 
OO=completed 

7806 in-partbuf cc MAt CC number of parts in the input buffer 
7807 out-partbuf cc MAt CC number of parts in the output buffer 
7808 production-period MA& CC MAt CC OO=completed 

FF=started 
02=stopped 

7809 upload-prep MAt CC MAt CC DO-completed 
FF=in-progress 

780A part-trans MAt CC MAt CC FF=part to be transferred to/from the cell 
OO=part transfer completed 

7808 where-part-trans MA cc 01-part transfer from the trolley to the cell 
02=part transfer from the cell to the trolley 
09=default state 

780C server-resp-part cc MAt CC OO=not-ready for a part transfer 
FF=ready for a part transfer 

780D robot-stat R cc 00-free 
FF=busy 

780E trolley-stat cc MA OO=free 
FF=busy 

780F device-stat cc MA& CC OO=completed 
01=idle 
02=stopped 
03=critical operation in progress 
04=device reset 
05=device inoperable 
06=uncorrectable error detected 
07=correctable error detected 
08=diagnostic running 

7810 defect-part-stat MAt CC MAt CC FF-part defective 
09=part is not defective 

7811 nof-defect-part cc MAt CC number of defective parts 

7B12 total-nof-parts cc MAt CC total number of parts in the cell 

7B13 nof-processed-parts cc MA& CC number of processed parts 

Key: CC Entity at Cell Controller level 
Entity at Master level MA 

Address Reserved memory locations address 



CHAPTER SIX 

System Information Collection and Representation 

6.1 Introduction 

In a Flexible Manufacturing System up-to-the-minute information is required 

to keep operations on track, to meet production goals and to make high quality 

products. By closely watching the manufacturing process through intelligent com­

puter monitoring, problems that reduce production levels or production quality 

can be quickly identified for corrective action. Immediate feedback information 

on the shop floor is needed to provide data such as; which machines are down, 

how many parts have been through certain operations, what are current defec­

tive parts rates and are the finished parts meeting required quality standards. 

Collecting this information fast and reliably and making it available to the deci­

sion making modules (or human operator) when it is needed, can make a critical 

difference to equipment utilisation and product quality. As the available techni­

cal information is becoming more copious with short decision times, collecting, 

presenting and archiving of available data is absolutely essential to the compre­

hensive documentation of the production process [Scheer 1988]. 

Currently, one of the most useful ways of presenting the shop floor data is 

by using graphical representation. As a change in colour or shape, as opposed to 

text or numeric values, induces an instant reaction in the user to act quickly, it 

is a quick way of conveying information. Every real-time element of the display 

is updated to reflect system status changes as they occur and, since the user 

has the true real-time information, response to and anticipation of the problems 

could be far more effective when they happen. For the user to get a better idea 

136 



of the dynamics of the shop floor, pictures which represent the plant's production 

entities could be animated to give a realistic representation of process operation. 

Window techniques are used to display information from several parts of the shop 

floor (plant) on the screen at the same time and also a detailed information and 

process overview could be shown simultaneously. 

This chapter describes modules developed for the recording and presentation 

of the activities when have taken place in the Durham FMS. Section 6.2 explains 

the disadvantages of information presented in the form of messages at the master 

and cell level and how this has been solved. In order to represent the system 

activities information, it has been encoded in a compacted form before being 

recorded for off-line system analysis and this is discussed in section 6.3. The 

recorded information is then decoded and represented graphically to ease the un­

derstanding of the system and its activities during a part production period. This 

is explained in section 6.4 which is then followed by a description in section 6.5 of 

the information which could be obtained from the graphical presentation of the 

recorded information. Finally, section 6.6 describes how the up-load information 

on FMS cells is prepared by cell controllers for historical and archiving purposes 

and what its advantages are. 

6.2 Real-time System Scheduling Report 

The algorithm developed for the scheduler to coordinate the overall activities 

of the FMS provides messages on the part production progress, at master and cell 

levels, throughout the period of part production. These messages in effect are 

short reports on production activities and what the system and the cells have 

actually performed at that time. The report is given by the Monitoring Modules 

137 



(MM), residing at both master and cell levels at the end of every monitoring cycle, 

which is discussed in chapter four. The reports were found to be most useful for 

the debugging of the scheduler and cell controller softwares. This on-line report 

generation had to be in the form of text messages due to the lack of available 

memory in BBC microcomputers. The teletext mode of BBC is very economical in 

the use of memory and requires only 1K of RAM, unlike the graphic modes which 

may require 10-20K of the available 32K of memory to map the screen [Coll1982], 

[Dickens 1987]. Furthermore, part of the high resolution graphics memory is used 

by the CAMP, discussed in chapter five. 

Reading the text messages will give a comprehensive explanation of the ac­

tivity at the time of its occurrence. However, it may also cause confusion over the 

understanding and identification of the stages of progression in part production 

of the system as a whole. Thus, the graphical representation of the system and 

scheduling activities was the only acceptable solution. It retains one drawback, 

however, that although the information regarding the scheduling activities has 

been recorded in real-time, due to the lack of available memory, as stated ear­

lier, it had to be utilised off-line. This graphical representation is being named; 

"System-wide Scheduling Chart". 

Had a restriction on the amount of available memory not existed, the sched­

uler would have had a routine to illustrate the overall activity of the system, 

graphically, in real-time, and to predict the oncoming activities as a series of sim­

ulated objects for the cells, machines, parts, etc. This routine could have been 

extended for the simulation of the system activities off-line. The information that 

this simulator could then provide would include: 

- prediction of the total production time of a job (batch). 

138 



- indication of the best part production route. 

- anticipation of the number of tool changes should a tool reach its life limit in 

processing of the desired batch size, etc. 

In order to demonstrate the effect of extreme conditions on the part pro­

duction of the system and the cooperation capability of various system software 

modules (SIT) developed for this project, the processing time of a part in different 

cells was varied, the logical route of part production was changed and the batch 

size, ten good parts to manufacture, was kept constant. A test number was given 

to each condition. For example, for a job with three active cells the processing 

time for each cell was set as short, an arbitrary value of 18 seconds, or long, an 

arbitrary value of 48 seconds or longer, in a combinational manner. Section 6.5 

includes an analysis of jobs with equal processing time for the like cells but a 

different logical part production route. 

During a period of part production all the events which have taken place in the 

system are recorded by the scheduler at the master level and since this information 

is recorded in real-time and will vary with each job and the conditions at the time 

of its processing it can be used for off-line analysis to study the behaviour of the 

system and enhancement of system efficiency. 

6.3 On-line Recording of the System Events 

At the beginning of the scheduler program a test number is required from 

the user. This test number forms an integral part of a file name onto which the 

scheduler's events regarding the job under processing is recorded. The sched­

uler's events file name is simply constructed by adding the following character 

string/variables together. 

139 



i. (file name); ii. (-A); iii. (test number). 

For example if the name of a particular job is JOB4 with a test number of 8, then 

the created file name is encoded as JOB4-A8. Note that, characters -A (activity) 

is used to identify the type of file in the file server directory. 

As the scheduler scans through the production cells to identify the one in 

need of a part transfer to or from a cell, the following events are possible: 

a. a part must be transferred from the warehouse to a cell; 

b. a part must be taken from one cell and transferred to the next logical cell; 

c. a defective part must be transferred to the finished parts store; 

d. a good part must be transferred to the finished parts store. 

The scheduler uses the computer's real time clock and is set to zero at the 

beginning of the period of part production. Whenever the scheduler performs 

a part transfer task to or from a cell, from the warehouse or to the finished 

parts store, it records the time at which it performed the task together with the 

information leading to the identification of the source and destination of that 

particular part. 

Throughout the processes of part production each part may have to undergo 

one or more operations in different manufacturing cells in a particular sequence 

(order) and this order is user defined for a job. Each manufacturing cell then can 

have a unique sequence number which will represent the logical position of the 

manufacturing cell within the system for a specific job. The user will define this 

sequence number for each cell at the start of a job definition period. The sequence 

numbers will always start from one, and zero sequence number is reserved for the 

warehouse and finished parts store. During a batch processing period all parts 

are taken one by one from the warehouse and passed sequentially from one cell to 

140 



the next/another cell (next logical cell), in the part production route and finally 

to the finished parts store. The scheduler encodes the system's event before 

recording it onto the scheduler events' file. Information is encoded so that the 

least disc space would be used to hold the data and this is done in the following 

manner. The cell's sequence number is followed by a character of "T" for 'to a 

cell' or "F" for 'from a cell' or "R" for 'raw part' or "D" for 'defective part' or 

"G" for 'good part' and followed by a number representing the time at which the 

process of part transfer took place. 

Hence the string 0 . OOR2. 32 represents a raw part taken from the warehouse 

when the time was 2.32 minutes past the starting time of part production, and 

string 2. OOT6. 37 represents a part which has been transferred to the logical cell 

2 when the time was 6.37 minutes past the starting time of part production. The 

string 0. 0007.52 represents a defective part being transferred to the finished 

parts store at 7.25 minutes past the commencement of the production period 

and so on. In this way, as soon as a cell completes the operation on a part, 

the scheduler attends that cell and records the time at which it attended the 

cell. Note that this time may differ from the time at which the operation was 

completed on that cell, since there exists a possibility that two or more cells may 

require attendance by the scheduler at the same time, and the cells in need are 

attended to sequentially, one at a time, by the scheduler. A more accurate time 

can be obtained by allowing each cell controller to keep the operation completion 

time in its own entity and the scheduler then to invoke the cell controller for this 

value. 

The actual encoding and the recording of scheduling events is done by the 

following procedures in the SCHEDULER program (Appendix F): 

141 



142 

PROCpart-trans-from-warehouse; 

PROCpart-trans-to-nextcell; 

PROCpart-trans-to-warehouse; 

PROCdefective-part-trans-to-warehouse. 

Table (6-1) Encoding of the System Events 

Encoded String Description 

10 Ten good parts required, i.e. batch size of ten 

O.OOR2.66 A raw part is taken from the warehouse at 2.66 minutes past the 

starting time of part production 

1.00T2. 70 The part is sent to cell one at 2. 70 minutes past the starting time 

O.OOR2.76 A raw part is taken from the warehouse at 2.76 minutes past the 

starting time 

1. OOT2 .80 The part is sent to cell one at 2.80 minutes past the starting time 

1.00F3.29 A part is taken from logical cell one at 3.29 minutes 

2.00T3.35 The part is sent to logical cell two at 3.35 minutes 

2.00F4.62 A part is taken from logical cell two at 4.62 minutes 

3.00T4.67 The part is sent to logical cell three at 4.67 minutes 

1. OOF4. 78 A part is taken from logical cell one at 4.78 minutes 

2.00T4.88 The part is sent to logical cell two at 4.88 minutes 

3.00F5.17 A part is taken from logical cell three at 5.17 minutes 

0.0005.19 The part is defective and is stored under defective parts in the 

finished parts store at 5.19 minutes 

2.00F5.50 A part is taken from logical cell two at 5.50 minutes 

3.00T5.55 The part is sent to logical cell three at 5.55 minutes 

3.00F5.84 A part is taken from logical cell three at 5.84 minutes 

O.OOG5.86 The part is good and is stored under good parts in the finished 

parts store at 5.86 minutes 

Table ( 6-1) illustrates the recording of a typical encoded data for the part 



production of a job with three active cells and a batch size of ten. Adjacent to 

the encoded data string is a description of the corresponding events occurrance 

in absolute time, or minutes past the commencing time of part production. 

The encoded information is useless to the user in its original form for the 

analysing of the system event unless it is first decoded before being represented 

in a graphical form for the user's off-line analysis. 

6.4 Graphical Presentation of the System and Scheduler's Activities 

A program, namely ACT-CHART, Appendix F, has been developed to demon­

strate the recorded system scheduling events graphically, including the activities, 

defined below, of the scheduler during a part production period. This program 

resides at the master level and is executed as a result of the user selecting option 

number 9 in the main program (i.e. MASTER program) to view the graphical rep­

resentation of the system scheduling activities for a job which has already been 

processed. Figure ( 6-1) illustrates a flow chart of the software. The algorithm 

requires a predefined job name and pre-run test number from the user. Next, 

it uses the manufacturing database to obtain the relevant information about the 

job. Once the software identifies the number and types of active cells which took 

part in the part production of the specific test number, it divides the computer's 

graphic screen into the same numbers of horizontal bands as the sum of the num­

ber of active cells plus two to represent the FMS facilities (one for the warehouse 

and the other for the finished parts store). 

There are five graphic modes within the BBC microcomputer with various 

screen resolutions and number of characters per line. The different number of 

colours that these modes can offer vary according to the screen resolution. Since 

143 



mode 0 has the highest resolution with the largest number of characters per line 

(80 characters), it was the most suitable mode in which to present the system­

wide scheduling chart. This mode also offers two colours, which were utilised in 

the information presentation of the chart. 

Figure (6-2) shows a screen dump of the system-wide scheduling chart for a 

job with three active cells. The area between two successive horizontal lines is 

representative of the character on the left-hand side of the screen, which is in 

turn defined at the top of the screen. For example, the area adjacent to the letter 

M represents the milling cell. The two successive parallel lines at the very bottom 

of the screen show the recorded activity conclusion time in minutes. Here an 

activity is defined as a part transfer either from the warehouse to the first logical 

cell, from one cell to the next logical cell, or from a cell to the finished parts store. 

This is depicted in solid arrow form. 

Each part must take the logical route from the warehouse, close to the bot­

tom of the screen, to the finished parts store, at the top. In doing so each part, 

with the exception of defective parts, will visit each adjacent cell (on the chart), 

positioned on the screen in ascending order of cell sequence number. Text mes­

sages to clarify the meaning of the character in use are printed at the top of the 

screen. Information regarding the job name, batch size, test number and the 

screen number are printed on the top right-hand corner of the screen. 

Due to the fact that presentation of all of the scheduler's activities may not 

fit onto one screen, more than one screen may be required. The way in which 

this is achieved is as follows; a screen is set up each time by the procedure 

PROCaxis in ACT-CHART program and it is numbered in ascending order starting 

from one. Next, procedure PROCplot-t iming will read information regarding 

144 



the scheduler's activity and its conclusion time. This is depicted onto the screen 

and, when the screen is full, it waits for a carriage return, or the depressing 

of any key, by the user before the screen is refreshed, renumbered and ready 

for procedure PROCplot-timing to present the next list of scheduler's activities 

and their conclusion times. This process will continue until all the scheduler's 

activities are presented. 

Dotted arrows or lines represent the trail of one activity to the next on the 

chart. The tail section of each solid arrow shows that a part is being taken from 

the cell, or warehouse, in which the tail section is present. This part is then 

transferred to the cell, or finished parts store, in which the head of the same 

solid arrow is present. There exists a dotted line or arrow after each part transfer 

and this can be interpreted as the duration without a part transfer. The reason 

behind this presentation of such dotted lines or arrows was to make the follow-up 

through the activities easier. 

Part transfer between the cells, from the warehouse or to the finished parts 

store is carried out by a part transfer device, the pneumatic trolley. The solid 

and dotted arrows also illustrate the movement of this device, when carrying a 

part in solid arrow, and dotted when carrying no parts. 

To follow the progress of activities; it always begins at the tail of an arrow, 

moves to the head, then to the right, or in the positive direction of the activity 

conclusion time axis, until the tail section of the next activity is reached. After 

the completion of a part transfer to a cell or finished parts store, the conclusion 

time of that activity is printed at the bottom of the screen. Since the printing of 

all of the activity conclusion times on a single axis would have been impossible, 

two axes parallel to each other at the bottom of the screen are utilised, and on 

145 



each axis every other activity conclusion time is printed. Parts transferred to 

the finished parts store are labelled as "G" for 'Good' and "D" for 'Defective'. 

The sum of the good and defective parts should always equate the number of raw 

parts being taken from the warehouse. 

At the beginning of the ACT-CHART program the user is questioned whether 

or not a hard copy of the system-wide scheduling chart is required. If the reply 

is affirmative, the program will perform a screen dump every time, after filling a 

screen with the activities information. 

6.5 Obtainable Information from the System-wide Scheduling Chart 

One of the most important features of the 'System-wide scheduling chart' 

is that it can demonstrate the various modules of the SIT, developed in this 

project, functioning correctly in order to achieve the manufacturing goals. An 

example is chosen to highlight the information, which could be extracted from 

the chart. Figure (6-2) illustrates the system-wide scheduling chart for a job with 

three active cells, manufacturing ten good parts, i.e. batch size of ten. 

Throughout the system, each cell has two part buffers; input buffer and out­

put buffer. In order to demonstrate that the system can cope with the minimal 

Work-In-Progress (WIP) storage area, and at the same time obtain the maximum 

utilisation from each cell, the size of each buffer is kept to a maximum of two. 

Thus, in this case, at all times the total number of parts in a cell, i.e. the total 

number of parts in the input part buffer, the output part buffer and on the ma­

chine's table should not exceed five. Parts transferred to a cell are placed onto the 

input part buffer and this information is shown by the Head of the solid arrow. In 

addition, parts are transferred out of a cell only from the output part buffer and 

146 



the Tail of the solid arrow denotes this information. Note that the chart does 

not clearly display the exact number of parts in any part buffer at one time, and 

only exhibits the number of parts sent to or taken from a cell. Information such 

as the part processing times, part buffer sizes and part buffer status etc. of a cell 

can be obtained by constructing a similar chart (i.e. Intra-cell Scheduling 

Chart) for each cell from recorded cell data. Then each cell controller may be 

responsible for the recording of the In-cell activities. Currently, since each cell 

controller has a limited amount of memory in their present form, they are unable 

to cater for such tasks. 

Conduction of simple checks on the system-wide scheduling chart can lead to 

the determination of the number of parts being processed in a cell. This is carried 

out by counting the number of tails of solid arrows. The number of parts sent to 

a cell should always be equal to the number of parts transferred out of that cell. 

This information is obtained from the chart by comparing the total number of 

the heads and tails of solid arrows in a cell. 

Since all of the parts, except the defectives, for a given batch size must visit 

all of the cells, it can be said that, the number of parts sent to or taken from any 

cell must not be less than the number of good parts in the finished parts store. 

Furthermore, the total number of raw parts transferred out of the warehouse 

should always equate the total number of good parts plus defective parts in the 

finished parts store. The chart clearly illustrates this. 

Assuming that the time taken to transfer a part from one cell to another is 

much less than the processing time of a part in any cell, then the time taken for 

n number of parts to be manufactured, where n is equal or less than the total 

number of parts in a batch, can be directly obtained by simply counting the 

147 



number of good parts in the finished parts store; on reaching the desired value, 

the conclusion time of that activity, printed on the activity conclusion time axis 

of the chart, will indicate the total time taken to manufacture n parts. Hence, the 

total time taken to process a batch is the last number on the activity conclusion 

time axis. 

The logical route of part production, is denoted by the characters on the left­

hand side of the chart. All parts, except defectives, must visit the adjacent logical 

cell in the path of the part production route. This is shown by the upward solid 

arrows on the chart. A quick glance at the chart could provide such information. 

A change in the logical route of part production may result in the production 

of a different number of parts, not less than the number of good parts required, in 

each cell, Fig. (6-3). The reason behind this would be the presence of a defective 

part along the logical route of part production. The assumption here is made that 

defective parts cannot be reworked (salvaged), and are not permitted to visit the 

next logical cell. In order to clarify the point, Figures (6-2) and (6-3) show two 

jobs, identical but for one difference, that of the logical route of part production. 

In both jobs the number of good parts manufactured are ten and the processing 

time of parts in the identical cells of both jobs are equal. The chart shows that 

the time taken to manufacture n number of parts, where n is less than or equal 

to the number of good parts, differs. 

The chart demonstrates that the scheduler is functioning in real-time and 

that decisions are made on the basis of on-line feedback from the system. For 

example, should a cell produce a defective part, the scheduler will not send that 

part to the next logical cell. It also proved that the algorithm developed for the 

scheduler worked successfully for the part production of any size batch. Figure 

148 



( 6-4) illustrates the chart for a job with two active cells and a batch size of three. 

Note the occurrence of a defective part or parts in each cell. Should the scheduling 

algorithm be extended to cater for like cells, the chart can then also show whether 

or not the load is being balanced between the cells. 

The system-wide activity chart can be used to exhibit the movement of parts 

and the pneumatic trolley or AGV and the exact time of their attendance in a cell, 

warehouse or finished parts store. By fixing the size of input and output buffers, 

checks can be done on the chart to find out whether or not parts have been sent 

to a cell with a full input part buffer. This is achieved by counting the number 

of parts sent to a cell and subtracting the number of parts taken away from the 

cell. The input and output buffer size being two, the total number of parts in a 

cell must never exceed five. 

This method of on-line recording of the system's events and the off-line chart 

utilisation and analysis can be employed for intra-cell scheduling (or sequencing). 

In doing so, the exact processing time of each part in every cell, the effect of tool 

wear on the part processing time, and the entry and exit time of all parts to and 

from a cell can be deduced. 

In addition, an indication of the time that a part has been waiting, after 

being processed in the cell, to be transferred to the next logical cell would be 

available from the intra-cell scheduling chart. Assuming that the time taken for 

a part to be attended to by the system scheduler is very short, then the aforesaid 

waiting of a part in a cell would be due to the restricted size of the input part 

buffer of the next logical cell. Hence the optimum value for the buffer size of each 

cell can be obtained. Note that such optimisation on the buffer size of the cells 

is only beneficial if each cell is equipped with a part recognition module, such as 

149 



a bar-code reader, if bar-coding of parts is employed, and a scheduler capable of 

processing multi jobs at the same time. Should a cell break down the exact time 

of the failure is recorded. 

Although the System-wide scheduling chart gives information on the overall 

activities which have taken place in the system, it does not provide cell specific 

information for archiving purposes. A separate module has been developed for 

this, to function by the cooperation of cell controllers and the master program. 

6.6 Up-load Information on FMS cells 

This module was developed to show the capability of cell controllers for pro­

ducing reports about the cell specific information and their performance and also, 

collection of these reports by the master at the end of a period of part produc­

tion. During such a period the overall control of the system is performed by the 

entities at the master level (e.g. the scheduler). The scheduling module will pass 

the control to the main program (i.e. MASTER program) once it has learnt that 

all the cells have completed the part processing tasks (i.e. the batch has been 

processed successfully). 

Messages are then sent to all of the active cell controllers by the master 

program to up-load a report on their cell specific information, such as cell per­

formances after the production of a current batch. Each cell controller will then 

start computing and prepare and format the information before arranging with 

the master for the up-loading of this information. Cell controllers utilise the 

communication module for exchanging information with the master program. 

Presently, information such as the number of processed parts, the number of de­

fective parts, the defect rate of the cell and the cell efficiency is computed before 

150 



being formatted and up-loaded to the master. In this way the information pro­

cessing takes place where the data has originated and this will reduce the volume 

of information to be processed by the entities at the master level. There are nu­

merous calculations and information which are cell specific and local processing 

has shown several advantages, including the requirement for smaller memory and 

processing capability at the master level. At the moment, only a very small pro­

portion of cell specific information is up-loaded. This is only in order to show the 

way in which the idea could be employed and further enhancement of this module 

may include other processing of additional information such as the amount of tool 

wear for this batch, remaining tool life etc. 

The system allows for the existence of one up-load file per job and one record 

per each batch number of the same job. The MASTER program will search for the 

up-load file of the job which has currently been processed and, if the search is 

unsuccessful, an up-load file will be created for that job. Every time a job is 

processed, a record will be added to this up-load file to include the report on 

the FMS cells for the current batch. A batch number is given to a job every time 

the job is processed which denotes its order of processing among the previous 

batches of the same job. For example, a job with batch number 3 shows that this 

batch has been processed after two previous batches of the same job. Note that 

the batches may not necessarily have been processed consecutively. Preparation 

of the up-load file is performed by the PROCprepare-upload procedure in the 

master program. 

Once the MASTER program has received a report from all of the active cells 

it rearranges the records of the up-load file in an ascending order of the number 

of processed parts (batch sizes) for easy understanding and tracking of processed 

151 



batches. Since these batches were not physically produced but simulated by 

machines cutting fresh air, it did not seem important at that time to include the 

date and time of processing of batches. However, this information may prove vital 

in a real system, therefore including the time and date will be an improvement 

to this module. The software could then arrange the records of up-load file in 

ascending or descending order of time and date. 

After a report on the FMS cells has been collected and recorded into the 

up-load file it will become part of the archived information which could provide 

historical information about the specific batch of a job. The archived or historical 

information can be obtained and viewed off-line at the master level. The user can 

achieve this by selecting option number 6 from the menu of the MASTER program. 

Once this option is selected it requires the name of the job. A search is then made 

in the database for the up-load file of the desired job which is followed by the 

exhibition of information on active cells for all of the batches processed to date 

for that job. The routine which performs this is called PROChistorical-rep. 

Figure (6-5) shows the historical information of a job with three active cells. 

The software provides information such as; the total number of batches processed 

for this job so far, cell performance and cell specific information. It also computes 

the total number of parts which were required from the warehouse and how 

many good parts were produced for that batch and this is shown at end of the 

information for each batch. Cells, together with their up-load information are 

listed as such to present the route of the part production for the specific job 

(sawing, milling and turning in this case). As there is no cell with zero defect, 

each cell has required more number of parts than it has passed to the next logical 

cell. 

152 



One important aspect of historical reports on the FMS cells is that they can 

provide an input and some guideline for future FMS capacity planning. An im­

provement to this module would be the representation of this information in the 

form of graphical charts. 

6. 7 Conclusion 

Different methods of information collection and representation were discussed. 

Although illustrating the system changes and status graphically is one of the best 

methods for obtaining the user quick response to the changes, for the Durham 

FMS, performing this in real-time was not possible due to the lack of available 

memory. Therefore, the system events were encoded before being recorded in 

real-time. This data was then decoded by a module which represented both the 

system and the events. The decoded data was represented in the form a chart 

which showed the system events took place during the period of part production 

for a specific job. 

This chart enabled the user to study the behaviour of the system. The chart 

gave the cumulative time of the activities. In this way the user could obtain the 

time taken for a part to be manufactured for any number of batch size at a quick 

glance of the chart. The chart was also useful for diagnosing the occurrence of a 

system fault as the time and status of the system would have been recorded at 

the time of the fault. The chart was found to be very useful for the analysis of 

processed jobs. 

This chapter also discussed how cell controllers up-load information to the 

entities at the master level so that the information could be recorded for historical 

and archiving purposes. 

153 



C START 

END 

Obtain 
job name & test number 

Use database to obtain 

information about the job 

Until all activities 
are presented 

Set up a screen for 
activities presentation 

Fill the screen up with 
successive activities and 
their conclusion times 

Figure {6-1) A flow chart for the System-wide activity chart program. 

154 



H:llmhoust I:Finisbtd p~rts start nlOhn nB~tcn sm:Uu 
~:~illin9 S:S.tin9 L:Turnin9 ~:Gisioa M:jgsbin9 (ctll> urtst no.24u 
t:Offtctift i:iood (pirls) T:Activit, ctfiC!IISiOG li•<Xin) uscrm 1•• 

t 

./I,:/ U,/ :1 :1 .,/ 
I 
I 2.72 us u7 ua U6 U3 us 5.31 us s.ss r 

t, 2.82 3.36 J.Si 4.22 4.57 U3 5.17 5.52 5.7i 6.!5 
1 1 

t 
rl 
i 

~- I 
i 

,) II L 
I 

i i ' ; 

t t t t 
t 

~-r 
I 

11 111/ U 

1 I I I I I I I I I l l 
I Ul 6.73 7.13 7.48 7.66 us 3.41 us i.H 11.12 
! !.51 6.95 7.19 7.57 7.88 8.26 S.5i 8.96 i.H U lf 
I I ! I I l I I I ! I. ) 

Syst •~-•i dt Schtdul i n9 Chart 

~ ' ' ' ' 
r[ t f f. t 

I I ., + ·:· 
I 

0 
I 
I 
i 

s: 
I 
I 

i 
H/ 

I 
I 
I I I I 

I' 1U' 11.98 13.66 
I U,S2 12,73 14.58 

Figure (6-2) System-wide scheduling chart for J086. 

155 



H:~rrhouu I:Finishtd puts starr nJOB2n nBoteh siu=Un 
R:mliA' S:S~•ing L:Turning ~:~isioa M:lloshiA9 <c•ll> uftst no.lttt 
t:hhctivt &:Sood (pi/'ls} T:Activil' cenclusion li~~t<Minl ••scmn ltt 

H I i· ~· d ...1 ...1 .../ ·;, u ... I 

2.28 u• 3.17 3.56 4.11 4.51 u1 5.37 5.68 5.31 1 2.38 US 3. 34 3.92 4.39 4.81 4.99 5. Si 5.78 US 

.I 

I I I I I 

t 

' 
6 

t ' • I 

_/ •. 1 

. 6 

• 

... / 

• 

US 6.87 7.48 7.68 Ul 3.22 US lUI 11.17 11.61 1 
6.66 7.27 7.54 8.38 8.61 9.44 18.28 1U3 11.39 12.1~ 

1 1 1 

6 ' 6 6 
• ~. •• i 

- -: t . t 
Jl 
I 

u . d u . . 

12.37 13.!8 lUI JUS 
12.iS 13.37 1 Ul 15.16 

S~st r•-•i dr Sehrduling Chart . 

Figure (6-3 System-wide scheduling chart for JOB2. 

156 



157 

H:Narehouse !:Finished parts store ••1081•• ••Batch size=3•• 
M:Milling S:Sawing L:Turning U:Uision N:Nashing <cell) **Test no.lltt 
D:Defective S:Sood (parts} T:Activity conclusion tiMe(Min) ••screen 1•• 

D D G D G G 

I •: t; ~: ~'-: 
"' 

--

M ·- ~- ·~- ·- ~-

·. ] 

s ·-. : . ~: . ~- ! ~- v ~- v 
: 

H w w v v v 
I I I I I I I I I 

i. 98 2.24 
• 4.87 5.18 6.18 6.79 7.26 8.12 3.71 

8 
_f'88 ~.21 ~.82 1·21 ~.36 ~.59 1.87 J .93 . . • . • . . . 

SysteM_Nide Scheduling Chart 

Figure (6-4) System-wide scheduling chart for JOBl. 



Total nuMber of batches for JOB6 to date : 2 

I' 1 d d ' f ' ' ~ ' l ' ' ~ 1 
' ~ --------Jp oa e 1n orMation on part prouucr1on o~ uatcn no, L --------· 

(((( SAWING cell }))) 
HuMb~r of processed coNpon~nts 
HuMber of defective coMponfnts 
Defect rate of the cell 
Effici~ncy of the cell 

(({( MilLIHG cell }}}} 
NuMber of processed coMponents 
HuMber of defective coMponents 
Defect rate of the cell 
Efficiency of the cell 

(((( TURHIHG cell }}}) 
HuMber of proc~ss~d coMpr~ents 
HuMber of defective coMponents 
Defect rate of the cp]] 
Efficiency of the cell 

I l',Q 
I L-· 
I 'I 

I " 1,., '· I , I 
I .:,. 'I 

: 98 I 37 I; 

HU M~~r· o' ~-w ~~~~~r~r·t~ r·~ouJ·~·d f~~ LL1's ~-L~L I ~Q 
•rr1r 1

1iL:·. f ,d\"f .·l.'nft.·h., .•. :.., it" l11 '.II L·~lt·ll 1 L-.· ''''' 

, ~·,, NuMber· of good c:oMpCtflfnts ttanufadur·ed in this batch : 22 , ·~·· 

--------Uploaded inforMation on part production of batch no, 1 ---------· 

(((( SAWING cell }))} 
HuMber of procfssed coMponents 
NuMber of defective coMponents 
Defect rate of the c~11 
Efficiency of the cell 

(((( MILLING cell }})} 
HuMber of processed coMponents 
HuMber of defective coMponPnts 
Defect rate of the cell 
Efficiency of the cell 

(((( TURHIHG cell }))) 
NuMber of processed coHponfnts 
NuMber of defective coMponents 
Defect rate of the cell 
Efficiency of the cell 

1 J.u 
I I (1 
I ;;' 
I ,I 
I U i:' i'! 1/ 
I J; ._!fs t, 

QQ 1l 1: 
: J .t I ' I 

: 43 
: 1 

r, t' • ~,. 

: L I "'b. t': 
r,. "· . '· : ~~' Jb i, 

I, II I NuMber of raw coMponents required for this batch : 4B I,,,, 

I, I,, Nu1:1ber· of good coHpon~nts nanufae:tur·ed in !.his batch : 39 I I, I, 

Figure (6-5) Historical information on FMS cells. 

158 



7.1 Introduction 

CHAPTER SEVEN 

Discussion and Conclusions 

Advances in technology are making the manufacturing environment increas­

ingly complex. One of the fairly underestimated elements in the development 

of automated manufacturing is the specification, design, development and de­

bugging of the overall control software. This is because the operational control 

of automated manufacturing systems is very complicated and involves access­

ing large static and dynamic data and complex algorithms. Currently, much of 

the overall control software for automated manufacturing systems is developed 

for each application. This imposes both high cost and dependency of the au­

tomated system to the specific organisation or vendors. At present, one of the 

most popular strategies for the overall control in many of such systems is the 

hierarchical control structure, where an upper level issues commands to a lower 

level and gets feedback on the achievement of these commands. However, this 

method of control encounters some disadvantages. This research, therefore, has 

identified the strengths and weaknesses of this type and other types (alternative 

control systems) of control systems for automated manufacturing systems. As a 

result, a hybrid control system was proposed and implemented on an experimen­

tal automated manufacturing system. This experimental testbed is the Flexible 

Manufacturing System at Durham university. 

7.2 An Overall Control System for Automated Manufacturing 

There are two types 'of dissimilar control systems which may be used for the 

overall control of an automated manufacturing system. These are hierarchical and 

159 



heterarchical control systems. In the production system which is controlled by a 

hierarchical control system, the control modules are organised into levels of hier­

archy. Here, the control system has a tree structure and different levels of control 

operate to different time scales and determine different operational decisions from 

aggregated parameters to more detailed ones. Two of the most popular hierarchi­

cal control models are the Automated Manufacturing Research Facility (AMRF) of 

the National Bureau of Standards (NBS) and the Advanced Factory Management 

and Control System ( AFMCS) of the Computer Aided Manufacturing International 

(CAM-I). 

The characteristics of a hierarchical control system include the following: In 

order to reduce the complexity and responsibility of the control functions in the 

system, levels are introduced. Therefore, the control problems are divided into 

manageable modules regardless of the complexity of the complete control struc­

ture. Descending from the top of the hierarchy, each level has a distinct planning 

horizon. In such a control system the sophisticated planning and scheduling is 

carried out at higher levels and the lower levels are left to execute the instructions 

received from the level above. For example, in the AMRF model the process plan­

ning and equipment programming are conveyed off-line. The shop controller is 

an order entry system. Scheduling is done at the cell level only. The workstation 

controllers receive commands from the cell level before executing them one at a 

time. Hence, there exists a strong master-slave relationship between the vertically 

adjacent entities, which may count as a disadvantage to such control systems. In 

addition, entities at one level are not allowed to communicate and exchange infor­

mation with one another. As a result, each entity, in order to obtain information 

from its peer entity, has to invoke the control function at the level immediately 

above on the type of information it requires from the peer entity. This would have 

160 



two disadvantages; firstly, too much information is passed between the vertically 

adjacent levels for the peer entities information exchange. Secondly, each level 

may spend a lot of time only on providing a means of information exchange for 

the peer entities while it could have utilised this time and processing capability 

on other control and decision making logics. 

Since a crash at some level in a hierarchical control system will cause a se­

rious disturbance to the entities below and may also bring the entire system to 

a standstill, researchers have tried to develop an alternative control system to 

overcome such weaknesses. This alternative control system is called a heterar­

chical control system, in which the intelligent entities negotiate with one another 

to plan, schedule and manufacture parts. Here, there is no direct control and 

no supervisor. All entities are equal and control decisions are reached through 

mutual agreement amongst the intelligent entities. Therefore, peer entities can 

exchange information and exercise direct communication. 

However, since all of the control decisions must be reached as a result of 

negotiation and cooperation of the participant entities for part production, this 

tends to slow the system down in arriving at control decisions. As there is no 

supervisor, entities, in obtaining an overall view of the system, have to perform 

masses of information exchange and processing. This results in a high volume of 

traffic on the network to which all of the intelligent entities are interfaced. Hence, 

there existed a need for a control system which would take advantage of all of 

the good features of the aforementioned control systems. 

7.3 The Proposed Hybrid Control System 

A hybrid control system was proposed for the control of automated manu-

161 



facturing systems. Such a control system utilises the best points of hierarchical 

and heterarchical control systems. Control is distributed by the movement of the 

centre of decision making from one controller to another. This is made possi­

ble by the capability for information transfer between controllers. In order to 

demonstrate the functionality and the practical real-time operation aspects of 

this hybrid control system, the Durham FMS was chosen as the system on which 

the proposed control model was to be implemented. The control system divided 

the entire FMS into three logical levels. At the top, the master level took charge 

of order entry, overall control and the scheduling of the system activities. Also, 

the user defined various system parameters and jobs at this level. The next level 

below was the cell level which was responsible for the scheduling and control of 

in-cell operations. Finally, there existed equipment at the lowest level, processing 

commands received from the levels above for successful part production. 

The hierarchical nature of the system was demonstrated by the ability of 

an entity at the master level (i.e. the Master) to receive orders from the user 

before issuing control commands to the cell controllers residing at the cell level. 

The cell controllers then issued the subsequent control commands to the device 

controllers at the equipment level. In this way, is was shown that each level 

received some control command from its adjacent upper level. However, as it is 

believed that entities at the cell level should not be totally dependent upon the 

control commands being received from the master level, heterarchical behaviour 

was built into the system at the cell level. Each cell controller then only needed 

to receive the name of a job together with the batch size. How the parts were 

to be processed was the responsibility of the cell controllers, this exhibited the 

autonomal behaviour of the cell controllers. 

162 



An information transfer process was allowed among the cell controllers so that 

certain parameters which had specific and vital value in the cell controller decision 

making process could be obtained from the relevant entity directly. This feature 

made the overall system control exercise the decision making in a distributed 

manner (i.e. heterarchical control). For a cell controller to obtain information 

on the overall system performance so that it could formulate decisions for the 

benefit of the system as whole, two methods were possible. In the first method 

each cell controller had to exchange information with all other peer entities before 

drawing its own conclusions on how to achieve its goal within its cell. Utilising 

this method would have had two disadvantages. Firstly, there would have been 

an enormous amount of data flowing in the network (LAN) as a result of this and 

secondly, the control algorithms in each cell controller would have been slowed 

down in their decision making. 

In the second method an entity at the master level (i.e. the Master) would 

have the most relevant information which could provide the basis for the cells' 

decision making. This method was applied to the Durham FMS where each cell 

controller received such information from the Master directly. For example, if a 

defective part was produced in a cell, all of the other cells enquired of the entity 

at the master level to acknowledge such an activity so that they could prepare 

themselves to produce one extra part than the original batch size to satisfy the 

requirements. 

The hybrid control structure also has the potential to be utilised for the 

part processing of cells in the "bidding" mode. Although this method of part 

processing was not shown on the experimental system, there are indications such 

as, manufacturing cells are capable of exchanging information directly with one 

163 



another, to make the control system suitable for such a method. The direct 

information exchange of the cells took place with the aid of a communication 

module namely, "Cell Talk". 

The technique used in CellTalk was demonstrated to be a network indepen­

dent communication technique. It utilised a Common Address Memory in dis­

tributed Processors (CAMP). A series of communication routines was built within 

the Cell Talk which allowed the direct memory access of the CAMPs in the entities. 

Cell Talk highlighted the heterarchical behaviour of the overall control system. 

It was also found to be an effective tool for the de bugging of the system software 

since it had a built-in monitoring system. This monitoring system allowed the 

user to get a snapshot of the dynamic database which held the cell and system 

specific data. 

In order to apply the hybrid control model to the FMS, a System Integration 

Tool (SIT) was designed and developed. The SIT allowed the user to define its 

own manufacturing environment. It exhibited that the integration of equipment 

from a wide variety of vendors had become possible. 

7.4 Integration of Multivendor Equipment 

The development of the System Integration Tool resulted in the integration 

of programmable devices within the Durham FMS. The make, model and local 

programming language of each programmable device was different than the oth­

ers. The SIT allowed the user to define and build the specific interface for each of 

the device controllers so that the communication, control and application of the 

hybrid control model could be exercised. The SIT was designed in such a way as 

to have several modules, with each module responsible for a certain aspect of the 

164 



overall control system. This modular nature of the SIT made the software to be 

in a layered form where the interface of modules to each other is easily achieved. 

165 

Addition and elimination of manufacturing cells in the jobs were easily achieved 

by the user first entering the manufacturing database module where all of the sys­

tem, jobs and related information were kept. The database provided the basis 

for the integration of multivendor equipment. The dynamic part of the database 

utilised an area of memory in the distributed processor. This CAMP based dynamic 

database allowed the system and cell specific data to be held in the memory loca­

tions and not on the disk, and provided an effective way of keeping and accessing 

the system and cell states. This method showed to have advantages over the 

common-memory based database system, as the writing of the cell states in the 

CAMP did not require the utilisation of the LAN. Therefore, incorporating this type 

of dynamic database reduced the data traffic on the network by half when it was 

compared with a common-memory based database. This may prove a valuable 

feature to the baseband LAN where the network has a small bandwidth. 

The CAMP based database together with the CellTalk have the potential to 

be used in the integration of non-standard intelligent devices. For example, a 

special purpose-built manipulator for the destacking of a stack of flexible pre-cut 

material may require the cooperation and information exchange of the associated 

programmable table where the material is placed. The idea of a CAMP based 

dynamic database together with CellTalk could be employed for the integration 

of the aforementioned devices and also to the other devices in the system, if any 

exist. 



7.5 Conclusions and Suggestions 

The proposed control methodology was implemented on the experimental 

FMS. Tests showed that the proposed control theory functioned satisfactorily in 

real-time under laboratory conditions and produced a working system. The de­

signed and developed System Integration Tool proved to be an effective tool for 

expressing the control method. The communication technique developed for the 

Durham FMS is a technique which is network and operating system independent. 

This technique, currently in the form of Cell Talk, and the associated CAMP utilise 

a features which is specific to the LAN (Econet) in the Durham FMS. This feature 

being the easy access of the memories of the remote entities. However, this fea­

ture may not be present in other LANs. Therefore, the alternative to this would be 

utilising the Input/Output capabilities of the entities at the cell (cell controllers) 

and master levels. 

Knowing that almost all intelligent devices have some sort of input output 

capability, a small size RAM (e.g. 1K) could then be plugged into the entities I/0 

boards (named as I/0 RAM). By assigning a name (variable) to each memory 

location within the RAM, reading from or writing to the variables could have the 

same effect as that of CAMP and Cell Talk. Procedures built into each entity would 

then be responsible in the read or write operation of the RAM via the I/O channels. 

Remote Procedure Call (RPC) would be used to gain access to the information on 

a distant entity. 

The software modules developed for this in this research may be developed 

further to allow the following; The scheduling module to optimise the produc­

tivity of the machine tools, for example, by changing the sequence of operations 

throughout the cells. The system to cope with the production of several batches 

166 



in a mixed fashion (batch mixing). A general purpose cell control builder which 

would intake the control definitions by means of some sort of user graphical inter­

face, to build icons which represent specific control functions. The ideas in a LAN 

which is UNIX based (multi-tasking environment) to be applied and the software 

to be coded in a portable software language such as "C" or similar. 

Currently, attempts are being made on the proposal of a research project 

based on further improvement of the proposed ideas here, which have attracted 

the attention of some of the small to medium size companies and research organi­

sations. This initiative may result in obtaining a research grant ( e.g. SERC/ ACME) 

towards pursuing ideas which may benefit automated manufacturing systems. 

167 



REFERENCES 

1. Achatz, R. and Parrish, D. J., 1987, "Host Computer Controls FMS 

at all Levels", The FMS magazine, January, pp. 21-25. 

2. Acorn Econet, 1983, Econet Advanced User Guide, Acorn Computers 

Limited, Cambridge. 

3. Adams, W. M., 1990, "Why 802.3 Ethernet LAN flourish in manufacturing 

operations", Computer-Integrated Manufacturing Systems, Vol. 3, 

No. 1, pp. 53-56. 

4. Albus, J.S., Barbera, A.J. and Nagel, R.N., 1981, "Theory and 

Practice of Hierarchical Control", Proceedings of 23 IEEE computer 

society international conference, Washington DC., pp. 18-39. 

5. Allan, B., 1989, "What Managers Really Need to Know About LANs" 

IEEE Network Magazine, November, pp. 15-19. 

6. Al-Qattan, I., 1990, "Designing Flexible Manufacturing Cells using a 

Branch and Bound Method", International Journal of Production Re­

search, Vol. 28, No. 2, pp. 325-336. 

7. Alting, L., Christensen, S.C. and Pedersen, M.A., 1989, "An In­

tegrated Miniature Laboratory for Research and Education", Soft­

ware for Manufacturing, Proceedings of the Seventh International 

IFIP /IFAC Conference on Software for Computer Integrated Man­

ufacturing, PROLAMAT'88, Dresden, 14-17 June 1988, Kochan, D. 

and Oiling, G., Ed.:, Elsevier Science Publishers B.V., North-Holland, 

pp. 135-146. 

8. Anstiss, P., 1988, "The Implementation and Control of Advanced Manu­

facturing Systems", Control and Programming in Advanced Manufac-

168 



turing, Rathmill, K., ed.:, IFS Publications Ltd., UK., pp. 373-386. 

9. Avonts, L.H., and Van Wassenhove, L.N., 1988, "The part mix and 

routing mix problem in FMS: a coupling between an LP model and 

a closed queueing network", International Journal of Production Re­

search, Vol 26, No. 12, pp. 1891-1902. 

10. Bakker, H., 1988, "DFMS: A New Control Structure for FMS", Com­

puters in Industry, Vol. 10, No. 1, March, pp. 1-9. 

11. Beauchamp, K.G., 1987, "Computer Communications", Van Nostrand 

Reinhold, UK. 

12. Bel, G. , Bensana, E. , Dubois, D. , Erschler, J. , and Esquirol, 

P., 1989, "A knowledge-based approach to industrial job shop schedul­

ing", Kusiak, A., ed.:, Taylor & Francis. 

169 

13. Berra, P.B., Chen, C.Y.R., Ghafoor, A., Lin, C.C., Little, T.D.C. 

and Shin, D., 1990, "Architecture for Distributed Multimedia Database 

Systems", Computer Communications, Vol. 13, No. 4, May, pp. 217-

231. 

14. Bertok, P. , Csurgai, G. , and Haidegger, G., 1989, "The Integra­

tion of Intelligent Cell Controllers into Factory Networks", Proceed­

ings of the Seventh International IFIP /IFAC Conference on Soft­

ware for Computer Integrated Manufacturing, PROLAMA'88 Dres­

den, GDR., 14-17 June, 1988, ed. Kochan, D and Olling, G., pp. 

445-452. 

15. BITS 704, 1989, "ISO/IEC DIS 9506-1, Final text", MMS part 1, Service 

Definition, British Standard Institute. 

16. BITS 705, 1989, "ISO/IEC DIS 9506-2, Final text", MMS part 2, Proto-



col Specification, British Standard Institute. 

17. BITS 706, 1989, British Standard Institute "ISO /IEC Pre-DP 9506-5", 

MMS part 5, Programmable Controller Companion, British Standard 

Institute 

18. BITS 695, 1989, "ISO /DP 9506-3", Robot Companion, British Standard 

Institute. 

19. BITS 696, 1989, "ISO/DP 9506-4", NC Companion, British Standard 

Institute. 

20. Black, J. T., 1988, "The Design of Manufacturing Cells (Step One To 

Integrated Manufacturing Systems)", Proceedings of Manufacturing 

International'88, April 17-20, Atlanta, Georgia, pp. 143-157. 

21. Breeze, P., 1990, "The future for LANs", Automation, February, pp. 

32-33. 

22. Brown, C. C. and Leonard, A., 1988, "Hierarchical Control Structure 

in Flexible Manufacturing Systems", Proceedings of the twenty-seven 

international Matador conference, April 20-21, Manchester, pp. 61-

66. 

23. Browne, J., Harhen, J., and Shivnan, J ., 1988, "Production Man­

agement Systems", Addison-Wesley. 

24. Bunce, P. G., 1988, "Developments in Advanced Factory Control and 

Management Systems", Control and Programming in Advanced Man­

ufacturing, Rathmill, K., ed.:, IFS Publications Ltd., UK., pp. 425-

444. 

25. Cheong, V.E. and Hirschheim, R.A., 1983, "Local Area Networks, 

Issues, Products, and Developments", John Wiley & Sons, England. 

170 



26. Coleman, J. R., 1988, "Will MAP Fly in US Factories?", Assembly En­

gineering, Vol. 31, Part 10, pp. 40-42. 

27. Coll, J. and Allen, D., 1982, "The BBC Microcomputer User Guide", 

British Broadcasting Corporation. 

28. Communiqe, 1990, "Aerospatiale Seeks MAP over Ethernet as a practical 

solution", Communiqe the Manufacturing Communication Journal, 

ComCentre, February, pp. 12-13. 

29. Copas, C., and Browne J., 1990, "A rules-based scheduling system for 

flow type assembly", International Journal of Production Research, 

Vol. 28, No. 5, pp. 981-1005. 

30. Daigle, J.N., Seidmann, A. and Pimentel, J.R., 1988, "Commu­

nications for Manufacturing: An Overview", IEEE Network, Vol. 2, 

No. 3, pp. 6-13. 

31. Dickens, A. and Holmes, M., 1987, "The New Advanced User Guide", 

Adder Publishing Limited, Cambridge. 

32. Drolet, J. R. , Moodie, C. L., 1989, "A State Table Innovation for Cell 

Controllers", Computers and Industrial Engineering, Vol. 16, No. 2, 

pp. 235-243. 

33. Duffie, N.A., Piper, R.S, Humphrey, B.J. and Hartwick, J.P., 

1986, "Hierarchical and Non-Hierarchical Manufacturing Cell Con­

trol With Dynamic Part-Oriented Scheduling", Proceedings of four­

teenth North American Manufacturing Research conference, May, 

Minneapolis, pp. 504-507. 

34. Duffie, N.A. and Piper, R.S., 1987, "Non-Hierarchical Control of a 

Flexible Manufacturing Cell", Robotics & Computer-Integrated Man-

171 



ufacturing, Vol. 3, No. 2, pp. 175-179. 

35. Dwyer, J. and Ioannou, A., 1987, "MAP and TOP Advanced Manu­

facturing Communications", Kogan Page Ltd., UK. 

36. Esprit, 1989, "The Project Synopses, Computer Integrated Manufactur­

ing", Directorate General XIII, Commission of the European Com­

munities. 

37. Folts, H., 1988, "Open Systems Standards" IEEE Network, Vol. 2, No. 

3, pp. 98-99. 

172 

38. Foote, B. L. , and Ravindran, A., 1988, "Production Planning & Schedul­

ing", Computers & Industrial Engineering, Vol. 15, Nos. 1-4, pp. 

129-138. 

39. Freer, J., 1988, "Computer communications and networks", Pitman 

computer systems series. 

40. Frenzel, U. and Schubert, I., 1987, "Local Networks in Practice, US 

and German experience" Online publication, UK. 

41. Gillespie, D., 1988, "What users need to do to make MAP a success", 

MAP /TOP user group summary, Long Beach, California, Vol. 3, No. 

1, pp. 25-29. 

42. Golenko-Ginzburg, D. and Sinuany-Stern, Z., 1988, "A Multilevel 

Production Control Model for FMS with Disturbances", International 

conference on Computer Integrated Manufacturing, May 23-25, New 

York, pp. 81-84. 

43. Gordon, J. and Mclean, I., 1986, "The BBC MASTER 128 for high­

flyers", Prentice-Hall International, London. 



44. Greenwood, N.R., 1988, "FMS Programming and Control", Control and 

Programming in Advanced Manufacturing, Rathmill, K., ed:, IFS 

Publications Ltd., UK., pp. 389-398. 

45. Groover, M.P. and Zimmerers, E.W., 1984, "CAD/CAM: Computer­

Aided Design and Manufacturing", Prentice-Hall International, Lon­

don. 

173 

46. Gupta, Y.P., Gupta, M.C. and Bector, C.R., 1989, "A rev1ew of 

scheduling rules in flexible manufacturing systems", International Jour­

nal of Computer Integrated Manufacturing, Vol. 2, No. 6, pp. 356-

377. 

47. Helmut, A. and Overbeeke, J., 1988, "Cellular Manufacturing: A 

Good Technique For Implementing Just-In-Time and Total Quality 

Control", Industrial Engineering, November, pp. 36-41. 

48. Hohner, G., 1989, "Local Area Network Links Manufacturing Cells in 

Modular Growth Design", Industrial Engineering, July, pp. 23-28. 

49. Hollingum, J., 1989, "Tooling Highway proves it out for Yamazaki", 

The FMS magazine, July, pp. 122-126. 

50. Hughes, J. G., 1988, "Database Technology A software engineering ap­

proach", Prentice-Hall International, London. 

51. Hutchison, D., 1988, "Local Area Network Architectures" Addison­

Wesley England. 

52. Hutchinson, G.K. and Chaturvedi, A., 1987, "Information Organiza­

tion in Flexible Manufacturing Systems", Computer in Industry, Vol. 

9, No. 4, pp. 353-368. 

53. Hyer, N. L. and Wemmerlov, U., 1989, "Group Technology in the US 



Manufacturing industry: A Survey of Current Practices", Interna­

tional Journal of Production Research, Vol. 27, No. 8, pp. 1287-1304. 

54. Ioannou, A. and Dwyer, J., 1987, "MAP and TOP Advanced Manu­

facturing Communications", Kogan Page Ltd., London. 

55. Jablonski, S. , Ruf, T. and Wedekind, H., 1988, "Implementation 

of A Distributed Data Management System for Manufacturing Ap­

plications", International conference on Computer Integrated Manu­

facturing, May 23-25, New York, pp. 19-28 

56. Jackson, S. and Browne, J., 1989, "An Interactive Scheduler for Pro­

duction Activity Control", Vol. 2, Part 1, January, pp. 2-14. 

57. Jones, A. and Saleh, A., 1990, "A Muliti-level/ Multi-layer Archi­

tecture for Intelligent Shop Floor Control", International Journal of 

Computer Integrated Manufacturing, Vol. 3, No. 1, pp. 60-70. 

58. Ketchem, M.G., Smith, J. M. and Nnaj i, B. 0., 1988, "An Integrated 

Data Model for CIM Planning and Control", International conference 

on Computer Integrated Manufacturing, May 23-25, New York, pp. 

338-342. 

59. Kovacs, G. L. , Bertok, P. , Haidegger, G. and Csurgai, G., 1988, 

"Some Aspects of Reconfigurable Manufacturing Cells as Building 

Blocks of FMS", Proceedings of the second IIASA annual workshop 

on computer integrated manufacturing: future trends and impacts, 

July 18-20, Stuttgard, F.R.G., pp. 187-195. 

60. Kusiak, A. and Heragu, S., 1988, "Computer Integrated Manufactur­

ing: A Structural Perspective", IEEE Network, Vol. 2, No. 3, May, 

pp. 14-22. 62. Labs, W., 1989, "Cell Control: The Hardware, the 

174 



software, the controversies", I & CS, August, pp. 29-35. 

61. Larin D. J., 1989, "Cell Control: What We Have, What We'll Need", 

Manufacturing Engineering, January, pp. 41-48. 

62. Lyons, G. J. , Duggan, J. , and Bowden, R., 1990, "Project 4 77: Pi­

lot implementation of a Production Activity Control (PAC) system in 

an electronics assembly environment", International Journal of Com­

puter Integrated Manufacturing, Vol. 3, Nos. 3 and 4, pp. 196-205. 

63. Maimon, O.Z., 1987, "Real-Time Operational Control of Flexible Man­

ufacturing Systems", Journal of Manufacturing Systems, Vol. 6, No. 

2, pp. 125-136. 

64. Maley, J. G. , Ruiz-Mier, S. , and Solberg, J. J., 1988, "Dynamic 

control in automated manufacturing: a knowledge integrated ap­

proach", International Journal of Production Research, November, 

Vol. 26, No. 11, pp. 1739-1748. 

65. Managaki, M., 1988, "Design Database Systems", NEC corp. Japan, 

Control and Programming in Advanced Manufacturing, Rathmill, K., 

ed.:, IFS publications, UK. pp. 13-35 

66. Martin, J.M., 1989, "Cells Drive Manufacturing Strategy", Manufac­

turing Engineering, January, pp. 49-54. 

67. Mcconnel, J., 1988, "Interworking computer systems", Prentice-Hall, 

USA. 

175 

68., McGregor, J. and Watt, A., 1983, "Advanced Programming Techniques 

for the BBC Micro", Addison-Wesley, London. 

69. McGregor, J. and Watt, A., 1984, "The Art of Microcomputer Graph­

ics for the BBC MICRO/ELECTRON", Addison-Wesley, London. 



70. Mclean, C. R., 1988, "A Cell Control Architecture for Flexible Manufac­

turing", Technical Papers, Society of Manufacturing Engineers, Cell 

Controller Clinic, Schaumburg, Illinois, MS88-473, April, pp. 1-16. 

71. MAP, 1987, "Manufacturing Automation Protocol", Version 3.0, July. 

72. Mil ten burg, J. , and Sinnamon, G., 1989, "Scheduling mixed-model 

multi-level just-in-time production systems", International Journal of 

Production Research, Vol. 27, No. 9, pp. 1487-1509. 

73. Nagarkar, S. and Bennet, D., 1988 "Flexible Manufacturing System 

Lets Small Manufacturer of Mainframes Compete with Giants", In­

dustrial Engineering, November, pp. 42-46. 

74. Nahavandi, S., 1990, "System Integration Tool at Durham University", 

Internal ACME/SERC report 

176 

75. Napier, R.G., 1984, "Networking With the BBC Microcomputer", Prentice­

Hall International, London. 

76. Nemes, L., 1987, "Intelligent Interfaces", Robotics and Computer-Integrated 

Manufacturing, Vol. 3, No. 2, pp. 171-174. 

77. Nordsten, G., 1989, "FMS Aids Capital Thrnover and Machine Usage", 

The FMS Magazine, January, pp.25-28. 

78. 0 'Grady, P. J. and Lee, K. H. , 1989, "An Intelligent Cell Control Sys­

tem for automated manufacturing", Knowledge-based Systems in Man­

ufacturing, Kusiak, A., Ed.:, Taylor & Francis, UK., pp. 151-172. 

79. PC Hardware and Software Guide, 1990, "Process Monitoring & Con­

trol'', Control Engineering, Feburary, pp. 24-29. 

80. Pitt, D., 1987, "Standards For The Token Ring" IEEE Network Mag-



azine, Vol. 1, No. 1, pp. 19-22. 

81. Pleinevaux, P. and Decotignie, J.D., 1988, "Time Critical Com­

munication Networks: Field Buses", IEEE Network, Vol. 2, No. 3, 

pp. 55-63. 

82. Rabelo, L.C., and Alptekin, S., 1989, "Integrated Scheduling and 

Control Functions in Computer Integrated Manufacturing using Ar­

tificial Intelligence", Computers & Industrial Engineering, Vol. 17, 

Nos. 1-4, pp. 101-106. 

83. Ranky, P. G. , 1986, "Computer Integrated Manufacturing", Prentice­

Hall International, London. 

84. Ross, F.E., 1987, "Rings Are Round For Good!" IEEE network maga­

zine, Vol. 1, No. 1, pp. 31-38. 

85. Sarin, S.C. , and Salgame, R. R., 1990, "Developent of a Knowledge­

based system for dynamic scheduling", International Journal of Pro­

duction Research, Vol. 28, No. 8, pp. 1499-1512. 

86. Scheer, A., 1988, "CIM Computer Integrated Manufacturing", Springer­

Verlag, Berlin. 

87. Sepulveda, J .M., and Sullivan, W. J ., 1988, "Knowledge Based Sys­

tem for Scheduling and Control of an Automated Manufacturing 

Cell", Computers & Industrial Engineering, Vol. 15, Nos. 1-4, pp. 

59-66. 

88. Shaw, M. and Wiegand, G., 1988, "Intelligent Information Processing 

in FMS", The FMS magazine, July, pp. 137-140. 

89. Simpson, J.A., Hocken, R.J. and Albus, J.S., 1982, "The Auto­

mated Manufacturing Research Facility of the National Bureau of 

177 



Standards", Journal of Manufacturing systems, Vol. 1, No. 1, pp. 

17-32. 

90. Street, Y., 1989, "Conversing Computers", Professional engineering, 

January, pp. 37-39. 

178 

91. Sumpter, C.M., Gascoigne, J.D. and Weston, R.H., 1985, "Software 

Structures for Computer-Integrated Manufacture", Proceedings of the 

first National Conference on Production Research, University of Not­

tingham, September, pp. 86-94. 

92. Tangney, B. , 0 'Mahony, D., 1988, "Local Area Networks and their 

Applications", Prentice-Hall International, London. 

93. Tchij ov, I., 1989, "Flexible Manufacturing Systems (FMS): Current 

Diffusion and Main Advantages", Proceedings of the second IIASA 

annual workshop on computer integrated manufacturing: future trends 

and impacts, July 18-20, Stuttgard, F.R.G., pp. 223-247. 

94. TERCD CNC-1000, 1980, "Theory book and Manual", TERCO AB, Swe­

den. 

95. Upchurch, K. M., 1988, "The use of relational data bases for real time 

data collection and process control", Robotics and Manufacturing, 

Proceedings of the Second International Symposium on Robotics and 

Manufacturing: Research, Education, and Applications, Albuquerque, 

New Mexico, USA, November 16-18, Jamshidi, M., Luh, J.Y.S., Ser­

aji, H., Starr, G., Ed.:, ASME Press, New York. 

96. Vail, R. L., 1988, "Dynamic integration: some ideas from just-in-time 

manufacturing", Computer-Integrated Manufacturing Systems, Au­

gust, Vol. 1, No. 3, pp. 179-185. 



97. Villa, A., 1988, "Distributed Architecture for Production Planning 

and Control in Discrete Manufacturing", International conference on 

Computer Integrated Manufacturing, May 23-25, New York, pp. 357-

366. 

98. Wang, S.C., 1989, "Distributed FMS with Flexible Structure", Proceed­

ings of the seventh international IFIP /IFAC conference on software 

for computer integrated manufacturing, PROLMAMAT'88, June 14-

17, GDR, pp. 517-525. 

99. Watt, A. and McGregor, J., 1983, "The BBC Micro Book, BASIC, 

Sound and Graphics", Addison-Wesley. 

100. Weatherall, A., 1988, "Computer Integrated Manufacturing", Butter­

worth & Co Ltd. 

101. Wemmerlov, U. and Hyer, L., 1989, "Cellular Manufacturing in the 

U.S. Industry: A Survey of Users", International Journal of Produc­

tion Research, Vol. 27, No. 9, pp. 1511-1530. 

179 

102. Westerdale, G. D., 1988, "Implementing a Manufacturing Resources 

Planning (MRPII) Information System in a Job Shop Environment", 

Proceedings of Manufacturing International'88, Atlanta, Georgia, April 

17-20, Vol. 3, ed. Chryssolouris, G., Turkovich, R.W., and Francis, 

P., pp. 279-287. 

103. Weston, R.H., Sumpter, C.M. and Gascoigne, J.D., 1986, "Indus­

trial computer networks and the role of MAP, part 1", Microproces­

sors and Microsystems, Vol. 10, No. 7, pp. 363-370. 

104. Weston, R.H., Gascoigne, J.D. and Sumpter, C.M., 1987, "Indus­

trial computer networks and the role of MAP, part 2", Microproces-



180 

sors and Microsystems, Vol. 11, No. 1, pp. 21-34. 

105. Weston, R.H., Hodgson, A., Gascoigne, J.D., Sumpter, C.M., Rui, 

A. and Coutts, I., 1989, "Configuration methods and tools for man­

ufacturing system integration", International Journal of Computer 

Integrated Manufacturing, Vol. 2, No. 2, pp. 77-85. 

106. Williams, c., 1988, "MMS to DIS- What's the impact?", MAP /TOP 

user group summary, Long Beach, California, Vol. 3, No. 1, January, 

pp. 151-160. 

107. Vollmann, T.E., Berry, W.l., Whybark, D.C., 1988, "Manufactur­

ing Planning and Control Systems", Dow Jones-Irwin, Illinois. 

108. Wright, J., 1987, "Bringing Networks to the Factory", Engineering 

Computers, pp. 56-58. 

109. Zimmerman, B., 1980, "OSI reference model - the OSI model of ar­

chitecture for Open System Interconnection", IEEE Transaction on 

Communication, Vol. 28, pp. 425-432. 



APPENDIX A 

Design of Interface Module for Programmable Devices 

A.l Design· of an Expansion Board for BBC Microcomputers 

Since there was no commercially available expansion board for the BBC mi­

crocomputer which would provide the specific requirements demanded by the 

application of BBC as cell controller in a FMS environment, expansion boards were 

designed and implemented. 

The BBC microcomputer has been designed to allow expansion in a number 

of ways. The USER port and the 1 MHz bus can be used to add extra hardware 

to BBC. With the USER port there exists a problem of limited input/output lines 

(only 8 lines and two control lines). Alternatively, the 1 MHz bus can be used for 

more complex peripherals, as it allows direct access to the CPU address and data 

bus. 

An expansion board was designed to provide four 8-bit bidirectional lines with 

the capability of sending and receiving up to 16-bit digital signals in parallel. The 

board required a 1MHz bus connector, an address decoder, a clean up circuit as 

recommended by Acorn Computer Limited, a data buffer, two Versatile Interface 

Adaptors (VIA) 6522 and three octal bus transceiver and registers. 

The connection to the BBC is done via a 600mm length of ribbon cable ter­

minated with a 34 way IDC socket, and fitted with strain relief. The 1 MHz bus 

carries the following signals: R/NW (Read Not Write); 1 MHZE; NNMI; NIRQ; NRST; 

NPGFD (not used); NPGFC; ANALOG IN (not used); eight address lines, AO to A7 and 

eight data lines, DO to D7 and several ground return lines. A full address within 

the BBC is made of 16 bits, and a convenient way of considering is to split it into 

181 



two halves. The upper half defines a page address with each page containing 256 

bytes, and the lower half defining a particular byte within the page. With this 

representation, memory area FRED, which contains only addresses beginning with 

FC (hex), is the page FC. 

Since the decoded signals are active low, the bus page select signals is coded 

as NPGFC, meaning 'not page FC'. The drive circuit on the bidirectional data bus 

are arranged to be active only when NPGFC is present, and then only the low 

eight address lines, AO to A7, are required to define an address within the page. 

The R/NW signal is used to establish the direction in which the data bus drivers 

operate. A high will transfer data to the computer and a low, from it. Page 

FC (hex) is reserved for peripheral with small memory requirements and memory 

block from FCCO (hex) to FCFE (hex) is allocated for general purpose use. 

Figure (A-1) illustrates the designed expansion board. Since the Not Inter­

rupt Request (NIRQ) signal on pin 8, and the Not Non-Maskable Interrupt (NNMI) 

signal on pin 6, are both active low and open collector, pull-up resistors of 3 Krt 

are used. 

Because there is more than one VIA on the expansion board, address decoder 

(SN74LS137) is used to address each VIA. The two chip select input signals on the 

VIA, C S1 and C S2 are connected to the 1 MHz bus address lines via the decoder 

and the NPGFC2 via the clean up circuit (CNPGFC2) respectively. Address lines 

A7 to AS are used as input to the decoder and by selecting FCAO (hex) and FCEO 

(hex), a low output on Y5 and Y7 pins will be produced respectively. These signals 

are used as input to the C S2 pins of the VIAs (VIA 0 and VIA 1 ). 

As recommended by Acorn, the CNPGFC signal, together with the lower 8 

address lines, are decoded to select the VIAs. The BBC microcomputer's CPU 

182 



normally operates with a 2MHz clock, but with a slow-down circuit which has the 

effect of stretching the "clock high" period immediately following the detection 

of a valid 1 MHz peripheral address Fig. (A-2). Two problems are manifested as 

a result of this. 

Firstly, address will change and may momentarily become 1 MHz address while 

the 2 MHz CPU clock is low, but while the 1 MHzE signal is high. This could give rise 

to address decoding glitches labelled 'P' and 'Q'. The glitches are not normally 

important because the 1 MHzE clock is then low. The 'P' glitches can cause 

problems because the 1 MHzE signal is then high. Spurious pulses may therefore 

occur on the various chip select pins. 

Secondly, if the CPU deliberately addresses a 1 MHz peripheral during the 

period that 1 MHzE is high, the device will be addressed immediately, and then 

again when 1 MHzE is next high; this is because the CPU Clock will be held "high" 

by the stretching circuit until the next coinciding falling edge of the 1 MHz and 

2 MHz clocks. These are marked as 'R' and 'V' in, Fig. (A-2). In many cases 

this double accessing is not a problem except when reading from or writing to 

a location twice has some additional effect. For example, clearing an interrupt 

flag prematurely. This effect means that the 1 MHzE bus cannot be used as a 

conventional "address valid" signal. However, addresses will always be valid on 

the rising edge of 1 MHzE. 

In order to overcome the problems mentioned above, a 'Clean' version of 

NPGFC signal has to generated (i.e. CNPGFC). Figure (A-3) shows a "clean up" 

circuit recommended by Acorn to cater for this, and describes the functions as 

follows; before CNPGFC can go low, a valid page address with 1 MHzE low must 

occur. The page low is then latched into aD-type flip-flop on the rising edge of 1 

183 



MHzE clock. The CNPGFC signal will go low a time flag ( 40 nS) after 1 MHzE goes 

high and it will remain valid until 40 nS after 1 MHzE has gone low again. 

An inverter (SN54LS04) is used to invert the CNPGFC signal which is used as 

a high input for the C S1 pins of the VIAs. Since all the logic lines will have to 

be buffered for each peripheral an octal bus transceiver with tri-state outputs 

(SN74LS245) is used as a data buffer, and the pin for its data direction DIR (pin 

1) uses the inverted R/NW signal. 

The VIAs which are interfaced are SY6522 Versatile Interface Adapters. They 

are very flexible input/output control devices. They each contain a pair of 8-

bit bidirectional I/0 ports, two 16-bit programmable timer/counters, serial data 

port, latched output and input registers, expanded "handshake" capability which 

allows positive control of data transfer between processor and peripheral devices 

with 1 MHz operation. 

All the signals on port A and B of VIA 1 and port B of VIA 0 are buffered 

through a SN74LS245. The socket for these components can serve a dual purpose 

since they can accommodate an octal bus transceiver and register (SN54LS646) 

as well (only one IC can be fitted per socket at a time). The 646 IC is chosen 

to increase the expansion boards capability and possesses the following features; 

independent registers for A and B buses, multiplexer real-time and stored data, 

three-state output and true logic data path. 

One of the advantages of utilising 646 is that data can be stored on the buses 

of two separate 646 IC and then all16-bits of data from two IC can be sent out in 

parallel. In this way data is sent as 8-bit at a time from the BBC but stored on two 

separate 646 before being released as 16-bit in parallel. The data direction for 

both buffers (245 and 646) can be set in two ways; hardware or software. To set 

184 



data direction in hardware the provided links on the board can be utilised. This 

is done by linking pin number 3 of the socket into which the buffer is inserted to 

5V or OV, Fig. (A-1). Setting the data direction in software requires pin number 

3 to be linked to pin marked I/0. The pin number 21 (G) also can be set either 

in software or in hardware to control the 646 functions. 

Port A on VIA 0 is used for the software control of 646. Software can be 

developed to send a high or a low to control the functionality of 646 buffers. At 

preset only the 245 buffers are implemented on the expansion board. Note that 

when a 245 buffer is inserted into the provided socket, pin 1 on the IC must be 

positioned against pin 3 of the socket and pin 22 should be linked to 5V. 

A 0.1J.LF capacitor is used as a decoupling capacitor across the 5V and OV of 

all ICs on the expansion board. In addition, a socket is provided on each of the 

VIAs ports to external devices for the insertion of pull up or down resistors, as 

may be required in future. 

A.2 Expansion Board Functionality Test 

Once the expansion board was manufactured it had to be tested to ensure its 

correct functionality. In order to carry out the test the recommended 'clean up' 

circuit programs were developed to access the 1 MHz bus. Unfortunately, the clean 

up circuit did not work as a result of incorrect timing, Fig. (A-4.1). Comparing 

this with the given timing diagram for the 1 MHz bus by Acorn, Fig. (A-5) it soon 

becomes clear that when the page FC is selected, the state of the 1 MHzE clock 

should go from a high to a low and then a high. However, for some unknown 

reason, the 1 MHzE clock signal appeared to be inverted. 

To make the board function correctly the OR gate from the clean up circuit 

185 



was removed. As a result of this, the width of the cleaned page select signal was 

increased, Fig. (A-4.2), but the board still was not functioning. Data was read 

or written only when the 1 MHzE clock signal was low. The only way to achieve 

the desired result was to invert the 1 MHzE clock signal before inputting it into 

the clean up circuit, Fig. (A-4.3). This shifted the CPGFC signal by half a micro 

second to the left, coinciding with the low cycle of the clock. By now the board 

was functioning and there were no problems when the ports on VIAs were being 

used as output. 

When an attempt was made to read the VIAs ports however, they would not 

function correctly at all times. It was discovered that the VIAs were accessed 

more than once on one read cycle and that this had been caused by the glitches 

on the page select signal. 

At this point it was decided that a different clean up circuit should be designed 

rather than sorting out the problem with the recommended one. A first-order low 

pass filter was designed to cater for this need. After a series of tests the values 

for R and C were found by trial and error to be 1 Kfl and 330 pF respectively. 

The original clean up circuit was replaced by the RC filter, Fig. (A-6). 

The low pass filter is comprised of a resistor and a capacitor arranged in series. 

The cutoff frequency of the filter fc at -3dB is calculated to be 0. 48 MHz. All 

the frequencies below 0. 48 MHz are passed and above that are attenuated. The 

product RC is known as the time constant of the circuit and that is the time taken 

for the output to reach 63% of input voltage. The rise time tr, which is the time 

taken for the voltage to rise from 10% to 90% of its final value, is calculated to 

be 0.73J.Ls. The fall time is defined in a similar way to rise time; it is the time 

for the level to fall from 90% to 10% of its original level and as with rise time 

186 



t1 = 2.2RC. 

A CMOS 2 input NAND Schmitt trigger is used as a means of converting the 

sine waves (Vout into a square wave with fast rise and fall times. The timing 

diagram for page select signal after the implementation of the low pass filter is 

shown in Figure (A-7). 

A.3 Test Programs for the Expansion Board 

A series of programs are developed to test the expansion board and the logic 

levels are monitored at various points on the board (program BOARD-TEST, Ap­

pendix F) . To test the ports on the VIAs configured as output, the program will 

first select the 1 MHz bus before initialising the VIA. A particular port is then 

selected and configured as output. Next, the program outputs signals to that 

port and a digital storage scope may be used to monitor the arrival of the signal. 

To conduct the test on the VIA ports, configured as input, an absolute encoder 

may be used. The encoder can be set to a fixed position and that position can be 

read continuously. The read value can be checked against a preset values (255) 

each time. Should there appear a glitch or spike in the page select signal (CPGFC), 

then the device is not accessed for a short period. This will cause a value of 255 

to be read by the computer, and terminate the execution of the program. This 

test was carried out and after running the program for six hours continuously, it 

became evident that the RC network is fuctioning correctly. 

A.4 Design of a Remote Control Board for the CNC Miller 

For a programmable device to be able to contribute the flexibility that is 

expected in an FMS environment, its capabilities should include; being able to 

187 



receive the machine control commands from the cell controller and execute them 

successfully, the ability to communicate with its cell controller and provide it with 

the signals which are critical to machine operation (i.e. feedback signals), allow 

for the UPLOAD and DOWNLOAD of files to and from its cell controller. 

In order to endow the CNC miller with some of these capabilities, its control 

circuit was slightly modified. This can be divided into two parts, one where the 

designed interface enabled the miller to receive the control command directly 

from the cell controller, and the other making the remote resetting, initialising 

and jog control of the mill's axes, possible. 

The circuit diagram for the mill controller was carefully studied. The key­

board on the mill's control panel (function keys) are encoded through a keyboard 

encoder interface (MM5740AAE) before being sent to the PIA (6820). An interface 

was built to bypass the keyboard encoder allowing the cell controller to send the 

encoded data directly into the PIA's data bus, Fig. (A-8). A manual (toggle) 

switch was installed at the mill's control panel to disable or enable the keyboard, 

allowing remote or manual operation of it. 

Table (A-1) shows the way in which the keyboard is encoded. This informa­

tion is worked out from the MM570AAE data sheet together with the TERCD-1000 

keyboard circuit diagram. Once the keyboard is disabled, codes can be sent di­

rectly to the PIA, for example, sending 8B (hex) will have the same effect as that 

of the START key being depressed on the mill's controller. 

Procedures are built within the cell controller software which take care of 

sending the right code to the mill's controller for various control commands. 

Data Codes sent from the cell controller is routed via the expansion board to mill's 

PIA. Prior to commencing a milling operation, its datum must be defined. This is 

188 



carried out by sending the table to a prefixed (home) position. Micro switches are 

installed on the mill's table axes. Feedback signals from these switches indicate 

whether or not the table is in its home position. 

Table (A-1) Encoded data for CNC-1000 function keys 

Function key M at1·ix address Encoded valu Function key Matrix address Encoded valu 
(Hex) (Hex) 

x-value y-value x-value y-value 

1 9 10 B1 s 8 4 53 

2 8 10 B2 T 6 3 D4 

3 7 10 33 X 8 6 D8 

4 6 10 B4 y 5 3 59 

5 6 1 35 z 9 6 5A 

6 5 1 36 Block by Block 2 2 8D 

7 5 10 B7 Change 2 8 09 

8 4 10 B8 Dump Tape 9 7 82 

9 4 1 39 End of Prog 3 10 3A 

0 3 1 30 End of Block 3 2 OA 

- 2 10 2D Erase Block 9 9 84 

+ 3 5 BB Exam 2 9 88 

F 6 4 C6 Insert Block 8 1 05 

G 6 5 47 Load Tape 9 5 81 

I 4 2 C9 Prog 2 6 8E 

J 5 4 CA Read 8 5 87 

K 4 4 4B Set Zero 8 3 06 

M 5 6 4D Start 2 5 8B 

N 5 7 4E To Zero Point 9 8 03 

189 



In order to send the table to its home position, an interface is built into 

the Jog circuit of the mill's controller. Signals are sent directly from the cell 

controller to move the table to the desired position (home). Two Micro switches 

(Single-pole Double-throw) are used on each axis, one as a limit switch providing 

"input" signals to the cell controller and the other as a means of cutting off the 

input signals (circuit breaker) to the stepper motor of the axis on which the limit 

is reached. For higher reliability a Double-pole Double-throw switch can be used 

instead of the two switches, but this is more costly. 

Since the ports on the cell controllers VIA are normally at high impedance, a 

single micro switch could not have been used for both sensing the tables travel 

limits and as a circuit braker for the input signal to the stepper motors unless 

additional circuitory was designed. In order to simplify the problem two switches 

were used. Although it is not suggested that this is the best solution, it has been 

proved to work successfully. 

The table can be sent to its home position either by the manual jog control 

switch or by the cell controller, sending signals directly to the jog control interface. 

In both cases, once the limit is reached on an axis the micro switch (circuit 

breaker) will automatically stop further movement of the stepper motor on that 

axiS. 

To send the table to its home position, the cell controller sends the appropriate 

signal to jog control interface and reads the state of the limit switch, i.e. whether 

the limit has been reached. Once the limit has been reached, the first micro 

switch (circuit breaker) performs a hardware stoppage of further signals to the 

stepper motor, while the second one prevents the cell controller software from 

sending further signals. Since at the end of a milling operation table will travel 

190 



to its home position, the limit switch is used for the acknowledgement of the end 

of the milling operation. 

An interface was also built into the reset line of the mill controller, so that 

the reset of the controller can be performed directly from the cell controller. 

191 



SN74Ul245 

SNMLS04 

Figure (A-1) The cell controller interface module. ,_. 
= ~ 



193 

CP\1 CLOCI\ WIT'H 
C'I'CLE S T'RE rcHtNG 
!MASTER 2MH1 CLOCK 
SHOWN OOTTEOI 

' 
u 

' ' I : I 

IMMzE _ji li I; 11 I! I 
I I I I 
I I : 
I I 
I I 

! I 
I 

ADCAESS BUS 

I 
I 
I 
I 

NPGFC 

J I 
I 

lOt NPGFOI !I 
a• p' a' I I I I 

I I I I 
I ' I I 
I I I I 

CNPGFCl 

I I il I Of Cl'jP(',FOit 

ao a: ' 
I 

VI 
I 

' CN..,GfC2 I 

r.._, CN~FD21 

~b ·~~ I~ 

Figure (A-2) 1 MHz bus timing showing page select signals. 

+SV 

T 
NPGFC 0 CLR 0 CNPGFC2 
!Of NPGFOJ lor CNPGFD21 

LSi4 

1MHzE 

c PR Q 

~"" I 

Figure (A-3) The Clean up circuit. 



lMHzE 

R/ NW 

NPGFC 

CPGFC {CSl) 

CS2 

CPGFC {CSl) 

R/ NW 

CPGFC (CS1) 

CS2 

_j L 

-~n~-----

10 
Fig. (A-4.1) Using the BBC recomended Clean-up circuit. 

I --1 n._____Micro Sec 1L--.J.__~-~~I I 
5 10 

Fig. {A-4.2) Removing the OR gate. 

J 

Micro Sec 
I I 

5 10 
Fig. (A-4.3) Inverting the clock and removing the OR gate. 

Figure (A-4) Derivation of valid page select signal. 

194 



. ..,..,tE 

.t.XRESSANO 
~E40·WRi'ff l~S 

\ 
' 

lr 
I 
I 1.,-t; :<---

~ 
' I 
: 
I 

I ' I 
~-~ :<--

I 

1 
I 
I 
I 
I 

~ 

' ' 
1 ... -1-: 

\ 
I 

I 
I 

----./ r I 

I 
I 

-I :+-- ·-' I ' 

iY 
I ' 
I ,.__ -: rf--- ~-I 
I I I 

~ ~ 
' 

L,. --iol-+1- ~- 1 

0 ------------------------I ,-------------
' ' 

The timing requirements are: 

Description Symbol Min. Max. 

Address (and Read/Write) t as 300n5 1000n5 
Set-up time 

Address (and Read/Write) t ah 30nS 
Hold time 

NPGFC & NPGFD Set-up time t pgs 250n5 lOOOnS 

NPGFC & NPGFD Hold time t pgh 30nS 

Write data set-up time t dsw 150nS 

Write data hold time tdhw SOnS 

Read data set-up time t dsr 200nS 

Read data hold time t dhr 30nS 

Figure (A-5) The 1 MHz bus timing. 

195 



..... 
~ 
::r:: 

.0 N 

o' 
~ 
rn 

lK 

SN?4U!245 

Schmitt l.ri&&er 

40938 

Invertor 

SN54LS04 

UJ z 
...;z .,. 
Eli 
Cl .,. 
Cl 

........ 
{'\J .,. 
01 

Figure (A-6) The modified circuit for the interfacing module. 
.... 
cc 
Q) 



lMHzE 

R/ NW. J 

NPGFC 

Filtered 

PGFC 

CPGFC (CSl) 

CS2 

1 Micro Sec 

L 

Figure (A-7) Derivation of valid page select signal 
using a first order filter. 

197 



Keybolll"d encoder 

MM5740 AAE ~ 
~ 

Function Keys 
(CNC-1000 Keyboard) 

198 



APPENDIX B 

Data Organisation and Representation in FMS 

B.l Manufacturing Database 

The functionality of the manufacturing database is very similar to some of 

the commercially available databases running under the DOS (e.g. SMART). It 

provides the user with a simple Structured Query Language (SQL). Some parts of 

the routines within the manufacturing database, Appendix F, utilise a modified 

version of codes listed in [Gordon 1986] and [McGregor 1983]. Although there 

is no limit to the number of records of a datafile and the number of fields of its 

records, to save disc space the maximum number of records and fields was set to 

five and eighteen respectively at the start of the program. 

Records of a data file are related by a field (keyfield) and the contents of the 

keyfield from different records together with their record numbers are stored on a 

separate file namely 'index file'. To speed up the operation of the database a two 

dimensional array "index table" is used to hold the content of index file while the 

database is being used. The user is provided with a "$" prompt and the main 

menu will simplify utilisation of the database. 

The program will only accept those command lines defined by the database 

and the order in which the commands within a command line are entered is also 

important. Each command line calls one, or a number of, procedures. At this 

stage it is assumed that the user has some knowledge of database and has a plan 

of how to define the structure of records of relation. 

At the beginning of the program user is given the choice of creating a new 

job. If this option is chosen, the user is then required to enter the new job name. 

199 



The program will then create a data file for the new job together with an index 

file. The name of the index file is encoded by adding "IND" to the end of the job 

name. Procedure PROCcreate-new-job is called to perform this. Users may refer 

to the menu for the facilities provided by the database by entering letter "M" at 

the prompt. The structure of a manufacturing database shown in the form of a 

flowchart in Figure (B-1). 

Records may be added to an existing datafile by entering 'ADD' command at 

the prompt. This will call the procedure PROCadd-rec where the user can then 

enter data to the fields of a record. Each record is then added to the end of the 

datafile and an entry is made to the index table. Once user has finished with a 

datafile, it can be closed by entering close command followed by the name of the 

datafile (CLOSE 'filename') which is performed by the procedure PROCclose-f ile. 

However, closing a data file does not update the content of its index file. To do 

this the close command has to be followed by the name of the datafile, update 

command, index filename and the field number of the keyfield (CLOSE 'filename' 

UPDATE 'index filename' 'field number'). ROCclose-update is used for the closing 

of a datafile and updating of its index file. 

Records of a datafile may be edited after being created. To do this a record 

number has to be preceded by edit command (EDIT 'record number'). PROCedi t­

ree will display the fields of the record to be edited and user the is then given 

the choice of changing the content of each field or leaving it unchanged. 

Records of a datafile can be marked for deletion by entering command followed 

by the start and the finishing record numbers separated by a semicolon (DELETE 

'from record' ; 'to record'). PROCdelete performs this by simply marking the 

records to be deleted. The subsequent deletion is performed by entering the 

200 



compress command followed by the name of the datafile (COMPRESS 'filename'). 

PROCcompress-recs will read the records of a datafile and overwrite the records 

which have been marked by the delete command. It also removes the entry of 

deleted records from the index file. 

An option is given to the user to recover the records which have already being 

marked by the delete command. This is done by entering the retrieve command 

followed by the record number at the prompt (RETRIEVE 'record number'). A 

deleted record can only be recovered if the datafile has not been compressed. 

PROCretrieve-rec performs this by simply removing the deletion marks from 

the front of the record, and updating the index file. 

In order to prevent the accidental modification of a datafile, user IS pro­

vided with two options. One, where an existing datafile may be opened for 

reading purpose only, in which case the open command is followed by the data 

filename, index command and index filename (OPEN 'filename' INDEX 'index file­

name'). PROCopen-file is called to open a file without updating it. The other 

option allows user to open a datafile for updating. The datafile must be the one 

which is already in existence and the open command must be followed by update 

command, data filename, index command and the index filename (OPEN UPDATE 

'filename' INDEX 'filename'). This is performed by PROCopen-update-file. The 

open command reads the structure of the datafile into memory and by putting the 

content of the index file into memory allows user to perform data management 

activities. 

Once a datafile is opened the record pointer is set to one by default. However, 

it is possible to change the position of the record pointer to any existing record by 

entering the goto command followed by the desired record number (GOTO 'record 

201 



number'). PROCgoto accepts both positive and negative numbers to move the 

record pointer forward or backwards. 

Records of a datafile can be listed by entering the list command (LIST). This 

command lists all records of the datafile and the output to the screen is controlled 

by the user. PROClist-recs performs this and it waits for a key to be pressed by 

user on printing of every twentieth line to the screen. Displaying of a single record 

is also possible by entering the display command followed by the desired record 

number (DISPLAY 'record number'). If no record number is given, then the record 

to which the record pointer is pointing will be displayed. PROCdisplay-rec is 

used for the displaying of randomly selected records by user. Viewing a specific 

field of any record within a datafile can be performed by using the show command 

followed by the record number and the field number (SHOW 'record number' 'field 

number'). 

Organising records of a file in a particular order requires sorting. Records 

can be logically ordered so that a particular field (keyfield) appears in alphabet­

ical order (assuming the field type is of characters). Alternatively, they may be 

ordered so that a numeric field appears in ascending or descending order. Index 

files can then be referred to as being sorted 'ON' a particular field (keyfield). 

The order in which the records of a datafile are displayed is determined by 

the content of its index file. A datafile may have several index files where the 

record's relations are stored. Hence, the logical order of the records depends on 

which index file is in use. To create a new logical order for the records of a 

datafile, the order command can be entered, followed by 'ON' command, the field 

number which is to be chosen as the keyfield, 'TO' command and the name of the 

index file where the new index data is to be written (ORDER ON 'field number' 

202 



TO 'index filename'). This is performed by PROCorder-recs. PROCorder-recs 

will create a new index file and, after organising the record in the order which is 

based on the keyfield, will write the content of the keyfield form different records, 

together with their record numbers, to the index file. 

During an ordering session the data fields (keyfield) of the records are being 

sorted by PROCsort. This utilises a bubble sort [McGregor 1983] which sorts the 

fields stored in the index table into the required order. Considering an array of 

data with n entries to be sorted by bubble sort (in ascending order), the algorithm 

will decide each time whether the value of entry n is smaller than the entry n-1, if 

so the two entries are swapped round (PROCswap ). This process is repeated until 

the data array is sorted. 

Search for a record can be made among the records of a data file, being 

ordered on a keyfield, to see if there is an entry corresponding to the content of 

the field being searched for ( searchspec ). This is carried out by entering the find 

command followed by searchspec (FIND 'field content'). PRDCfind-rec utilises 

a searching technique known as "logarithmic search". This method of searching 

requires examination of approximately Log2 n entries (fields) before finding the 

desired one. It begins examining the entry in approximately the middle of the 

index table (PROCchop-arraytable ). If the given searchspec is the same as the 

examined entry, the search is terminated successfully. If the given searchspec 

comes before the examined entry, the first half of the index table must be searched 

next, otherwise the second half of the index table must be searched. This process 

is repeated until the searchspec is found. 

There are some procedures which are being called from other procedures. The 

ones which have not yet been mentioned are; PROCread-index, PRDCget-num and 

203 



PROCget-chars. PROCread-index is used by 'OPEN' command, and it reads the 

content of an index file into the index array. PROCget-num and PROCget-chars 

are used by the 'EDIT' and 'ADD' commands. When a datafile is created, the fields 

of its records can either accept numeric or alphanumeric (characters) and this 

information is held in the header record of datafiles. When new records are to be 

added or the existing one edited, depending on the fields type, PROCget-num or 

PROCget-chars is called. 

B.2 From Design to Manufacture 

A drawing package namely "CAD10" has been developed to allow for simple 

shapes to be designed and then this data is postprocessed for the manufacturing 

phase. The postprocessing of design data is carried out for the CNC-1000 miller. 

Figure (B-2) illustrates a flowchart of the program. The routines which deal with 

drawings utilise information on graphics in BBC microcomputers from [McGregor 

1984], [Watt 1983]. At the beginning of the program, user is asked to enter the 

part (workpiece) information such as its length, width, first depth of cut and 

feedrate and what the generated part-program is to be called. This is performed 

by procedure PROCpart-info. 

Next the screen is divided into two windows, one where the menu is present 

(text window) and the other where the drawing (graphic window) takes place. 

The milling machine utilised for the FMS can only accept parts ( workpieces) with 

a dimension no larger than 200X100 mm. In order to fit parts of any dimension 

onto the screen, a scaling factor is worked out. All calculations are performed in 

workpiece dimensions (parameters) and the scale factor is only used to convert the 

workpiece parameters into screen parameters before a line or a curve is plotted. 

204 



However, the position of the cursor on the workpiece is displayed in the text 

window in workpiece dimension. The cursors unit of movement is set to 0. 2 or 

0. 5 mm depending on scale factors value. A background grid is provided to ease 

the design process and, depending on the workpiece dimensions, reference dots at 

5 or 10 mm (in workpiece dimension) are spaced. The calculated scale factor is 

used to fit the workpiece onto the screen in at least on dimension. A border line 

is drawn to signify where the movement of the cursor (and subsequent plotting) 

would be valid for design purposes. A datafile, with the same name as the part­

program, is created so that postprocess data can be written to. All these tasks 

are performed by PROCini tialise. 

Users can then draw simple shapes by moving the cursor around the screen. 

Once the cursor has reached the desired position, a command from the text 

window may be entered to define what type of operation is to be performed. 

Movement of the cursor on the screen corresponds to the movement of the milling 

machines spindle, therefore it has to be told whether to cut the workpiece or fresh 

air, at what feedrate and depth of cut. As the cursor moves around the screen, 

its absolute position is updated constantly in the text window. 

To send the cutting head from one point to another without it performing 

cutting, command M (MOVE) is entered once the cursor has reached the position 

which to the head is to be moved. PROCmove will position the cutting head above 

the workpiece before allowing it to move to a new position. A Straight cut can 

be carried out by entering command L (LINE-DRAW) once the cursor is situated at 

the end of the cutting position. PROCline-draw will plot a straight line between 

the two points on the screen. 

Plotting a curve can be performed by positioning the cursor to a point where 

205 



the curve should end, and entering command C (CURVE DRAW). This will produce 

the quadrant of a circle with the two point being the start and end points of the 

quadrant. In this way the user would not need to know the center point of the 

curve to be plotted. PROCcurve-draw will get the start and end position of the 

desired curve and then it works out the centre points for the quadrant. Letters 'C' 

and 'A' for clockwise and anticlockwise are printed on the graphic screen and it is 

required of user to choose whether a clockwise or anticlockwise quadrant should 

be plotted by entering 'C' or 'A'. 

The feedrate of milling table can be changed by entering command F (FEE­

ORATE). For this option the cursor does not need to be moved. The feedrate is 

in mm/min and PROCfeedrate will require from user the new feedrate. Depth 

of cut can also be changed by entering command D (DEPTH) and it will get into 

effect in the next machining step. PROCdepth is used to perform this. 

Design information is formatted (postprocessed) in such a way as to be un­

derstandable to the milling machines controller. Formatted data is stored in the 

form of data blocks [TERCO 1980] on to disc. This is performed every time 

a command is entered at the keyboard throughout the design process (except 

PRINT). If new values of parameters (e.g. depth of cut, feedrate etc.) are not 

entered into a data block, by default they are left the same as they were in the 

previous data block. Formatting of datablocks is performed by FNformat every 

time the program receives a command from the user (except PRINT). To download 

the part-program to the CNC-1000 the serial link (RS423) is used. Normally, BBC 

microcomputer formats data via ACIA chip [Dickens 1987] with no parity bit and 

a single stop bit. However, CNC-1000 requires the postprocess data (data blocks) 

to be sent with seven data bits, even parity and two stop bits. This is carried out 

206 



whilst the data is being sent to the milling machines controller. 

Removing of existing lines or curve is carried out by PRDCremove. This is 

done by entering command R (REMOVE). The pointer of disc data file will be 

adjusted to the start of that data block so that the, next data block can be 

overwritten on that block. There exist several arrays which hold various design 

parameters. Information from these arrays are used to find out the types of 

previous command (e.g. whether the previous command was a line or curve). If 

the previous command is a line or a curve then a line or curve is plotted in the 

background colour from the present point. 

A screen dump of part design can be obtained by entering command P 

(PRINT). PROCprint will first perform a screen dump, Fig. (B-3) and then gives 

a printout of the formatted design data, Table (B-1 ). To end the design session 

user will enter command E (END) as PROCend will close the datafile before ending 

the session. 

207 



208 

I CLOSE Close a datafile 

~LOSE UPDATE~ Close and update a datafile 

COMPRESS ~ Overwrite on deleted records 

CREATE ~ Create a datafile 

DELETE ~ Mark records for deletion 

DISPLAY f Display a record 

EDIT ~ 
FIND ~ Search for a record 

GOTO ~ Go to a record 

UST ~ List all records 

MENU ~ Print the command menu 

OPEN ~ Open a datafile for reading 

OPEN UPDATE~ Open a datafile for updating 

I ORDER ~ ut the record in a particular order 

lgUIT ~ Quit from database 

I RETRIEVE ~ Retrieve a deleted record 

I SHOW Show a specific field of a record 

Figure (8-1) A flow chart for manufacturing database module. 



CURVE-DRAW~ 

DEPTH ~ 

REMOVE 

FEED RATE 
END 

PRINT 

Move cursor to new osition 

Enter a command from menu 

Change depth of cut 

Remove a line or a curve 

Change feedrate 

End drawing session. Finish=TRUE 

Give a design print out 

Figure (B-2) A flowchart for design for manufacture module. 

209 



~~--:,-::y~~~ - -;~ ·.'ttt::~·1 ::': ' · *~~~~:~~·~~ t· t ·· i: :.=·:::: 
.... 3 , 3 · . ·:: , (11 .... *~ ' * ' .. ; ttn · 
> :: ~:-~ ~<-·<··..., :,: .. •·t ,··· - ~ .. -~'c: .-· 

. .. . - '0. , . Col, . ; .. . . ~ : . * r.1 . * .- .. ~ . . .. t:· ... 
· . _ ,. <.c ~ !.; · · · · -~ * ci• ~ · · ~ · !Sit: .... -­

: Ci 41 . ~ : '· 0 : .. .., . - -c * -c.;* .. ~ ~ ... : ~ c: : 
·~ :> . C . :., . t: .: C. • ~ ~ . ~'0 : ,. ,.. . , * .Q . I* :- ~ . I..Q . -N ..-i ,,.. . 
:: .Q .. ·~~ - :L 41.:~-C1J- ~· n. ;C: ~ *OE* .: II II. il . II - ~ 
·,E: : .;.J . u ··: c::: ~r·o .. ,u., --LU . ·~ . * ~N*:' X- .> c N. ~.~.,; ~ 0.: ·~ 

I I 

Q 
Ql) ...... 
C'/J 
Q) 

"0 

210 



N G 
001 00 
002 
003 
004 01 
005 
006 00 
007 01 
008 00 
009 01 
010 
011 
012 
013 00 
014 01 
015 03 
016 01 
017 02 
018 
019 00 

F S Tl M I X I y I z I I I J I 
1 

1 02500 l 07000 
110 1 03 

01000 -00600 
03000 

02500 05500 00000 
01000 -00600 
04000 03000 00000 

07000 -00600 
05500 05500 
07000 07000 

03000 
08000 04000 00000 
09000 03000 -00600 00000 01000 
10000 04000 01000 00000 
08000 06000 
09000 07000 I I 01000 I ooooo 
10000 06000 00000 01000 

02 

Table (B-1) A post processed design data for the CNC-1000. 

K 

N ..... ..... 



APPENDIX C 

C.l Inter-cell Real-time Scheduler 

The overall scheduling of the FMS activities is carried out by a program called 

"SCHEDULER", Appendix F. Figure (C-1) shows a flow chart of the program. At 

the beginning of the program it is required of the user to enter the information 

regarding the particular job to be processed. The user, by inputting the name 

of the job, batch size for the job and test number on which a historical report 

can be referenced, invokes the operation of part production in the FMS. Next., the 

program searches through the manufacturing database to identify to which cells 

start-up messages should be sent. 

The sequence in which the parts have to visit the cells is identified by the 

procedure PROCseq-active-cell-check. It checks whether or not the active 

cells are included in the part production sequence. Parts are then sent to the 

cells according to this predefined sequence. Procedures PROCpart-trans-from­

warehouse and PROCpart-trans-to-warehouse will transfer raw parts from the 

warehouse to the first logical cell (i.e. the first cell in the part production route) 

and send a complete processed part to the finished parts store section of the 

warehouse respectively. 

Monitoring of the production progress of the cells is partially carried out by 

PROCoutput-partbuf-check, as this procedure scans through different manufac­

turing cells to identify the one which has completed the operation on a part before 

depositing it to its output part buffer. If there already exists a part in the output 

part buffer then the program has to make enquires of the status of the input part 

buffer of the next logical cell before transferring the part to that cell. This is 

212 



carried out by PROCinput-partbuf-check. 

The order in which the production cells are checked is sequentially deter­

mined by the data contained within an index file. Should the situation arise that 

some cells have a higher importance than others, for example having very short 

operation time, then higher priority can be given to them by including that or 

those cell or cells more than once in the index file. This index file is created at the 

end of a job creation session. However, the speed at which the cells are checked 

by the program is far greater than the speed of the fastest operation that a cell 

could ever perform. 

Other activities of production cells are monitored by System Monitoring Mod­

ule (SMM), upon which real-time decisions are made. The integral part of SMM 

comprises two procedures namely PROCoutput-partbuf-check and PROCinput­

partbuf-check. For example, SMM checks whether or not the cell has produced 

a defective part. If this is the case, procedure PROCdefecti ve-part-trans-to­

warehouse is called to ensure that the part is not transferred to the next logical 

cell but to the reject part store. SMM can be extended to monitor any number of 

cell critical status upon which more accurate decision may be based. 

213 

Transfer of parts from one cell to another is carried out by procedure PROCpart­

trans-to-nextcell. Whenever a part is to be transferred to a cell or taken away 

from it, the scheduler will have to make the appropriate arrangements with that 

cell regarding its readiness for such an activity by exchanging messages between 

the two parties. Durham FMS utilises a pneumatic trolley (inter-cell part transfer 

mechanism) by which the part transfer between the cells is carried out. Currently, 

due to hardware problems the operation of the trolley is simulated by procedures 

PROCsend-trolley and PROCdri ve-trolley but once it becomes operable, the 



control command can be included in these procedures. 

Procedure PRDCterminate-part-prod will terminate the process of part pro­

duction in all of the cells by sending the appropriate messages to them. At the 

moment, once the job has been terminated it does not provide the option of con­

tinuing the job from where it was stopped. However, since all of the activities 

of the system have been recorded (explained in chapter six), the system has the 

potential to be developed further by utilising the information from the recorded 

data together with the current status of the production cells, for continuation of 

the terminated job. 

Once the production of all of the parts has been completed successfully, the 

scheduler sends a message to each cell that the production period for the current 

job is over and this is performed by procedure PROCproduction-period-comp. 

Following this the scheduler passes its control to the MASTER program, where the 

upload file preparation is commenced. A report is required of all the production 

cells which have been currently involved in the processing of the job. This is 

discussed in chapter six. 

214 



START 

----i Search for the job specifications 

----i Initialise the participant cells 

I 
I 

----i Download programs to the Cell Controllers I 
----i Send the job specifications to the cells I 
----i Start intra-cell activities I 

----i Until all the parts have been manufactured I 
.4~ H Monitor the status of the cells I 

H A part is to be transferred J 

215 

<>r-!Check the production rules I 
f-----JTransfer a part I 
L__JUpdate the system activity report I 

~ Terminate part production I 
~Stop intra-cell activities I 
~ L; F.nrl 

f-----1: End the part production session in all of the cells I 

END 

Figure (C-1) A flow chart for the FMS scheduler. 



APPENDIX D 

D.l Cell Controller Specific Software (CCSS) 

The general purpose cell controller software is in fact a cess program in which 

modification of the relevant section will result in a CCSS for the particular cell. 

Therefore, the functionality of the routine within the cess is the same for all cell 

controllers in the FMS and for this reason a cess program namely "MILL-VMD" 

belonging to the milling cell is chosen as an example for the description of cell 

controller module functionality, Appendix F. 

Figure (D-1) shows a flow chart for the Cell Controller Specific Software. 

Once the cess program has been downloaded by the system scheduler into the 

memory of the milling cell controller, CCSS will utilise the manufacturing database 

to obtain information about the job. It will then initialise and download the 

appropriate programs to the controllers of the resources (such as robot and CNC 

milling machine) within the cell. Procedures PROCinitialise and PROCdownload 

perform this. 

The program will continuously update cell status information in the dynamic 

database. It also checks whether a part is to be sent to the cell (by the system 

scheduler) or to be taken away from it. Transfer of a part to or from the cell 

involves the following cooperation of cell controller with the system scheduler. 

CCSS will receive a message from the scheduler that a part is going to be trans­

ferred to the cell. cess will then reply that it is ready for a part transfer to the 

cell. It then arranges with the cell's robot for the transfer of the part into the 

cell's input part buffer. Next, CCSS send control command to the robot to per­

form a pick and place operation, depositing the part onto the milling machine's 

216 



table before issuing commands to the milling machine's controller to start its op­

eration. Transferring of parts out of the cell takes a similar course. Procedures 

PROCget-a-part and PROCsend-a-part are used to transfer a part in or out of 

the cell. Also, PROCstart-milling will start the machining operation by sending 

the appropriate control command to the controller of the milling machine. 

Once the milling operation is in progress, cess will regularly check the state 

of various sensors, from which a decision is made upon feedback signals which 

would represent the completion of the milling operation. The monitoring of the 

milling operation is carried out by a function FNmill-moni tor. This routine has 

been coded in such a way that on certain occasion (for example if the part is the 

first to be processed in this cell it would be a defective part) to report that the 

machine has produced a defective part. This simple routine was used to see if 

the system has the capacity to cope with some of the problems which may arise 

in a real system (i.e. shop floor). As this will cause the system to increment the 

batch size by one for defective part replacement so that the initial demand for 

good parts (non-defective) is met. 

There are four defined paths which the robot can take to perform a pick and 

place operation. These are; taking a part from the trolley (inter-cell part transfer­

ring mechanism) and placing it onto the input part buffer, taking a part from the 

input buffer and placing it onto the machine's table, taking the part from the ma­

chine's table and placing it into the output part buffer and finally, transferring a 

part from the output part buffer onto the trolley. Procedure PROCpart-transfer 

is used to execute this by receiving the information about the path before issuing 

commands to the robot to perform the desired pick and place operation. Due to 

both electrical and mechanical problems with the robots their operations were 

217 



simulated in all of the cells. However, if a cell is equipped with a working robot, 

the control signals must to be included where the simulated routines are placed. 

Procedure PROCprocess-next-part is used only when the operation on a 

part has been completed and the input part buffer is not empty. The situation 

may arise where the processing time on a part for the current cell is far less than 

for the next cell. The output part buffer may fill up (if the size of buffers are 

small) too quickly. Procedure PROCout-partbuf-full is then used to first empty 

at least one part before placing the current processed part from machine's table 

into the output part buffer. 

In order to demonstrate that the production cells can negotiate about part 

processing (exhibiting the heterarchical behaviour) with each other without the 

intervention of the system scheduler, residing at the master level, before a part 

is transferred to a cell, the two cells will first exchange information about that 

part before transferring it. For example, parts leaving a FMS cell may be placed 

on a pallet; the location and orientation of each part being placed onto the pallet 

by the previous cell's robot is then required by the receiving cell. To obtain 

this information from one another, cells can utilise the Cell Talk (explained in 

chapter five). This is how a FMS cell utilises the communication module for the 

exchange of information between the cells. Quality control could also be exercised 

by the manufacturing cells by each cell assigning a number for the quality control 

parameter at the end of processing period of a part in that cell. Depending on 

how well and accurately the processes are performed in each cell the cumulative 

number for this parameter could decide at what stage of part production through 

the different manufacturing cells a part is categorised as defective hence further 

operation on that part to be abundant. 

218 



The example of this feature in the Durham FMS is shown where, if a part is 

to be transferred from the milling cell to the assembly cell, the assembly cell will 

first make enquires about that part of the milling cell and, once it has received 

the information (e.g. part orientation or dimension etc.) from the milling cell, 

it will then accept the part into its cell. The procedures which deals with this 

are PROCinfo-request, PROCrespond, PROCget-mail, PROCmail-test, PRDCtx­

message (send mail), PROCpeek and PROCpoke which are explained in the manu­

facturing communication section of chapter five. 

219 

The two procedures PROCget-part-orientation and PRDCget-part-dimension 

are used to exhibit the direct information exchange of two production cell during 

the period of part production in real-time. They simulate the functions of systems 

such as a vision system or coordinate measurement system by simply generating 

a string composed of a series of characters and numbers. These characters and 

numbers have no real meaning and are used only to highlight the exchange of 

information between the entities. 

To demonstrate the hierarchical behaviour of the system a routine is built into 

the CCSS to receive commands from the system scheduler (residing at the master 

level) for the termination of part production in that cell. Once this command 

is received by the cess it will terminate the part processing if and only if the 

current operation is completed. It then produces a report representing the state 

of the cell at the time of termination. Procedures PROCterminate-part-prod 

and PROCcell-reports will carry out this. 

Finally, once the CCSS receives the commands from the system scheduler 

which indicate that the desired goal (production of the batch) has been achieved, 

the cell controller produces a report on the production of parts before uploading 



it to the MASTER program (residing at the master level). Due to the restrictions 

imposed by the available memory of the BBC microcomputer to compute and 

produce a meaningful report for the cess, a simulated report (i.e. concocted 

information) on the cell performance during the production period demonstrates 

the uploading capability of the cells. Such a report may include information such 

as the cell efficiency, its defect rate, number of processed parts in that cell etc. 

Once the report is uploaded it becomes resident in the records of the historical 

report data on the production cells. 

220 



Obtain a job name from 
the system scheduler 

Initialise the cell 
programmable devices 

Download the appropriate control 
programs into the devices'controllers 

Send a job progress report 
to the master 

Perform the task 

Update dynamic 
database 

Figure (D-1) A flowchart for Cell Controller Specific Software. 

221 



APPENDIX E 

The Seventh Layer of the OSI model 

E.l Application Layer 

The application layer is the top layer of the OSI reference model and some­

times is referred to as Application Entity (AE). The application layer provides 

services to allow application programs (user programs) to access the network and 

it also deals with semantics (meaning) of information exchange between applica­

tion processes [Mcconnel 1988]. The user programs are normally referred to as 

Application Process (AP). 

Within the application layer, Fig. (E-1), two divisions may be defined : 

Common Application Service Elements (CASE) and Specific Application Service 

Elements (SASEs ). 

SASEs have been developed to allow APs to access and provide specific services. 

File Transfer, Access and Management (FTAM), Manufacturing Message Services 

(MMS) and Directory Services (DS) are some examples of SASEs . CASE provides 

some general supporting services to which most APs will require access. The 

Association Control Service Elements ( ACSE) is an example of a CASE which is 

concerned with the setting up and closing down logical association (connection) 

between two correspondent SASEs. Since in manufacturing MAP uses the FT AM and 

MMS, the following brief description of both was considered appropriate. 

E.l.l File Transfer, Access and Management (FTAM) 

The File Transfer, Access and Management (FTAM) is a SASE which provides 

the means of remote access and management to files stored on different com-

222 



puters (maybe file servers), irrespective of the type of networks to which they 

are attached. Consider two computers; one as a client on the broadband factory 

backbone and the other a server on the baseband CSMA/CD network, Fig. E-2. 

The client (initiator) may wish to operate on a file which resides or is to be cre­

ated in the server's (responder) file store. This commences once the application 

process of the client requests its FTAM of Application Entity (AE) to operate on 

a file in the server. The request is transmitted by the network to the FTAM of 

AE of the server. The server's FTAM then accepts the request and carries out the 

appropriate file operations. 

Nine functional units are defined by FTAM, each associated with a set of file 

services such as read, write, restart data transfer. FTAM guarantees to read or 

change file attributes, create, delete or transfer files, erase file contents, locate 

specific records and read and write records of a file. 

E.1.2 Manufacturing Message Service (MMS) 

The Manufacturing Message Service (MMS) is a SASE which has been devel­

oped for exchanging messages between manufacturing shop floor computer-based 

equipment such as robot, NC machine, cell controller, etc. FTAM may transfer 

files to the cell controller of each manufacturing cell connected on the factory 

backbone (MAP broadband) but the transfer of files within each cell is utilised by 

services offered by MMS (i.e. file transfer). 

One of the ways which MMS can load user programs into shop floor pro­

grammable devices is as follows; a cell controller uses MMS to send a message 

to the device controller, (which must be MAP compatible), telling it to request a 

program and leaves it to get on with locating the program in a remote database, 

223 



file store or its own memory and then run that program. In this way, the cell 

controller does not need to know about the programmable device which it is con­

trolling, hence, vendor independence is achieved. The other advantage would be 

in the program loading process in which either the whole program or part of it 

at a time, (so-called drip feed), can be loaded. This eliminates the constraint im­

posed by the size of the device controller's own memory, opening doors to more 

complicated operations, such as in-process monitoring, etc. It can be said that 

MMS [Williams 1988] is concerned with the communication and interworking of 

computer-based equipment on the manufacturing shop floor and is the key to 

achieving vendor independent interoperability between shop floor devices. 

MMS provides a standard syntax for messages between shop floor devices. It 

assembles frames of data into a complete message and defines the message no­

tation. The information contained in the message notation is that about the 

purpose, length and contents of each element in a message. MMS uses Abstract 

Syntax Notation one (ASN .1) to unambiguously define the content of a Protocol 

Data Unit (PDU). MMS also uses the concept of client and server, and the services 

of the protocol are modelled by the interaction of two Manufacturing Message 

Protocol Machines (MMPMs ), Fig. (E-3). The MMPM interfaces to OSI from ACSE 

and presentation layer. It is independent of type of network and provides services 

to its user. MMS user represents the application process (application program), 

uses the services provided [BITS 704 1989] by MMPM, and communicates with the 

peer entity on the network by exchanging PDUs [BITS 705 1989]. MMS has four 

types of service primitives: request, indication, response and confirm. The ex­

change of information between the client and server takes place in the following 

way: client (MMS user) sends a service request to its MMPM and as a consequence 

of this MMPM provides a PDU for transmission to its peer entity in the server (MMS 

224 



user), Fig. (E-4). If the service request is successful the confirm or response 

primitives are positive and if unsuccessful the aforesaid primitives are negative. 

This means that if MMPM in the server receives a response positive primitive from 

its MMS user it will then transmit a response PDU. Should MMPM receive a response 

negative primitive it will transmit an error PDU. 

There are two types of MMS services. In confirmed MMS services all four ser­

vice primitives, (request, indication, response and confirmation), are present and 

where the response and confirmation service primitives are absent they are called 

unconfirmed MMS services. 

MMS is a generic standard, (sometimes referred to as MMS core), for any device 

on the factory floor and it takes the form of a basic abstraction without making 

any reference to specific devices such as robots, PLCs etc. 

The Companion Standard ( CS) will establish the relationship between the 

generic MMS and the specific requirements of a particular shop floor device and 

also describe the effect that the generic MMS services have on shop floor devices. 

For example, a named variable N. FRL represents a feed rate limit value in a NC 

machine and writing to named variable N. FRO applies a feed rate override. There 

exists one companion standard for each application area such as robot, NC, PLC 

etc. [BITS 695 1989], [BITS 696 1989], [BITS 706 1989]. 

The companion standards allow the MMS services and protocol to be extended 

to further refinement, (if necessary), of their definition for a specific task. For 

example, in the PLC companion standard, under the stop semantic, there are 

some additional parameters to represent the exact meaning of stop, whether it be 

stop right now, end of the cycle or the end of the operation and this parameter 

does not exist in MMS abstract syntax. Should there be a need for any changes, 

225 



modification can be done in the companion standard rather than in the MMS, 

leaving the MMS standard to remain in its stable state. 

The idea of a Virtual Manufacturing Device (VMD) has been introduced in 

RS 511 draft 6. It models the MMS server and represents its functionality and 

resources. Figure (E-5) shows the logical position of the VMD within a MMS 

client/server model. There exists a set of abstract objects at the VMD (server) 

by which they are modified. 

An object can be a domain and in the case of a robot the domain might 

be that portion which deals with motion control for some or all parts of the 

robot arm. The behaviour of the VMD is described by: defining the objects, 

defining the operations which may be performed on them and describing the 

object relationship to the real device. A client may remotely manipulate the 

objects in a server and the server's application tracks the inherent real resource 

to match with the objects. 

226 



User Program 
Application 
Process(AP) 
---

Application Layer -l>l 
I '" '" '" '" '" '" '" '" '" '" '" "' '" "' '" '" "' '" '" '" '" '" '" '" '" • "' '" "' '" I < 
0 SASE SASE SASE -0 

(FTAM) ( MMS) ·c DS ) 0 :>. .... 
0 0 .... 
0 0 ~ ---------------;r --------- ----- l>l 

CASE ~ 
0 

:;:; 
ACSE co 

.~ 

t 
c. 
IJ.. 
< --

Presentation Layer 

~ 

Figure (E-1) Logical po~ition of SASE and CASE 
In the Application layer. 

Server (Responder) 

AE 
(-F-TA-M~) 

Baseband (CSMA/CD) I 
Client (lni tia tor) 

~ 
(Router or Bridge AE ..------.. 

(FTAM) 

MAP Broadband I 
Factory Backbone 

Figure (E-2) File Transfer Access and Management 
between client and server. 

227 



Client 

MMS User 

~ 
~ AE 

, 
CMMPM] 

i 

l ACiE I 

, 
Presentation 

Lower Service Provider 

Server 

MMS User 

~ 
~ AE 

, 
[.MMPM-j 

1 

I ACiE I 

, 
Presentation 

Figure (E-3) Client / Server and Manufacturing Message 
Protocol Machines (MMPM) interaction. 

to) 
to) 
co 



229 

CUE NT SERVER 

MMS User MMS User 

·~ l 

(1) (4) (3) (2) 
Service Service Service Service 
request confirmed response indication 

,, ,, 
Request PDU ... )., 

' 
MMPM .. MMPM 

Response PDU 

Figure (E-4) Confirmed MMS services. 

CLIENT SERVER 

User AP 

{1) (4) {3) (2) 
Service Service Service Service 
request confirmed response indication 

MMPM AEr-----~ MMPM AE 
MMS Core + CS MMS Core + CS 

Figure (E-5) Logical position of VMD within 
the client server interaction. 



L. 

APPENDIX F 

The listing of programs 

In this section a listing of the most important routines utilised for the Durham 

FMS are presented in alphabetical order. 

lORE~!. ............................ ,.',CT_CHART .................................... . 

230 

20RD! This program reads the recorded data on the system activities and represents them graph 
ically. 

30MODE i 
40REM Initialise various variables. 
50op_TYPE= 1: keyl=op_TYPE: CC_N:t\!E=2: key2=CC_NANE: CC_CON=3: key3=CC_CON: STAT_:\0=~: key:l=STAT_:\0::; 

OF _PP=5: key5=NOF _PP: PP _NAME=6: key6=PP _N.~\IE: SEQ_N0=7: key7=SEQ_NO 
60REM Define the number of records ~hich are resident in the current data file so that ru1 ind 

ex array can be set up. 
70CLS:max_recs=6:REM Maximum number of records, a record for each cell. 
80RDl Set t!Ie numl>er or fielcis pr:·c re.~onl. 

90rec_fields=12 
lOODIM field_cuiitS(rec_fields),indexS(max_recs,2),fieldS(rec_fields),typeS(rec_fields),~idthS( 

rec_fields) ,dp$(rec_flelds),command_stackS(8) 
llOquit=FALSE:CLS 
120CLS:PRINT TAB(3,10):H?lT'Enter ti;e nan1e of an existing executed job :"_j,)b_!Jar.:eS 
130PRINT TAB(3,13):I~iPUT"Do you require a !Iar·d copy of the activity sequence charL (Y/:i) ";pS 
l~OPRINT TAB(3,16):r:;Pl'T"Enter the test number :"testno$ 
150PRINT TAB(0,23) STRII'GS(37," "):PRINT TAB(1,2:3) "Kait ... " 
160RDI Encode the job name to obtain the r·ele,·ant data file in which the activity data is sto;· 

ed. 
170job_timingS=job_nameS+"_A"+testnoS 
180command_stackS(2)=job_nameS:command_stackS(3)="Ic;DEX":command_stackS(.J)=job_nameS+"_I:>S":PR 

OCopen_file 
190nofcell%=0:screen%=1 
200FOR I=l TO VAL(nofrecS) 
210IF indexS(I,l)<>"OO" THEN nofcell%=nofcell%+1 
220NEXT I 
230act_ch=OPENTN(job_timingSJ 
240INPUT£act_ch,batch_sizeS 
250nofcell%=nofcell%+3 
260y_scale=900 DIV (nofcell%) 
270page_num=O:lnterval=O 
280x_off_set=20:y_off_set=45 
290last_xpos%=x_off_set:last_ypos%=y_off_set 
300last_charS="N":last_cell%=2:first_act%=0 
310DIM cell%(y_scale) 
320)!0DEO 
3:30PROCaxis 
3-±0REPE.U 
350PROCplot_timing(pS) 
360UNTIL EOF£act_c!I 
370g=GET 
380CLOSE£act_ch 
390command_stackS(2)=job_nameS:PROCclose_file 
400MODE 7 
410REM Go back to the main program. 



420CHAIN":>!ASTER" 
430END 
HORE:>! 
450 
460REM The ~anufacturing database resides here. 
470 
480 
490DEF PROCaxis 
500REM Se~ up a window to represent the active cell for the current job. 
510VDU19,1,4,0,0,0:VDU19,0,2,0,0,0 
520REMGCOL O,l:GCOL 0,128:COLOUR O:COLOUR 129 
530REMVDU19,0,l,O,O,O:VDU19,1,4,0,0,0 
540REMx_off_set=20:y_off_set=35 
550last_pos%=0 
560page_num=page_num+l 
5iOMOVE x_off_set,y_off_set 
580DRAW 1280,y_off_set 
590MOVE x_off_set,y_off_set 
600DRW x_off_set,900 
610MOVE x_off_set,900 
620DRA~ 1280,900 
630FOR I=l TO nofcell% 
6.J.OMOVE x_orf_set, l*y_scale 
650DRAK 1280,I*y_scale 
660cell%(I)=(I+l)*y_scale 
6 IO~iEXT I 
680VDU5 
690half=y_scale DIV 2 
700MOVE 1264,half+y_off_set-8 
'ilOPRINT"T" 
720MOVE 400,28 
7:30PRI?\T"System_wide Scheduling Chart'' 
740MOVE 1250,57 
750PRINT'' >'' 
760~10VE 1250,y_scale+l2 
7/0PRI NT" >" 
780MOVE O,half+30 
790IF page_num=l THEN PRIH"O'' 
800MOVE x_off_set,l015 
810PRINT"R: Warehouse "; "F: Finished/Reject parts store";'' 

size=''; batch_sizeS; "**" 
**"; job_nameS: "** 

231 

'';"**Batch 

820NOVE x_off_set,978:PRINT"M:~Iilling ";"S:Sawing '';"L:Turning ";"V:Vision ";"K:Washing "; 
"<cell>";" **Test no.";testlloS;"**" 

830MOVE x_off_set, 9-ll: PRINT"D: Defective "; "G:Good ";"<parts> T:Activity conclusion time 
(Min)";" **screen ";STR$(screen~~);"**" 

840screen%=screen%+1 
850MOVE O,y_off_set+y_scale+half-30:PRINT"R" 
860MOVE x_off_set-7,880:PRINT CHRS(94) 
870MOVE x_off_set-7,860:PRINT CHRS(94) 
880~10VE 0, (no fee ll%*y_scale) -y_scale+halr: PRI :-<T" F" 
890FOR I=l TO \'AL(nofrecS) 
'.JOO IF indexS (I , 1) <> "00" THE:'l ce llS=LEFTS ( FNget_f i eld (\'ALl index$ (I, 2) ) , keyl), 1): y_pos=\'AL (index 

S(I,l)):MOVE O,(y_scale)*(y_pos+l)+half 
910IF indexS(I,l)<>"OO" THE:\ IF cellS=''I" THE:.; PRI~T "L" 
920IF indexS(I,l)<>"OO" THEN IF cellS<>''I'' THEN PRINT cellS 
930NEXT I 
940ENDPROC 
950 
960 
970DEF PROCplot_timing(printS) 
980REM ~rite the conclusion time of each activity at the bottom of the chart. 



990screen_lim%=0 
1000last_xpos%=x_off_set 
lOlOREPEAT 
1020ISPUT£act_ch,activityS 
1030y_pos=VAL(activityS)+l:this_cell=y_pos 
1040charS=MIDS(activityS,5,1) 
1050tirneS=MIDS(activityS,G) 
1060interval=interval+1 

232 

1070IF charS="G" OR charS="D" THEN ypos%=(nofcell%*y_scale)-half+5:MOVE last_xpos%+x_off_set-l6 
,ypos%+50:PRINT charS:GOTO 1090 
1080ypos%=cell%(y_pos)-half 
1090~10VE last_xpos%, last_ypos% 
llOOIF last_charS="R'' OR last_charS="F" THE:\ ~lOVE last_xpos%, last_ypos%: PLOT 5, last_xpos%+x_off 

_set-10,ypos%-10:PR0Carro~_up_f(last_xpos%+x_off_set-18,ypos%-15) 

lllOIF first_act%<>1 THEN GOTO 1130 
1120IF last_charS<>"R" OR last_charS<>''F" THEN PLOT 21,last_xpos%+x_off_set-10,ypos%-15 
1130first_act%=1 
1140IF last_char$="T" OR last_charS="G" OR last_charS=''D" THEN IF this_cell<last_cell% THEN PRO 

Carrow_down_e(last_xpos%+x_off_set-2,ypos%+5) 
1150! F las t_char$="G" OR last_charS="D" THEN PROCarro~·_do,;n_e ( last_xpos%tx_o f f_set-2, ypos%+5) 
1160IF last_char$=''T'' THEN IF this_cell>last_cell% THEN PROCarrow_up_e(last_xpos%+x_off_set-2,y 

pos%-15) 
11701F interval=2 THEN MOVE last_xpos%,y_off_set+y_scale-30iPRl\T CHRS(l08):~0~E last_xpos%,y_, 

ff_set+y_scale-63:PRINT timeS 
llBOIF interval=4 THE\ MOV[ last_xpos%,y_off_set+17:PRI\T CHRS(l08):MOV~ last_xpus%,9~:PRIXT :i 

meS: intenal=O 
1190last_xpos%=last_xpos%+60:last_ypos%=ypos%-15 
1200IF char$="T'' OR charS="F" OR charS=''D'' OR charS="G" OR cl!arS="R" THE\ lasl_xpos%=last_xpos% 

-30 
1210screen_lim%=screen_lim%+1 
1220last_charS=charS:last_cell%=this cell 
1230~~TIL screen_lim%=~0 OR EOF£act_ch 
12-lOIF EOF£act ch THEt\ lF printS<>"Y'' A:-iD print.S<>"y" TilE:\ E~fjPROC 
1250IF printS<>"Y" AND printS<>"y" THE~; GOTO 1270 
1260*SCDUMP 
1270g=GET 
l280C:LG 
1290IF EOF£act_ch THEN E~DPROC 
1300PROCaxis 
1310ENDPROC 
1320 
1330 
1340DEF PROCdump 
1350REM Dump the image of the current screen onto the attached printing device. 
1360VDU2 
1370VDV1,27 
1380VDU1,66 
1390VDU1,8 
1400FOR J%=0 TO 80 
1410VDU1,27 
1420VDU1, 42 
1430VDU1, 5 
1440VDU1,512 MOD 256 
1450VDU1,512 DIV 256 
1460BYTE%=&7D87 t J%*8 
1470FOR SCANl%=0 TO 31 
1480FOR I%=0 TO 7 
1~90VDU1,(?(BYTE%-I%)) 

1500VDU1,( 7 (BYTE%-I%)) 
15l0~EXT 

1520BYTE%=BYTE%-640 



1530NEXT 
1540VDU1,13 
1550~EXT 

1560VDU1,12 
1570VDU1,27 
1580VDU3 
1590ENDPROC 
1600 
1610 
1620DEF PROCarrol-i_up_f(abs_x,abs_y) 
1630REM Draw an upward solid arrow. 
1640MOVE abs_x,abs_y 
1650PLOT 81,16,0 
1660PLOT 81,-8,30 
1670PLOT 81,-8,-30 
1680ENDPROC 
1690 
1700 
1710DEF PROCarrow_down_e(abs_x,abs_y) 
1720REM Draw a downward dotted arrow. 
1730MOVE abs_x,abs_yt8 
1710PLOT 1,-8,-30 
1750PLOT 1,-8.,30 
1 71\0DDPlWC 
1770 
1780 
17~0DEF PROCarrow_up_e(abs_x,abs_y) 
1800MOVE abs_x,abs_y-20 
1810REM Draw an upward dotted arrow. 
1820PLOT 1,-8,30 
1830PLOT 1,-8,-30 
1840£;-JDPROC 

233 



234 

L. 
lOREM ................................ BOARD_TEST .............................. . 
20REM This program generates the required signal for page select FRED and assigns prot B as o 

utput on VIA£1. This port is chosen as an example to sho~ the testing procedure for the board. 
30REM Check pin no.23 and 24 if VIA£i is selected then these pins should go lo~ and ~igh resp 

ectively. 
40REM To check ..:hether the board is operating correctly, this progr·am loads one (decimal) ont 

o the selected output stream and shift that bit to the left once and then outputs it again, it r 
epeats this eight times. 

50REM One of the oscilloscope probesshould be sunk on the least significant bit ..:hilst the ot 
her one is connected to the other bit in ascending order, a shift of one bit on every pin must b 
e observed, or else the circuit is not ~orking. 

600SBYTE=&FFF4 
70FOR opt%=0 TO 3 STEP ~ 

80P%=&2000 
90[ 

1000PT opt% 
110 .INIT LDA £&93\ OSBYTE to ~>rite to fred. 
120 LDX £&£2\ Offset DDRB. 
130 LOY £&FF\ Value to be hritten.(all ports as output.) 
140 JSR OSBYTE 
150 LDA £&93 
160 LDX £&EB\Set ACR to zero 
170 LDY £0 
180 JSR OSBYTE 
190 LDA £&93 
200 LDX £&EE\Set IER to z2~o 
210 LDY £0 
220 JSR OSBYTE 
230 LDA £1 
240 STA &80 
250 RTS 
260] 
270[ 
280 OPT opt% 
290 .LOOP1 CLC 
300 .LOOP2 LDA £&93 
310 LDX £&EO\output to port_B. 
320 LDY &80 
330 JSR OSBYTE 
340 ASL &80 
350 BCC LOOP2 
360 LDX £&F 
370 .LOOP3 DEX 
380 BNE LOOP3 
390 LDA£1 
400 STA &80 
410 JMP LOOPl 
·120 RTS 
430] 
440~EXT opt% 
450CALL INIT 
460CALL LOOPl 
470END 

>L. 
10REH ................................ BOARD TESTl 
20REM This program generates the required signal for page select FRED and assigns prot B as 

nput on VIA£1. 
30REM Check pin no.23 if VIA£1 is selected then this pin should ~o lo~. 
40REM Check the RS3_0 pins 38 t·.) 35 for DDRB, ;:he state of t_hese pins should b"' L_L_H_L. 
500SBYTE=&HF4 



60FOR opt%=0 TO 3 STEP 2 
70P%=&2000 
80[ 
900PT opt% 

100 .INIT LOA £&93\ OSBYTE to ~rite to fred. 
110 LDX £&E2\ Offset ODRB. 
120 LOY £0\ Value to be ~ritten.(all ports as input.) 
130 JSR OSBYTE 
140 LDA £&92 
150 LOX £&EO 
160 JSR OSBYTE 
170 TYA 
180 SEC 
1~0 SBC £28 
200 STA &0080 
210 RTS 
220] 
230NEXT opt% 
240REPEAT 
250CALL INIT 
260G%=?&0080 

235 

270REM An absolute encoder· is used as a device to pro\·ide the input signals to tht' port. Shoul 
d the board fail at any instant a d~fault value of 255 will be read for the cu;·rent positi011 of 
the encoder. 

280RH1 The position of he ,•ncocler is set to a value other than :2.)5 at thz: star·;, ot· tl,e t"'st. 
290PRI:\iT TAB(2,l9);"Pos ticn .in decimal="G~~' 
300PRiliT TAB(2,2U);''Pos tion in hex ="-G%, 
310UNTIL FALSE 



L. 
10REM .................................. CAD10 ...................................... . 
20REM This is a drawing program which is used to design simple shapes. 
30MODE 7 
~OREM Set up the var·iables. 
50xpos%=0:ypos%=0:line_draw=O:move=l:curve_draw=2:depth_change=3 
60x_movernent=O:y_movement=O:depth=O 
'lOx$=''": y$="": z$="": fS="": n$=CHRS ( &0.-\.) 
BOD HI command_stack% ( 6), data_block_len% ( 6), pr i vious_xmovement ( 6), pr i v ious_ymovemen t( 5) 
90PR0Cpart_info 

lOOPROCinitialize 
110finished=FALSE 
120@%=&20109 
130*FX4,1 
140PR0Ctext_screen 
1500N ERROR OFF 
160*FX15,0 
170REPEAT 

236 

180REM Move the cursor around the screen and enter a command. 
190last_xpos%=privious_xmovement(l)*scale_factor:last_ypos%=privious_ymovement(l)*scale_factor 

200REPEAT 
210REM Display the cursor movement as it is maneuvered around tl1e screen. 
220PLOT 69,xpus%,ypos% 
230K=INKEY(O) 
240IF K=l36 THEN x movement=x movement-unit_movement 
250IF 1\=137 THEN x_movement=x_movement+unit_movement 
260IF K=138 THEN y_movement=y_muvement-unit_movement 
270IF 1\=139 THEN y_movement=y_movement+unit_movement 
280REM Update the value of the cursor position. 
290PRI NT TAB( 0, 22) "X=''; x_movement; TAB( 8, 22) "mm" 
300PRINT TAB(0,24)"Y=";y_movement;TAB(8,24)"mm" 
310PRIKT TAB( 0, 26) "Z='' ;depth ;TAB( 8, 26) "rnm" 
320PRINT TAB(0,28)"F=";feedrate% 
330PLOT69,last_xpos%,last_ypos% 
340PLOT7l,xpos%,ypos% 
350xpos%=x_movement*scale_factor:ypos%=y_movement*scale_factor 
360UNTIL K=&4D OR K=&4C OR 1\=&43 OR 1\=&52 OR K=&44 OR K=&46 OR K=&45 OR 1\=&50 
370REM Depending on the selected command from the menu, call the appropriate pro~edure. 
380IF K=&4D THEN PROCmove(x_movernent,y_movement,scale_factor) 
390IF K=&4C THEN PROCline_draw(x_movement,y_movernent,scale_factor) 
400I F K=&43 THEN PROCcurve_dra1• ( pr i v ious_xrnovernent ( 1) , pri v ious_ymovernent ( 1), x_rno,·emen t, y_rnovem 

ent,scale_factor) 
410IF K=&44 THEN PROCdepth 
420IF 1\=&52 THEN PROCremove(privious_xrnovement(2),privious_ymovernent(2),privious_xmovement(l), 

privious_ymovement(l),scale_factor) 
430IF K=&46 THEN PROCfeedrate 
440IF K=&45 THEN PROCend 
450IF 1\=&50 THEN PROCprint 
460UNTIL finished 
470END 
480 
490 
500 
510DEF PROCassen_ var_update ( x_ val, y_ val) 
520REM Update the variables of the previous six commands. 
530LOCAL I 
5401=6 
550REPEAT 
560command_stack%(I)=command_stack%(1-l) 
570data_block_len%(I)=data_block_len%(l-l) 



580privious_xmovement(I)=privious_xmovement(I-1) 
590privious_yrnovement(I)=privious_ymovement(I-1) 
600I=I-1 
610UNTIL I=l 
620privious_xmovement(l)=x_val:privious_ymovement(1)=y_val 
630ENDPROC 
640 
650 
660DEF PROCcurve_draw(X1,Y1,X2,Y2,s_factor) 
670REM Plot a curve which is a quadrant of the circle. 
680command_stack%(l)=curve_draw 
690PRINT TAB(0,30) "Curve" 
700depth=depth_of_cut 
710REM Calculate the radius of the quadrant. 
720radius=(SQR((X2-X1)-2+(Y2-Yl)-2))/SQR(2) 
730radius%=radius*s_factor 
7400N ERROR GOTO 1200 
750angle=DEG(ATN((Y2-Yl)/(X2-X1))) 
760IF X2<Xl THEN angle=angle+l80 

237 

770REM Calculate the position of the qudrant centre. 
780center_clock_x=Xl+radius*COS(RAD(angle--t5)):center_clock_y=Yl+raclius*SI:J(RAD(angle-~5)):cen 

ter_anticlock_x=X1+raclius*COS(RAD(angle+~5)):center_anticlock_y=Yl+radius*SI~(RAD(angle+45)) 
'i90cen ter _c lock_x%=center_c lock_x*s_factor: center_c lock_y%=cen ter _clock_y*s_factot' 
800center_anticlock_x%=center_anticlock_x*s_factor:center_anticlock_y%=center_anticlock_y*s_~a 

ctor 
810VDU5 
820REM Print C and A at quadrant centres. 
8.30MOVE center_ clock_x%, center _c lock_y% 
840PRINT "C" 
850MOVE center_anticlock_x%,center_anticlock_y% 
860PRINT "A'' 
870VDU4 
880CLS 
890PRTNT TAB(0,2)"Center C":PRINT TAB(0,3)''or A ?";:REPEAT:centerS=GETS:PRI:;T center:i>:i:~TIL ce 

nter$="C" OR center$="A" 
900PRINT TAB(0,30)"Curve" 
910VDU23,1,0;0;0;0; 
920GCOLO,O 
930VDU5 
940MOVE center_clock_x%,center_clock_y% 
950PRINT "C" 
960MOVE center_anticlock_x%,center_anticlock_y% 
970PRINT "A" 
980GCOLO,l 
990VDU4 

lOOOREM Plot the quadrant in 1 degree increment. 
1010IF center$="A" THEN start_angle_pos=angle-135:encl_angle_pos=angle-45:angle_inc=1:circle_cen 

ter_x%=center_anticlock_x*s_factor:circle_center_y%=center_anticlock_y*s_factor 
1020IF center$="C" THEN start_angle_pos=angle+135:end_angle_pos=angle+45:angle_inc=-1:circle_ce 

nter_x%=center_clock_x*s_factor:circle_center_y%=center_clock_y*s_factor 
1030VDU 29,circle_center_x%;circle_center_y%; 
1040MOVE radius%*COS(RAD(start_angle_pos)),radius%*SIN(RAD(start_angle_pos)) 
1050FOR angle_val=start_angle_pos TO end_angle_pos STEP angle_inc 
1060DRAW radius%*COS(RAD(angle_val)),radius%*SIN(RAD(angle_val)) 
1070NEXT 
1080VDU 29,0;0; 
1090IF center$=''C" THEN g$=''G02" ELSE gS="G03'' 
llOOx%= ( X2+. 001) * 100: x$=FNforrnat ( x%, "X"): y%= ( Y2+. 001) * 100: y$=F'Hormat ( y%, "Y"): i%=( ABS (center _cl 

ock_x-Xl )+. 001 )*100: iS=FNforrnat( i%, "I") :j%=(ABS(center_clock_y-Yl )+. 001 )*100: jS=FNformat(j%, "J"') 

1110mod_data_block$=nS+"GOl"+z:3+nS+gS+xS+y$+iS+jS 



238 

1120unmod_data_block$=nS+g$tx$+yS+iS+j$ 
1130IF command_stack%(2)=move OR command_stack%(2)=depth_change THEN data_blockS=mod_data_block 

$ ELSE data_block$=unmod_data_blockS 
1140PRINT£data_file_ch%,data_block$ 
1150IF data_blockS=mod_data_block$ THEN data_block_len%(1)=41 ELSE data_block_len%(1)=30 
1160PROCassen_var_update(X2,Y2) 
1170VDU23,1,0;0;0;0; 
1180CLS 
1190GOTO 130 
1200IF ERR=18 AND Y2>Y1 THEN angle=90 ELSE angle=-90 
1210GOTO 880 
1220ENDPROC 
1230 
1240 
1250DEF PROCdesen_var_update 
1260REM Update the variables of the privous six commands. 
1270LOCAL I 
12801=1 
1290REPEAT 
1300command_stack%(I)=command_stack%(I+1) 
1310data_block_len%(I)=data_block_len%(I+1) 
1320privious_xmovement(I)=privious_xmovement(I+1) 
1330privious_ymovement(I)=privious_ymovement(I+1) 
13401=1+1 
1.350G~TI L I =n 
1360EXDPROC 
1370 
1:.180 
1390DEF PROCdepth 
1400REM Change the depth of cut. 
1410cornmanc!_stack%(1)=depth_change 
1420PRINT TAB(0,20)"Depth" 
H30CLS 
1HOPRINT TAB(0,7)"Ne;; depth" 
1450INPuT TAB(0,8)''of cut(mm)'';depth_of_cut 
1460z%= ( depth_of_cu t+4) * 100: zS=FNformat ( z%, "z-·•): data_block_len% ( 1) =0: CLS: PROCtext_screen 
1470ENDPROC 
1480 
1490 
1500DEF PROCenc! 
1510REM End the design session. 
1520PRINT TAB(0,30)"End":data_block$=nS+"~!O:C"+n$+":":PRINT£data_file_ch%,data_blod:S:data_block 

S=''END": PRI NT£data_f i le_ch%, data_ blockS: CLOSE£data_f i le_ch% 
1530*FX4,0 
1540MODE 7 
1550@%=10 
1560finished=TRUE 
1570ENDPROC 
1580 
1590 
1600DEF PROCfeedrate 
1610REM Change the existing feedrate. 
1620command_stack%(1)=depth_change 
1630PRINT TAB(0,20)"Feedrate" 
1640CLS 
1650PRINT TAB(0,2)"Ne"'' 
1660INPUT TAB(0,3)''feedrate ";feedrate% 
1670f$="F"+RIGHT$(FNformat(feedrate%,"F"),3) 
1680data_blockS=nS+fS 
1690PRINT£data_file_ch%,clata_block$ 
1700data_block_len%(1)=7 



1710PROCassen_var_update(x_movement,y_movement) 
1720CLS 
1730PROCtext_screen 
1740ENDPROC 
1750 
1760 
1770DEF FNformat(V%,C$) 
1780REM Format the data for CNC-1000. 
1790IF V%<10 THEN =CS+"OOOO"+STRS(V%) 
1800IF V%>=10 AND V%<100 THEN =CS+"OOO"+STRS(V%) 
1810 IF V%>=100 AND V%<1000 THEN =CS+"'OO"+STRS(V%) 
1820IF V%>=1000 AND V%<10000 THEN =CS+"O"+STR$(V%) 
1830IF V%>=10000 AND V%<100000 THEN =CS+STRS(V%) 
1840 
1850 
1860DEF PROCinitialize 
18i0REM Define various parameters. 
1880MODE 4 
1890LOCAL row,column,scale_factor_len,scale_factor_wid,grid_spacing 

239 

1900REM Define graphic and text windows. 
1910VDU23,1,0;0;0;0;:VDU28,30,31,39,0:VDU24,0;0;i100;1023;:VDC19,0,2,0,0,0:VDU19,1,5,0,0,0 
1920REN Define colours. 
1930COLOUR O:COLOUR 129:GCOL O,l:GCOL 0,128:CLG:CLS 
1940REM Draw the graphic and text window borders. 
1950MOVE O,O:DRAW 0,1023:DRAW 960,1023:DRAW 960,0:DRAW 0,0 
1960VDU29,0;0; 
1970REM Calculate the scale factor. 
1980scale_factor_len=960/~;orkpiece_len 

1990scale_f actor _1< id= 10 23/workp i ece_w id 
2000IF scale_factor_len<scale_factor_wid THEN scale_factor=scale_f~ctor_l~n ELSE scale_[nctor=s 

cale_factor _1; id 
2010MOVE scale_factor*workpiece_len,O 
2020DRAW scale_factor·*workpiece_len, scale_factor*workpiece_wid 
2030DRA1i 0, scale_factor*workpiece_l·iid 
2040IF scale_factor<l2 THEN grid_spacing=10 ELSE grid_spacing=5 
2050IF scale_factor<14 THEN unit_movement=0.5 ELSE unit_movement=0.2 
2060REM Print the grid on the graphic window. 
2070FOR column=O TO 15*grid_spacing STEP grid_spacing 
2080FOR row=O TO 25*grid_spacing STEP grid_spacing 
2090PLOT 69,row*scale_factor,column*scale_factor 
2100NEXT row:NEXT column 
2110PRINT;grid_spacing;" mm grid" 
2120data_file_ch%=0PENOUT(pp_filenameS) 
2130z%=(depth_of_cut+4)*100:zS=FNformat(z%,"Z-"):fS="F"+RIGHTS(F\format(feedrate%,"F"),3):first 
data_blockS=''%'' +nS+ ''NOO lGOO'' + f$+ ''S2TlM03" 
2140PRINT£data_file_ch%,first_data_blockS 
2150CLS 
2160ENDPROC 
21 iO 
2180 
2190DEF PROCline_dra~(X,Y,s_factor) 
2200REM Plot a straight line. 
2210command_stack%(l)=line_draw 
2220PRINT TAB(0,30) "Line" 
2230depth=depth_of_cut: x%= (X+. 001) * 100: y%= (Y +. 001) * 100: xS=Piformat ( x%, "X"): yS=FHot'mat( y%, "y") 
2240mod_data_blockS=n$+"GOl"+z$+nS+x$+yS 
2250unmod_data_blockS=nS+"GOl"+xS+yS 
2260IF command_stack%(2)=move OR command_stack%(2)=clepth_change THEN data_block$=mocl_data_block 

$ ELSE data_blockS=unmod_data_blockS 
22iOPRINT£data_file_ch%,clata_blockS 
2280MOVE last_xpos%,last_ypos% 



2290DRAWX*s_factor,Y*s_factor 
2300IF data_blockS=mod_data_blockS THD data_block_len%(1)=26 ELSE data_block_len%(1)=18 
2310PROCassen_var_update(X,Y) 
2320PRINT TAB(0,30)" 
2330ENDPROC 
2340 
2350 
2360DEF PROCmove(X,Y,s_factor) 

240 

2370REM Go to a new position without plotting (i.e. move the cutting head without cutting). 
2380command_stack%(l)=move 
2390PRINT TAB(0,30) "Move" 
2400depth=O:x%=(X+.001)*100:y%=(Y+.001)*100:xS=FNformat(x%,"X"}:yS=FNformat(y%,"Y") 
2-110mod_data_block$=n$+ ''GOO''+ "ZOOOOO'' +nS+xS+yS 
2420unmod_data_blockS=nS+x$+yS 
2430IF command_stack%(2)=move THg data_blockS=unmod_data_blockS ELSE data_blockS=mod_data_bloc 

k$ 
2440PRINT£data_file_ch%,data_blockS 
2450MOVE last_xpos%,last_ypos% 
2460PLOT 70,X*s_factor,Y*s_factor 
2470IF data_blockS=mod_data_blockS THE\ data_block_len%(1)=25 ELSE data_block_len%(1)=15 
2480PROCassen_var_update(X,Y) 
2490PRINT TAB(0,30)" 
2500ENDPROC 
2510 
2520 
2530DEF PROCprint 
2540REM Provide a hard copy of drawing. 
2550PRINT TAB(0,17)"*********" 
2560PRINT TAB(O, 18)"Job name:'' 
2570PRINT TAB(0,19);pp_filenameS 
2580PRINT TAB(0,20)"*********" 
2590VDU24,0;0;1279;1023; 
2600*SCDU~IP 
2610PRINT TAB(0,30)" 
2620VDU24,0;0;1100;1023; 
2630PRINT TAB(O,l6)" 
2640PRINT TAB(0,17)" 
2650PRINT TAB(0,18)'' 
2660PRINT TAB(0,19)'' 
2670PRINT TAB(0,20)" 
2680PROCend 
2690ENDPROC 
2700 
2710 
2720DEF PROCpart_info 
2730REM Get the workpiece related data. 
2740CLS 
2750PRI!\'T TAB( 4, 2) ''Enter ;;orkpeice particulars." 
2760PRINT TAB(4,3)"---------------------------" 
2770REPEAT: PRINT TAB( 1, 4): I NPL'T' '"Length( mm) : "workpiece_len: l!"!-:TI L ~·orkpiece_J en>O 

AND workpiece_len<=200 
2780REPEAT:PRINT TAB(1,7):INPUT"Width (mm) :"workpiece_wid:UNTIL ·..;orkpiece_·-id>O ..\\ 

D workpiece_wid<=lOO 
2790PRINT TAB(1,8):INPUT''Depth of cut(mm) :·"depth_of_cut 
2800PRINT TAB(1,9):INPUT"Feedrate(mm/min) :"feedrate% 
2810REPEAT:PRINT TAB(1,10):INPUT''Part program filename :"pp_filenameS:UNTIL LEN(pp_filenameS)< 

=5 AND LEN(pp_filename$)>0 
2820ENDPROC 
2830 
2840 
2850DEF PR0Cremove(X2,¥2,Xl,Yl,s_factor) 



2860REM Remove an already plotted line or curve. 
2870PRINT TAB(0,30) "Remove" 
2880PTR£data_file_ch%=PTR£data_file_ch%-data_block_len%(1) 
2890REM If previous command was a plot then plot it again in the background colour. 
2900IF command_stack%(2)=curve_dra" THE~ GOTO 2980 
2910IF command_stack%(2)=depth_change THE:-i GOTO 3010 
2920GCOLO,O 
2930xl%=Xl*s_factor:yl%=Yl*s_factor:x2%=X2*s_factor:y2%=Y2*s_factor 
2940MOVE xl%,yl% 
2950DRAW x2%,y2% 
2960GCOLO,l 
2970GOTO 3070 
2980VDU29,circle_center_x%;circle_center_y%; 
2990GCOLO,O 
3000MOVE radius%*COS(RAD(end_angle_pos)),radius%*SI\(RAD(end_angle_pos)) 
3010FOR angle_val=end_angle_pos TO start_angle_pos STEP -angle_inc 
3020DRAW radius%*COS(RAD(angle_val)),radius%*SIN(RAD(angle_val)) 
3030NEXT 
3040GCOLO,l 
3050VDU29,0;0; 
3060VDU23,1,0;0;0;0; 
3070PROCdesen_var_update 
:3080x_movemen t=X2: y _movemen t=Y2 
3090PRINT TAB(0,30) " " 
3lfl0ENDPROC 
3110 
3120 
3130DEF PROCtext_screen 
3140REM Print the menu on the text "indow. 
3150*FX4,1 
3160PRINT TAB(O,l)"~!ove :";"M" 
3170PRii\T TAB(0,3)"Line dr·w:";"L'' 
3180PRINT TAB(0,5)"Curv dr":'';"C" 
3190PRINT TAB(0,7)"Remove :'';"R" 
3200PRINT TAB(0,9)"0epth :";"D" 
3210PRI NT TAB( 0, 11) "Feedrate: "; "F" 
3220PRINT TAB(0,13)"End :";"E" 
3230PRINT TAB(0,15)"Print :'';"P" 
3240PRINT TAB(0,29)" mm/min" 
3250ENDPROC 

241 



242 

L. 
lOREM ................................ Cell Talk ..................... , ............ . 
20REM This is the communication module. It utilses the CAMP for exchange of information bet1;e 

en entities. 
30MODE 7:0SWORD=&FFF1:0SBYTE=&FFF4:*FX 15,0 
40REM Assign a name to each memory location within the CA~!P. 
50HINEM=&7BOO:M=&7BOO:logi_assoc=M+O:client_st_no=M+l:client_port=M+2:server_resp_mes=M+3:mes 

s_stat=!\1+4: prog_s tat=M+5: in_partbuf=M+6: out_partbuf=M+7: production_pet·iod=~!+l:l: upload_prep=~!+9: pa 
rt_trans=M+10:where_part_trans=M+ll 

60server _resp_part=M+ 12: robot_stat=M+ 13: trolley_stat=~l+ 14: dev ice_stat=~!+ 15: defect_part_stat=M 
+ 16: nof_defect_part=M+ 17: total_nof_parts=~!+ 18: nof_processed_parts=~!+ 19 

70warehouse%=20:ready=&FF:not_reacly=&OO:nothing=&09:busy=&FF:free=&OO:connect=&FF:disconnect= 
&OO:processed=&OO:processing=&FF:not_recognised=&Ol:run_prog=&FF:running=&FF:stop=&OO:download_s 
ucc=&O 1: transfer _part=&FF: transfet·_part_comp=&OO 

80empty=&OO: completed=&OO: idle=&Ol: s topped=&02: cr i tical_op_in_progress=&03: de\· ice_reset=&O.J: d 
evice_inoperable=&05:uncorrectable_error_det=&06:correctable_error_det=&OI:diagnostic_running=&O 
8 

90defect=&FF:in_progress=&FF:not_started=nothing:started=&FF 
100from_trolley=&01:to_trolley=&02:full=2 
110robo t_s t%= 14: this_cellS="~!f LLI NG" 
120op_TYPE= 1: key 1 =op_TYPE: CC_NAME=2: key2=CC_NAME: CC_COX=3: key.3=CC_COS: ST.-\T_N0=-1: key4=ST!\.T_.\10: .\" 

OF _PP=5: key5=!WF _PP: PP _t;_.\\!E=6: key6=PP _NA~!E: SEQ_N0=7: ke.d=SEQ_~O 
130pathl=l:path2=2:path3=3:path4=4 
140FOR I=O TO :JO:~;·:·I=llothillg: :.;EXT I 
150? i n_partbu f=O: '"out_pi'i r-tbu f=O: ·:no f _de, feet _pil rt =0: ···total_ ~10f _p:nt,.=O: ··no f _pr•.Jc•~ssed_parts=O 
160no t'_proce.ssed __ p~tct..s/~=0: nof _paz·ts_ tobe~ma.nu.!"acturt:d~~=O: Part_procc·S!::i i 1n;_ t i me%=C: setup_t imt·%=C: 

170max_recs=6:rec_fields=ll 
180max_peek_length%=5:max_poke_length%=5:current_rec=l 
190REM Reserve a block of memory for the peek and poke operations. 
200DH! cblock%40, peekbuft'er% max_p,:oek_length% , pokebuf fer% max_poke_hmgth% 
210DIM field_contS(rec_fields),iodexS(max_recs,2),fieldS(rec_fielrls),typeS(rec_fieldsl,Kidtl1S( 

rec_fields),dpS(rec_fields),command_stackS(8) 
220END 
2.30 
2·l0 
250DEF PROCpeek(station%,locatiori%,length%) 
260RP! Read the content of the CAMP in the distant cell controller ( oc master). 
270peek_result%=FNpeek(stat.ion%,location%,length%) 
280IF ?prog_stat=stopped THEN PROCterminate_part_prod 
290ENDPROC 
300DEF FNpeek(station%,locat.ion%,length%) 
310LOCAL X%,Y%,A% 
320?cblock%=&8l:cblock%?l=OO:cblock%!2=station%:cblock%!4=peekbuffer%:cblock%!8=peekbuffer%+le 

ngth%:cblock%!12=locatioii%:X%=cblock%:Y%=cblock% DIV 236:A%=&10:CALL OS~ORD 
330peekresult%=(U% AND &FFOO) DIV 256 
340=peekresult% 
350 
360 
370DEF PROCpoke(station%,location%,length%) 
380REM Write to the CAMP of local or distant entity. 
390poke_result%=FNpoke(station%,location%,length%) 
400IF poke_result%=0 THEN ENDPROC 
4100N poke_result%-&3F GOTO 420,430,440,450,460 
420PRINT"" ** LUiE JAX~!ED, TRYE~G AGAIN **":SOUND l,-15,:i,l5:GOTO :390 
430PRINT' '" **NETWORK ERROR, TRYING AGAIN **'':SOUND 1,-15,5,15:GOTO 390 
440PRI~T' ''' **NOT LISTE\ING, TRYING AGAIN **":SOGND l,-15,5,15:GOTO 390 
450PRINT"" **NO CLOCK, TRYING AGAIN **":SOUND 1,-15,5,15:GOTO 390 
460PRii'<T''" **BAD CONTROL BLOCK, TRYING AGAIN **":SOUtm l,-15,5,15:GOTO 390 
470DEF F~poke(station%,location%, Length%) 
480LOCAL X%,Y%,A% 



243 

490?cblock%=&82:cblock%?l=OO:cblock%!2=station%:cblock%!4=pokebuffer%:cblock%!S=pokebuffer%+le 
ngth%: cblock%! 12=locat ion%: X%=cblock%: Y%=cblock% DI V 256: A%=&10: CALL OSI·iORD 

500PROCdelay(200) 
510REPEAT:A%=&32:U%=USR OSBYTE:U~TIL (U% AND &8000)=0 
520pokeresult%=(U% AND &FFOO) DIV 256 
530=pokeresult% 
540 
550 
560DEF PROC_keyboard_poke(station%,mailS) 
570REM Insert a string of characters (a message) to the keyboard buffer of distant entity. 
580?cblock%=&0l:cblock%!l=station%:S(cblock%+3)=mailS:X%=cblock%:Y%=cblock% DIV 256:A%=&l~:CAL 

L OSWORD 
590ENDPROC 
600 
610 
620DEF PROCget_mail 
630REM Receive a mail from the distant entity. 
640*FX 21,0 
650REPEAT: messageS='"': PRINT"."; 
660REPEAT 
670IF ?prog_stat=stopped THEN PROCterminate_part_prod 
680REM Check for the start of data code. 
690key$= I NKEY$ ( 0): UNTIL key$=" { '' OR '?log i_assoc=clisconncc t 
700IF ?logi_assoc=disconnect THE\ 840 · 
710REPEAT:keyS=INKEYS(0) 
720IF ?prog_stat=stopped THEN PROCterminate_part_prod 
730messngeS=messngeS+keyS 
7~0REM Check for the end of data code. 
750UNTIL keyS=")" 
760REM Process the message. 
770?mess_stat=processing 
780PROCdelay(lOO) 
790length=LEN(messageS) 
8001 F LEFT$ (messageS, 1) =" ( '' THE'i messageS=!IlD$ I messJ.geS, 2, lcngth-2) ELSE messageS= LEFT:: ( m<"ssag 

eS,length-1) 
810PRINT"The message received from st. '";")client_st_no;"' is :";messageS 
820PROCmail_test(messageS) 
830REM End the logical association session. 
840UNTIL ?logi_assoc=clisconnect 
850ENDPROC 
860 
870 
880DEF PROCmail_test(messS) 
890REM Check the meaning of the received message and act upon it accordingly. 
900LOCAL len 
910len=LEN(mess$) 
9201 F LEFTS (mess$, 4) = "sP;D'' THE~ ""sener _resp_mes=not_ready: ?mess_stat=processed: PROCrespond: E 

~DPROC 

930IF messS="RESET'' OR messS="reset" THE!"-: PR0Creset:?mess_stat=processed:E1:DPROC 
940IF LEFTS(mess$,9)="DOI.'~ LOAD" OR LEFTS(mess$,9)="do••n load" THEN IF ~IIDS(messS,ll)<>"" THE:; 
fileS=MIDS(messS,11):PROCdo~nload(file$):ENDPROC 
950IF messS="ST:\RI" OR mess$=" start" THEN PROCstart_milling: ?mess_stat=prc•cessed: ENDPR0::-
960IF messS="MONITOR'' OR messS="monitor" THEN ?mess_stat=processed:CHAD"~!O\ITOR":E:'iDPROC 

9701 F LEFTS (mess$, 8) ="JOB NAME" THEN job_nameS=m DS (mess$, 10): '>mess_s tat= processed: PRI \T job_n 
ame$:ENDPROC 

980 IF LEFTS (mess$, 9) = "NOF PARTS" THEN nof_parts_ tobe_manu facturecl~~=VAL Oil DS ( messS, 10)): -:'mess_s 
tat=processed:ok::::TRUE:PRINT nof_parts_tobe_manufactured%:E:.lDPROC 

990IF LEFTS(mess$,l)=''D'' THEti PRnT'" The requested part dimention is: '';mDSimessS,2):?::J 
ess_stat=processed:E~DPROC 

lOOOIF LEFTS(messS,l)="O" THEN PRI';T''' __ The requested part ot·entation is: ";\flDS(mes:;S,:!):? 
mess_stat=processed:E';DPROC 



1010?mess_stat=not_recognised: PRPH"This message is not defined in the V~ID!," 
1020ENDPROC 
1030 
1040 
1050DEF PR0Ctx_message(local_st%,s%,message$) 
1060REM Send a mail to a distant entity. 
1070REPEAT 

244 

1080REM Establish a logical association first. 
1090loc%=logi_assoc:len%=1:PROCpeek(s%,loc%,len%):UNTIL peekouffer%?0<>connect 
llOOPRINT'"Logical Association bet~<een st. '";local_st%;'"'';'' and st. '";s%;"'" 
1110?pokebuffer%=connect 
1120pokebuffer%?1=local_st%:loc%=logi_assoc:len%=2:PROCpoke(s%,loc%,len%):loc%=server_resp_mes: 

len%=1:PRINT'"Waiting for response from st. '";s%;"' ... ":PROCdelay{lO) 
1130REPEAT:PROCpeek(s%,loc%,len%):U~TIL peekbuffer%?O=ready 
1140PRI~T"Station "';s%;"' is responded now" 
1150PRINT"The message sent to st. '";s%;'" is (";message$;'')" 
1160REM Encode the message before dispatching it. 
1170message$=" { "+" {"+message$+''}": PROC_keyboard_poke ( s%, messageS): PRI ~T"Wai ting for the message 
to be processed in the st. '" ; sX.;" ' ... ,. : loc%=mess_ stat: len%= 1: REPEAT: PROCpeek ( s%, loc%, len%) 
1180UNTIL peekbuffer%?0=processing 
ll90REM Check the distant entity until the message is received and recognised successfully. 
1200REPEAT:PROCpeek(s%,loc%,len%):UNTIL peekbuffer%"0=processed OR peekbuffer%"0=not_recogniseci 

:PR!NT"The message at st. '";s%;"' is processed no~<" 

l210IF peekbuffer%?0=not_recognised THE:\ FRH;T"Station ";s%;'' ck•es nut rer:ognise this n:2ssage, 
try· a:;ain. '' 

l220REM End the session. 
1230loc%=logi_assoc:len%=l:pokebuffer%?0=disconnect:PR0Cpoke(s%,luc%,len%) 
1240£1-<DPROC 
1250 
1260 
1270DEF PROCrespond 
1280REM This procedure is used by the cell controllers to cespond to a request invoked by dista 

nt entity. 
1290client_st%=~client_st_no 

1300 IF mD$ (mess$, 6) ::"PART ORIENTATION" THEN PROCget_part_or ientat ion: PROCtx_message ( thi s_st%, c 
lient_sD~, rnes$): ENDPROC 
1310 IF m D$ (mess$, 6) :::''PART DIMENTION" THD PROCget_part_d imen tion: PROCt-':_message ( t h is_st%, cl ier: 

t_st%,mesS):ENDPROC 
1320PRINT"ROUTINE IS 1-<0T DEFINED ! . " 
1:330DDPROC 
1340 
1.350 
1360DEF PROCinfo_request(query$,server_st%) 
1370REM this routine is used by entities which require information from other entities 
1380server=FALSE 
1390PR0Ctx_message(this_st%,server_st%,query$) 
1400REPEAT 
141UIF ?logi_assoc=connect THEN IF ~client_st_no=server_st% THEN server=TRU£:?server_resp_mes=r 

eady:PROCget_mail:"server_resp_mes=not_ready 
1~20IF "logi_assoc=connect THEN IF ?client_st_no<>server_st% THEN ?server_resp_mes=ready:PROCge 

t_mail:?ser·ver_resp_mes=Ilot_ready 
l.J30IF "prog_stat=stopped THE~J PROCterminate_part_prod 
l.J40UNTIL server 
1450ENDPROC 
1460 
1470 
1480DEF PROCget_part_orientation 
1490REM This is used by cell controllers to obtain the orientation of t]!.o; part. •-;hich is current 

ly being processed in this cell. This information is tl1en provided to the distant entit~. 
1500lower=lO:upper=99:XS=STRS(FNrnd_rlum(lower,upper) l:lower=lO:upper=99:YS=STRS(FSrnd_num(lower 

, 11pper)): lo1-1er=l 0: u pper=99: degS=STRS ( F>i rnd_aum ( .l o"·er, upper) ) : lo•;er=lO: upper=99: minS=STRS { FSrnd_n 



um(lower,upper)} 
1510mesS=''O" + "XOO" +X$+ "YOO" +Y$+" A:-JG" +deg$+". '' +minS 
1520ENDPROC 
1530 
1540 
1550DEF PROCget_part_dimention 

245 

1560REM This is used by the cell controllers to obtain the dimension of a part currently being 
processed for the remote entity. 
1570lo~er=10:upper=99:LS=STRS(F~rnd_num(lower,upper}):lower=l0:upper=99:~S=STRS(F~rnd_num(lower 

,upper)):lower=10:upper=99:HS=STRS(FNrnd_num(lower,upper)) 
1580mesS="D" +" LOO" +LS+ "\oiOO" HiS+ "HOO'' +HS 
1590ENDPROC 



L. 
lORE~!. .•.••...••...•••..••.•..••.• ~!Aii_DBASE ••••..••.•••.•••....•.••.••.....••.. 
20REM This is the Manufacturing Database program. 
30REM Set the maximum number of record to be allocated. One record per cell is used. 
40CLS:max_recs=5 
50RDI Set the number· of fields per record to be used. 
60rec_fields=18 

246 

70DIM field_contS(rec_fields),indexS(max_recs,2),fieldS(rec_fields),typeS(rec_fields),widthS( 
rec_fields),dpS(rec_fields),command_stackS(8) 

80REM Set the record pointer to the first record. 
90current_rec=l 

lOOquit=FALSE 
llOCLS:PROCfirst_menu 
120REPEAT 
130REPEAT 
140REM Print th~ prompt. 
150PRI NT "'s"; 
160REM Get a command at the $ prompt. 
170INPUT"" commandS:UNTIL commandS<>"'' 
180FOR I=l TO 6:command_stackS(IJ="":NEXT 
190K=O 
200REPE,\T 
210s=INSTR(commandS," ") 
2201\=K + 1 
230commancl_stackS(~}=LEFTS[comma!lClS,s-1) 

Z ·10commandS=~11 DS { COGiillC:UldS, s+ 1) 
250L:NTIL s=O 
260REM Test the recei¥ed command before calling the appropriate procedure. 
270IF command_stackS(l)=":\DD" OR command_stackS(l)="A" THE:\ PROCaclcl __ n·c 
280 IF commancl_s tac\;S ( 1) ="CLOSE" ,\~;o cummand_staclS ( :3) ="" "THE:\ PROCclose_f ile 
290IF commancl_stackS(l)=''CLOSE" A~;D command_stack$(3)<>"" THE,\" PROCclose_file_upclate_indc-x 
:JOOIF comnwnd_stackS(l)="CQ\lPRESS" OR command_stackS{l)="Co" THD PROCcor.;p!'E·ss_n·cs 
310IF command_stackS(l)="CREATE" OR command_stackS{l)="CR" THE:-1 PROCcreate_file 
320IF commancl_stackS( 1 )="DELETE" OR command_stackS( 1 )="DEL" THEN PROCclelE·te_r-ec 
3301 F command_s tackS ( 1) =''DISPLAY'' OR command_ stackS ( 1) ="DIs" THE::-: PROCdisplay_rec 
340IF commancl_stackS(l)="EDIT" OR command_stackS(l)="E" THB FROCedit_rec 
350IF command_stackS( 1 )="FIND'' OR command_stackS( 1 )="F" THEN PROCfind_rec 
360IF command_stackS( 1 )="GOTO" OR command_stack$( 1 )="G" THE:\ PROC~oto_r·ec 
3iOIF command_stackS(l)="LIST" OR command_stackS(l)="L" THEK PROClist_recs 
380IF command_stackS( 1 )=''~!ENU" OR command_ stackS( 1 )=''W' THEN PROCsecond_menu 
3!:JOIF command_stac:kS(l)="OPE:\" A:·iD command_stackS(2)<>"UPDATE" THEN PROC:open_file 
400IF command_s tackS ( 1) ="OPE\" A\D command_s tackS (2) =''UPDATE" THE?; PROCopen_upc!a te_t'i le-
410IF command_ stackS ( 1) ="ORDER" ORcommanci_stackS ( 1) =''OR" THE:\ PROCorder_r<ecs 
420IF command_stackS(l)="QUIT" OR command_stackS(l)=''Q" THE'i quit=TRUE:GOTO 450 
430IF command_stack:':i( l )="RETRIEVE" OR command_stackS( 1 )="R" THE\ PROCretrieve_rec 
4 40 IF command_s tackS ( 1) = "SHO\i" OR command_ stackS ( 1) ="S" THE\ PROCsh01·:_f ield 
450FNTIL quit 
460ECID 
470 
.JSO 
490 
500DEF PROCadcl_rec 
510RDI .-\cld r·ecord to an existing data file. 
520REPE:\T 
5.30PROCadd 
540INPUT TAB(8,~3) "Add more (Y/';)" moreS 
550UNTIL LEFTS(moreS,l)<>"Y" AND LEFTS(moreS,l)<>"y" 
560ECIDPROC 
570 
S80DEF PROCadd 
590CLS 



600limit=8 
610FOR I=1 TO n 
620PRI NT TAB( 0, I) fieldS (I); TAB( limit, I)":" +STRINGS (VAL ( ""idthS (I))," ") +": '' 
630NEXT I 
640FOR I=1 TO n 
650PRINT TAB(limit+1,I); 
660IF typeS(I)="N" THEN PROCget_num ELSE PROCget_chars 
670NEXT I 
680PTR£db_ch=point_eof 
690rec$='"' 
700FOR I=1 TO n 
710rec$=recS+field_contS(I) 
720NEXT I 
730rec$=" "tree$ 
740PRINT£db_ch,rec$ 
750point_eof=PTR£db_ch 
760nofrecS=STR$(VAL(nofrecS)+l) 
770nofrec$=FNmodify(nofrecS,4) 
780PTR£db_ch=point_nofrec 
790PRINT£db_ch,nofrec$ 
800IF index_flag=FALSE THEN ENDPROC 
810 
820REM Sort the insertions into index array. 
830I=O 
840REPEAT 
8501=1+1 
860UNTIL indexS(I,l)>field_contS(VAL(keyfieldS)) OR I=VAL(nofrecS) 
B'iOREM ~Iove up all index records. 
880FOR J=VAL(nofrecS) TO I STEP -1 
890indexS(J+l,l)=indexS(J,l):indexS(Jtl,2)=indexS(J,2) 
900t-;EXT J 
910indexS(I,l)=field_contS(VAL(keyfieldS)):indexS(I.2)=nofrecS 
920ENDPROC 
930 
940 
950DEF PROCchop_arraytable 
960REM Perform a logarithmic search(i.e. x=log n/log 2). 
970mid=(first%+last%) DIV 2 
980IF indexS(mid,1)=search_specS THEt\ stop_searching=TRUE:found=TRUE:D\DPROC 
990IF indexS(mid,l)>search_specS THEN last%=mid-l ELSE first%=mid+1 

1000IF first%>last% THEN stop_searching=TRUE 
1010ENDPROC 
1020 
1030 
1040DEF PROCclose_file 
1050REM Close a file l"'ithout updating it. 
1060IF command_stack$(2)="" THEN PRINT"SYNTAX ERROR" ELSE PROCclose(command_stackS{2)) 
1070ENDPROC 
1080 
1090DEF PROCclose(file$) 
1100CLOSE£db_ch 
lllOCLS 
1120ENDPROC 
1130 
1140 
1150DEF PROCclose_file_update_index 
1160REM Close a file it has been updated. 

247 

1170IF command_stackS(2)="" OR command_stack$(3J<>''UPDATE" OR command_sta•:kS(.!)="" OR command_s 
tack$(5}='"' THEN PRINT"SYNTAX ERROR" ELSE PROCclose_update(command __ stackS(2},command_stackS(4),c 
ommand_stackS(5)) 

llBOENDPROC: 



1190 
1200DEF PROCclose_update(fileS,mod_idxS,keyfield$) 
1210CLS 
1220PRINT TAB(1,23) "Wait ... " 
1230PROCorder(mod_idxS,keyfieldS) 
1240CLOSE£db_ch 
1250CLS 
1260ENDPROC 
1270 
1280 
1290DEF PROCcompress_recs 
1300REM Overwrite on records being marked for deletion. 
1310com$=command_stack$(2) 
1320IF com$="" THEN PRINT ''SYNTAX ERROR'' ELSE PROCcompress(comS) 
1330ENDPROC 
1340 
1350DEF PROCcompress(fileS) 
1360LOCAL rec_del, oldpoint, ne1;point, rdel 
1370PRINT TAB(0,23) STRI:\G$(30,'' "):PRINT TAB(1,23) "Wait..,'' 
1380oldpoint=l:newpoint=1 
1390rec_del=O 
1400FOR I=l TO VAL(nofrecS) 
1410REM Read record 
1420PTR£db_ch=point_nofrec+6+(oldpoint-l)*(rec_len+2) 
1430INPUT£db_ch,recordS 
1440oldpoinL=oldpoint+l 

248 

1450RE~ If not marked for deletioi1 then write it. 
1460IF LEFTS( recordS, 1 )=''*" THEN recs_del=recs_del+l 
14701 F LEFT$ (recordS, 1) =" " THE'\ PTR£clb_ch=poin t_nofrec+6+ ( ne~;po in t-1) * ( rec_letl+2): PR1 :>T£db_ch, 

recordS:ne~;point=ne~;point+l 

1480NEXT I 
1490PTR£db_ch=point_nofrec 
1500nofrec$=STR$(VAL(nofrec$)-recs_del) 
1510nofrecS=FNmodify(nofrecS,4) 
1520PRINT£db_ch,nofrec$ 
1530point_eof=VAL(nofrecS)*(rec_len+2)+point_nofrec+6 
1540IF index_flag=FALSE THEN ENDPROC 
1550REM Tidy up the index array. 
1560rdel=O:J=l 
1570FOR 1=1 TO VAL(nofrecS)+recs_del 
1580IF LEFT$(indexS(I,2),1)<>"*" THEN indexS(J,l)=indexS(I,l): indexS{J,2)=indexS(I,~):J=J+l 
1590IF LEFT$(indexS{I,2),1)=''*" THEN rdel=rdel+l 
1600NEXT I 
1610IF recs_del<>rdel THD Pf<INT"The index is being corrupted .. reindexing": PROCincle:d index_ file 

$,keyfieldS) 
1620CLS 
1630ENDPROC 
1640 
1650 
1660DEF PROCcreate_ne~;_job 
1670REM Create a ne~; job. 
1680 IF cornmand_s tackS ( 2) <> "" THP: db_f i leS=cornrnand_s tackS ( 2) ELSE INPuT "E:\TER FILE ~A~IE ... "db_ 

file$ 
1690PRINT TAB(0,23) STRINGS(20," "):PRINT TAB(1,23) "Wait ... " 
1700PROCcreate(db_file$) 
1710mod_idxS=db_f i leS+ "_I ND'' 
1720keyfield$="1'' 
1730index_ch=OPENOUT(mod_idx$) 
1740PRINT "Enter record now " 
1750CLOSE£db_ch 
1760PROCopen{db_fileSJ:PROCadd_rec 



1770PRINT TAB(0,23) STRING${30," "):PRIH TAB(1,23) "Wait ... '' 
1780PRINT£index_ch,keyfield$ 
1790FOR I=l TO VAL(nofrecS) 
1800PRINT£index_ch,indexS(I,l) 
1810PRINT£index_ch,indexS(I,2) 
1820NEXT I 
1830CLOSE£index_ch 
1840mod_idx$=db_fi le$+" INS" 
1850keyfield$="7" 
1860PROCorder(mod_idx$,keyfield$) 
1870CLOSE£db_ch 
1880PR0Csecond_menu 
1890ENDPROC 
1900 
1910 

249 

1920DEF PROCcreate_file 
1930REM Create a datafile. 
1940IF command_stack${2)<>"" THE!'< db_fileS=command_stack$(2) ELSE INPUT "gTER FILE NA~IE. .. "db_ 

fileS 
1950PRINT TAB(0,23) STRING$(20," "):PRI'iT TAB(l,23) "Wait ... '' 
1960PROCcreate(db_fileS) 
1970CLS 
1980REPEAT 
1990PRI~T TAB(4,10)''Enter index file name''; 
2000INPUT mod_idxS 
2010UNTIL LEN(mod_idxS)<=lO 
2020REPEAT 
2030INPUT TAB(4,ll)"Enter index field number'';keyfieldS 
2040UNTIL keyfield$<>"'' 
2050PRINT TAB(0,23) STRINGS(20," "):PRI:-;T Tt\B(1,2:3) "Wait ... " 
2060index_ch=OPENOUT(mod_idxS) 
2070CLS 
2080PRINT TAB(4,10J''Enter record noh'" 
2090CLOSE£db_ch 
2100PROCopen(db_fileSJ:PROCadd_rec 
2110PRINT£index_ch,keyfieldS 
2120FOR I=l TO VAL(nofrecS) 
2130PRINT£index_ch,index$(I,l) 
2140PRINT£index_ch,indexS(I,2) 
2150NEXT I 
2160CLOSE£index_ch 
2170ENDPROC 
2180 
2190DEF PROCcreate(fileS) 
2200PRINT TAB(0,23) STRINGS(20," "):PRI'iT TAB(1,23) "liait ... " 
2210LOCAL nameS,h'idthS,dpS,type$,J 
2220IF LEN(file$)>10 THEN PRINT "FATAL ERROR_ FILE NA~!E TOO LONG":STOP 
2230rec_len=O 
2240db_ch=OPENOUT(fileS) 
2250IF db_ch=O THE:\ PRINT" FILE c;.;;NOT BE OPENED": ENDPROC 
2260CLS 
2270REPEAT 
2280good=TRUE 
2290REPEAT 
2300INPUT TAB(4, lO)"Enter number of fields "nS 
2310UNTIL n$<>"" 
2320FOR J=l TO LEN(n$) 
2330IF INSTR("0123456789" ,mDs(nS ,j ,1) J=O THEN good=FALSE 
2340IF VAL(n$)>32 THEN good=FALSE 
2350NEXT J 
2360PRINT TAB(4,10) STRINGS(:Z3+LE:i(nS)," '') 



2370UNTIL good 
2380n$=FNmodify(nS,2) 
2390PRINT£db_ch,n$ 
2400CLS 
Z410PRINT' ''"NAME TYPE WIDTH DPLACES" 
2420FOR J=l TO VAL(n$) 
2430INPUT TAB(O,J+4)""nameS:nameS=FNmodify(name$,8) 
2440REPEAT 
2450REM Get information about the header record. 
2460INPUT TAB(lO,J+4)'"'type$ 
2470type$=FNmodify(type$,1) 
2480UNTIL type$="C" OR type$=''N" 
2490REPEAT 

250 

2500INPUT TAB( 18 ,J+4) ""•<idthS 
2510width$=FNmodify(widthS,2) 
2520rec_len= rec_len+VAL(width$) 
2530UNTIL INSTR("0123456789'',LEFTS(width$,1))>0 AND INSTR("Ol23456789",RIGHTSI~idthS,lJJ>O 
2540REPEAT 
2550INPUT TAB(26,J+4)""dp$ 
2560IF dp$<>""THEN dpS=LEFTS(dpS,l) ELSE dp$=" '' 
2570UNTIL INSTR(" 0123456i89",dpS)>O 
2580PRINT TAB(l,J+4) STRBG$(40," ") 
2590PRINT TAB(O,J+4) nameS;TAB(lO,J+4) typeS;TAB(18,J+4) ~idthS;TAB(26,J+4) dpS 
2600PRI~T£db_ch,nameS+type$+widthS+dp3 

26101-iEXT J 
2620rec_len=rec_len+l 
2630nofrec$="0000'': PRINT£db_ch, no freeS 
2640dummy$=STRINGS(rec_len," ") 
2650FOR R=l TO max_recs:PRINT£db_ch,dummyS:NEXT R 
2660PRINT TAB(l,23) "Wait ... '' 
2670index_flag=TRUE 
2680ENDPROC 

. 2690 
2700 
2710DEF FNmodify(sS,n) 
2720REM Truncate the string length. 
2730IF LEN(s$)<n THEN sS=sS+STRiliGS(n-LE~'(sS),'' '') 
2740IF LEN(s$)>n THEN sS=LEFTS(sS,n) 
2750=s$ 
2760 
2770 
2780DEF PROCdelete_rec 
2790REM Mark the records for deletion. 
2800LOCAL s 
2810IF command_stack$(2)="" THE~ PROCdelete(current_rec} 
2820s=I NSTR (command_ stackS ( 2),"; '' J 
2830IF s=O THEN PROCdelete(VAL(command_stackS(2))):ENDPROC 
2840del_s=VAL(LEFT$(command_stackS(2),s-l)) 
2850del_f=VAL(MIDS(command_stackS(2),s+l)) 
2860FOR I=del_s TO del_f 
2870PR0Cdelete(I) 
2880NEXT I 
2890ENDPROC 
2900 
2910DEF PROCdelete(rec) 
2920PTR£db_ch=point_nofrec+6+(rec-l)*(rec_len+2) 
2930INPUT£db_ch,recordS:PRINT recordS 
2940REM Add a * in front of records to be deleted. 
2950 record$="*" +HID$ (recordS, 2) 
2960PTR£db_ch=point_nofrec+6+(rec-l)*(rec_len+2) 
2970PRI~T£db_ch,recordS 



2980IF index_flag=FALSE THEN ENDPROC 
2990REM remove entry from index file 
3000J=O 
3010REPEAT J=J+l 
3020IF ·LEFT$(indexS(J,2),1)="*" THE'i r=\"AL0!IDS(indexS(J,2),2)) ELSE r=V.-\L(indexS(J,2)) 
3030UNTIL r=rec 
3040indexS(J,2)="*"+indexS(J,2) 
3050ENDPROC 
3060 
3070 

251 

3080DEF PROCdisplay_rec 
3090REM Display a record. 
3100com$=command_stack$(2) 
3110IF cornS="" THEN PROCdisplay(current_rec) ELSE IF VAL(comS)=O THEN PRINT "SYHAX ERROR" ELS:O: 
PROCdisplay(VAL(com$)) 
3120ENDPROC 
3130DEF PROCdisplay(rec) 
3140PTR£db_ch=point_nofrec+6+(rec-l)*(rec_len+2) 
3150INPUT£db_ch,record$ 
3160PRI NT FNmodi fy( STR$ ( rec) , 3);": "+record$ 
3170ENDPROC 
3180 
3190 
3200DEF PROCedit_rec 
3210REM Edit the contents of a record. 
:J220cora$=command_stackS ( 2) 
3230IF cornS='"' THEN PHINT ''S!N'f..\\ ERROR"ELSE PROCedit(V.-\L(comS)) 
32-IOENOPROC 
3250 
3260DEF PROCedit(rec) 
3270LOCAL lirnit,far 
3280PTR£db_ch=point_nofrec+6+(rec-l)*(rec_len+2) 
3290INPUT£db_ch,recordS 
3300recordS=l>IIDS{record$,2) 
3310CLS 
3320limit=8 
3330FOR I=l TO n 
3340PRINT TAB(O,I) fieldS(I);TAB(limit,I)":"+STRli\G$(VAL(1.;idthS(I)),'' ")+":'' 
3350NEXT I 
3360far=l 
3370FOR I=l TO n 
3380field_contS(Il=MIDS(record$,far,VAL(widthS(I))) 
3390far=far+VAL(widthS(I)l 
3400PRINT TAB(lirnit+l,I);field_contS(I); 
3410PRINT TAB(2,20);"press C to change field ";I;'' Return to leave alone"; 
3420REPEAT 
3430g5=GET$ 
3440UNTIL g$=''c" OR gs="c" OR ASC(gS)=l3 
3450PRINT TAB(limit+l,I); 
3~60 IF ASC(g$)=13 THEN PRINT TAB(2,20);"'io change "+STRINGS(50,'' ");ELSE IF typeS(!)="';" THE:\ 

PROCget_nurn ELSE PROCget_chars 
3470NEXT I 
3480rec$="" 
.3490FOR I=l TO n 
3500rec$=rec$+field_cont$(I) 
3510NEXT I 
3520rec$=" ''+recS 
3530PTR£db_ch=point_nofrec+6+(rec-l)*(rec_len+2) 
3540PRINT£db_ch,rec$:CLS 
3550ENDPROC 
3560 



3570 
3580DEF PROCfind_rec 
3590REM Search for a record. 
3600comS=command_stack$(2) 
3610IF cornS='"' THEN PRINT "SYNTAX ERROR" ELSE PROCfind(comS) 
3620ENDPROC 
3630 
3640DEF PROCfind(search_specS) 

252 

3650LOCAL first%,last%,d,stop_searching,found 
3660IF LEN( search_spec$) <VAL(widthS(key%)) THEN d=VAL(I;idthS( key%) )-LEN(search_specS): FOR I=l T 

0 d: search_spec$=search_spec$+" '':NEXT I 
3670first%=1 
3680last%=VAL(nofrecS) 
3690stop_searching=FALSE:found=FALSE 
3700REPEAT 
3710PROCchop_arraytable 
3720UNTIL stop_searching 
3730IF found THEN current_rec=VAL(indexS(mid,2)):PROCdisplay(current_rec) ELSE PRINT''RECORD NOT 
FOUND" 
3740ENDPROC 
3750 
3760 
3770DEF FNgel_field(rec,field) 
3780REM Find field of a record. 
3790PTR£clb_ch=point_nofrect6t(rec-l)*(rec_len+2} 
3800INPUT£db_ch,recorc!S 
3810record$=MIDS(recordS,2) 
3820begin=l:IF fielcl>l THEN FOR I=l TO fielcl-l:begin=begin+VAL(~icltht(I )):NEXT 
3830field_contS(field)=~IDS(record$,begin,VAL(~iclthS(field))) 
3840=field_contS(fielcl) 
3850 
3860 
3870DEF PROCgoto_rec 
.3880RDI Change the posi ton of the record pointer. 
3890v=VAL(command_stackS(2)) 
3900IF v=O THEN PROCgoto(l):ENDPROC 
3910PROCgoto(v) 
3920ENDPROC 
3930 
3940DEF PROCgoto(num) 
3950current_rec=num 
3960ENDPROC 
3970 
3980 
3990DEF PROClist_recs 
4000REM Give a list of records on the datafile. 
4010rec=O 
4020line=O 
4030REPEAT 
4040line=line+l:rec=rec+l 
4050IF VAL(inclexS(rec,2))<>0 THEN PROCclisplay(VAL(indexS(rec,2))) 
4060IF line=:W THEN PRiti'T' '"Pr·ess key to continue":g=GET:line=O 
4070UNTIL rec=VAL(nofrec$) 
4080ENDPROC 
4090 
4100 
4110DEF PROCfirst_menu 
4120CLS 
4130PRI:lT TAI3(0,5)"Do you ~ant to define a ne~o; job (Y/N)" 
4140REPEAT: EPL'T gS:UNTIL gS=''Y'' OR gS="y" OR gS="N" OR gS="n" 
4150IF gS="Y'' OR gS=" " THEN CLS:PRINT TAB(5,11):INPlT "Enter the ne~ job name (e.-s. JOBl)";com 



mand_stack$(2):command_stack$(l)="CREATE":PR0Ccreate_new_job ELSE PROCsecond_menu 
4160ENDPROC 
4170 
4180 
4190DEF PROCsecond_rnenu 
4200REM A menu of commands is allowed to be entered. 

253 

4210CLS 
4220PRINT TAB(O,O)''Choose command/s and enter in the follo~<ing format. 
4230PRINT"----------Press M for Menu--------------" 

(Pagel)" 

4240PRINT'" <ADD> " 
4250PRINT" <CLOSE> <filename>" 
4260PRINT'' <CLOSE> <filename> <CPDATE> <index filename> <field num>" 
4270PRINT" <COMPRESS> <filename>" 
4280PRINT" <CREATE> <filename> " 
4290PRUlT" <DELETE> <rec num> or <DELETE> <from rec> <; > <to rec>" 
4300PRINT" <DISPLAY> <rec num>" 
4310PRINT" <EDIT> <rec num>" 
4320PRINT" <FIND> <field content>'' 
4330PRINT" <GOTO> <rec num>" 
4340PRINT" <LIST> or <LIST> <FOR> <condition>'' 
4350PRINT" <OPEN> <filename> <INDEX> <index filename>" 
-t360PRI1\T"_ -:OPEN> <UPDATE> <filename> <I/;DEX> <index filename>" 
,13/0PRINT'" ...... Fress P to go to next page ...... " 
4 :380G$=GETS: l t" G$=" P" OR GS= '' p" THEN PROCsecond_menu_pZ 
4390ENDPROC.: 
4400 
HlODEF PROCsecond_menu_p2 
4420CLS:PRINT TAB(O,O)"Choose commanci/s and enter in the follo~;:_a~ fermat. 
4 :!30 PRINT"---------- Press ~~ for Menu--------------" 
4410PRI:\T'" . <ORDER> <ON> <field Hum> <TO> <index filename>" 
4450PRI:-IT"_ <QUIT>'' 
4460PRI NT" <RETRIEVE> < cec num> '' 
4470PRINT" <SHOW> <rec num> <field nLlm>" 
4480ENDPROC 
4490 
4500 
4510DEF PROCopen_file 

( Fage2)" 

4520REM Open a file for reading purposes only. 
4 530 IF command_ stack:> ( 3) =''INDEX" THEN PROCopen (command_ stackS ( 2)): PROC read index ( command_s tackS ( 

4)) ELSE PRINT "SYNTAX ERROR" 
4540ENDPROC 
4550 
4 560 
4570DEF PROCopen(file$) 
4580PRn;T TAB(0,23) STRINGS(30," "):PRINT TAB(1,23) "Wait ... " 

4590LOCAL I,rec$ 
4600db_ch=OPENIN(file$) 
4610INPUT£db_ch,n$ 
4620n=VAL(n$) 
4630rec_len=O 
4640FOR I=l TO n 
4650INPUT£db_ch,rec$ 
4660field$(I)=LEFTS(recS,8) 
4670type$(I)=~IDS(rec$,9,1) 
4680widthS(II=MID$(rec$,10,2) 
4690rec_len=rec_len+V:\L (width$ (I)) 
4700dpS(I)=MIDS(recS,12) 
4710:-IEXT I 
4720rec_len=rec_len+l 
4730point._nofrec=PTR£db_ch 
4 740 I NPUT£db_ch ,riO freeS 



4750point_eof=VAL(nofrec$)*(rec_len+2)+point_nofrec+6 
4760ENDPROC 
4770 
4780 
4790DEF PROCopen_update_file 
4800REM Open a datafile for reading and writing. 

254 

4310IF command_stackS(2)="UPDATE" THEN PROCopen_update(command_stackS(3)):PROCreadindex(cornrnand 
_stack$ ( 5)) ELSE PRINT "SYNTAX ERROR'' 

4820ENDPROC 
4830 
4840DEF PROCopen_update(file$) 
4850PRINT TAB(0,23) STRING$(30," ''):PRINT TAB(1,23) ''Wait ... " 
4860LOCAL I,rec$ 
4870db_ch=OPENUP(file$) 
4880INPUT£db_ch,n$ 
4890n=VAL(n$) 
4900rec_len=O 
4910FOR I=1 TO n 
4920INPUT£db_ch,recS 
4930field$(I)=LEFT$(rec$,8) 
4940type$(I)=MIDS(rec$,9,1) 
4950widthS(I)=MID$(rec$,10,2) 
4960rec_len=rec_len+VAL(widthS(I)) 
4970dp$(I)=MIDS(rec$,12) 
1980:-iEXT I 
4990rec_len=rec_len+l 
5000po in t_nofr·ec=PTR£db_ch 
5010INPUT£db_ch,nofrecS 
5020point_eof=VAL(nofrecS)*(rec_len+2)+point_nofrec+6 
5030ENDPROC 
5040 
5050 
5060DEF PROCorder_recs 
5070REM Arrange the order in which the records will be accessed or displayed. 
5080IF command_stack$(2)="" THEN PROCorder(index_fileS,keyfieldS):ENDPROC 
5090IF command_stack$(2)<>"0N" AND commund_stackS(4)<>"TO" THEN PRI!\T"SYNTAX ERROR'':gDPROC 
5100PROCorder(command_stackS(5),command_stack$(3)) 
5110ENDPROC 
5120 
5130DEF PROCorder(index_fileS,keyfieldS) 
5140LOCAL begin,length 
5150PRINT TAB(0,23) STRING$(30," ''):PRI\1 TAB(l,23) "Wait ... " 
5160index_ch=OPENOUT(index_file$) 
5170PRINT£index_ch,keyfield$ 
5180key%=VAL(keyfield$) 
5190PTR£db_ch=point_nofrec+6:REN point to start of data 
5200begin::1 
5210FOR K::l TO VAL(keyfieldS)-1 
5220begin=begin+VAL(widthS(KI) 
5230NEXT K 
5240IF VAL(keyfield$)=1 THEN begin=l 
5250length=VAL(widthS(VAL(keyfield$))) 
5260FOR I=l TO VAL(nofrec$) 
5270INPUT£db_ch,rec5 
5280rec$=MID$(rec$,2):REM peel off deletion flag 
5290index$(I,1)=MID$(recS,begin,length):index$(I,2)=STRS(I) 
5300NEXT I 
5310index_flag=TRUE 
5320PR0Csort 
5330ENDPROC 
5340REM 



5350 
5360 
5370DEF PROCretrieve_rec 
5380REM Retrieve a record which is being marked for deletion. 
5390com$=command_stack$(2) 
5400IF com$=""' THEN PRINT "SYNTAX ERROR "ELSE PROCretrieve(VAL(comS)) 
5410ENDPROC 
5420 
5430DEF PROCretrieve(rec) 
5440PTR£db_ch=point_nofrec+6+(rec-l)*(rec_len+2) 
5450INPUT£db_ch,record$ 
5460record$=" "+MID$(recordS,2) 
5470PTR£db_ch=point_nofrec+6+(rec-l)*(rec_len+2) 
5480PRINT£db_ch,record$ 
5490IF index_flag=FALSE THEN ENDPROC 
5500REM Replace entry to index file 
5510J=O 
5520REPEAT J=J+l 
5530IF LEFT$(index$(J,2),1)="*'' THEN v=VAL(MIDS(indexS(J,2),2)) ELSE v=VAL(indexS(J,2)) 
5540UNTIL v=rec 
5550index$(J,2)=MIDS(index$(J,2),2) 
5560ENDPROC 

·ss7o 
5580 
5590DEF PROCreadindex(index_fileS) 
5600REM Fill the contents of the index array with data. 
5610PRINT TAB(1,23) "liait ... " 
5620 LOCAL index_ch,I 
5630 IF i nclex_fi le$=" "THEN index_f lag= FALSE: ENDPROC ELSE inde:,_f lag=IRUE 
5640index_ch=OPENIN(index_fileS) 
5650INPUT£index_ch,keyfieldS 
5660key%=VAL(keyfield$) 
5670IF keyfield$=''"THE~ PRINT" BAD FOR!IED INDEX'' :STOP 
5680FOR I=l TO VAL(nofrec$) 
5690INPUT£index_ch,index$(I,l) 
5700INPUT£index_ch,index$(I,2) 
5710NEXT I 
5720CLOSE£index_ch 
5730CLS 
5740ENDPROC 
5750 
5760 
5770DEF PROCget_num 
5780REM Get a numeric value for the current field of selected record. 
5790LOCAL J,GS,st$,hor,ver 
5800after=VAL(dp$(I)) 
5810before=VAL(widthS(I))-after:REM Implied decimal point 
5820J=O 
5830hor=POS:ver=VPOS 
5840REPEAT 
5850GS=GET$ 
5860G=INSTR("Ol23456789",GS) 
5870IF G>O THEN PRINT GS;:stS=stS+GS:J=J+l 

255 

5880UNTIL J=before OR ASC(G$)=13 OR G$="," OR GS=CHR$(127) 
5890IF GS=CHR$(127) THEN PRINT TAB(hor,ver) LEFTS(stS,(LEN(stS)-l));:stS=LEFTS(stS,(LEN(stS)-1) 

):J=J-l:GOTO 5840 
5900d=before-LEN(stS) 
5910IF d>O THEN st$=STRINGS(cl,"O")+stS+".":PRINT TAB(hor',ver) stS; 
5920IF after=O THEN field_cont$(I)=LEFT$(stS,before)+RIGHTS(stS,after):PRINT TAB(hor,ver) field 
centS( I)+":": E~:DPROC 
5930IF J=before THEN PRINT"."; 



5940J=O 
5950REPEAT 
5960G$=GETS 
5970G=INSTR("0123456789",G$) 
5980IF G>O THEN PRINT GS;:stS=stS+GS:J=J+1 
5990UNTIL J=after OR ASC(G$)=13 OR GS=CHR$(127) 

256 

6000IF G$=CHR$(127) THEN PRINT TAB(hor,ver) LEFTS(stS,LEN(stS)-1);:stS=LEFTS(stS,LEN(stS)-1):J= 
J-1:GOTO 5950 

6010d=before+after-LEN(stS) 
6020IF d>O THEN st$=st$+STRING$(d,"O") 
6030REM 
6040field_contS(I)=LEFTS(st$,before)+RIGHTS(st$,after) 
6050ENDPROC 
6060 
6070 
6080DEF PROCget_chars 
6090REM Get character for the field of currently selected record. 
6100LOCAL J,chars 
6110field_cont$( I)='"' 
6120chars=VAL(width$(I)) 
6130FOR J=1 TO chars 
6140G$=GETS 
6150IF GS=CHR$(127) THE~ J=J-2 
6160 IF ASC(G$)=13 THEN field_contS( I )=FNmodify( fielci_contS( I) ,chars) :J=ch~u·s ELSE PRI'."T GS;: fi 

eld_cont$ (I) =f ield_contS (I )+G$ 
6170NEXT J 
6180ENDPROC 
6190 
6200 
6210DEF PROCshow_fielci 
6220REM Display a selcted field of a record. 
6230com$=commanci_stackS(2) 
6240IF com$="'' THEN PRINT ''SYNTAX ERROR"ELSE PROCshow(L\L(command_stackS(2) ) ,VAL(command_stack 

$ ( 3))) 
6250ENDPROC 
6260DEF PROCshow(rec,fielci) 
6270PRINT'' field("; field;'')";'' of record("; rec;" )="; FNget_f ield( rec, field) 
6280ENDPROC 
6290 
6300 
6310DEF PROCsort 
6320REM Sort the index array using bubble sort. 
6330LOCAL I,last,lastone_rnoved_down 
6340last=VAL(nofrec$) 
6350REPEAT 
6360las~one_moved_down=O 
6370FOR I=2 TO last 
6380IF index$(I,1)<indexS((l-l),l) THEN PROCswap(I,(I-1)):lastone_rnoved_do~n=I-l 
6390NEXT I 
6400 las t=las tone_rnoved_do<<n 
6410UNTIL last<2 
6420FOR I=1 TO VAL(nofrecS) 
6430PRINI£index_ch,indexS(I,l) 
6440PRINT£index_ch,indexS(I,2) 
6450NEXT I 
6460CLOSE£index_ch 
6470ENDPROC 
6480 
6490 
6500DEF PROCswap(l,J) 
6510REM Swap the content of two entries in the index array table. 



6520LOCAL templ$,temp2$ 
6530 templ$=indexS(I,l):temp2S=indexS(I,2) 
6540index$(I,l)=index$(J,l) 
6550index$(I,2)=index$(J,2) 
6560index$(J,l)=templ$ 
6570indexS(J,2)=temp2$ 
6580ENDPROC 

257 



258 

L. 
1 ORE~! .................................. CII.-\.STER 
20REM This is the main program. This program must first be executed prioir to the commencemen 

t of any activity in the FMS. 
30~10DE 7: 0Sl."ORD=&FFF1: OSBYTE=&FFF -l: *FX 15,0 
40RDI Define memory locations for dyna;nic databases (i.e. CA.'IP) and Cell Talk. Allocat;> a na:ne 

to each location. 
60HINEM=&7BOO: :\1=& 7BOO: logi_assoc=~I+O: c l ient_s t_no=~l+ 1: cl ient_port=N+2: sen-er_resp_mes=~l+3: mes 

s_stat=~l+4: prog_stat=M+5: in_partbuf=M+6: out_partbuf=~l+ 7: production_per iod=~+8: up load_prep=~l+9: pa 
rt_trans=CII+10:where_part_trans=M+l1 

70server_resp_part=M+l2:robot_stat=M+l3:trolley_stat=M+14:device_stat=M~15 

BOREN Define the contents of these memory locations. 
90warehouse%=20:ready=&FF:not_ready=&OO:nothing=&09:busy=&FF:free=&OO:connect=&~F:disconnec:= 

&OO:processed=&OO:processing=&FF:not_recognised=&Ol:run_prog=&FF:running=&FF:stop=&OO:do~nload_a 

ucc=&Ol:transfer_part=&FF:transfer_part_comp=&OO 
lOOcompleted=&OO: idle=&O 1: s topped=&02: cri tical_op_in_progress=&03: dev ice_reset=&:)4: de•: ice_ inop 

erable=&05: uncor-rectable_error _det=&06: cor-rectable_err·or_det=&07: diagnostic_r·unn ing=&08 
110started=&FF:in_progress=&FF:not_started=nothing 
130REM set the size of input and output part buffers. 
140from_trolley=&01:to_trolley=&G2:full=2 
150RE~I Assign a key to each field in the system static data. 
160op_TYPE=l: key 1=op_TYPE: CC_NA:\IE=2: key2=CC_:\A~IE: CC_CON=3: key3=CC_C0i'i: STAT_NO= I: ke:-·~ =ST ·\ T_:'\0: ~: 

OF _PP=5: key 5=NOF _PP: PP _:-iAM£=6: key5=PP _:'\A.'I:O:: SE()_t\0=7: keyi=SEQ_c:O: SETL'P _ T=l:l: i-;ey8=SETCP _T: Do·.;:;_ T=S: 
keyS=DOWt\_T 

170pJ·oces_T=lO:keyiO=proces_T:d~r~ct_R=il:keyll=defect_R 

HlORE-'1 If the or·der of fields for a .i•)b definition is changed, then :otcijust th.;- l~eys 

190REM To economise the disc space usage assign the minimum desired numb~r of records. 
200CLS:max_recs=6 
210RDI Assign one rec:or·d iJer productioli cell. 
220rec_fields=12 
230FOR 1=0 TO 16:M 7 I=nothing:NEXT I 
240A%=0: max_peek_length%=5: ma:-.:_r-oke_lengt.h%=5; curr·en t_n:c= 1 
250DIN cblock%40,peekbuffer% max_peek_length% ,pokebuffer% max_poke_length% 
260DP1 field_ con tS ( rec_f ields), i~;clexS ( wax_recs, 2), fie leiS ( rec_f ields), typeS ( rec_:· i dds). "i cl ti,s; 

rec_fields),dpS(rec_fields),commnnd_stnckS{B) 
270CLS:PROCfirst_menu 
280Ef'D 
290 
300 
310REM Place the manufacturing database routine here. 
320 
330 The communication module resides here. 
3:!0 
350 
360DEF PROCfirst_menu 
370REM Provide the user ~ith a menu. 
380LOCAL menu 
390menu=FALSE:REPEAT 
400IF D%=6 THEN reply=D%:D%=0:GOTO 560 
410IF D%=8 THEN reply=D%:D%=0:GOTO 560 
420CLS:PRit'T TAB(0,3)"The follo;.·ir,g options are available." 
4 30PRI NT TAB( 0, ·~) "------------------------------------" 
440PRINT'" <1> Define a new job." 
450PRINT" <2> Create a job similar to an existing one .. , 
-160PRINT" <3> ~lodify an existing job." 
470PRINT" <4> Process a job.'' 
480PRINT" <:j> FMS cell requirement check." 
490PRINT" <6> Give historical report on FMS cells." 
500PRINT'' <7> Enter database utilities." 
510PRIH" 
520PRINT'' 

<8> Prepare an upload file tu collect info::-mation after a production p~?riod." 
<~> Show historical system_~>ide scheduling chart." 



530PRINT" <10> Quit. •· 
540REPEAT:INPUT TAB(0,22)"Your choice: "repiy:UNTIL reply>O AND reply<ll 
550B%=reply 

259 

560IF reply=l THEN CLS:PRI:\T TAB(0,23) STRI:\GS(30," "):PRINT TAB(l,23) "i\ait ... ":CH.U:\"\1.-\STEx 
Sl" 

570IF reply=2 THEN CLS:PRI:\T TAB(0,23) STRD'GS(30," "):PRINT T.-\8(1,23) "liait ... ":CHAii\"!1.-\STER 
S1" 

580IF reply=3 THEN CLS:PRINT TAB(0,23) STRINGS(30," "):PRL'iT TAB(1,23) "Wait ... ":CHAiN"!I.-\STER 
Sl" 

590IF reply=4 THEN PRINT TAB(0,23) STRDGS(30," "):PRINT TAB(1,2:3) "Wait ... ":CHAI:\"SCHEDULER" 
600IF reply=5 THEN PRINT TAB(0,23) STRINGS(30," "):PS:.INT TAB(1,23) ''l'ait ... ":CHAI\"MASTER_Sl" 
610IF reply=6 THEN PROChistorical_rep 
620IF reply=7 THEN CLS:PRINT TAB(0,2:3) STRINGS(30," "):PRI:\T TAB(l,23) "iooait ... ":Cf!Ai~;"~!.-\STER 

51" 
630IF reply=B THEN PROCprepare_upload 
640IF reply=9 THEN PRINT TAB(0,23) STRDGS(30," "):PRIKT TAB(1,23) "\{ait ... ":CHAI'\"ACT_CHART" 
650IF reply=lO THEN menu=TRUE 
660RDIA%=0 
670Ul\TIL menu 
680ENDPROC 
690 
700 
710DEF PROCthird_menu 
720LOC,\L rc"ply 
7:30CLS:PRlNT TAB(O,:J)"The follo<>ing ovtions ar·e av.•1ilabl':'." 
740PRINT"------------------------------------" 
750PRINT"'_ <1> Edit an existing job." 
760PRINT"_ <2> Add record t<:> an existing .job." 
770 
780REPEAT:INPliT TAB(0,20)"Your choice: "reply:Li!\TiL r·epl~·>O A'\D rc:ply<:3 
790CLS:PRINT TAB(5,11l:I1\PI_:T"Enter the r:ame c1f t!H? job :''command_stack.3(3):cummar:d_stacl:S(2:=" 

UPDATE": command_stackS ( 5) =<~ommanct_s tackS ( 3) +"_I :-;o": PROCop•,·n_update_f i le: k-!Yf i·: iC:S= .. i.": irdex_c-l.=­
PE:-ii.iP( comm:tncl_st.ackS ( 5)) 

800lF reply=l THP; CLS:PROCllst("TRLiE"):H:PUT'"i::nter tile number of the recor·d Lobe edi1:.ed :"r 
ec_no: PROCedi t ( rec_uo): CLS: PROCl is t ( "TRCE") 

BlOIF reply=2 THEN PROCadd_rec 
820PRit'iT TAB(0,23) STRINGS(30," "):PRIST TAB(1,23) "liait ... ":PRI!\T£index_ch,keyfieldS 
830CLOSE£index_ch: keyf ieldS= ·• 1 '': PROCorder ( commancl_s tackS ( 5), keyf ieldS) 
840mod_idx$=command_s tack$ ( 3) +"_INS'': keyf ieldS=" 7": PROCorcler( mod_iclxS, keyf ieldS): CLOSHdb_ch 

850 
860 
870DEF FROCprepare_upload 
880RDI Issue commands to the active ·:ells to upload a revort Ol! part production in tho-ir eeLs 
Create an upload file to store the information for hi:,;torical •:iewing. l"pdate the- upload file 

if it already exists. 
890LOCAL I ,K,temp_ch% 
900CLS:PRINT TAB(5,11):I~PUT''Enter the name of the job which has been currently under pr0cess 

: "job_nameS: command_ stackS ( 2) =j ob_nameS: command_stack$ ( 3) ="I ~DEX": cummand_s·tackS (·I) =job_namc:S+ ··_ 
n;s": PROCupen_f ile 

910nof_active_cell%=0 
920FOR I=l TO VAL(nofrecS) 
9:30IF indexS( I, 1) <>"00" THE'\ nof_activc:_cell%=nor_.'\cti,·e_cell%+l 
940NEXT I 
950DIM upload_mesS(nof_active_cell%) 
960K=l 
970FOR !=1 TO VAL(nofrecS) 
980 IF inciexS (I , 1) <> "00" THE\ s~~=F\get_f ie ld (VAL ( indexS ( f , 2) ) , kr;,y4;: loc%=upload_prep: pokroburf"'r 

%':'0=ln_progress: ?ROCpoke(s%, loc~~. 1) ELSE ~\EXT I 
990REPL\ T: Cl\T I L ·.'log i_assoc i=connr;,ct: ~·sen·er _resp_mes= r•:·ady: PROC~ct_mai l: '.'ser·,·e r·_res;;;_meo.=not_ 

ready 



1000PRDT"The message fr'om station ";s%;" is :";upload_mesS(i\):K=K+1 
lOlONEXT I 
1020PROCclose ( j ob_nameS): PROCde lay ( 300) 

260 

10:JOPRINT"Preparing cells historical information.":PRnT L\.B(O,Z:l) STRI';GS(:39," "i:PRrq TAB(l, 
23) "Wait. .. '' 

1040up_fileS=job_nameS+"C":up_idxS=up_fileS+"_IND" 
1050temp_ch%=0PE~UP(up_fileS) 

1060IF temp_ch%<>0 THEN CLOSE£temp_ch% 
1070IF t.emp_ch%=0 THEN PROCcreate_upload_file(up_fileS,up_idxS) 
1080PROCopen_update(up_fileS) 
1090IF temp_ch%<>0 THEN index_ch=OPENUP( up_idxS) 
1100PROCadd:keyfield$="1":PRINT£index_ch,keyfieldS:CLOSE£index_ch:command_stackS(5)=up_idxS:PRO 

Corder(command_stack$(5),keyfieldS):CLOSE£db_ch 
1110ENDPROC 
1120 
1130 
1140DEF PROChistorical_rep 
1150REM Provide a historical report of a job. 
1160LOCAL I,K,total,defect 
11/0total=O:defect=O 
1180~!0DE 0 
1190CLS:PRINT T!\B(5,ll):H<Pl'T"Enter the name of an existing .iob :".iob_namc·S:commanci_-;LackS(~)=..i 

ob_nameS+ "r'': command_stackS ( 3) ="I i\DEX": command_stac:LS ( :~) =._iob_nameS+ "t_I \D": PROCopeu_r i le 
1200CLS: PRINT'' ***** His t.o r ical report on PiS cell-; *****" 
1210PRI~T''! Total number of batches for ";jo;J_names;'' to d~tte : '';\"...\L{norr~:cS) 

1220FOR I=l TO VAL(nofrtcc~):rec=L\.L(itJCiexS(I,2)) 

12:30PRii'T' "--------Uploaded iuformatlon ou vart production of batch no. ; rec; ----------
1240FOR K=l TO n 
1250f .ield_con:3=FNgtet_f ielcl( rec, i\) 
1260IF ~IID$(fielcl_conS,4,1)=" "THE:l cdl_nameS=LEFTS(field_conS,3)+"l:\G" ELSE cell nameS=LEF·:s 

( fi eld __ conS, ~)+"I "iG" 
1270PRIL;T'" «« '';cell_nameS+" celi »» 
1280PRINT"t~urnber of processed components : ";~liDS(fidd_conS,f1,2) 

1290IF K=1 THEN total=VAL(MIDS(field_conS,6,2)) 
1300PRI NT"Nurnber of defective components "; m DS (fie ld_conS, 9, 2): defect=L\.L (HI DS ( fi~?ld_conS, 

9,2))tdefect 
1310PRINT"Defect rate of the cell 
1320PRINT"Eff.iciency of the cell 
1330NEXT K 

";MIDS(field_conS,l2,5i;" %" 
";~liDS(field_conS, 18,5) ;" %" 

1340good=VAL(NIDS ( field_conS, 6, 2)) -VAL (~!IDS ( field_conS, 9, 2)) 
1350PRI NT'''. . . . . i-Jumber of ra~· components required for this batch : ";total;" 
1360PRINT" .... , Number of good components manufactured in this batch ;gooci;" 
1370total=O:defect=O:good=O 
1380gS=GETS 
1390IF g$="P" THEN PROCprint 
HOOCLS: NEXT I 
1410PRINT''Press any key to get back to the menu. ":g=GET 
l-120CLOSE£0 
1430MODE I 
1440ENDPROC 
1450 
1460 
1470DEF PROCpriut 
1480*SCDUMP 
1490E~DPROC 



L. 
lOREM .............................. ~L\STER_S1 ................................ . 
20REM This is an associated program of MASTER. 
30MODE 7:0SWORD=&FFF1:0SBYTE=&FFF1:*FX 15,0 
40HIMEM=&7BOO:M=&7BOO 

261 

50op_TYPE= 1: key1=op_TYPE: CC_NA~!E=2: key2=CC_NA.\!E: CC_CON=3: key3=CC_CON: STAT_NO=~: key<l=STAT_NO: N 
OF _PP=5: key5=NOF _PP: PP_NA.\IE=6: key6=PP _:(..\.\IE: SEQ_N0=7: key7=SEQ_NO: SETuP _T=S: key8=SETliP _T: DOWN_T=9: 
key9=DOWN_T 

60proces_T=10:key10=proces_T:defect_R=11:key11=defect_R 
70REM If the order of fields for a job definition is changed, then adjust the variable keys a 

ccordingly. 
80CLS:max_recs=6:REM Maximum number of records, a record for each cell. 
90rec_fields=12:REM Program can handle 12 fields per record 

100max_peek_length%=5:max_poke_length%=5:current_rec=1 
llODIM f ield_con tS ( rec_f ie lds), indexS ( max_recs, 2), fieldS ( rec_f ields), typeS ( rec_f ields), "' idthS ( 

rec_fields),dp$(rec_fields),command_stackS(8) 
130El'D 
140 
150 
160REM The manufacturing database routine is placed here. 
170REM The communication module resides here. 
180 
190 
200DEF PROCseq_active_cell_check 
21 ORP! C!Jech ••hetht>r the cells defined in the part pr-oduction route are acth·cc. 
220LOCAL I 
230FOR I=1 TO VAL(nofrecS) 
240IF indexS(I,l)="OO" THEe\ IF LEFTS(Fi\get_field{VAL(indexS(I.2)),ke:-·3),ll="A" THE\ PRiH "[0\\­

ALID ACTIVE CELL IN RECORD ";VAL{inclexS(I,2l):Er<DPROC 
250IF inclexS(I,l)<>"OO" THE!; IF LEFTS(F:;get_field(VAL{indexS(I,2)),key:3),l)="[" THE'; PRI\T "!\ 

VALID SEQUENCE g RECORD =";VAL ( indexS (I, 2) ) : ENDPROC 
:::60NEXT I 
270ENDPROC 
280 
290 
300DEF PROCfms_cell_requi r·ement_check 
310REM Provide a FMS cell requirement check. 
320LOCAL good_component,analyzed_period,shift 
330@%=&20209 
340~10DE 0 
350CLS:PRINT TAB(5,11):I\PUI"Enter· the job name: ''command_stackS(~):job_nameS=command_stackS(2 

J60INPUT"Enter the number of parts to be manufactured: "good_cornponent 
370INPUT"Enter the anal~-zed period in hours: "'analyzed_period 
380INPUT"Enter the length of production period(i.e. shift) in hour·s: '"shirt 
390command_stackS(3)="INDEX":command_stackS(4)=command_stackS(2)+"_INS":PROCopen_file 
400CLS: PRINT' ''Press RETlR:-1 and t.·ai t to proceed": g=GET 
410FOR I=l TO VAL(nofrecS) 
420IF inclexS( I, 1)="00" THEN ':EXT I 
430restof_recs%=I 
440DIM rat._p(VAL(nofrecS)) 
450good_cornp=goud_component 
4GOFOR K=VAL(nofrecS) TO restof_recs% STEP -1 
-± 70rec=VAL ( indexS ( K, 2)): de fcet_ra te=FNget_f ield ( rec, keyll) /100: ra<<_p { K) =good_comp*defcet_rate+ 

good_comp 
480good_comp=rat._p(K) 
190NEXT K 
500FOR J=restof_recs% TO VAL(nofrecS):rec=VAL(indexS{J,2)) 
510CLS:PRINT TAB(22,1)"***** DIS cell capacity check for ";job_nameS;" *****" 
520RD! Define the mathematical model for the cell capacity check. 
530defect_rate=FNget_field(rec,keyll):av_setup_time=FNget_field(rec,key8):av_duwn_time=FNget_f 



262 

ield(rec,key9):processing_time=FNget_field(rec,key10):stationS=FNget_field(rec,key1) 
5-!0output_rate=good_component/(1-(defect_rate/100)):efficiency=l-(av_setup_time+av_do~;n_tirne)/ 

(analyzed_period *60):requirement=(processing_time*output_rate)/{60*shift*efficiency) 
550PRINT'" ***** ";stationS;"cell";" *****" 
560PRPiT"Input data" 
5/0PRINT"----------" 
580PRINT"Finished part required per production period 
590PRDT"Length of production period 
600PRINT"Analyzed period of time 
610PRINT"Average setup time 
620PRINT"Average do<mtime 
630PRINT"Processing time per component 
640PRINT"Defect rate of the cell 
650PRINT'"Calculated results" 
660PRINT"------------------" 
6/0RD!PRINT"Raw parts required per production period 
680U%=ra1;_p ( J): X=O 
690REPEAT:X=X+l:UNTIL ~!IDS(STRS(ra,;_p(J)) ,X, 1)=''," 

=";good_component 
='';shift;" Hours" 
=";analyzed_period;" Hours" 
=";av_setup_time;" ~!ins'' 
=";av_down_time;" ~!ins" 
=";processing_ time;" "fins'' 
=";defect_rate;" %'' 

=";raw_p(J) 

700IF VALPIIDS(STRS{rah'_p(J)),X+l,l))<5 THEN raw_p{J)=C%:PRH;I"Rm; parts required per producti 
on period =";ra,;_p{J) 

710IF VAL(~IDS(STRS(raw_p(J) ),X+1,1))>5 
1: PRil'iT"Raw parts required pet' production 

720PRINT" PIS cell e fr ic iency 

OR VAL{~IDS(STRS(ra,._p(J)),X+I.1))=5 THEX 
period ='';ra;.·_p(.J) 

730PRINT"Linad.ju.sted eqnipment reqi1irement 
HOPRINT"Acljustecl equipment requirement 

=";efficiency*lDO;" %" 
=";requirerwnt;" n!s ·~ells" 
="; "1. GG";" f\!S ,_·dl.s" 

i50g;S=GETS 
160IF g$="P" THE:\ P!WCprint 
770~ET J 
780CLOSE£0:@%=10:g=GET 
I!:JOENDPROC: 
800 
810 
820DEF PROCcreate_upload_fi le 

raw_p(J)=CT.:-

830REM Create an upload file to store the reports provided b~ the cell controllers on the par: 
production in their cells. 

840LOCAL temp_ch 
850CLS:PRI;\T TAB{5,11):IWU"En~er the job name :"command_stackS(:2):PRD"T TAB(U,L:3) STRI;.;G:3(30 

, '' 
11

): PRINT TAB( 1, 23) "Wait ... 11
: db_f ile$=command_s tackS ( 2) + "U": mod_ idxS=db_f ileS+ "_ED" 

860temp_ch=OPENUP(db_fileS) 
8/0IF temp_ch<>O THEN CLOSE£tcmp_ch:CHAIN"SCHEDt.:LER" 
880 
890 
900DEF PROCprint 
910*SCDUMP 
920Et-:DPROC 



263 

L. 
10REM .............................. ~!ILL_V/-ID .................................. . 
20REM This is a cell controller specific software for the milling cell. To use this program f 

or another cell for example sa~ing cell, all the control signals for the specific contoller have 
to be replaced in the appropriate procedures. 

30MODE 7:0S~ORD=&FFF1:0SBYTE=&FFF-i:*FX 15,0 
40REM Assign a name to each memory location (this is the building block of dynamic database). 

50HIMDI=&7BOO: M=&TBOO: logi_assoc=~I+O: client_s t_no=H+ 1: client_port=~l+2: server _resp_mes=M+3: mes 
s_stat=~I+4: prog_stat=M+S: in_partbuf=~I+6: out_partbuf=M+7: production_period=ei+S: upload_prep=)l+9: pa 
rt_trans=M+10:where_part_trans=M+11 

60server_resp_part=~l+ 12: r·obot_stat=~I+ 13: trolley _stat=M+ 14: dev ice_stat=~l+ 13: de fect_part_s tat=M 
+16:nof_defect_part=M+l7:total_nof_parts=M+18:nof_processed_parts=~+l9 

70warehouse%=20:ready=&FF:not_ready=&OO:nothing=&09:busy=&FF:free=&OO:connect=&FF:disconnect= 
&OO:processed=&OO:processing=&FF:not_recognised=&Ol:run_prog=&FF:running=&FF:stop=&OO:download_s 
ucc=&Ol:transfer_part=&FF:transfer_part_comp=&OO 

80empty=&OO:completed=&OO:idle=&01:stopped=&02:critical_op_in_progress=&03:device_reset=&04:d 
evice_inoperable=&05:uncorrectable_error_det=&06:correctable_error_det=&07:diagnostic_running=&O 
8 

90defect=&FF:in_progress=&FF:not_started=nothing:started=&FF 
100from_trolley=&01:to_trolley=&02:full=2 
llOrobot_s t%=14: this_ce llS="NI LLI NG'' 
120op_TYPE= 1: keyl=op_TYPE: CC_i'iAMt:=2: key2=CC_NANE: CC_C0~=3: key3=CC_CON: STAT _:~0=·1: key4=STAT _:-:0: \ 

OF_PP=5: key5=:-:0F _PP: PP _NA'\E=6: key6=PP _NAME: SEQ_N0=7: kE·~·7=SEQ _NO 
130pathl=l: path:<=:::: patil3=:3: patl:-l=-i 
140FOR I=O TO 30:M~l=nothing:NEXT 1 
150?iJI_partbuf=Q:?out_partbuf=O:?nof_defect_part=Q:?total_nof_parts=O:?nof_processed .. Pnrts=O 
liiOno f _processed_parts%=0: nof_parts_tobe_manufactured%=0: Part_pr·ucess ing_ t .i.me%=0: set.up_ time%=0 

170max_recs=6:rec_fields=ll 
180max_peek_length%=5: mnx_poke_lcngth%=5: curr·ent_rec= 1 
190DPI cb lock%~0, peekbu f f .:or% max_peek_l;;ngth% , pokebuffe1·~~ ma:,:_pol:e _leugt h% 
200DPI field_contS { rec_f ields) , indexS ( max_r·ecs, 2), fie leiS ( rec_f ie lds), type:) ( rec _r i elds), "idthS ( 

rec_f i e ids), dpS ( rec_fielc!s) , command_s tackS ( 8) 
210quit=FALSE 
220RE~! Wait until proceed signal is given by the master. 
230REPEAT: UNTIL ?pr-og_stat=run_prog: ?procluction_per iod=started: '.'upload_prep=not_s tar ted: PROC in 

itialise:ok=FALSE:REPEAT 
240REPEAT:UNTIL ?logi_assoc=connect 
250?server_resp_mes=ready 
260REM Get the name of a job to be processed. 
270PROCget_mail:?server_resp_mes=not_ready:master_st%=?client_st_no 
280m-HIL ok 
290?mess_stat=nothi~g:PR0Cinit_robot 
300REM Search the database for the relevant information on the current job. 
310command_s tackS ( 2) =job_name$ :.command_s tack$ ( 3) ="I r<DEX": command_stackS ( -i) =job_nameS+ "_I .'iD": PR 

OCopen_file 
320FOR I=l TO VAL(nofrecS) 
330IF LEFT$(indexS(I,1),7)<>this_cellS THEN NEXT I 
340this_rec%=VAL(indexS(!,2)):PRI'\T"'Record ";this_rec%;" is allocated to this cell" 
350this_st%=F~get_field(this_rec%,key4) 

360PRI1\T"This is st. '";this_st%;"''' 
370part_pS=F~get_field(this_rec%,key6) 

380PRINT"Down loading part program ";part_pS 
390REM Reset the programmable devices in the cell before do.,.nloacling the part program to tl1ier 

controllers. 
400PROCreset:PROCdo.,.nload(part_pS) 
410command_stack$(2)=job_nameS:PROCclose_file 
420commancl_s tack$ ( 2) =job_nameS: command_s tackS ( 3) ="HiDE X": command_ stackS ( ·i) =job _nameS+" _I .'iS": PR 

OCopen_f i le 
430FOR I=l TO VAl(nofrecS) 



440RE}! Find the name and network address of the adjacent logical cells. 
450IF index$(1,2)<>STRS(this_rec%) THEN NEXT I 
460seq=VAL(index$(I,l)) 
470IF seq<>! THE~ prvious_st%=FC\get_field(VAL(index$((I-ll,2)),key4) ELSE pnious st%=0 
480PRINT'"previous logical cell is (st. ''';prvious_st%;"')" 
490REPEAT 
500IF 7 prog_stat=stopped THEN PROCterminate_part_prod 
510UNTIL ?part_trans=transfer_part 
520?server_resp_pan=ready 

264 

530REM Get part specific data directly from the cell which currently has dispatched this part. 

540I F prv ious_st%<>0 THEN mesS='' SBD PART ORIENTATION": s%=pr•: iOLls_s t%: iJROC info_reques t (mesS, s% 

550REM Receive a part from ~arehous or previous logical cell. 
560PROC,get_a_part 
570PR0Cpart_transfer(path2):b=?in_partbuf:b=b-l:?in_partbuf=b 
580REM Start the operation on the current part in the cell. 
590PR0Cstart_rnilling 
600PROCdelay(lOO) 
610REPEAT 
620IF ?logi_assoc=connect THEN 7 server_resp_mes=ready:PROCget_mail: 7 server_resp_mes=not_ready 

630RD1 Check wether the master· has issuE'd a command for part production l•) bt' tt":minaled in th 
is cell. 

640!F ''prog_stat=stop[•ed THl\ PRCC:f:>-'nr.illat.e_pal't_pnxi 
6 50 IF ?part_ trans= trans r t? l'_pa r t. THE:\ ·="'se r•:er_resp_part= r·e.'::ldy: REP£:\ T: :_:~~TIL '.lh.b-:.· ;·c-_pari_ trans= f r 

om __ trolley OR ·~~·he r·e_par· t._ t:·ans=to_ r.ro lley 
6f:iOIF '.'pr·og_stat=stopped THE:" PR.OCter·minate_par·t_prod 
6i0IF ?wher·e_part_trans=from_trolley THE:; IF prvious_st%<>0 THE~< mess="SE~;o P . .'\RT ORIL;T.\TIC\"": 

s/~=prv ious_st~~: PROCi nfo_request (mesS, s%): PROC,;;e t_a_part. 
680IF 7 where_part_trans=from_trolley THEN IF prvious_st%=0 THE\ PROCget_a_part 
690IF ?"here_part_trans=to_trolley TEE:' ?ROCsend_a_part 
IOORD! Check whether the programmable device has beencompleted its operation O!l ~he part. If o 

peration lras completed successfully start operating on the next part. 
710IF FNmill_moBi tor· THEN FROCprocess_next_part 
720UNTIL nof_processed_pat'ts%=nof_parts_tobe_manufactured% 
730 IF ?total_nof_parts< >no f _part.s_tobe_manufactured% THEN nof_par·ts_t.obe_manufactu red%=?total_ 

nof_parts:GOTO 570 
740REPEAT 
750IF ?prog_stat=stopped THEN PROCterminate_part_prod 
760I F ? logi_assoc=connect THEN ?server _resp_mes=ready: PROCget_mai 1: ?server _resp_mc·s=not_ready 

770UNTIL ?part_trans=transfer_part 
7 80?ser·v e r _resp_part=ready 
790REPEAT 
800IF ?prog_stat=stopped THEN FROCterminate_part_prod 
810IF ?logi_assoc=connect THEN ?server_resp_mes=ready:PROCget_mail:?server_resp_~es=not_ready 

820t;NTI L "~here_par·t_trans= to_ trolley OR '?where_part_ trans= from_ trolley 
830IF '?where_part._trans=to_trolle.r THE\ PROCsend_a_part 
8-+0IF ?where_part_trans=from_trolley THE:'J IF pnious __ st%<>0 THEN mesS="SE\D PART ORIENTATIQ';": 

s%=pt'viuus_st%:PROCinfo_request(mesS,s%):nof_parts_tobe_manufactured%=nof_parts_tobe_manufacture 
d%+l:GOTO 560 

850IF ?~here_part_trans=from_tt'olley THEN IF prvious_st%=0 THEN nof_parts_tobe_manufactured%=n 
of_parts_tobe_manufactnred%+l:GOTO 360 

860REPEAT 
870IF ?production_period<>completed THEN IF ?part_trans=transfer_part THEN ?server_resp_part=r 

eady 
880I F ?where_part_trans=frnm_trolley THEN IF prvious_st%<>0 THEN mesS="SE\D PART ORfENL;TIO.'!": 

s%=prv ious_ s t%: PROCinfo_req,res t (mesS, s%): nof_parts_ tobe_m.:mufac tured%=nof_part s_ tobe_manufacturl? 
d%tl:GOTO :160 



265 

890IF ?where_part_trans=from_trolley THEN IF prvious_st%=0 THE~ nof_parts_tobe_manufactured%=n 
of_parts_tobe_manufactured%+l:GOTO 560 

900IF ?where_part_trans=to_trolley THE~ PROCsend_a_part 
910IF ?prog_stat=stopped THE:-./ PROCterminate_part_prod 
920I F ? log i_assoc=connect THE!'\ ·:server _resp_mes= ready: PROCge t_mai l: "sen·er _resp_mes=not_r·eady 
930UNTIL ?production_period=completed 
940command_stackS(2)=job_nameS:PROCclose_file:?device_stat=completed 
950REM Send a report on the current part production to the master. 
960PROCcell_reports 
970REPEAT: UNTIL ?upload_prep=in_progress 
980lower=15:upper=40:nof_good_compS=STRS(FNrnd_num(lower,upper)) 
990lower=l:upper=2:nof_defective_compS=STRS(F~rnd_num(lower,upper)) 

1000lower=92:upper=99:firstS=STRS(F~rnd_num(lower,upper)):lower=lO:upper=99:secondS=STRS(FS~nd_ 
num(lower,upper)):efficiencys=firstS+"."+secondS 

1010@%=&01020209 
1020total_parts=VAL(nof_good_compS)+\AL(nof_defective_comp$) 
1030defec t_rate=VAL ( nof_de fecti ;·e_compS) /total_parts 
1040defect_rate$=STR$(defect_rate):@%=10:IF LE~(defect_rate5)=4 THE\ defect_rateS=defect_rateS+ 

1050mes$=LEFTS ( thi s_ce ll$, 4) t "_"+no f_good_compS+''_" +nu f_defect i ve_compS+" "tdef.:-c t_ro teS+ "_ .. +e 
fficiencyS 

1060PROCtx_message{this_st% 1 master_st% 1 mesS) 
1070?upload_prep=complet~d 

lOBO?pr·og_stat.=completeci:PRI"iT"Ce\1 info :";cwsS 
lOr.lOE"iD 
ll 00 
ll10 
1120REM The manufacturing database resides here. 
1130 
1140RE\! The communication routine (CellTolk) is placE'd h•ere. 
1150 
1160 
1170DEF PROCrespond 
1180RD! Send a reply to the requester cell. All the quc;stions ''hich c.re likely t·-· be asked !,a\c­
to be defined .here for the cell contoller to be able to recognise them. 
1190client_st%=?client_st_no 
1200 IF MID$ ( messS, 6) ="PART OR! Er:T.-H ION" THE~ PROCget_part_orien tat ion: PROCtx_message ( this_s t% 1 c 

lient_st%,mes$):ENDPROC 
12101 F MID$ (mess$, 6) =''PART DD!p;'TION'I THE'i PROCget_part_dimen tion: PROCtx_messagE' ( th is_st% 1 cl ien 

t_st%,mes$):ENDPROC 
1220PRINT''ROUTINE IS NOT DEFINED I .. 

1230ENDPROC 
1240 
1250 
1260DEF PROCinfo_request(query$ 1 server_st%) 
1270REM Send a request to another cell for their cell specific data. 
1280server=FALSE 
1290PROCtx_message(this_st% 1 server_st% 1 queryS) 
1300REPEAT 
1310IF ?logi_assoc=connect THEN If ?client_st_no=server_st% THE\ server=TRUE:?ser\er_resp_m~s=r 

eady:PROCget_mail:?server_resp_mes=not_ready 
13201F "logi_assoc=connect THEN IF 0 clietlt_st_no<>server_st% THEN ?server_resp_mes=ready:PROCge 

t_mail:?server_resp_mes=not_ready 
1330IF ?prog_stat=stopped THE~ PROCterminate_part_prod 
1340UNTIL server 
1350E:-iDPROC 
1360 
1370 
1380DEF PROCget_part_orientatiun 
1390[tD1 This is an example of the cell spec i fie data. 
1400lower= 10: upper=\:!9: XS=STRS ( F\rnd_num ( lo"e f', upper) ) : lo" er= 10: upper=9S: YS=STRS ( r-:;rlld_!;Uw (lower 



266 

,upper)):lower=lO:upper=99:deg$=STR$(FNrnd_num(lower,upper)):lower=10:upper=99:minS=STRS(F~rnd_n 
um(lower,upper)) 

1-llOmes$= "0" +''XOO" +XS+ "YOO" +Ys+" A:'G" +degS+". "+min$ 
14ZOENDPROC 
14:30 
1440 
1450DEF PROCget_part_dimerition 
1460REM This is an example of the cell specific data. 
1470lower=10:upper=99:LS=STRS(FNrnd_num(lower,upper)):lower=lO:upper=99:WS=STRS(~Srnd_num(lower 

,upper)):lower=lO:upper=99:HS=STRS(FNrnci_num(lower,upper)) 
1480mesS= "D" +" LOO" +LS+"WOO" +liS+"HOO" +HS 
1490ENDPROC 
1500 
1:'>10 
1520DEF PROCdelay(n%) 
1530REM wait for·n% centiseconds 
1540LOCAL limit% 
1550limit%=TIME+n%:REPEAT:CNTIL TIME>=limit% 
1560ENDPROC 
1570 
Fi80 
1590DEF PROC:download(part_progS) 
1600RDI Do,;nJ.oad par·t program to the contcoller ot' the specific proo:;r·ammable d~C\ i.:·!'· couroiler·. 
1610LOL'.\L X, s:;;, !\%, J, N% 
1620PkOCcontrol(l~9):PROCcontrol(178) 
1630PEJ:\T'' 
1640PRLH"Do~<d1 loading ";pact_progS;"p:Jrt program into th•>. mil.l via serial pcorc.":PRi\T'' 
1650REM Get the part program from disk. 
1660X=OPENIN(part_progS) 
1670*FX2,2 
1680*FX3,5 
1690*FX8,7 
1700*FX15, 0 
1710A%=&9C:X%=&00:Y%=&E3 
17ZOCALL &FFF4 
1 730REPEA.T: I ~PUT£ X, table_codeS: FOR I= 1 TO LE~~ (table_ codeS): PRP'T ~ll DS (tab le_cocleS, I , l l;: PROCdd 

ay( 13): NEXT I: U;,iTIL table_ codeS=''£~[•" 
1740*FX2,0 
1750*FX3,0 
1760*FX4,0 
1770CLOSE£X 
1780ENDP!l.OC 
1790 
1800 
1810DEF PROCstart_milling 
1820REM Send the start code to the miller. 
1830?device_stat=critical_op_in_progress 
1840PROCmill_home_pos:PROCcontrol(6) 
1850PROCcontrol(139):PROC:control(48):PROCcontrol(48):PROCcontrol[177):TI~E=O 
1860PRINT"@@@@ Milling operation in progress @@@@" 
1870PROCdelay(100) 
1880ENDPROC 
1890 
1900 
1910DEF PROCsend(~%) 
1920REM Send data through the serial port. 
1930PROCdelay(13):*FX8, 7 
19·IO*FX15,0 
1950*FX3,5 
19f!O*FX2,Z 
1970A.%=&9C:Y%=&E3:X%=&08:CA.LL &FFF·I 



1980PRINT CHRS(M%};:*FX3,0. 
1990*FX2,0 
2000ENDPROC 
2010 
2020 
2030DEF PROCinitialise 

267 

2040REM Initialise the relavent port on the cell interface module (i.e. port B of VIAl as outpu 
t). 

2050A%=&93:X%=&E2:Y%=&FF:CALL OSBYTE 
2060ENDPROC 
2070 
2080 
2090DEF PROCcontrol(value%) 
2100REM Send Control command to the controller of specific device. 
2110A%=&93:X%=&EC:Y%=&CO:CALL OSBYTE 
2120A%=&93:X%=&EO:Y%=value% EOR &FF:CALL OSBYTE 
2130A%=&93:X%=&EC:Y%=&EO:CALL OSBYTE 
2140A%=&93:X%=&EC:Y%=&CO:CALL OSBYTE 
2150ENDPROC 
2160 
2170 
2180DEF PROCreset 
2190REM Reset the device. 
2200?device_stat=device_reset 
2210REM Set port A on VIAl as output. 
2220A~1.=&93: X%=&E:J: Y%=HF: CALL OS BYTE 
2230A%=&93:X%=&EC:Y%=&0E:CALL OSBYTE 
2240A%=&93:X%=&EC:Y%=&0C:CALL OSBYTE 
2250A%=&93:X%=&EC:Y%=&0E:CALL OSBYTE 
2260PROCrnill_home_pos:PROc'control(6) 
2270?rlevice_stat=idle 
:2280E'iOPROC 
~290 

z:wo 
2310DEF PROCmill_home_pos 
2320REM Send the mill's table to the home position. 
2330A%=&97:X%=&62:Y%=&FO:CALL OSBYTE 
2340A%=&97:X%=&60:Y%=&FO:CALL OSBYTE 
2350PROCdrive_xmill:PROCdrive_ymill 
2360ENDPROC 
2370DEF PROCdrive_xmill 
2380REM Drive the table motors remotely. 
2390LOCAL limit% 
2400limit%=FALSE:x_axis%=0:REPEAT 
2~10A%=&96:X%=&60:yreg%:((USR(OSBYTE} A\D &FFOOOO} DIV &10000) 
2420IF (&01 AND yreg%)=&01 THEN PR!NT''Limit is reached on the x axi~.":limit%=TRlE:PROCchannel 

reset:GOTO 2460 
2430A%=&97:X%=&60:Y%=&EO:CALL OSBYTE 
2440x_axis%=x_axis%+1 
2450PR!NT T . .\B(5,10)"Travel on x axis is ;x_axis% 
2460UNTIL limit% 
2470ENDPROC 
2480 
2490 
2500DEF PROCdrive_ymill 
2510REM Drive the table motors remotely. 
2.S20LOCAL limit% 
25:30 l imi t%=FALSE: y _axis%=0: REPEAT 
2540A%=&96:X%=&60:yreg%=((USR(OSBYTEI A~D &FFOOOOI DIV &10000} 
25:50IF (&02 A\D yreg%)=&02 THEL' PRINT"Li'"it is reached on the" axis.": limit%=TR!JE:PROCchannel 



reset:GOTO 2590 
2560A%=&97:X%=&60:Y%=&DO:CALL OSBYTE 
25"70y_axis%=y_axis%+1 
2580PRINT TAB(5,13)"Travel on y axis is ";y_axis% 
2590UNtiL limit% 
2600ENDPROC 
2610 
2620 
2630DEF FNmill_monitor 

268 

2640REM Monitor whether or not the milling operation has completed. ~lore monitoring functions c 
ould be built here. 

2650op_complete=FALSE 
2660A%=&96:X%=&60:yreg%=((USR(OSBYTE) AND &FFOOOO) DIY &10000) 
2670IF (&01 AND yreg%)=&01 AND (&02 AND yreg%)=&02 THEN op_complete=TRUE:nof_processed_parts%=n 

of_processed_parts%+ 1: PRINT''+++ Milling operation is completed +++ '': ?dev ice_s tat=compi•'ted: b=?no 
f_processed_parts:b=b+1:?nof_processed_parts=b 

2680IF (&01 AND yreg%)=&01 AND (&02 .AND rreg:~)=&02 THEN IF nof_processed_parts%=1 OR nof_proces 
sed_parts%=3 THEN defective_parts%=1:?defect_part_stat=defect:b=?nof_defect_part:b=b+1:?nof_defe 
ct_part=b 

2690IF (&01 AND yreg%)=&01 AND (&02 AND yreg%)=&02 THEN IF nof_processed_parts%=1 OR nof_proces 
sed_parts%=3 THEN PIVELOPE 2, 1, 2,-2, 2, 10, 20, 10,1 ,0,0, -1,100,100 :SOUND 1, 2, 100,100 

2700=op_complete 
2710 
2720 
2730DEF PROCchannel_reset 
2740A%=&9i:X%=&60:Y%=&FO:CALL OSUYTE 
2750ENDPROC 
2760 
27"70 
2780DEF PROCinit_robot 
2790REM Command to download the robot program resides here. 
2800PRINT"Robot program is do<;nloaded no;; 
2810ENDPROC 
2820 
2830 
2840DEF PROCpart_transfer(robot_path) 
2850REM Give a name to each pick and place operation of the robot. 
2860?robot_stat=busy:TIME=O 
2870IF robot_path=l THEN PRit;"T''***Part transfer from trolley to input buffer in progress.**":?; 

0Cdelay(400) 
2880IF robot_path=2 THEN PRINT''***Part transfer from input buffer to machine's table in progr~s 

s. **": PROCdelay( 100): setup_t ime%=setup_ time%+TDIE 
2890IF robot_path=3 THEN IF defective_parts%=1 AND 7 out_partbuf=empty THEN PRINT''***Defe~tive p 

art transfer from machine's table to output buffer in progress.**'':PROCdelay(lOO) 
2900IF robot_path=3 THEN If defo?ctive_parts%=0 AND "defect_part_stat=nothing THE~ PRDli''***Pan 
transfer from machine's table to output buffer in progress.**":PROCdelay(lOO) 
2910IF robot_path=3 THE~ IF defective_pa~ts%=1 AND ?out_partbuf<>empty PROCsend_defectiv~_part: 

PRINT"***Part transfer from machine's table to output buffer in progress.**":PROCdelay(100) 
2920IF robot_path=3 THEN IF defective_parts%>1 AND ?out_partbuf<>empty PROQsend_defecti~e_part 
2930IF robot_path=4 THEN PRINT"***Part transfer from output buffer to trolley in progres5.**'':? 

ROCdelay(100) 
2940PRINT' "***** Part tr·ansfer completed. *****'' 
2950?robot_stat=free 
2960ENDPROC 
2970 
2980 
2990DEF PROCprocess_next_part 
3000REM Prepare the cell or the production of the next part. 
3010REPEAT 
3020IF ?prog_stat=stopped THEN PROCterminate_pnrt_prod 
3030IF ?logi_assoc=connect THEN ?server_resp_mes=ready:PROCget_mail:?server_resp_mes=rrot_ready 



3040IF ?out_partbuf=full THEN PROCout_partbuf_full 
3050UNTIL ?out_partbuf<>full 
3060PR0Cpart_transfer(path3):b=?out_partbuf:b=b+l:?out_partbuf=b 
3070I F nof_processed_parts%=nof_parts_ tobe_manufactur·ed% THEN ENDPROC 

269 

.3080IF ? in_partbu f <>0 THEN PROCpar t_trans fer ( path2): b=?in_partbu f: b=b-1:? in_partbuf=b: PROCs tart 
_rnilling:PROCdelay(lOO):ENDPROC 

:3090REPEAT 
3100IF' ?prog_stat=stopped THEN PROCterrninate_part_prod 
3110IF ?logi_associ=connect THEN ?server_resp_rnes=ready:PROCget_mail:?server_resp_mes=not_ready 

3120UNTIL ?part_trans=transfer_part:?server_resp_part=ready 
3130IF ?where_part_trans=from_trolley THEN IF prvious_st:~<>O THEN rnesS="SEND PART ORIHT.HIO:\": 

s%=prv ious_s t%: PROCinfo_request (mesS, s%): PROCget_a_part: PROCpart_ transfer( path2): b=? in_pa!·tbuf: b 
=b-l:?in_partbuf=b:PROCstart_milling:ENDPROC 

3140IF ?where_part_trans:::from_trolley THE\ IF prvious_st%=0 THEN PROCget_a_part: PROCpa!·t_transf 
er(path2):b=?in_partbuf:b=b-l:?in_partbuf=b:PR0Cstart_milling:ENDPROC 

3150IF ?where_part_trans=to_trolley THEN PROCsend_a_par·t 
3160GOTO 3090 
3170ENDPROC 
3180 
3190 
3200DEF PROCout_partbuf_full 
3210REM Before placing a part onto the cutput part buffer check ~hether it is full u~ !.-t. 

3220REPEAT 
3230!F ?prog_stat=stopp0d THEN PROCterminate_part_p~ad 
:}2401 F ?log l_assoc=connect THEN ?serve t_resp_mes=ready: PROC ,;ret~mai l: ···se:,,·e r_r,!sp_;nes=;, r ~de>:' 
3250UNTIL ?part_trans=transfer_part:?server_resp_part=ready 
3260IF ?where_part_trans=frcm_trolley THE\ IF prvious_st%<>0 THE:\ rness="SEND PART ORIE:-:L\TIO:\": 

s%=prvious_st%:PROCinfo_request(mesS,s%):PROCget_a_part 
3~70IF ?~,·het·e_part_trans::from_trolley THEN IF prvious_st%=0 THE~~ PROCg,~l_a_p:J.rt 

:3280 IF "where_pal't_tt·ans::: to_ trolley THEN PROCsend_a_part 
3290ENDPROC 
3300 
3310 
3320DEF PROCge t_a_par·t 
3330PR0Cpart_trans fer ( path1): b=? in_partbuf: b=b+ 1:? in_partbuf=b: "serve r_resp_part=no t_n·ady: ?par 

t_trans=transfer_part_comp:?where_part_trans=nothing 
3340b=?total_nof_parts:b=b+l:?total_nof_parts=b 
3350s%=?client_st_no:loc%=?trolley~stat:pokebuffer%?0=free:PROCpoke(s%,loc%,l):PROCdelayi50) 

3360ENDPROC 
3370 
3380 
3390DEF PROCsend_a_part 
3400PR0Cpart_ transfer (pat h4): b=?ou t_partbuf: b=b-1: ''out_partbuf=b: ?server _resp_part=not~ready: ?p 

art_trans=transfer_part_comp:?where_part_trans=nothing 
3410IF.?defect_part_stat=defect THEN clefective_parts%=defective_parts%-l:PRINT''***Defec~ive par 

t transfer from output buffer to warehouse***" 
3420s%=?cl ien t_s t_no: loc%=? trolley_s tat: pokebuf fer% 7 0= f r·ee: PROCpoke ( s%, loc:}~, 1): P~'OCd,o· h:· (50) 
3430E:-:DPROC 
.3440 
3450 
3460DEF PROCsend_clefective_part 
3470REPEAT 
.3180REPEAT 
3490IF ?prog_stat=stopped THEN PROCterminate_part_prod 
3500 IF ? logi_assoc i=connect THE~ ?server _resp_mes=ready: PROCget_mai l: 7 server _resp_mo:s=nrJ~_ready 

3510UNTIL ?parl_trans=transfer_part:?server_resp_part=ready 
3520IF ?where_part_trans::from_tl'olle:: THg IF pn-ious_st%<>0 TH£1; rne.sS="SE~:D PAR! ORIE\T.-\TIO:i": 

s%=prvious_st%:PROCinfo_request(mesS,s%):PROCget_a_part 
3530IF ?where_part_trans::to_trolley THE\ PROCsend_a_part 



3540UNTIL defective_parts%=0 
3550ENDPROC 
3560 
3570 
3580DEF FNrnd_num(lo~;er_boundery,upper_boundery) 
3590= lower _boundery-1 +RND (upper _bounden:-lower_boundery+ 1) 
3600 
3610 
3620DEF PROCterminate_part_prod 
3630PR0Cdelay(400) 
3640IF ?device_stat=critical_op_in_progress THE:/ REPE . .\T:U!\TIL F!imill_monitor 
3650CLOSE£0 
3660SOUND 1,-15,130,5:SOUND l,-15,150,5:SOUND l,-15,190,5:SOUND 1,-15,255,5 
3670PRINT'"«« Terminating part production in >»>" 
3680PRINT" '';this_cellS;" cell'' 
3690PRINT" ------------
3700PROCcell_reports 
:3710STOP 
3i20ENDPROC 
3/30REM--cell_r2ports--
3740DEF PROCcell_reports 
3750RE~ Generate a report on the current part production status of the cell. 
:]i60PRIO:T'" ****Status of this cell ****" 
3770PRI0T'"!iumber of pncts in input buf;·e:· ='';·:·in_partbuf 
3788PRIC\I"\umber c>f parts in outJ.IiJt buff.,;r ="; ·:·cut_partbuf 
:J790PRINT"Number of processed par·ts ="; '?nof_processec~_parts 
3800PRINT"Number of defective parts ='';?nof_defect_par·t 
3810E\'DPROC 

270 



211 

L. 
1 OREi'rl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ION I TOR ................................. . 
20RE~ This is a system and cell monitoring program which can also be used as a debugging tool 

to mo9itor the various status of the cells or system during a period of part production . 
. 30RE:Il Assign. a name to each state of memory locations «ith.in the CANP. 
40warehouse%=20:ready=&FF:not_ready=&OO:nothing=&09:busy=&FF:free=&OO:cannect=&FF:disconnect= 

&OO:processed=&OO:processing=&FF:not_recognised=&Ol:run_prog=&FF:running=&FF:stop=&OO:download_s 
ucc=&01:transfer_part=&FF:transfer_part_comp=&OO 

50completed=&OO: idle=&O 1: stopped=&02: cr it ical_op_in_progress=&03: dev ice_reset=&O,I: dev ice_inop 
erable=&05:uncorrectable_error_det=&06:correctable_error_det=&07:diagnostic_running=&08 

60 from_ tr·olley=&01: to_ t rolley=&02: full=2 
70REM Flush all internal buffers. 
80*FX 15,0 
900SWORD=&FFF1 

1000SBYTE=&FFF I 
110max_peek_length%=20 
120REM Reserve an area of memory for the control block. 
130DIM cblock%17,peekbuffer%max_peek_length% 
140CLS 
150PROCinput 
160PROCaddress 
170REPEAT 
180RDI Get a snapshot of the C\-'IP in rr distaut entity. 
190peek_result%=FNpeek(st%,loc%,len%) 
200PR0Cresults 
nO:J:'-lTIL FALSE 
220REM Check for any error. 
2300N peek_result%-&3F GOTO 240,260,280,300,320 
240PRINT"line jammed'' 
2SOE.'iD 
260PRI.'ii''net error" 
270END 
280PR!NT"not listening" 
2\JOEND 
300PRINT''no clocl;'' 
310END 
320PRI NT"bad centro l block'' 
330END 
340DEF PROCinput 
350I NPUT"Which stat ion ... "; s t~~ 
360REM Set the base address. 
370loc%=31488 
380len%=20 
390ENDPROC 
400DEF FNpeek(station%,location%,length%) 
~lOLOCAL X%,Y%,A% 
420?cblock%=&81 
430cblock%?1=00 
440cblock%'2=station% 
450cblock% 1 4=peekbuffer% 
,160cblock%' 8=peekbu f fer%+ length% 
470cblock%~12=location% 

480X%=cbiock% 
490Y%=cblo~k% DIV 256 
500A%=&10 
510CALL OSWORD 
520peekresult%=(U% AND &FFOO) DIV 256 
530=peekresult% 
540DEF PROCresults 
.550LOC\L .J 
560FOR J=O TO len%-1 



570test_resS=F~test_res 

580PRINT TAB(23,J+l) test resS 
590NEXT J 
600ENDPROC 
610 
620 
630DEF PROCaddress 
640RDI Print the names of memory locations within the CMIP. 
650CLS 
660PRINT TAB(l,Ol 
6i0PRINT "7800 "; '' logical_assoc-----·• 
680PRINT "7801 "; ''client_st_no------'' 
690PRINT "7802 ''; "client_port-------•· 
700PRINT "7803 "; ''server_resp_mes---" 
710PRINT "7804 ";"message_status----" 
i20PRINT "7805 "; ''program_status----" 
730PRINT "7806 ''; "input_partbuffer--" 
740PRINT "7807 ";"output_partbuffer-" 
750PRn;T "7808 "; "production_period-" 
760PRINT "7809 ";"upload_prepration-" 
770PRINT "!BOA ";"part_transfer-----" 
780PRI NT "7BOB "; ''where_par t_ trans--" 
790PRINT "·iBOC "; "server_resp_parr.--·· 
BOO PRINT "7BOD "; "robot_stcttus------" 
810PRDT "7ROE ''; "trolle~·_status----" 
820PRINT "/BOF ";"d.:o\·ice_stalus-----" 
830PRINT "7810 ''; "defect_part_stat--" 
840PR1NT. "7811 "; "nof_defect_parts--" 
8:50PRINT "/812 ";"total_nof_parts---" 
860PRINT "781:3 "; "no_processed_par-t-" 
8/0PRINT' "' *:<* ~lonitoring station ";st%;" ***" 
880ENDPROC 
890 
900 

272 

910DEF FNtest_res 
920REM Test the state of each memory location within the CA~P before encoding it in the form o 

f a message. This routine can be extended to accomodate the monitoring of any nuwber of states ~ 
ithin the CAMPs. 

930IF J=O THEN IF peekbuffer%?J<>9 AND peekbuffer%?J=connect AXD peekbuffer%?J=discon~ect THES 

GOTO 190 
940IF J=O THEN IF peekbuffer%"~J=9 THEN 
950IF J=O THEN IF j:>eekbuffer%?cT=connect THEN ="connect"+" 
960IF J=O THEN IF peekbuffet·%?J=disconnect THEN ="disconnect"+" 
970IF J=1 THE\ IF peekbuffer%?J=9 THEN =" 
98iliF J=l THEN IF peekbuffer%'~J09 THEN =STRS(peekbuffer%?J ).;'' 
990IF J=2 THEN IF peekbuffer%?J<>9 THEN =STR.S(peekbuffer%?.J)+" 

lOOOIF J=2 THEN IF peekbuffer%?J=9 THEN =" 
lOlOIF J=3 THEN IF peekbuffer%?J=9 THEN 
1020IF J=:3 THEN IF peekbuffer%'~J=not_ready THEN ="not_read,·"t" 
1030IF J=:3 THEN IF peekbuffer%?J=ready THEN =''ready"+'' 
1040IF J=4 THEN IF peekbuffer%'?J=processing THEN ="processing"+'' 
1050IF J=4 THEe; lF peekbuffer%?J=pr-ocessed THEN ="processed"+" 
1060IF J=4 THEN IF peekbuffer%~J=9 THEN =" 
1070IF J=5 THEN IF peekbuffer%?J=9 THEN =" 
1080IF J=5 THEN IF peekbuffer%'~J=run_prog THEN="running"t" 
1090IF J=5 THEN IF peekbuffer%?J=0 THEN="completed" 
llOOIF J=5 THEe; IF peekbuffer%?J=st0pped THEN=''stopped"t" 
lllOIF J=6 THEN IF peekbuffer%?J=nothing AND st%=1 TEEN =" 
l120IF J=6 THEN IF peekbuff;~r%'"J<>0 A1;D peekbuffer%'>,J<>full THE\ =STRS([Jeekhut'f<"r:c,;)+" 

1t:JOIF J=5 THE:\ IF pE-ekbuffer;C'J=O THE\ ="empty"+" 



1140IF J=6 THE:-i IF peekbuffer%?J=full THEN ="full"+" 
1150IF J=6 THEN IF peekbuffer%?J=9 THEN =" 
1160IF J=7 THEN IF peekbuffer%?J=nothing AND st%=1 THEN = 
1170IF J=7 THE~ IF peekbuffer%?J<>O ANDpeekbuffer%?J<>full THE~ =STRS(peekbuffer%~J)+'' 

1580RDliF J=lB THE<" IF st%=1 THE:\ =" 
1590IF J=l8 THE~ IF peekbuffer%?J=nothing AND st%=1 THEN = 
1600IF J=l8 TH£:; IF peekbuffer%?J>=O THE~ =STRS(peekbuffer%?J)+" 
1610IF J=l9 THn' IF pe•::kbuffer%?J>=O THn =STRS(peekbuffer%?JJ+'' 

273 



L. 
lORE~!. . . • . . . . . . . . . . • . • . . . . . . . . . SCHEDULER .................................... . 
20REM This program coordinates the overall activities of the F~S cells. 
30MODE 7:0SWORD=&FFFl:OSBYTE=&FFF~:*FX 15,0 
40REM Reset the system clock. 

274 

50HntDI=&iBOO: M=&7BOO: logi_assoc i=M+O: eli en t_s t_no=~l+ l: eli en t_port=~1+2: sener _resp_mes=M+:.l: me 
ss_s tat=~IH: pr·og_stat=M+5: in_partbuf=~l+5: out_partbuf=~l+ 7: product ion_per iod=N+8: upload_prep=~t+9: p 
art_trans=M+lO:where_part_trans=M+ll 

60server_resp_part=M+l2:robot_stat=M+l3:trolley_stat=M+l4:device_stat=M+l5:defect_part_stat=M 
+ 16: nof_de fect_part=~t+ 17: total_nof_parts=~!+ 18: nof_processed_parts=M+ 19 

70warehouse%=20:ready=&FF:not_ready=&OO:nothing=&09:busy=&FF:free=&OO:connect=&FF:disconnect= 
&OO:processed=&OO:processing=&FF:not_recognised=&Ol:run_prog=&FF:running=&FF:stop=&OO:do~nload_s 

ucc=&Ol:transfer_part=&FF:transfer_part_comp=&OO 
80completed=&OO:not_compelete=&FF:idle=&Ol:stopped=&02:critical_op_in_progress=&03:device_res 

et=&04:device_inoperable=&05:uncorrectable_error_det=&06:correctabie_error_det=&Oi:diagnostic_ru 
nning=&OB 

90defect=&FF:started=&FF:in_progress=&FF:not_started=nothin~ 

l00from_trolley=&01:to_trolley=&02:full=2:RDI The size of part buffer is set to 5. 
llOop_TYPE= 1: keyl=op_TYPE: CC_NA~IE=2: key2=CC_NA~!E: CC_COC\=3: key3=CC_CON: STAT _:.iO=~: key.J=ST.H_NO::; 

OF_PP=5:key5=:iOF_PP:PP_NA~!E=6:key6=PP_NA~!E:SEQ_NO=i':keyi'=SEQ_NO:RP! If the order of fields for a 
job definition is changed, then adjust the keys 

l20REM Initialise the content of the dynamic database. 
130FOR I=O TO 30:M?I=nothing:NEXT:?nof_defect_part=0: 0 nof_processed_parts=O:?total_nof_parts=O 

l~OCLS:max_re~s=6 

LiOCLS:PRU>T TAB(5,ll):i~PliT"Entet· the scheduler station number 
160 rec_f idds= 12 
170max_peek_length%=5:max_pok.e_length%=5:current_rec=l 

sche_no% 

130DP! cblock%40, peekbuffer% max_peek_length% , pok.ebuffer% max_poke_length~~ 
190D PI f ield_contS ( rec_f ields) , indexS ( max_recs, 2), fie lci:3 ( rec_t'ields), typeS ( rec_rie leis),"' iJ thS I 

rec_fields),dpS{rec_fields),command_stackS(Bl 
200quit=FALSE 
2lOI~;puT'"Enter the name of a pr·eciefined job for processing commencement :"job_nameS:REPE..I.T: !~. 

PI_'T'"Enter the number of parts to be manufactured :"not'_parts%:UNTtL nof_p::trts%>0 .-\';D IJOf_parts":: 
<=99 

220DPUT' "Enter the test number : ''t.estnoS 
230nof_parts_tr _from_w:,=nof_parts%: nof_parts_tr _to_w%=nof_parts~': is_part_defecti ve%=0 
240command_stackS(2)=job_name$:command_stack.S(3)="INDEX":command_stackS(4)=job_nameS+"_I:\D":PR 

OCopen_file 
250REM If the ESCAPE key is pressed then terminate part production. 
2600N ERROR PROCterminate_part_prod 
270FOR I=l TO VAL(nofrecS) 
280REM Intialise the cell co!Jtrollers before sending the name of a job to be processed. 
290IF LEFTS(Piget_field{VAL(indexS(I,2)),key3),2)="IN" THEN GOTO 330 
300s%= FNge t_f i eld (VAL ( index$ ( I , 2) ) , key4) :mesS=''* I ·""'! SAE I D": PROC _keyboard_poke ( s%, mesS) :mesS=" 

CH. "+"" '"' +FI\get_f ield (VAL( indexS (I, 2) )., key2) + '"'"": PROC_keyboard_poke ( s%, mesS) 
310PRINT TAB(0,23) STRINGS(20," "):PRET TAB(l,23) "l'ait. .. ":loc%=prog_stat:REPEAT:PR0Cpeek(s% 

, loc%, 1): UNTIL peekbuff er%'.'0=nothi ng: PROCdelay ( 1200): pokebuffer%'?0=run_prog: PROCpoke( s%, loc%, 1): 
mesS="JOB NANE ''+job_nameS 

320PR0Ctx_message { sche_no%, s%, mesS): PROCde lay ( 100): mesS="NOF PARTS" +STRS ( r:of_p.J.rts%): PROCtx_me 
ssage(sche_no%,s%,mesS) 

330:iEXT I 
340command_stackS(2)=job_nameS:PROCclose_file 
350command_s tack$ ( 2) =j ob_nameS: command_ stackS ( 3) ="INDEX": command_s tackS ( -l) =job_nameS+ "_INS": PR 

OCopen_file 
361JPROCseq_acti ve_cell_check 
370FOR I=l TO VAL(nofrecS) 
380IF indexS(I,l)="OO" THEN NEXT 
390restof_recs%=I 
400starting_recs%=VAL(indexS(!,2) ):starting_st%=FNget_field(starting_r~cs%,key~) 
.J lOjob_ ti mingS=job_nameS+ ''_A"+ tes tnoS 



~20act_ch=OPENOUT(job_timingS) 

~30PRINT£act_ch,STRS(nof_parts%) 
440@%=&01020209 
430REPEAT 
460loc%=in_partbuf:s%=starting_st%:PR0Cpeek(s%,loc%,1) 
470IF peekbuffer%?O<>full THg PROC:part_trans_from_..-arehouse 
480PR0Coutput_partbuf_check 
~90UNTIL nof_parts_tr_from_..-%=0 
500REPEAT 
510REM Check whether a part is needed to be transferred to or from a cell. 
520PROCoutput_partbuf_check 
530IF is_part_defective%=defect OR nof_parts_tr_from_;;%<>0 THEN GOTO ~50 
540UNTIL nof_parts_tr_to_w%=0 
550CLOSE£act_ch 
560PROCproduction_period_comp 
5'70command_stackS(2)=job_nameS:PROCclose_file 
580PRINT TAB(0,23) STRING$(30," "):PRI\T TAB(l,23) ''Wait ... " 
590@%=10 
600D%=8:CHAIN"MASTER" 
6lOEND 
520 
630 
6·i0RD! Include tile mauufactur·ing database here. 
650RDi The communic::ttion routine resids her-e. 
660 
670 
680DEF PROCseq_ac ti ve_ce ll_check 
690REM Check whether all the particiant cells for current job are active. 
700LOCAL I 
710FOR 1=1 TO VAL(nofrecS) 

275 

120IF inclexS(I,l)="OO" THEl\ IF LEFTS(F~get_field(UL(i!ICiE>xS(i,~)),ke:::3).l)="A" :f-!c; PP.:.'·.'T "['.''," 
ALI D ACTIVE CELL I~ RECORD "; \' AL ( indexS ( 1 , 2) ) : E:\'DPRGC 

7.'JOIF inclexS(I,l)<>"OO'' THEN IF LEFTS(p;gf:'t_fieldli'.'IL(inde:.:S(I,2)),key3),i.)="I" THE:; P?.;\T ..... 
V.-\LID SEQUENCE IN RECORD =";VAL(indexS(I,2)):ENDFROC 

740NEXT I 
750ENDPROC 
i60 
770 
780DEF·PR0Cpart_trans_from_warehouse 
790PRINT''--Par·t transfer from warehouse in progress--
800s%=warehouse%:fromto_trolley$="to_trolley" 
810cell_val=O 
820act_mes$=STRS (cell_ val)+ ''R" +STRS ( TiME/6000): PRHiT£act_ch, act_mesS 
830PROCsend_trolley(s%,fromto_trolleyS) 
840nof_parts_ t r _ft·om_..-%=nof_parts_ tr _from_••%-1: s%=s tart. ing_st%: f r·omto_trolleyS=" frum_tro i ley'': 

PROCse·nd_ trolley ( s%, fromto_trolleyS) 
850PRIH"Part transferee! to cell (ST. ";s%;")" 
860cell_val=l 
8/0act_mesS=STR$ ( ce 11_ val)+ ''T" +STRS ( TD!E/6000): PRINT£act_ch, act_mesS 
880ENDPROC 
890 
900 
910DEF PROCsend_trolley(st%,fromtc_trolleyS) 
920RDI The routine to control the physical movement of the trolley to be iur;luued here. 
930?trolley_stat=busy 
940IF st%=witrehouse%. THD PROCdummy_st: ?trolley_stat=free: ENDPROC 
950pokebuffer%?Q=transfer_part:!oc%=part_trans:PR0Cpoke(st%,loc%,1) 
960PROCdrive_trolley(st%) 
~HOI F f r-omto_tro LleyS=" fr·om_tro u~,y·• THECi pokebu tTor%'?G= f ron;_ trolley: loc%=wherc- _p<~rt_ t r·~ns: PRC 

Cpoke(sU, Loc%, 1) 
980IF fr·omto_trolleyS="to_trolley'' THE\ pokebuffer%?O=to_trolley:loc%=where_pert_trans:?ROCpok 



e(st%,loc%,1) 
990REPEAT:loc%=server_resp_part:PR0Cpeek(st%,loc%,l):UNTIL peekbuffer%?0=ready 

1000REPEAT:loc%=part_trans:PR0Cpeek(st%,loc%,1):UNTIL peekbuffer%?O=transfer_part_comp 
1010?trolley_stat=free 
1020£:-iDPROC 
1030 
1040 
1050DEF PROCdrive_trolley(st%) 
1060PRINT"--Driving the trolly to cell (ST.'';st%;")--" 
1070PRINT"--Trolley is in cell (ST.";st%;")--" 
1080 
1090ENDPROC 
1100 
1110 
1120DEF PROCdummy_st 
1130REM The logical address of the ~arehouse to be included here. 
1140PRINT"--Trolley is in the ~<arehouse no~<--" 
1150ENDPROC 
1160 
1170 
ll80DEF PROCoutput_partbuf_check 
1190RDI Check the status of the output part buffer of all Uk' acti\·e cells. 
1200LOCAL J 
1210poi 11 ter,.%=0: is_part_defo:>c:t i ve%=no thing 
12~0FOR .J=r·estoi'_recs·:c TO VAL( uoL•:cS) 
l~30rec=VAL(index5(J,2i):s%=F~get_field(rec,key4): loc%=out_parlbuf 
1240PROCpeek(s%,loc%,1) 

276 

1250IF peekbuffer%?0<>0 THEX pointer·%=J:loc%=defect_part_st~t:PROCpo?ek(s%,loc:%,ll:is_part_Jefec 
ti ve%=peekbll ffer%'.'0: PROC:i :1pu t __ p:E t bu f__check 

l260C\EXT J 
1 ZiOENDPROC 
1280 
1290 
1 :)OODEF PROCi li[Jll t_part bu f_checl; 
1310RE!II Before sending a part to a cell check the sta~.us oi' the input par·t burt'er for· that cell 

13201 F po in ter%=VAL (no f recS) AND is_part_defect i ve%< >defect. THE:> PROCpart_trans_to_l-'arehouse: EN 
DPROC 

1330IF is_part_defective%=defect THE~ PROCdefective_part_trans_to_~arehouse:EKDPROC 
1340rec=VAL( indexS ( pointet·%+ 1, ~)): s%=Fli'get_f ield ( rec, key4): loc%= in_partbuf: PROC[Jeek ( s%, loc%, 1) 
1350IF peekbu f fer%':'0= full THEN ENDPROC 
1360PR0Cpart_trans_to_nextcell 
1370ENDPROC 
1380 
1390 
1400DEF PROCpart_trans_to_nextcell 
1410REM Transfer a part from one cell to another. 
1420rec=VAL(index$(pointer%,2) ):s%=FNget_field(rec,key4):fromto_trolleyS="to_trolley":PROCsend_ 

trolley(s%,fromto_trolleyS) 
1430PRINT"ParL transfer from cell (ST.";s%;'')" 
1 HOact_mesS=STRS (VAL( inde:o.:S (pointer%, 1) ) I+" F" +SIRS ( TDIE/6000): PRI e:H:ac t._ch, act_mesS 
14 30rec=V.-\L ( inde_,s (pointer%+ 1, 2) ) : s%=F~~get_f ield ( r·ec, key4 i: from to_ trolh·y:O.=" r r·om_ troLley": PrtOCs 

end_trolley(s%,fromto_trolleyS) 
1460PRINT''Part transferee! to cell (ST.";s%;"1" 
14/0act_mesS=STR$ (VAL (index$ (pointer·%+ 1, 1))) +"I" +SIRS ( TI~IE/61JOO): PRI ';T£ac t_ch, act_mesS 
1480ENDPROC 
14 90 
1500 
15100EF PROCpart_trans_to_~a~ehouse 
1520RE!II Trans[er a good part to the ~arehouse. 



277 

1530rec=VAL(indexS(pointer%,2)):s%=FNget_field(rec,key4):fromto_trolleyS="to_trolley":PROCsend_ 
trolley(s%,fromto_trolleyS) 
1540act_mesS=STRS(VAL(indexS(pointer%,l)))+"F"+STRS(TI~E/6000):PRI~T£act_ch,act_mesS 

1550PRINT"--Part transfer to ~>"&rehouse in progress--" 
1560PRI\T"Part tr·ansfer· from cell (ST.";s%;")" 
15 70s%=;; are house%: fromto_tro lleyS=" from_ trolley": nof_parts_tt·_ to_~<%=nof_pa;-ts_ tr _to_;;%-~: PROCse 

nd_trolley(s%,fromto_trolleyS) 
1580cell_val=O 
1590act_mesS=STRS (cell_ val)+ "G" +SIRS ( TDIE/6000): PRn;r£act_ch, act_rnesS 
1600b=?nof_processed_parts: b=b+ 1: ?nof_processed_parts=b: b=?to tal_nof_parts: b=b+ 1: :'total_nof_par 

ts=b 
1610ENDPROC 
1620 
1630 
1640DEF PROCdefective_part_trans_to_warehouse 
1650REM Transfer a defective part to the defective part store section of the warehouse. 
1660rec=VAL(indexS(pointer%,2)):s%=FNget_field(rec,key4):fromto_trolleyS="to_trolley'':PROCsend_ 

trolley(s%,fromto_trolleyS) 
1670act_mesS=STR$ (VAL ( indexS (pointer%, 1) ) ) + ''F'' +STRS ( TIME/6000): PRI ~Hact_ch, act_rnesS 
1680loc%=defect_part_stat: pokebuffer%?0=:10thing: PROCpoke( s%, loc%, 1) 
1690PRINT''! ~~Defective par·t transfer to 'iat·eltouse!! 1 " 

1 TOOs%=!.':trehouse%: fromto_trolleyS=" fr-om_ trolle~,..: nof_parts_ tr·_from_;;%=no f_parts_l r _frrJm_ ~.·%+ 1: Pr: 
OCsend_ tr·o lley ( s%, f r·omtc)_tro lley$): b=';'nof_defect_part: b=b+ 1: ·:no f_defect_~•a;·t=':> 

1 TlOce 11_ val=O: ad_m•_'sS=STRS (cell_ Ptl) + "D" +SIRS ( TP.!E/6000): PRI \T£<1<: t_ch, ac: t_mesS 
1/20b=?totaJ_nuf_parts:b=bfl: 0 total_nof_pai·ts=b 
I. 730LiDPROC 
17 110 
1750 
1760DEF PR0Cproc!uctio!!_pcri0d_comp 
1770REM Send command to <:1l~ actil.:e cell that the er!d of a product.:,)n p~.:·r·iod shou_:d bt? COiilmencc-C 

1780FOR I=1 TO li..\L(Iloi'recS) 
1 790I F index:3 (I, 1) <> "00" THE:\ s%=F:; ~e t_fie lei ( V,\L( i nde:o.S ( [, 2) } , kev:J): loc%=pt"Oduc Li•)n_pe::- iod: :")ke 

buffer% 70=compl~ted:PROCpoke(s%,loc%,1) 

1800NE.\T I 
1810ENDPROC 
1820 
1830DEF PROCterminate_part_prod 
1840REM Send commands to all active cell to end the part production in their cells. 
1850LOCAL I 
1860FOR I=restof_recs% TO VAL(nofrecS) 
1870rec=VAL(index$(I,2)):s%=FNget_field(rec,key4):loc%=prog_stat 
1880pokebuffer%7 0=stopped:PR0Cpoke(s%,loc%,1) 
1890NEXT I 
1900CLOSE£0 
1910STOP 
1920ENDPROC 


