1versity

‘V%)urham

AR

Durham E-Theses

Requirements for a software maintenance support
environment

Simon, Amaury

How to cite:

Simon, Amaury (1991) Requirements for a software maintenance support environment, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5861/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses

e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5861/
 http://etheses.dur.ac.uk/5861/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

School of Engineering and Applied Science

(Computer Science)

Requirements for a

Software Maintenance Support Environment

Thesis submitted for the degree of

Master of Science

Amaury SIMON
4th October 1991

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

Thagt$
191 S1M

Abstract

)

This thesis surveys the field of software maintenance, and addresses the maintenance requirements of
the Aerospace Industry, which is developing huge projects, running over many years, and sometimes
safety critical in nature (e.g. ARIANE 5, HERMES, COLUMBUS). Some projects are collaborative

between distributed European partners.

The industry will have to cope in the near and far future with the maintenance of these products
and it will be essential to improve the software maintenance process and the environments for

maintenaice.

Cost eflective software maintenance needs an efficient, high quality and homogeneous environ-
ment or Integrated Project Support Environment (IPSE). Most IPSE work has addressed software

development, and has not fully considered the requirements of software mmaintenance.

The aim of this project is to draw up a set of priorities and requirements for a Maintenance 1PSE.
An IPSE. however can only support a software maintenance method. The first stage of this project
is to define ‘software maintenance best practice’ addressing the organisational, managerial and
technical aspects, along with an evaluation of software maintenance tools for Aerospace systems.
From this and an evaluation of current IPSEs, the requirements for a Software Maintenance Support

Environment are presented for maintenance of Aerospace software.

Acknowledgements

This thesis is dedicated to my wife and parents.
‘I would like to thank them for the support and encouragement that they have given me.

I am grateful to my supervisor Professor Keith BENNETT and to Jean-Paul DENIER for their

encouragement and guidance throughout this study.

This work was supported by MATRA-ESPACE.

ii

Contents

1 Introduction 1

1.1 Purposeof theresearch 1
1.2 Objectives of the research oo 2
1.3 Thesis Structure o oo e e 2
2 What is Software Maintenance 7 4
é.l Introduction e e e e e e e e e 4
2.2 Software Maintenance Activitieso 4
221 Introduction e e 4
2.2.2 Software Ma.intena.nce 5
2.2.3 Corrective Maintenance e e 6
2.2.4 Adaptive Maintenanceo 7
2.2.5 Perfective Maintenance 8
2.2.6 Preventive Maintenanceo e e e e 9

iii

2.3

2.4

2.5

2.2.7 Conclusion e e e e e 11

Maintenance and the Software Life-cycle 0L 12
2.3.1 Introduction e e 12
2.3.2 The Software Life-cycle oo oo 12
‘%.3.3 Criticisms of the Classical Life-cycle 13
2.3.4 Conclusion e e 14
Maintenance Problems 15
2.4.1 Introduction 15
2.4.2 Activity . . . L 15
2.4.3 Process o e e e e e e 16
2.4.4 Quality 16
2.4.5 Software 19
2.4.6 Maintainability oo 19
2.4.7 Documentationo e 20
248 USEIS . o v v i i e e e e e e e e e e e e 21
249 Staff L. L e 22
2.4.10 Conclusion e 22
The Economics of Software Maintenance o 23
2.5.1 introduction 23
2.5.2 Software Maintenance Costs 23

2.5.3 Software Maintenance Cost Estimation 26
254 Conclusion e 30

2.6 SUIMIMATY o o o e e e e e e 30
3 Software Maintenance Best Practice 31
3.1 Introduction e 31
3.2 The Organisational side of Software Maintenance 33
3.2.1 Introduction oL e e e 33
3.2.2 Strategy for implementing software maintenance process change 33
3.2.3 Organising the maintenance activity 35
3.2.4 Organising the maintenance of systemus 0L 38
3.25 Conclusion e e e 40

3.3 The Management side of Software Maintenance 41
3.3.1 Introduction 41
3.3.2 Planning for maintenance 41
3.3.3 Monitoring and controlling maintenance00 43

3.3.4 Tools for maintenance management oo oo 46
3.3.5 Organising the maintenance department 48
3.3.6 Managing the maintenance team00 53
3.3.7 Conclusion L e e 56

3.4 The Technical side of Maintenance v e

3.4.1 Introduction
3.42 Software Maintenance Models 00000
3.4.3 Software Maintenance Model for Aerospace Systems
3.44 Technical Information for Maintenance Staff
3.45 Conclusion e
3.5 Summary e e

Software Maintenance Tools

4.1

4.3

Introduction L e
Commercially Available Tools o 0 o
4.2.1 Tools for Program Comprehension
4.2.2 Tools for Reverse Engineering 0.
4.2.3 Tools for Testing
4.24 'Tools for'I\flainteua.nce Management
Prototypes and Research Projects
4.3.1 Prototypes for Program Comprehension
4.3.2 Prototypes for Fault Localisation
4.3.3 Prototypes for Impact Analysis oL
4.3.4 Prototypes for Knowledge-based Systems in Maintenance

vi

4.4 SUMMALY o o e e e e e e e e e 99
5 Integrated Project Support Environments 100
5.1 Introduction e e e 100
52 Whatisan LP.S.E. 7 L e 100
5.2.1 Introduction e .. 100
522 Featuresofan IPSEo 101

523 Theldeal IPSE o 102
524 Conclusion e 103

5.3 Requirements for Software in the Aerospace Industry 104
53.1 Introduction e 104
5.3.2 Safety Critical Systems 104
5.3.3 Increasing Software Size o oo 104
5.3.4 Increasing System Lifespan oo 105
5.3.5 Distributed Developments 105
5.3.6 System Perennialityo 106
537 Reuse e 106
5.3.8 Training and Knowledge Transfer 107
539 Conclusion 107

5.4 Criteria for Analysing IPSEs o 108

vii

54.1 Introduction Lo 108
54.2 Flexibility 108
543 Integration L e e 109
5.4.4 Distribution Lo e 110

' 54.5 Conclusion e e e e 110
5.5 Evaluation of IPSEs e 111
55.1 Introduction 111

5.5.2 Evaluation of IPSEs with the criteria. 112
55.3 Conclusion e 117

5.6 IPSEs for Aerospace Systems 118
5.6.1 Introduction e e 118
5.6.2 HERMES/COLUMBUS 118
56.3 FREEDOM e e e 119
5.6.4 Evaluation of Aerospace IPSIlso o 120
56.5 Conclusion e 121

5.7 SUMIMATY .« . v o v e e e e e e e e e e e 121
6 Requirements for a Software Maintenance Support Environment 122
6.1 Introduclion e e e e 122
6.2 Data Base e e 123

viil

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Human Computer Interaction 123
Software Configuration Management 124
6.4.1 . Software Configuration ldentification 124
6.4.2 Software Version Control 124
6.4.3 Software Change and Configuration Control 125
6.4.4 Software Configuration Status Accounting 125
6.4.5 Software Configuration Audito 126
Program Comprehension 126
6.5.1 Static analysis e 126
6.5.2 Dynamic analysis 128
6.5.3 Impact analysis 129
6.5.4 Traceability L 129
Quality Assurance 130
Planning and Controlling maintenance oo 130
Distribution e e 130
Others . . . o e e e e 131
6.9.1 Reuse e e e 131
6.9.2 Reverse Engineeringo 131
6.9.3 Safety Critical SYSLEINS - « « « + o v o e e 131
6.9.4 Environment simulator oL 131

http://Iclent.irica.tion

6.9.5 Documentation for Maintenance o000 131

6.9.6 Training e 132

6.9.7 Knowledge Transfer o 132

6.10 SWININATY o v v et e e e e e e 132

7 Conclusions and Further Research 133
7.1 Conclusions e e 133
7.2 Further Research 135

A Software Maintenance Tools Commercially Available 137
A.1 Tools for Program Comprehension 137
A1l Code Analyser L e 137

A.1.2 Code Visualisation e 147

A.1.3 Cross Referencer e 150

A.1.4 Source Code Comparison o 152

A.1.5 Execution Monitoring /Debugging o 152

A.? Tools for Reverse Engineering 155
A.2.1 ReStrucCturer o . o e e e e e e e e e 155

A.2.2 Reformatter e e e 155

A.2.3 Reengineering 156

A.2.4 Reverse Engineering e 157

A.3 Tools for Testing e 160
A.3.1 Test Coverage Monitorso 160
A.3.2 Regression Testing e 164

A.4 Tools for Maintenance Managemento 170
'A.4.1 Software Configuration Management 170
A.4.2 Program Synthesis 177
A.4.3 Library Management 178
A.4.4 Change Management 178
A.45 Change Controlo 179
A4.6 Version Control 179
A.4.7 Product Managemento 181

B Software Maintenance Prototypes and Research Projects 183

B.1 Prototypes for Program Comprehension 183
B.1.1 Code Analyser 183
B.1.2 Program Understanding oo 185
B.1.3 Knowledge Based System and Maintenance Assistant 185

B.2 Prototypes for Fault Localisation o 192
B.2.1 TFault Detection e 192
B.2.2 Fault/Error Localisationo 193

xi

B.3

B.4

B.5

Impact Analysis L 196
B.3.1 Dependency Analysis. e 196
B.3.2 Ripple Effect Analysero 196
Management Prototypes 198
B.4.1 Software Configuration Management, 198
B.4.2 Inverse Software Configuration Management 205
B.4.3 Product Management L0 205
Environment Prototypes L 206
B.5.1 Programming Environment00 oo 206
B.5.2 Software Maintenance Environment 210
Xii

Chapter 1

Introduction

1.1 Purpose of the research

The Aerospace industry is concerned with huge software projects, sometimes safety-critical in
nature, containing millions of lines of code, whose development times are typically of the order of

several years. These projects are collaborative between distributed European partners.

The industry will have to cope in the near and far future with the maintenance of these products
and improve the software maintenance process aund the environments for mmaintenance. There has
been much research on software development environments and some of them are commercially

available, but environments {or maintenance have not been addressed in full.

Cost eflective software maintenance needs an efficient, high quality and homogeneous environ-
ment {or IPSE). An Integrated Project Support Environment is an integrated environment that
focuses on the developmental aspects of the software life-cycle. Most [PSE work has addressed

software development, and has not considered the fully requirements for software maintenance.

The purpose of this research is to draw up a set of priorities and requirements for a Software

Maintenance Support Environment that could be used in the Aerospace industry.

1.2 Objectives of the research

Software maintenance is usually the most expensive phase of the software life-cycle [151], and there
is a lack of good maintenance practice as well as environments for maintenance in most industrial

and commercial organisations.

The work in this thesis is firstly concerned with identifying the best way to cope with software
maintenance by defining ‘software maintenance best practice’ based on current practice and analysis

of the maintenance problem.

Software maintenance best practice is addressed at different levels: organisational, managerial

and technical.

The organisational level is concerned with the adoption of the best strategy for this activity
and for the software products. The current software maintenance process has to be analysed to
reveal its weaknesses in order to define a better software maintenance process. The maintenance

department has to be organised so that it can become more eflicient and productive.

The management level is concerned with the best ways to manage, plan and control the software

maintenance process, and to organise and manage the maintenance department.

The technical level is concerned with the different tasks in the software maintenance process

and the technical information needed to perform maintenance.

From the best method to perform maintenance, a survey on software maintenance tools and an
evaluation of current IPSEs, the requirements for a Software Maintenance Support Environment

are presented.

1.3 Thesis Structure

The second chapter describes software maintenance in terms of its different activities. The place
allocated to software maintenance within the software life-cycle is evaluated, the problems with the

maintenance activity are listed and the economics of software maintenance are investigated.

The third chapter defines ‘software maintenance best practice’ on the basis of maintenance prob-
lems enumerated in the previous chapter and analysis of current practice. Software maintenance

best practice is separated into three categories:

o organisational
0o management

o technical

The fourth chapter presents a survey on software maintenance tools that can be utilised for
Aerospace systems. This survey is divided into commercially available tools and prototypes and

research projects.

The fifth chapter surveys and assess current IPSEs according to requirements in the aerospace

industry.

The sixth chapter specifies the requirements for a Software Maintenance Support Environment
based on software maintenance best practice and an evaluation of software maintenance tools and

current [PSEs.

The seventh chapter contains conclusions and further research.

Chapter 2

What 1s Software Maintenance 7

2.1 Introduction

The objective of this first chapter is to define software maintenance and to explain the place for

maintenance in the software life-cycle. We identify the major maintenance problems and the cost

of software maintenance itself.

2.2 Software Maintenance Activities

i 2.2.1 Introduction

Software maintenance is a complex and serious problem, serious because of the costs, and complex

because of the wide range of activities involved e.g. requirement analysis, error diagnosis, program

comprehension, impact analysis, solution analysis, software changes, test and simulation, repair or

installation, change control, and quality assurance.

This section outlines software maintenance in terms of its different activities.

2.2.2 Software Maintenance

There is a growing interest in software maintenance as seen in the number of articles, reports and
textbooks on the subject, and this field has become established as a sub-discipline within the general
field of software engineering. Software maintenance has traditionally been seen as the final phase
of the software life-cycle and given low priority whereas the development phases of requirement,

design, code, testing have been given greater prominence.

The term ‘software maintenance’ is now well established in the computing profession and in-
dustries, but in many ways it is an unfortunate choice of words, suggesting parallels or similarities
with hardware maintenance. However, hardware maintenance is usually required because of the
progressive degradation or wearing out of physical materials, while software is not subject to such

factors.

Furthermore ‘maintenance’ carries undesirable connotations for many people, implying that
some rather low-level, unintellectual activity is being undertaken. Instead of maintenance, other
terms have been employed like enhancement, support, further development, program evo-
lution or logistic support. Often, software maintenance refers only to debugging. In this report,

we shall use the wider ANSI-IEEE definition [110]:

Software maintenance is the modification of a software product after delivery to correct
faults, to improve performance or other attribules, or to adapt the product to a changed

environment.

It is the set of activities which result in change to the originally accepted product set. The
changes arise because of modifications created by correcting, inserting, deleting, extending, and

enhancing the baseline system.

The baseline [12] is the foundation for configuration management (see section 4.2.4- 1). It
provides the official standard on which subsequent work is based and to which only authorised
changes are made. After an initial baseline is established and frozen, every subsequent change is

recorded as a delta until the next baseline is set.

Software maintenance activities have been divided into three categories by Swanson in 1978

[150}: corrective, adaptive and perfective. These terms have been widely adopted in the industry

and form a useful distinction in classilying types of software maintenance.

Whereas. correctzve nmmtenance refers to-a changes usually trrggered by a fazlure of the soft-
ware detected durmg operatlou a(laplwe and pe1fectwe mazntenance refers to changeq (lue to -user
requests These ferms are- deﬁned in sectron 2.2.3- 4-5 be]ow Some authorq (Swanson 1976 Gla.ss
and Norseaux 1981; Arnold and Parl\er Pressman 1987 Pfleeger, 1987 C‘amalel Din and Oster-
werl, 1988) (256, 90, 8, 198, 196, 85] refer toan addrtronal form termed prevenlive mamtenarzce
which is:the work that is done in order to try to anticipate and prevent malfunctions or improve

quality attributes in particular maintaimability,

Lientz and Swanson have administered a survey (1980) to determine how much time each type

of maintenance activity requires [151]:

Perfective Maintenance 50%

Adaptive Maintenance | 26%

orrective Maintenance | 21%

Preventive Maintenance { 4%

Also, we ’shall refer to another type of ma.intenance S’lum cleamnce which is the extreme case
of software marntenance when the software can 1o Ionger be mamtamcd or at least the cost 0[
nnposmg anv cllduge would e*(ce(_d the cost of complete replacement. Slum clearance can be seen

as t]re termmatron or retnrement of the sth_va.re.

In the Aeroepace m(lustry, the term evolntzve maintenance is used and refers to auy effort
wluch s mrtrate(l -as’ tlle 1esult of modlﬁcatmm in the mrssrou accordlng to changmg need<; or
requrrcments I‘hrs cain. he’ seur as enhancement arcordmg lo dlfferent authors and perfer_trve

ma,mtenance accordmg to above dehmtron

6

2.2.3 Corrective Maintenance

Corrective maintenance refers to changes necessitated by actual errors in a system. It consists of
activities normally considered to be error correction, required to keep the system operational and

that must often be corrected immediately.

The terms error and fault for a specific defect within a system are usually used. Anderson [5]
defined an error as a part of an erroneous state which constitutes a difference from a valid state,
and an error in a component or the design of a system as a fault in the system. A component fault
in a system is an error in the internal state of a component, and a design fault in a system is an

error in the state of the design.

The fault is manifested in software deviating from its intended function. Examples of errors
or faults include omission or misinterpretation of user requirements in a software specification,

incorrect translation or omission of a requirement in the design specification.

Corrective maintenance is needed as the result of three main causes [178]: design, logic and

coding errors.

1. Design errors are generally the result of erroneous or incomplete design. When a user gives
incorrect, incomplete, or unclear descriptions of the system being requested, or when the
analyst/designer does not fully understand what the user is requesting, the resulting system

will often contain design errors.

2. Logic errors are typically the result of invalid tests and conclusions, faulty logic flow and
incorrect implementation of the life-cycle steps, and are usually attributable to the designer
“or earlier maintenance work. Often logic errors occurs when unique or unusual combinations
of data, which were not tested during the development or previous maintenance phases, are

encountered.

3. Coding errors are the result of either incorrect implementation of the detailed logic design,
or the incorrect use of the source code. These errors are caused by the programmer; they are

usually errors of negligence and are the most inexcusable.

2.2.4 Adaptive Maintenance

Adaptive maintenance involved any effort which is initiated as a result of changes in the environment
in which a software systemn must operate. This maintenance activity is performed in order to make

the software product usable in the changed environment.

For example, new versions of the operating system may be introduced, or the software may be
moved to new or different hardware. These environmental changes are normally beyond the control

of the software maintainer and consist primarily of change to the:

o system software, e.g., operating systems, compilers, utilities
o hardware configurations, e.g., new terminals, local printers

o data formats, file structures

Changes to operating system software {compilers, utilities, etc) can have varying effects on the
existing application systems. These effects can range from requiring little or no reprogramming, to
simply recompiling all of the source code, to rewriting code which contains non-supported features

of a language that are no longer available under the new software.

Changes to the computer hardware (new terminals, local printers, etc) which support the ap-
plication system are usually performed to take advantage of new and or improved features which
will benefit the user. They are normally performed on a scheduled basis. The usual aim of this

maintenance is to improve the operation and response of the application system.

Changes to data formats and file structures may require extensive maintenance on a system if
it was not properly designed and implemented. If reading or writing of data is isolated in specific
modules, changes may have less impact. If it is embedded throughout the code, the effort can

become very lengthy and costly.

Maintenance resulting from changes in the requirements specifications by the user, however is

considered to be perfective, not adaptive maintenance.

2.2.5 DPerfective Maintenance

Perfective maintenance includes all changes, insertions, deletions, modifications, extensions, and
enhancements which are made to the system to meet the evolving and/or expanding needs of the

users.

For example, a tax program may need to be modified to reflect new tax laws or a payroll program
may need to be modified to incorporate a new union settlement, but usually, modifications are much

more substantial.

Perfective maintenance refers to enhancements made to improve software functionality. It is
generally performed as a result of new or changing requirements, or in an attempt to augment the
software. Optimisation of the performance of the code to make it run faster or use storage more

efficiently is also included in the perfective category.

Perfective maintenance is required as a result of both the feilures and successes of the original
system. A failure is the inability of a system or system component to perform a required function
within specified limits. If the system works well, the user will want additional features and capabil-
ities. If the systems works poorly, it must be fixed. As requirement change and the user becomes
more sophisticated, there will be change requested to make functions easier and/or clearer to use.
Perfective maintenance is the method usually employed to keep the system up-to-date, responsive

and germane to the mission of the organisation.

There is a further aspect of perfective maintenance that is having a serious economic impact.
In order to maintain a competitive edge, a company must prepare new products, services, etc.
Often this demand changes to the company’s software and there is evidence that serious delays
are occurring because the software cannot be modified easily, quickly and reliably. Delays of up to
two years have been reported informally, with consequent elfects upon the organisation’s marketing
strategy. It would seem that the backlog is not simply attributable to poor project scheduling and

planning; it is rather that changing existing software is a difficult and skilled task.

9

2.2.6 Preventive Maintenance

Preventive maintenance includes the activities designed to make the code, design and documenta-
tion easier to understand and to work with, such as restructuring or documentation up-dates. For
example a section of code that has had many alterations made to it may be completely rewritten,

to improve its maintainability.

Typically, the need for preventive maintenance is stimulated from within the maintenance or-
ganisation, although it is recognised that such a need can be a consequence of a major change

request from a user, which is infeasible to implement using the software as it is.

Fine tuning existing systems to eliminate shortcomings and inefficiencies and to optimise the
process is often referred to as preventive maintenance. It can have dramatic effects on old, poorly
written systems both in terms of reducing resource requirements, and in making the system more

maintainable and thus, easier to change or enhance.

Preventive maintenance may also include the study and examination of the system prior to the
occurrence of errors or problems. Fine tuning is an excellent vehicle for introducing the programmer

to the code, while at the same time reducing the likelihood of serious errors in the future.

The extreme case of preventive maintenance can be seen as Slum Clearance and the onset of

this activity may be triggered by any of several things:

o The inability to maintain the support software or hardware.

o]

The loss of the only person who understood an undocumented program.

o]

The inadvertent loss of the source code (through fire, flood or lack of effective configuration

managemert).

Deliberate and rational decision.

o

Whatever the cause, the effect is that the software can no longer be maintained, or at least the
cost of imposing any change would exceed the cost of complete replacement. However the only
significant problem appears to be that of deciding when the phase should start (assuming it is by

decision rather than by accident).

10

A feature of maintenance work is the degradation of the system being maintained, usually
demonstrated by an increase in the difficulty of working with the system or more faults. Eventually

the system must be replaced by a new system as maintenance hecomes too costly or the system

becomes obsolescent.

The reasons for the degradation are many, but include the fact that a larger number of people
work on the system, over a longer period of time than in any other phase of development and the

time available is often much shorter.

2.2.7 Conclusion

Software Maintenance has been defined in terms of categorisation of tasks and different categories of
maintenance e.g. corrective, perfective, adaptive and preventive have been explained. A clear view
of the different categories will be useful for the following chapters to get a better understanding of

the software maintenance process.

As explained in this section, there are no common or agreed definitions for these different activ-
ities and there is some disagreement whether the addition of new capabilities should be considered
maintenance or additional development. Since it is an expansion of the existing system after it has
been placed into operation, and is usually performed by the same staff responsible for other forms

of maintenance, we shall classify it as maintenance to conform to the [EEE definition.

11

2.3 Maintenance and the Software Life-cycle

2.3.1 Introduction

In the previous section, the software maintenance activities have been defined; it is now important

to show the place of software maintenance in the software life-cycle.

2.3.2 The Software Life-cycle

The development life-cycle [6] is the period of time that begins with the decision to develop a
software product and ends when the product is delivered. The developiment cycle typically includes
a requirements phase, design phase, implementation phase, test phase, and sometimes, installation

and check out phase.

The software life-cycle [6] is the period of time that starts when a software product is conceived
and ends when the product is no longer available for use. The software life-cycle typically includes

the development life-cycle and the operation and maintenance phase.

1. The requirement phase [6] is the period of time during which the requirement for a software

product, such as the functional and performance capabilities are defined and documented.

2. The design phase [6] is the period of time during which the designs for architecture, software
components, interfaces, and data are created, documented, and verified to satisfy require-

ments.

3. The implementatidn phase [6] is the period of time during which a software product is
created from design documentation and debugged. Design must be translated into a machine
executable form. The coding step accomplishes this translation through the use of conven-
tional programming languages (e.g., Fortran, Cobol, P1/1, Ada, C, Pascal) or so-called Fourth

Generation Languages.

4. The test phase [6] is the period of time during which the components of a software product
are evaluated and integrated, and the software product is evaluated to determine whether or

not requirements have been satisfied.

12

Testing is multi-step activity that serves to verify that each software component properly
performs its required function with respect to the specifications and validates that the system
as a whole neets overall customer requirements. In any case, testing by means of program
execution is generally achieved bottom up, first at the unit (module or procedural) level,
then functionally, component by component. As tested components becomes available they

are then assembled into a system in an integration process and system test is initiated.

5. The installation and check-out phase [6] is the period of time during which the software
product is integrated into its operational environment and tested in this environment to

ensure that it performs as required.

6. The operation and maintenance phase [6] is the period of time during which a software
product is employed in its operational environment, monitored for satisfactory performance,

and modified as necessary to correct problems or to respond to changed requirements.

Once the system has been released the maintenance process begins. Maintenance is actually the
re-application of each of the preceding activities for existing software. The re-application may be
required to correct an error in the original software, to adapt the software to changes in its external

environment, or to provide enhancement to function or performance requested by the customer.

2.3.3 Criticisms of the Classical Life-cycle

Traditionally, the maintenance phase has been regarded as not belonging to the software develop-
ment life-cycle, but rather as occupying a detached position. However, it is inappropriate to regard

it as a stage that is independent of the other stages of the life-cycle. Sommerville [249] states:

The maintenance activity may involve changes in requirements, design and implemen-

tation or it may highlight the need for further system testing.

So the maintenance programmer may have to perform many of the activities that have been

performed during the development phases.

Lehman[141, 142] suggests that large software systems are never completed and that such

systems are always being maintained. He suggests that the term ‘maintenance’ should be avoided

13

and that ‘program evolution’ be used. Such an approach recognises that when a product is delivered

to the customer it is just the first of a number of releases in the evolution of the product.

McKee [168] advocates that maintenance would be more accurately portrayed as 2nd, 3rd, ...,

nth round development.

There have been many criticisms of the elassical software life-cycle model [167, 89]. In particular,
it has been argued that the model stresses the importance of the development stages and yet

maintenance is the main software engineering activity that takes place in the lifetime of a well-used

large software system.

2.3.4 Conclusion

At the time, the traditional software life-cycle model was established, software maintenance had
not assumed the great importance it has today, and so the model was oriented almost exclusively
to the development of software. Consequently software maintenance has found its niche within the
model by default. The software life-cycle is product-hased and the process that has created the
product is not mentioned with all management activities. Therefore, there is an important area of
research on the modelisation of all activities involved in the software development and maintenance
process. This section has revealed the shortcomings of the traditional software life-cycle model

with respect to the maintenance of software.

14

2.4 Maintenance Problems

2.4.1 Introduction

To attack intelligently software maintenance problems, we must know what they are in order to
define the software maintenance best practice. Generally, the software maintenance problems can
be categorised as organisational, managerial and technical. Most of these problems, however, can

be traced to inadequate management control of the software maintenance process.

A study of the reasons of the high cost of software in 1976 reported on 24 problems areas of
software maintenance; demand for enhancement and poor documentation lead the list [149]. Some
of the maintenance problems are cited from a survey [178] of selected Federal and private sector

ADP organisations conducted by the Institute for Computer Sciences and Technology (ICST).

This section presents different problems in software maintenance that can be seen in current
practice: the activity, the process, the software, the quality, the users, the documentation, the stafl

and the maintainability.

2.4.2 Activity

Traditionally, software maintenance has been regarded as not belonging to the software life-cycle
in the same sense as the earlier stages, but rather occupying a detached position and considered as

a post-delivery activity.

The word ‘maintenance’ carries connotations of a less intellectual activity than ‘design’ because:

Maintenance is perceived as having a low profile and is a labour-intensive activity.

Maintenance is extremely important but a highly neglected activity.

(=]

Many people think that Software Maintenance is just the correction of errors resident in a

program when it is released.

o

Many people think money spent in software maintenance is wasted.

15

o Maintenance is always under budgetary pressures.

Many people have a wrong idea on the software maintenance activity; it is important to clear this

view.

2.4.3 Process
There is no satisfactory general method for the software maintenance process which implies:

o Lack of management of software maintenance.

o Lack of management visibility of software maintenance.

o Lack of understanding of how to maintain software.

o Lack of metrics

o Lack of historical data on maintenance and error histories.

o Difliculty in tracing the product or the process that created the product,

o Difficulty in estimating the cost of modifications.

The reasons suggested for this [136] was that maintenance is too domain and system specific for
such a method to ever be developed. A software maintenance process should be developed and

tailor to organisation and products.

2.4.4 Quality
Software quality is [6]:

1. The totality of features and characteristics of a software product that bear its ability to satisfy

given user needs; for example conform to specifications.
2. The degree to which software possesses a desired combination of attributes.

16

3. The degree to which a customer or user perceives that software meets his or her composite

expectations.

4. The composite characteristics of software that determines the degree to which the software

in use will meet the expectations of the customer.

There are many definitions of software quality and none of them is perfect because it seems difficult

to measure this criteria. There are maintenance problems arising from these definitions:

¥

(]

During maintenance, the specification or design are rarely complete, precise or verifiable

according to the software product.

o]

What are the desired combination of attributes ?

o]

The user’s needs are evolving (see section 2.4.8).

o How do we measure software quality ?

[}

During development and maintenance there is a lack of quality management.

Software quality attributes often deteriorates with time since older systems tend to grow with
age, to become less organised with change and become less understandable with staff turnover. A
lack of attention to software quality during the design and development phases generally leads to

excessive software maintenance cost.

It is difficult to have good quality software [178] with different software languages used, poor

quality design and code and a lack of common data definitions.

e Software languages:

The use of more than one programming language in an application system is often the cause
of many software maintenance problems. If the maintainer is not proficient in the use of
each of the specific languages, the quality and consistency of the system can be aflected and

interfacing them can be very tricky because often there are ad-hoc.

o Poor software design:

The design specifications ol a software system are vital to its correct development and imple-

mentation.

17

Poor software design can be attributed to [178]:

a lack of understanding by the designer of what the user requested.

poor interpretation of the design specifications by the developers.

a lack of discipline in the design which results in inconsistent logic.

no design history.

no standards.

no methods.

o Poorly coded software:
As computer programming evolved, much of the code development was performed in an

undisciplined, unstructured manner. The result of poor programming practices is:

— few or no comments.

— poorly structured programs.

use of non-standard language features of the compiler.

lack of Quality Assurance and metrics.

It is even more difficult to understand poorly written code if the program has been modified

by different individuals with a multiplicity of programming styles.

o Lack of common data definitions:

An application system should have common data definitions (variable names, data types,

data structures, etc) for all segments of the system. These common definitions entail the

establishment of global variable names which are used to refer to the same data array or

record should be defined and used for all programs in the system.

2.4.5 Software F

Corrective, adaptive and perfective maintenance activities typically result in growth and degrada- 3
tion of the software’s structure (this is known as program entropy). Lehman [142, 143] stated in

his second law of program evolution:

18

As an evolving program is continually changed its complexity, reflecting deteriorating

structure, increases unless work is done to maintain and reduce it.

The net result of continual modification is that software tends to increase in size and its structure
tends to degrade with time. For example [99], the average program grows by 10% every year,
resulting in its doubling in size every seven years. It is important to increase the maintainability

of software to cope with its increasing lifespan (see section 5.3.4) in order easily to maintain it.

It is also difficult adequately to maintain software because:

o Software were created without maintenance in mind.
o A change in one component often affects another one by introducing unforeseen side effects.

o The average life expectancy of a software has increased from about three years, two decades
ago, to seven to ten, and even more for example in the Aerospace industry (see section 5.3.4).
Therefore, with the degradation of the software structure and the increasing size of the soft-

ware, it will be more difficult to maintain it.

2.4.6' Maintainability

Maintainability is defined by Martin and McClure [163] as:

The ease with which a software system can be corrected when errors or deficiencies

occur, and can be expanded or contracted to satisfy new requirements.

No quantitative or contractual definition of maintainability are available. There is a need to think
about the maintainability of the software at the beginning of the life-cycle, which will require extra
cost that cannot be easily justified. I'he maintainability of software deteriorates during the software

life-cycle because:

o The need to change the software have been underestimated in the development and the

modifications affect the maintainability of the software.

19

T g

o Maintenance changes tend to degrade the structure and quality of programs by increasing

their complexity and making them more complex and more difficult to maintain next time.
o Maintainability requirements are omitted in system requirement specification [95].

o Many systems have been designed and developed without any serious consideration being

given to their long term maintainability [128].

An alternative approach is Lo assess maintainability indirectly in terms of the software itself e.g.

modularity, cohesion and coupling.

2.4.7 Documentation

Software documentation is the technical data or information, including computer listings and print-
out, in human readable form, that describe or specily the design or details, explain the capabilities,
or provides operating instructions for using the software to obtain the desired results from a software

system.

The software documentation is one of the major problem of software maintenance because:

.o Software documentation arouses very little interest amongst programmers. It is often consid-
ered to be one of those jobs that should be put off until the last opportunity and in many
cases it is put off indefinitely. Perhaps this low view of documentation is perpetuated by its

consistent poor quality.

o Document structure does not provide enough visibility for maintenance concerns [95]. When
a maintainer has to perform his job, the only source of information available may be the

documentation and the code.

o Software documentation is often inadequate, incomplete, non-existent, or out-of-date. Where
it does exists, it usually consists of an unmanageable set of unstructured papers that are
difficult to access and impossible to maintain. The development team has some difficulties to

understand needs of maintainers and prefers to answer their own needs.

o Software documentation is written by developers who don’t understand maintenance.
Y p

20

o Schneidewind [227] reports that it is very difficult to maintain software which was not ade-

quately documented.

o A survey from Chapin [43] showed that poor documentation is the biggest problem in the

software maintenance work.

2.4.8 Users

A critical part of effective maintenance is communications, both among development personnel and
between the development and user organisations. Users have a lack of understanding on systems
and are not adequately trained. User demand for enhancement and extension of their systems is a

major problem for the maintenance team because:

o Users are often unable concisely to specify what they want from an application system and

express requirements in a way totally different to system structure or behaviour.

o If a system does whal the user needs, the user will often think of things to add. The more
successful a system is {178}, the more additional features the user will think of and sometimes

user expectations are unrealistic.

o If a system does not work well [178], there will be a constant demand for remedial action to

make it function properly.

e The user is often unaware of the impact that one change can have on both the system and

the maintenance workload, and expects a rapid response to his or her needs.

2.4.9 Staff

The Lientz and Swanson studies [149] indicates low morale and productivity as a major problem
during maintenance. It is difficult to motivate maintenance staff and to have a maintenance team

working properly because:

o Development is seen in a company when it is complete as a successful achievement whereas

maintenance will not receive any such consideration; maintenance is an on-going activity.

21

o Software maintenance is considered as unimportant, unchallenging, uncreative work.

o Staff have competing demands on their personnel time (poor availability of maintenance

staff).

o Maintenance staff usually have not been involved in the development of the product so they

have no knowledge of the process that made the product.

o Maintenance stafl turnover is very high. Experienced personnel are replaced with new per-
sonnel who are unfamiliar with the applications software, and may be unfamiliar with the
programming environment (tools, methods, software maintenance process ...) as well. The
turnover rate is so high that there is little time allocated to update the documentation ade-

quately.

o Maintenance is often used in a company as training for new programmers who have little

software engineering or application domain knowledge.

o No time is spent for adequate training and there is the remaining problem of how to train

the maintenance stafl.

2.4.10 Conclusion

This section described the various maintenance problems in order to better understand why main-
tenance costs huge amount of money and often seen as a bottleneck. These problems are perceived
as being organisational, managerial and technical. We need to solve these problems by defining a

good method to perform the software maintenance process.

22

2.5 The Economics of Software Maintenance

2.5.1 Introduction

The objective of this section is to expiain the economics of software maintenance with different
citations and studies from the literature, to define the models for estimating the cost of maintenance

and to make criticism on them.

2.5.2 Software Maintenance Costs

Since estimating software maintenance costs is very diflicult, we shall provide some citations to
better understand its propensity and magnitude, and to recognise that large amount of money are

involved:

(]

Maintenance cost in the US federal government:

It owns about 25 billion lines of code and is spending $3.75 billion on its Information

Technology budget on maintenance {Lientz and Swanson, 1980) [151].

o Maintenance cost in the US DoD:
It was estimated in 1985 that the DoD) spends about three-four percent of its
budget, or approximately 10 billion dollars per year on software and this number
is expected to increase rapidly in the next {ew years [82].

e Maintenance cost in the US:
It was estimated that $30 billion are been spent on maintenance in the USA annually
[151] and it has been reported that the United States spends 2% of its GNP on
software maintenance.

o Maintenance cost Worldwide:

Martin and McClure say that in 1983 more than $ 30 billion per year are being

spent on maintenance worldwide [163).

23

[o]

Hardware/Software cost trend:

Boehin [29], first presented the Hardware/ Software cost trends diagram that pre-
dicted a dramatic rise in software cost relative to Hardware cost at a time when

spending more on software than Hardware was difficult for many to perceive.

(o]

DoD software market share:

The total software budget of the DoD was estimated to be 5 % of the market, and

" to include $ 10 billion spent on embedded systems [255].

o

Maintenance programmers/programmers time:

There are an estimated one million programmers in the US alone and more than

half the programmer’s time is devoted to maintenance [187].
o Maintenance phase/Life-cycle cost:

A survey by Lientz and Swanson reported that more than 50 % of the budget is
spent on the maintenance phase in (1983) and Hager says that 60 % of the software
costs associated with the design, development and implementation of computer

systems occurs in the maintenance phase [96).
o Development/Maintenance cost:

On a relative comparison between development and maintenance cost, it was esti-
mated that one US Air Force System cost $30 per instruction to develop and $4000

per instruction to maintain over its life-time (Boehm, 1975) [30].
o Real-timme/Business applications costs:

Comparing the relative costs of a source instruction in the development and main-
tenance phase, it appears [144) that maintenance of real-time applications is pro-
portionally much higher that the maintenance of business applications (see table

No 2.1).

24

Application Real-time S/W | Business S/W
Development n n
Corrective Maintenance 11.75%n 5%n
Adaptive Maintenance 5%n 3.5%n
Perfective Maintenance 5%n 2.5%n
Evolutive Maintenance 5*n 2%n
All mixed Maintenance 6.75%n 3.25%n

Table No 2.1: Relative cost of a source instruction

o Projection of the cost in the 80’s:

Pfleeger [196] said in in 1987 that the trend towards higher maintenance costs is

expected to continue, and three-quarters of the system’s cost is likely to be devoted

to maintenance by the 1990’s (see table No 2.2).

% of the software budget 1970s | 1980s | 1990s
Development H 60-65% | 60-40% | 20-30%
Maintenance " 35-40% | 40-60% | 79-80%

Table No 2.2: Escalating maintenance costs (Pfleeger 87; Pressman 87)

Although some of these figures must be treated with great scepticism, there is a wide agreement
that software maintenance is a huge consumer of resources. Although software maintenance expen-

diture is hard to quantify, most companies would consider that they spend far too much effort on

software maintenance.

With such a large proportion of the total software expenditure being spent on software main-
tenance, this area has the greatest potential of any in the life-cycle for reducing the overall system
costs. The direction of money into the maintenance of existing systems has caused new develop-
ments to be postponed due to lack of financial and personnel resources. Any freeing of money from

software maintenance, by increasing maintenance productivity, would help reduce the developinent

backlog created by these resources shortages.

Although new development have traditionally been the focus of attention for the software com-
munity, these economics realities are drawing increasing attention to software support activities.
The situation is especially acute in the DoD, where some agencies are predicting that maintenance
requirements will more than double over the next five yea.rs. This problem results from the expected
inflow of massive new systems, and the slow retirement of old systems. ‘Getting the requirements

right’ is only transitory; they can only be ‘right’ at a given point in time.

2.5.3 Software Maintenance Cost Estimation

An estimation model for computer software uses empirically derived formulae to predict data that
are required. The empirical data that support most models are derived from a limited sample of
projects. For this reason no estimation model is appropriate for all class of software and no model
can fully reflect the product’s characteristics, the development environment and the many relevant
personnel considerations. Software cost models should be used with care. If they are not calibrated
to the specific organisation’s experience. Models should thus be used to augment the estimation

process and not replace it.

Software maintenance cost estimation models have largely been based on simple linear ratios
depending on the size of the product, its development cost and the number of instruction changed.
This section will define the maintenance/development ratio, Boehm’s and Belady’s model and the
multiplicity of factors dependent on the software maintenance cost. In order to understand these

models and ratios, we need to explain terms used:

Terms Explanation
MM man-months
(MM)mo overall maintenance cost in man-month

MM)m.year | maintenance cost in man-month per year
y p

KDSI thousands of delivered source instruction

1. The Maintenance/Development cost ratio:

The Maintenance/Development cost ratio (M/D) is used to estimate the overall life-cycle

maintenance cost (MM)m dependent of the development cost (MM)d:

26

(MM)m = (M/D)(MM)d

For example, a program has 32000 delivered source instructions and this product required

200 man-months to develop.

If we consider a (M/D) ratio of 1.5 (i.e. 60 % time of its software life-cycle is spent for

maintenance), it would require and estimated of 300 man-month for maintenance:
(MM)m = (1.5)(200) = 300 MM

If we consider a (M/D) ratio of 2.0 (i.e. 66 % time of its software life-cycle is spent for

maintenance), it would require and estimated of 400 man-month for maintenance:
(MM)m = (2.0)(200) = 400 MM

. The annual maintenance effort:

Boehm [33] developed a model COCOMO (COnstructive COst MOdel) to estimate annual
software maintenance in terms of a quantity called Annual Change Traffic (ACT) It is the
fraction of the software product’s source instructions which undergo change during a (typical)

year, either through addition or modification.

For example suppose that the 32KDSI product had 4000 DSI added and 2400 DSI modified

during its first year of maintenance. Then
ACT = (4000 + 2400)/32000 = 0.20

The COCOMO equation for estimating basic annual maintenance effort (MM)am, given the

estimated development effort (MM)d, is:
(MM)m.year = (ACT)(MM)d = (0.2)(200) = 40 MM
This model gives no more than a rough approximation to maintenance costs. However, it
serves as a basis for computing a more accurate figure.
Belady [18] developed a formula from studies that reflected the factors involved in the main-
tenance cost: '
M = p + K*exp(c - d)

27

where:

M is the total maintenance effort,

p represents productive effort,

c is a measure of the complexity caused by the lack of structured design and documentation,
d is the degree of familiarity from the maintenance team with the software,

K is an empirical constant depending on the application.

This model indicates that the maintenance effort can increase exponentially if a poor software
de;velopm-ent approach was used, and the person that used the approach is not available for

the maintenance team.

These two models do not reveal the true maintenance costs because they are only dependent
on few parameters (see next section). Furthermore, the estimation of the maintenance cost

is problematic for many reasons:

o Maintenance costs can fluctuate considerably from project to project and for a given

project from year to year (user requests, change in environment are not easily pre-

dictable).

o Degradation of the software quality during the software life-cycle will have an adverse

effect on maintenance effort

. The software maintenance cost:

The software maintenance cost is not only dependent on the size of the product, its develop-
ment cost and the number of instruction changes, it depends on a multiplicity of factors and

some of them are not easily quantifiable:

(a) Factors dependent on the software:
o size of the system
o number of delivered source instruction
o programming language
o lifetime of the system
o age of the system
o number of release
o system stability

o system reliability

28

o]

software complexity

software modularity

performance constraints

history of the software

quality and quantity of documentation

quality of tests

(b) Factors dependent on the staff:

]

availability of staff

experience of the staff in the system

senior/junior staff

participation of the maintenance team in the system development process
staff turnover

organisation of the maintenance department

staff under pressure because of user’s requests

user’s knowledge of the system

user’s request quality

~ (¢) Factors dependent on the application type:

[¢]

(<]

<]

[}

application type (Business/Scientific/Real-time)
number of sites
development cost

tools, methods and environments used

Models for cost estimation provide a means of maintenance cost prediction (which is better than

nothing), but they need to be tailored to the application domain and specific project.

2.5.4 Conclusion

The software maintenance cost is probably around 65% and 85% of all software cost. Because of

the multiplicity of factors depending on the software maintenance cost, a model to predict it is

very difficult to elaborate as there is no underlying theory to be based on. One of the best way

29

to evaluate the overall maintenance cost or a change request is to tune the cost model used to the

organisation and to provide an automated calibration based on actual product and change request

histories.

2.6 Summary

The main points in this chapter have stressed the need to understand the nature, the cost and the
problems of software maintenance. As explained in this chapter, maintenance is the most expensive
phase of the software life-cycle, difficult to cost and carries many unsolved problems for companies.
The escalating maintenance costs need to be stopped and decreased by defining a a good practice

for software maintenance along with adequate maintenance tools. To make this activity more

productive, a ‘software maintenance best practice’ report is presented in the next chapter.

30 :

Chapter 3

Software Maintenance Best Practice

3.1 Introduction

The issue that is addressed in this chapter is to reduce the software maintenance cost in most
organisations by improving the software maintenance process and providing a good method for
maiﬁtenance. This leads to better productivity, lower application backlog and clearer management
visibility. The method advocated in this thesis is based on an analytical approach of the software
maintenance process instead of experiments. Software maintenance best practice is defined from
current practice and maintenance problems, and is addressed at different levels: organisational,
managerial and technical, in order to solve these problems within a company. Because the software
maintenance process will be improved according to criteria defined below and established by the

senior management, this method can be stated as best practice.

This chapter proposes a model within which the managerial and technical issues can be presented

and discussed:

The organisational level is concerned with the finances of the maintenance activity, communi-
cation with upper management and the adoption of the best strategy for this activity and for the
software products to be maintained. The current software maintenance process has to be analysed

to reveal its weaknesses in order to correct them and define a better software maintenance process.

31

The management level is concerned with the best ways to manage, plan and control the software
maintenance process, and the organisation and management of the maintenance department in a

more efficient and productive manner.

The technical level is concerned with the different tasks in the software maintenance process

and the technical information needed to perform maintenance.

3.2 The Organisational side of Software Maintenance

3.2.1 Introduction

The organisational level is concerned with the adoption of the best strategy for the maintenance
activity and for the software products to be maintained. The current software maintenance process
has to be analysed by the senior management to reveal its weaknesses in order to define a better
one and avoiding some maintenance problems within a company. Special attention needs to be
given to the organisational role of the maintenance organisation, particularly with regard to its
financial aspect. As stated in section 2.4.2, ‘the maintenance activity is perceived as having a low
profile, being a labour intensive activity, extremely important but highly neglected ...’ thus, there

is a need to change this statement by providing suitable advice for the maintenance organisation.

The organisational view of software maintenance is generally of critical importance to the suc-
cess of this activity, and yet there is a lack of a general and agreed model for describing the soft-
ware maintenance process in such a way that different teams can be compared under a standard

paradigm.

Pressman [198] pointed out that ‘there are alimost as many organisational structures for software
maintenance as there are for software development’. In the case of software maintenance, however,
formal organisation rarely exist, but it seems valuable to give information on adopting a good

strategy to obtain an appropriate maintenance organisation.

3.2.2 Strategy for implementing software maintenance process change

As explained by Humphrey in his book ‘Managing the Software Process’ [109] most organisations
can improve their software maintenance process and need to change their organisation structure,
their management system, their procedures, their tools and methods, but the implementation of
the necessary changes must be handled with care (if it is too didactic, they will face a general

resistance from employees).

The major changes to the software maintenance process must start at the management level in

33

the company and everyone miist be involved.- Effective.changes by the senior management requires

knowledge of the current software maintenance process.

A descriptive a,pprd'a',cli of thé current software maintenance process must be :obsérvéd “and
assessed in real hfe in order to learn how the software -organisation actually works. A list- of ‘major
problems within the organisation must be edlted and it is important to collect mformatlon on'the

current software mainteénance process-in teruis of s;t;atlstncs.r

Somd indicators of less than adequate good practice could include:

o high staff turnover

o lack of metrics, statistics and visibility on software maintenance
o lack of historical data and error history on maintenance

o absence of quality plan, maintenance plan

o no use of configuration nanagement and versioning tools

o inadequate or unused documentation

It seems evident that-in many organisations, current practice differs substantially from potential
best _pré,(itice. Colter [56] has argued that best practice involve software maintenance as.product
sﬁpport Cb‘l;rective,'a,daptive and pefféctive majnren»a‘nce 1‘eqﬁii‘e a product support o'rganiéat;ionto
receive problem report, dlstrlbute upgl aded versions of the software and keep. customers mformed'
of problems solutnons and new versnons 'llus concept mtloduces a number of notlons mcludmg

the stfong relatlonslup of softhue mamtenance to the need of the busmess but also to gather

round the .software’—product - grpup of:pegplg comnutted oyer a numbep o['yearﬁ,tq its succgss_ful

evolution.

The product is e‘(pected to- undelgo a seues of evolutlonaly steps over its hfelee and this is
Aplanned from the outset mcludmg the Lecogmtxon of the 11eed f01 busmess Justlﬁca.tlon for domg

S0.

3.2.3 Organising the maintenance activity

The organisation of the maintenance activity by senior management starts by developing a strategy
and identifying this activity. The organisational role of the maintenance activity [22] need to
be given particularly in financial terms. The approach advocated is to justify the added value
provided by software maintenance, and thus the financial benefits to be gained by investment in
the maintenance process (for example, by buying better technology). This may require a concurrent
change from maintenance as merely a survival activity, in which employees are expected to meet the
on-going change load without frequent serious problems, to maintenance as a product management

activity [56, 57].

1. Develop a maintenance strategy
Strategy is an over-used word and we need to define what it implies. The strategic analysis
is an understanding of the strategic position of the organisation, e.g. the environment, value
expectations, objectives and resources. The strategic choice is the formulation of possible
courses of action, their evaluation and the choice between them, e.g. generation of options,
evaluation of options and selection of strategy. The strategic implementation is planning how
the strategy can be put into effect, e.g. resource planning, organisation structure, people and
system. The strategy for maintenance should be linked to the overall strategy of the company
(for example providing software of good quality to customers). To develop a good strategy
for this activity, it is necessary to save the ‘savoir-faire’ and to understand the importance of

the software to be maintained.

o Who will perform maintenance 7

At the stage of how to organise maintenance, a decision should be made as whether

maintenance will be performed in-house, by the customer, or by a third party.

o Preserving the know-how
A company with a long established software development culture often find it difficult
to adopt new methods, tools and procedures. Yet, management at these companies
recognises that the old culture is ineffective and in some cases detrimental to the overall
strategic objectives.
The software maintenance strategy need to protect the extremely valuable corporate

‘know-how’ that is tied up in existing software.

35

o Importance of the software for the organisation:

The strategy for the maintenance activity needs to consider the quality of the software
that are maintained within the company. If a software is very important both at present
and in the future to the organisation, and is of high quality, this would suggest continued
enhancement of the existing system. A similarly important package of very low quality
may merit rewriting or reengineering. Even very coarsely graduated metrics can be of

considerable help to the decision process, especially if there is strong clustering.

2. Identify the market trend
In order to determine the market trend for maintenance, the organisation should define its
objectives according to the maintenance activity, understand the differences with the devel-
opment activity, prove that with a good strategy for maintenance advantageous return on

investments can be obtained and reduce maintenance costs.

o Objectives of the maintenance activity

The aim of software maintenance is to extend the life of the product as much as possible,
whereas initial development requires the project to be completed within budget and
on time. If the overall strategy of the company is to provide software that are highly
maintainable and inspire customer confidence and satisfaction, the maintenance strategy
can be to keep this level of maintainability and to continualy satisfy the customer with

the software.
The objectives of the maintenance activity have to be defined within the company in

relations with other activities. It is essential that a bridge is established between the

corporate strategy and the maintenance strategy.

o Compare Development and Maintenance
Because more programs are developed and place into the operation phase, a direct effect
is the growing needs for maintenance and an increasing importance of the maintenance

activity within the data processing organisations.

— Development:
The initial development of software is usually project based; it is undertaken to a
budget and timescale; there is (hopefully) a clear product defined through require-
ments analysis; the project exists because of an identified market (or other) need;

and the organisation may have submitted a competitive tender to win the work.

36

Prime objectives are expressed mainly in terins of functional and performance at-
tributes of the software.
— Maintenance:

In contrast, software maintenance is usually revenue based; in financial terms it is
seen as a continuing consumer of resource with a nebulous and unquantified benefit
to the organisation.

The development of a system requires to be considered as product based in order
to provide a better credibility with customers. Thus, the company develop a sys-
tem, is able to maintain it and to provide support throughout its lifespan with a

comprehensive plan.

— Development and Maintenance costs:
Development and maintenance are generally separated budgets managed by different
groups. It is important to know what are the current annual development costs and

what are the current annual maintenance costs in order to compare them.

o Prove that maintenance can give a good return on investment

Maintenance is the biggest business in the software industry and it is totally out of
control (COLTER 1988) [57] we need to prove that maintenance can give a good return
on investment.

A major problem faced by the maintenance community is the lack of recognition by
senior management of the problems of maintenance (see section 2.4.2) and the benefits
and returns on investment that maintenance work provides. The reason behind this is
the lack of effective communication between managers of the maintenance team and the

senior management responsible for running the business.

It is necessary for the maintenance manager is to talk the ‘language of business’ in order
to present their case effectively [57]. This, by necessity, required the measurement of the
processes involved and the provision of statistics for consumption by managers with a

justification of the added value provided by an optimised software maintenance process.

The key parameter for the organisation’s board of directors is money and profit whereas
for the maintenance manager it may be quality or time for completing a task.

Example: If we consider economics, it will wise to pay, say 10 percent more for the
development of reliable software with proper documentation. This will more than pay

for itself in the long run through reduced maintenance and ease for redesign.

37

The problem is that development and maintenance are separated budgets managed by

different groups. Thus it is difficult for the development group to negotiate a 10 percent

price increase even if it will represent a 20 percent price decrease later on in the main-
tenance budget. It is important in the initial planning to deal with total life-cycle cost

and to provide a maintenance plan; this can be addressed by senior management.

o Reduce maintenance cost. In reference to section 2.5.2, software maintenance is a
huge consumer of resources, therefore, it is important to find methods of reducing the
" cost of maintenance, perhaps more important than finding new methods of developing
software as existing software is going to be with us for the foreseeable future.
A significant reduction in the maintenance costs can be realised with a design for change
philosophy integrated into the engineering life cycle. By carefully identifying the ex-
pected changes to a system and rigorously applying the concepts of information hiding

and abstraction of interface, the changeable aspects of a system can be isolated [96].

3.2.4 Organising the maintenance of systems

1. Maintenance of existing systems
A maintenance plan is essential for each product with replacement, retirement and new release |

taking into account the quality and the importance of the software.

During the maintenance process faults will be observed, reported and corrected and where
appropriate, repairs to the code, the specification, the design and to the documentation will

be authorised.

|

i
Pfleeger {196] notes that the maintenance team is always involved in balancing one set of ;
goals with another. Conlflict arises between system availability for users and implementation j
of modifications, corrections and enhancements. Another conflict arises whenever a change is |
necessary. Often, a problem may bhe fixed in one of two ways: a quick but inelegant way that
works but do not fit in with the design or coding strategy of the system, or a more involved

but elegant way that is consistent with the guiding principles used to generate the role of the

system. Maintainers may be forced to compromise elegance and design principles because a

change is needed immediately. When, such compromise is made, several events are likely to

make system maintenance more difficult in the future.

The particular strategy adopted in any instance will depend on:

38

o the nature, criticality and the severity of the fault

o the size and difficulty of the change required

o the age of the software

o the structural complexity

o the intermodule coupling

o the historical rate of modifications

© the number and the nature of the program installations

o user organisations.

And this strategy will have a profound impact on:

o the rate of system complexity growth

o the life cycle cost of the system

o the life expectancy of the system
Harrison (100] has developed a model of software maintenance to determine whether a given
module can be effectively modified or if it should instead be rewritten. This model suggest
early identification of change prone modules through the use of change measures across release
. cycles.
. Maintenance of future systems

With the traditional software life-cycle, we must give the priority to the maintenance phase

and establishing development methods to support maintenance.

It seems [162] that the concepts of information hiding, modularisation and abstraction of
interfaces are more maintainable than classical programming languages.

. Links between existing and future systems

As Parikh [187] pointed out, there is a gap between modern technologies used for developing

systems and maintenance of old, unstructured software systems.

A company needs to use bridge technologies [1] to help transition from maintenance using
obsolescent methods and tools to maintenance using modern practices. Without technologies
like Inverse Software Configuration Management [129], Reverse Engineering, the software

community will be destined to manage to diverging set of tasks:

39

¢
B
4

o Maintaining old code with archaic methods.

o Creating new products in advanced environments.

3.2.5 Conclusion

In this section a strategy for maintenance has been defined, the ways to identify the market trend
for the maintenance activity and a strategy for implementing a change in the software maintenance
process. The main problems for the organisational side of the maintenance activity are that senior
management should be involved to define the priorities and objectives of this activity in accordance
with the overall strategy of the company. The need for effective communication has been outlined.
Therefore, the management side of the maintenance process has to be defined in accordance to the

maintenance organisation.

40

3.3 The Management side of Software Maintenance

3.3.1 Introduction

The general principles of management are well defined and understood, allowing projects to be
completed on time and within budget, but there seems to be resistance [274] to applying these in
the maintenance field because maintenance is revenue-based and also poses special problems to a

manager [123].

A more diverse group over a longer period of time, work on the software, with fewer defined work
standards or methods, than in any of the other phase in the software life-cycle. A large proportion
of time consists of trying to respond rapidly to change request due to the direct impact on the
customer, so the maintenance activity takes on a fire fighting role. This role causes the backlog of
less urgent requests to increase, and rules out any more controlled preventive maintenance work

with a view towards reducing problem areas.

Compared to maintenance organisation defined in the previous section, the objectives of this
section are concerned with adequately managing the software maintenance activity: the software
maintenance process must be planned, monitored and controlled, and the maintenance department

organised and managed in an efficient way.

3.3.2 Planning for maintenance

Planning for maintenance has the particular problem that it is very hard to estimate the likely

demand for work, since one needs to know how many change requests the users will make.

To overcome this task, it is important carefully to define a maintenance plan [164] and to use

an appropriate tool.

Perry [193] has defined a plan of action for software maintenance with the following attributes:

e It is obtainable with existing resources.

o It will improve the productivity and quality of software maintenance.

o It will put the software maintenance group in charge of software maintenance.

Five objectives for a software maintenance plan of action are required:

i

. Appoint someone responsible for the software maintenance process (see section ‘organising

the maintenance team’).
2. Set software maintenance objectives (see section ‘objective of the maintenance activity*).

3. Move to the maintenance release mode method of installing a group of changes on a quar-

terly or semiannual basis (see section ‘prove that maintenance can give a good return on

investment’).

4. Calculate the value added by maintenance. If the value of change cannot be quantified, then

management should question the purpose of it.

. Subject maintenance to quality control and quality assurance procedures.

[

These objectives-depend on the importance of software for the company. A schedule (135} is a
plan for when task should start and when they should finish. Each maintenance task has several

properties:

o The duration is the length of time'it takes for each maintenance task and- for the overall

software maintenance process. :During planning, durations are always estimated. .

o The resources needed Vto.,complete;_th'e inaintenance tasks -'mélud,e'.perAso»nnel,'xlla.c'l\i;\e' time,

supplies ...
o The dependi‘aﬁciﬂes.b:f’ the task are other inaint_eiiaﬂce ta.SkSt}hzi.t‘mlust ﬁnish before it starts.
o ,le'é ”pig.ijn__ed cOmpleL;iion '('lz;pt'e, is tl\e d;{té wli'en»tﬂ:e task is é:x'[}écte'd to ble:,ﬁnis'li’ed.,

o The pro'rﬁis:'e-da,te>is.th_élast date, the :p:l:gn,ne('l;fc_blrn1j1e§i"01} bhé;fs‘:béeﬁ.ch@nged;l

3.3.3 Monitoring and controlling maintenance

The high cost of maintenance can, in part, be attributed to the greater difficulty in controlling the

maintenance process than processes in other phases of the life cycle.

Without proper tools, some questions remain difficult to answer:

o How long are defect fixes tacking ?
o Which programs have most defects ?

o Has this particular problem occurred before ?
These tools must:

o Store details of all problems and their solutions.

o Reports: list problems by customers, by modules, by products.

Key process parameters include:

o Response time to undertake changes
o Resource required to make a change

o The distribution of this resource across the several maintenance and Quality Assurance ac-

tivities.

1. Controlling the software maintenance process

The control of software maintenance can in part be realised through the use of three easily
understood and implemented methods and techniques: configuration management, change

control and communication [25].

Configuration management is explained and example of tools are given in section 4.2.4.-1

Without good communication (see section 3.3.5.-4), control is lost, the effectiveness of
maintenance procedures cannot be determined, and resource management becomes impossi-
ble. Without monitoring software quality, it will quickly degrade. It is not simply the code

that requires monitoring, but documentation, design information etc.

The main ingredient of a good change control facility are [250]:

(o]

a formal mechanism for identifying and communicating problems and change require-

ments

o reporting procedures that succinctly identify the nature, cost and timescale of the pro-

posed change Software Problem Report, Software Change Report)

o a visible organisational structure for the approval of changes (Configuration Control

Board)

o a powerful software configuration management capability to rework and control the

change

(o}

a capability to analyse change status/trends.

2. Managing the Charge

Successful management of change is crucial for a good release of the product without uncon-

trolled side effects.
The steps involved [250] are:
o to evaluate the impact of the change; the affected elements need to be determined, any
related element tracked and the impact established by appropriate methods

o to review the impact of the change on the project costs and timescales and decide on

the strategy for implementation if accepted.

o to control the elements under change and ensure that the later versions are released in

a compatible way

Change impact determination:

A configuration management system should allow enquiries to be made of its database so

that all elements related to those for which the change is proposed can be established. These

may be hardware, software and documentation elements. During this process, an indication

should also be obtained from a good configuration management tool (see section 4.2.4.-1) to

any other changes pending on any of these elements.

44

3. Collecting data

A key indicator of software quality is the defect or error rate. Poor maintenance may cause
this rate to rise, due to the ripple effects of a modification. Swanson has provided a more

detailed list of data that can usefully be recorded [256, 198] for each maintenance subproject:

o program identification
o number of source statements
o number of machine code instructions
o programming language used
o program installation date
o number of program runs since installation
o number of processing failures
o program change level and identification
o number of source statements added by program change
e number of source statements deleted by program change
o number of person hours spent per change
o program change date
o identification of software engineer
o change request identification
- o maintenance type
e maintenance start and close dates
e cumulative number of person-hours spent on maintenance

e net benefits associated with maintenance performed

These statistics are essential to provide evidence to more senior management of the mainte-

nance group’s activities. Swanson further lists useful metrics by which software maintenance

may be evaluated:

o average number of processing failures per program run

o total person-hours spent in each maintenance category

45

o average number of program changes made per program, per language per maintenance

type

o average number of person-hours spent per source statement added or deleted due to

maintenance
o average person-hours spent per language
o average turn-around time for a change request

‘o percentage of maintenance requests by type

Swanson’s work is expressed principally in term of source code. The ideas can be appro-
priately updated and extended to address for example design documentation, requirements,

specifications etc.

3.3.4 Tools for maintenance management

1. Tools for managing maintenance

Gamalel-Din and Osterweil [85] report that maintenance management activities can be di-
vided into two classes: product - related and process - related. The former is far better sup-
ported by computer aids, such as version control systems (RCS [261], SCCS [211] ...), reuse
sdpport systems (Draco [177]) and configuration control systems (NuMil [176], Odin [48] ...).

The latter {163, 166, 187] which includes personnel and resource management, walk-throughs,

qﬂality audit and planning are generally done manually.

To help maintenance managers overcome the difficulties in planning and scheduling of mainte-

nance activities, a system has been developed at the University of Durham. SCIMM (Software
Change Information for Maintenance Management) [60] stores information about requests for
changes and changes made to software systems, with a view to easy access and retrieval of

data, and the provision of analysis to aid managers in prediction and planning. The picture

of maintenance management is based on an increase in the visibility and understanding of the
work being undertaken. This takes the form of the production of progress reports, statistics
and more information on individual change; this information once collected can be stored.

This store of information provides a history of the work done, allowing it to be analysed to

find shortcomings in the maintenance methods being employed and the process involved, so

providing information to help future work.

46

In a more immediate sense, collection of data about the maintenance of a system increases
the visibility of the maintenance process and gives information to the senior management.
A record of changes to the system and their reasons, forms a permanent store of experience

gained by programmers while maintaining the system.

In a study conducted by Collofello and Buck [54] it was seen that more than 50% of errors or
faults were introduced by previous changes, so the ripple effect is a major contributor to error
reports. Ripple effect [276, 277, 278] is the phenomena by which changes to one program
area have tendencies to be felt in other program areas. Using the records of past changes, the
original cause of ripple effect errors can be established, allowing the redesign of the original

change or at least a better understanding of the problem’s cause.

. Tools for product management

As mention in Appendix A, three tools are commercially available for managing maintenance
products: SABLIME ([115] is a compreliensive product administration system that tracks
changes to a product consisting of software, hardware, firmware, and/or documents, from its
origination, through maintenance, delivery, and support. Its integrated Modification Request
(MR) and Conﬁgurat‘ion Management capabilities make it a unique tool for managers and

product developers alike [115].

RA-METRICS [251] and SMR [115] are software metric repository. RA-METRICS supports
all of the management reporting metrics and it reports: functional and technical quality,
user satisfaction, defects counts, CASE/Tool Usage, development and maintenance history,
financial history and estimation accuracy whereas the Software Metric Repository (SMR)
is a menu and mouse driven database featuring a ‘point and Shot’ user friendly interface.
The database incorporates the software metrics generated by PC-Metric as well as Functions
Points and project data. The browse and reporting capabilities are encouraging to examine

and analyse the raw data.

PC-Metric is a software metric generation package. It analyses the source code and computes

numerous size and complexity metrics.

A Problem Monitoring System (PMS) has been reported in [93] which has been developed for
the specific purpose of controlling customer queries and problems. The PMS is a PC-based
system that holds customer and product information and is driven by a series of events that
are date and time stamped. PMS includes a flexible and powerful reporting facility that

provides

47

o Statistics
— time taken to resolve a change
— programs most affected

— requests outstanding
o Reports
— list by requests

— list by customers

3.3.5 Organising the maintenance department

The selection of the appropriate stafl for a maintenance project is as important as the techniques
and approaches employed. There is a remaining question in the organisation of the maintenance

activity on whether or not the maintenance staff should be organised as a separate department.

1. Development/ Maintenance department
The industries surveyed in [151] by E. Swanson claimed that programmer productivity was
increased through programmer specialisation and that control of cost and effort was improved
when maintenance activities were separated from new development. (for small organisations,

maintenance may be a separate group, but a specialist may handle the maintenance work).

Three cases studies have been reported by Swanson and Beath {257] about what kind of

departmentalisation in a company is necessary with its strength and weaknesses:

o Departmentalisation by work type (system analysis versus programming)
—~ Stength: development and specialisation of programming knowledge and skill
— Weakness: cost of coordination between systems analysis and programmers.
o Departmentalisation by application domain (group A versus group B):
~ Stength: development and specialisation of application knowledge
~ Weakness: cost of coordination and integration among application groups

o Departmentalisation by life-cycle phase: (development versus maintenance)

~ Stength: development and specialisation of service orientation and maintenance

skills

48

5

— Weakness: cost of coordination between development and maintenance units

Many managers have indicated that separated department can improve the effectiveness of the
development and maintenance ones. However, the reality of size, organisation, budget, and

staff often prevent the establishment of separate maintenance and development departments.

. Maintenance staff

The maintenance stafl must effectively meet the challenge of maintaining a software system
while keeping the user satisfied, costs down, and the system operating efficiently. In this sec-
tion, the skill level needed for maintenance, the profile of the maintainers and the organisation

of the maintenance team are analysed.

e The skill level needed for software maintenance
The maintainer should be:
— Senior
— Experienced

— Knowledgeable about the existing system before attempting to change it

The maintainer has to [178}:

Perform all the activities of the life-cycle

— Analyse the problem and the impacts on the program

Determine the requirements and design changes necessary for the solution

Test the solution until the desired results are obtained

|

Release the revised software to operation or the users

Thus, there is a broad consensus that the successful maintainer needs to ‘know everything
about everything’.
" o The profile of the maintainer
The ideal maintainer requires the following qualities [90, 178]:
— Flexibility: the software maintainer must be able to adapt to different styles of
code, priorities, and user requests.
— Responsibility: performance of assigned tasks in a dependable, timely manner.

— Creativity: the ability to apply innovative and novel ideas which result in practical

solutions. Within the constraints of what is, please create something new.

49

- ;Seli.'—,motii‘v_aiti’o’h:r fth'e ability to independently initiate and complete work after
Iecei'vi11g .a:.n ass irggﬂmén‘ti .

- Di;eiip‘li‘he-:’b the aﬁfliﬁy fo 5e consistent in the ’pellforrmancexof duties and not prone
to tiying hazard dpproaches.

- -Peﬁ;er}'ee:éi'n, liai’sm.x —wit‘h, customer-

- Hu»lilil:i\ty:‘- in-front of,rci‘iti(:i'sm

— Experience: software maintainer should have a broader education than software
deve’lepers;. greater skill are needed because maintainers not have only to look for-
ward to new techniques, but also backward to previous ones.

— Analytic: a maintenance programmer must be able to analyse and understand
system’s requirement, design, capabilities and limitations and problems, and to

correct problems and add capabilities.

3. Organising the maintenance team

In order to accomplish the task of maintenance, there is a framework within which the main-
tainer has to operate consisting of user requirements, the existing program, the tools available,
the environment and the maintainer’s own capabilities. Maintenance staff should be organ-
ised in a manner that results in efficient use of human resources and effective application of

-available skills.

Usually, maintenance s’ta.ff has no knowledge on the process that created the product (see
section 2:4.9). So, software n‘laiutenance may be undertaken by the_o,r’jgilzlal,.glevélopment
group, or respoﬂsibiliﬁ may be given fo a-separate group. In the former cese," there: ie-fa
strong case to make the softwale mdmtamable although documentatlon qua,hty ma,y suffer

as staff see (even) leqs need Tor it. ln the latt,el case, the" development feam may be able to

move to new projectsy and each group_develol)S;e;\peljtxse.
The drganisat3011-f»of the 111ajntena,nce,t’eaﬁm,qan be as ‘follow:

The current pxa,ctlce (see qectlon 24 2) 1ep01ts tha,t ‘the ma.mtena,nce act1v1tv is used as
tlalnmg fOl new employees The’ C-mdance on Soft,waxe Mamtenance from the NBS [178]
- “suggest that ‘Mamtenance should NO 1‘ be used as a’ tlammg glound where _]umor staff are
left to’ sznk or- swzm Many authom ale agleed thaL the: mamtenance tea.ms should mclude a

mix of expeueuced and Jlll]lOl staff

Boehm [34] suggests that the maintenance staff should be involved earlier in the software

process during standards preparation reviews and test preparation.

Fairley [82] recommands that the minimum size for a maintenance team is two hecause main-
tenance personnel can work more effectively when they check one another’s work and when
they can learn from one another. By working with others, they are likely to find more errors

sooner and to perform the job at less cost.

In larger teams, an identifiable quality assurance group should be established. There are
sttong advantages if this group has a separate reporting structure, to maximise its indepen-

dence. The maintenance staff should be responsible, mobile and productive.

o Responsibility: Many authors consider that task responsibilities should be clearly
defined and technical specialisation among maintainers allowed to provide a higher mo-
tivation. Each team is responsible for the maintenance of one or more software systems.
A maintenance leader is defined in each teams which is directly responsible for technical
program support. He reports to the maintenance manager and the rest of the team

reports to him.

e Mobility: McClure [166] suggested the maintenance personnel should be rotated be-
tween design and maintenance. It seems appropriate to rotated between projects, to
avoid individuals regarding the system as their private domain (this has management
advantage also, if the person leaves). Boehm [32] suggest that someone from mainte-
nance be a part of the Quality Assurance team during development in order to make
the transition to maintenance more satisfactory. This suggestion will depend on the

organisation of the company.

e Productivity: Boehm {10] defined software maintenance productivity as the ratio of
the number of source instructions added or modified to the number of man-months of
maintenance effort. A company can increase maintenance productivity by using the best
method to perform this activity, providing the right procedures and tools and investing

in technology, so that maintainers will have similar facilities to developers.

4. Communication in the maintenance department
A good communication inside and outside the maintenance team is essential to the success

of this activity.

s Communication inside the maintenance team

51

Much of the communication is social chit-chat [135] but during these talks a surprising
amount of technical communication and learning takes place during the typical coffee
break.

In a maintenance environment, ensuring good communications is essential in order to
prevent chaos. The maintenance communications vehicles are meeting minutes. At
weekly team meeting, all members of the team are present, and each member reports
on progress since the last meeting. Each team member may introduce to the group new
ideas, requests for changes, and any other information he feels is to the benefit to the
group. It is essential that information about both the software being maintained and
the maintenance process is collected and reported to management.

To improve communication, we must encourage electronics mail which is fast, less ex-

pensive, more often read and answered.

Communication between maintenance team manager and upper management
A major problem faced by the maintenance community is the lack of recognition by
senior management of the problems of maintenance and the benefits and returns on
investment that maintenance work provides. The reason behind this is the lack of
effective communication between managers of the maintenance team and the semior
manageinent responsible for running the business,

Communication between maintenance team and user

A user is a person or group that is directly involved in the actual use of the system. It is
very important to provide good training for users. If they understand well the system,
they will require less from the maintenance staff. The maintenance team works with
users and try to understand the problem as expressed in the user’s language. Then,
the. problem is transformed into a request modification. The change request includes a
description of how the system works now, how the user wants the system to work and
what modifications are needed to produce the change. The user interface can often be

established with the concept of ‘hot-line’ or ‘help-desk’ (see section 3.4.2) .

3.3.6 Managing the maintenance team

Talented people comprise the single most important element of a software maintenance organisation.

The crucial initial step is to make available the best people from within the organisation to work

52

in a well-structured and well-managed environment in which they can function as a team. Well-
motivated staff are likely to ensure stability within the maintenance organisation, adequate training

is vital to ensure that the maintenance team is highly productive.

1. Motivating the maintenance staff

Some organisations have tried to improve the maintainer’s motivation and the image of the
maintenance activity by simply giving another name which is a superficial approach. It
changes nothing except the name. A better approach is to acknowledge the importance and
value of good maintenance to the organisation through career opportunities, recognition, and

compensation.

Here is some advices given to obtain a high motivation in the maintenance team [34}:

o Couple software maintenance objectives with organisational goal and link its rewards to
organisational performance.

o Integrate software maintenance personnel into operational team.

o Create a discretionary corrective maintenance budget.

o Rectify the negative image of software maintenance. If a company wants to hire an
engineer for the software maintenance tean, it should talk about ’optimisation of existing
systems’ instead of software maintenance.

e Clearly showing the importance of maintenance to organisational goals.

o Monitor the staff turnover which vary from location to location:
A rate under 10% is considered normal but much higher rates may be seen as a big
problem and senior management should probe to determine the cause [199]:
— Staff compensation adequate.
— Working environment adequate to motivate staff

— Clear career structure: have advancement paths been established (position advance-
ment are important to motivate software maintenance staff with promotion criterias,

frequencies ...).

In a nutshell, management have to demonstrate that maintenance is of equal value and is as

challenging as software development.

2. Training

Methods, tools and environments are changing so rapidly that it is difficult to determine what

kind of training does the maintenance team need.

A Brief look at existing training has to be analysed by:

o Basis: conceptual, procedural, survey, system specific, tool specific
o Level: strategic, managerial, technical

o Form: university, in-house, public, part of other courses, informal, on the job

Obstacles for sound training in software maintenance remain but opportunities are given to

cope with this lack:

o Obstacles: lack of accepted model and theory, inappropriate emphasis on development,

lack of interest

o Opportunities: university level courses with software engineering analysis and manage-
ment, and introduction of methodology with each new technique or tool and team by

team.
‘There are some existing courses on software maintenance:
o The University of Durham and the Polytechnic of Liverpool both include software main-

tenance issues within their software engineering courses.

o The University of Durham has begun trials of courses for industry aimed so far at

management.

!
o Brown University (USA) includes at least some software maintenance issues in its Com- w;

puter Science course

o Richard Ball (from Canada), Bob Wachtel (from the USA) and Nicholas Zvegintzov

(from the USA) give seminars on the subject, with occasional appearances in the UK.

o Integrated Computer Systems (ICS), a commercial training organisation, has introduced

a three-day course to run three times a year in UK.

A maintenance training should be composed with courses on the application domain, software

engineering, and syntax knowledge.

In general, a company should be spending between 2% and 5% of software budget on training

that is between 7 and 15 days per year {199].

54

A good training plan provided to the maintenance team is important to its motivation and to

adequately perform its work.

3.3.7 Conclusion

In this section a good management of the software maintenance activity and t.he software main-
tenance process is given along with advices, the type of data to collect and the tools to use. A
mainten:;nce plan should be provided for the management of the maintenance activity. A soft-
ware configuration management tools should be used for controlling and monitoring the software
maintenance process. The maintenance department should provide a good training plan for the
maintenance staff and increase the stafl motivation. Some data on each project should be collected

and statistics provided to senior management.

After defining the management of the maintenance activity, there is a need to understand the
different tasks involved in the software maintenance process and the technical information required

to perform maintenance.

55

3.4 The Technical side of Maintenance

3.4.1 Introeduction

This section surveys the different software maintenance tasks models, presents an adequate mainte-
nance process for Aerospace systems and provides technical information required to achieve main-

tenance.

¥
i

3.4.2 Software Maintenance Models

Modelling the software process is an important current area for research [262). This is not surprising,
since in order to understand and assess a software product, we need to understand and study the
process by which it was produced. Much of the work is addressing the initial software development,

although some research is also including the evolution and more general maintenance of software.

There would appear to be two approaches to work on software process models. In the first,
the descriptive approach, existing software development is observed in real life, and empirical
conclusions are abstracted from such analysis. In contrast, process models may be prescriptive,
so that a model derived from theoretical or abstract considerations is imposed on the software
development process. In practice, research is likely to move forward by a combination of these

approaches, and this reflects the description of maintenance models given in this chapter.
Current Models

The traditional life cycle model of software has always shown the software maintenance activity
as a single step at the end of the cycle. This model is summarised below (for more details see

section 2.3.3):

1. Requirements
2. Design

3. Implementation

56

4. Test
5. Installation and check-out

6. Operation and Maintenance

with possible feedback loops from each phase.

The model does not portray the system life; it only shows the creation and development (or
youth) of a system. It does not show the evolutionary development (or adulthood) that is the
characteristic of most software systems. The final step needs to be replaced by a model that

reflects this aspect of software evolution.

A number of authors have proposed models of the software maintenance process [154, 31, 234,
185, 163, 276, 189, 181, 14, 197]. The following is a summary of software maintenance tasks models

reported in the literature:

Boehm [31] outlines three major phases of a maintenance effort in his model:

1. understanding the existing software
2. modification of the existing software

3. revalidation of the modified software
The Martin-McClure model [163] is similar, consisting of three tasks:

1. program understanding
2. program modification

3. program revalidation

Parikh [185] has formulated a description of maintenance tasks that offers a very complete step

by step protocol which may be followed for a maintenance assignment:

1. identification of objectives

2. understanding the software
3. modification of the code

4. validation of the modified program
Sharpley [234] highlights more directly the process of correcting errors in existing systems:

1. problem verification

[~

. problem diagnosis
3. reprogramming

4. baseline verification/reverification

Yau [276] focuses his model on software stability through analysis of the ripple effect of software

changes. The five major activities of this model are:

1. determining the maintenance objective

2. understanding the program

3. generating a maintenance change proposal
4, accounting for the ripple-effect

5. regression testing the program

The Patkow model [18'9] concentrates on the front-end maintenance activities of specifying the

maintenance requirements. It consists of five generalised steps: !

1. identifications and specification of the maintenance requirements

2. diagnosis and change localisation

3. design of the modification

4. implementation of the modification

5. validation of the new system

The two first steps depend on the software maintenance activities (either perfective, adaptive or

corrective).

Osborne [181] identified a model with more comprehensive phases:

1. determination of need for change
2. submission of change request

3. requirements analysis

4. approval/rejection of change request
5. scheduling of task

6. design analysis

7. design review-

8. code changes and their debugging
9. review of proposed code changes
10. testing
11. update documentation
12. standards audit
13. installation
14. u;%er acceptance

15. post installation review of changes

16. completion of task

Osborne points out that although the processes are presented in a linear fashion there are

a number of iterative steps involved within the model itself. For example, the results of the

59

design review may necessitate additional design analysis or even modification to the original change

request. Rapid prototyping can easily be applied to such models.

The maintenance models described here do not incorporates metrics explicitly as a method for
assessing and controlling change. The use of software metrics has been successfully applied to the
problem of software maintenance [123]. Methods based on metrics can facilitate maintenance tasks,
improve the quality of the results and predict the need for further maintenance effort [266, 147].
Rombach and Ulery [216] propose a method of software maintenance improvement by focusing the
goal, queétion and specific measurements associated with activities in the context of a software
maintenance organisation. The paradigm (goal/question/metrics) is based on the principle that
effective measurement procedures should be derived with a top-down approach from goal. It suggest
that the measurement needs to start with a precise specification of the goals, continue with the
refinement of each goal into a set of quantifiable questions, and end with a derivation of a set
of metrics. However, their method do not specify a framework for metrics that supports impact

analysis in the software maintenance process.

Pfleeger [197] describes a model for the software maintenance process that depict where and
how metrics can be used to manage maintenance. The management of maintenance controls the
sequence of the different activities (with a number of iterative steps) by receiving feedback with

metrics and determining the next appropriate activity. The major activities are:

1. change request

2. analyse software change impact (impact/scape, traceability)

3. understand software under change (complexity, volume, documentation)
4. implement ma*intena,n-ce change (adaptability)

5. account for ripple effect (stability)

6. retest affected software (testability, verifiability)

The analysis and monitoring of the impact of change coupled with feedback and metrics, allows
management to confirm if the change meets the requirements, does not degrade the maintainability

and is being implemented in the best way.

Request-Driven Model

Elements from these models can by combined to produce a task model that describes in detail
the activities that take place during maintenance. This model is a Request Driven Model that
attempts to portray the activities of software maintenance as dictated by users’ requests for change.

The model consists of three major processes [23] called :

1. Request Control
2. Change Control

3. Release Control

It should be noted that the word Control has been deliberately used at the end of each process
name to imply that the model will not work effectively without strict control from management of

all the activities that take place.

The activities that take place in each of these process are now described :

1. Request Control

The major activities are :

o collect information about each request
@ set up mechanisms to categorise requests
e use impact analysis to evaluate each request in terms of cost/benefit

e assign a priority to each request

This initial step of collection should be carried out by a ¢ Help Desk’ manned by staff who will
not be directly involved with the technical process of satisfying the request. It is preferable
if the Help Desk is staffed by highly skilled Systems Analysts; such people can also distin-
guish genuine user change requests from queries arising from the misunderstanding of user

documentation etc.

2. Change Control

The activities during the change control process are :

61

o

select from top of p‘r_i‘io_rity'lilst
o reproduce the problem (if there is one)

analysis of code, documentation and specifications

o

o]

des’ig;i changes and tests’

quality assurance

O

3. Release Control

The activities are :

o

release determination

build a new release

o]

— edit source
— archival and configuration management

— quality assurance

o]

confidence testing

distribution

o

o}

acceptance testing

3.4.3 Software Maintenance Model for Aerospace Systems

The differet\t task models outlined if the previ'ous section do not refiect the requirements for
Aerospace systems because their pmducts usual]y]nve only one customer, they use- hlgher level
languages like' Ada, C and Fortlan mstead of Cobol and the staff s m01e skllled than f01 busmessb
apphcatlon, they sometJmes need to- do some quick fix for ma,mteua,nce because of the cntlclty ‘of

systems and they a,pp]y Aelospace system standalds (and a,lso see sectlon 5.3).

The models ﬁom L:u Boehm and OQ.bome [154 31 181] do not glve any detaJls of the dlfferent
tasks Sharpley s ta,sk model [234] is only dedlcated to couectlve ma.mtenance and there is no

’mformatlon on retestmg Paukh Yau Pﬂeegel [185 27(), 197] are general task models.

Pat]\ow s model [189] is vejy mtexestmg berause of its generahsed model and 1ts reﬂned versions
for the djfferellt mamtenance actlv;tleq bnt doeq not- mentlon the need to’ check fox the effects of a

change on those p01 tions of a program thal, wele not actually modlﬁed

- 52

The Request-driven model (20, 23] is dedicated to companies with many customers and for

business applications.

Thus, for Aerospace systems, the following general model for software maintenance tasks is

proposed:

1. Identification of need for modification

2. Pr;)graan comprehension and localisation of modification
3. Design of‘the modification and impact analysis

4. Implementation of modification

5. Revalidation

with software configuration management and quality assurance

This general task model can be refined for the different software maintenance activities: cor-

rective, perfective, adaptive and preventive.

1. Identification of need for modification

e Corrective Maintenance
This activity starts when anomalous behaviour is observed to have occurred within the
system and as a result an anomaly report is issued by the operations staff. The nec-
essary maintenance action is then carried out by the maintenance staff [242]. The cur-
rent request with the previous maintenance requests is compared in order to determine
similarities. The task of identification is to reproduce fault situations, verify reported
problems and specify correct operation of the system. This task requires test data and

environment simulator (see section 6.9.3).

e Perfective Maintenance
Identification of a deficiency in functionality and specification of desired functionality.
Identification of new or altered requirements and the specification of the operation of

evolutive system. A modification request is issued.

63

o Adaptive Maintenance
Identification of a change in the processing or data environment, describe the change

and the revised specifications to reflect it. A problem report is issued.

o Preventive Maintenance
Identification of deficiency in maintainability or quality standard and specification of the

desired quality standard. A problem report is issued.

All Anomaly reports, problem reports or modification request are submitted to the Configura-
tion Control Board (CCB) consisting of representatives from the maintenance team, quality,
configuration management and project management teams. The CCB has to approve on a

reported problem. If approved, a Software Change Request(SCR) is issued internally.
2. Program comprehension and localisation of modification

o Corrective Maintenance
Localisation of the part of the system which is responsible for the error. The diagnosis of
errors in a large system is often the most difficult and time consuming task in corrective
maintenance [234]. An anomaly diagnosis is carried out to identify the failed component

or module. Then, the failed items are identified, an analysis of the problem is carried out

to determine the cause of the failure and the form of corrective modification required.

Maintenance tools:

|

code analyser (see section 4.2.1.-1 and A.l1.1)

— code visualisation (see section 4.2.1.-2 and A.1.2)

debugger (see section 4.2.1.-5 and A.1.5)

|

cross referencer (see section 4.2.1.-3 and A.1.3).

o Perfective Maintenance
Localisation of the source of the deficiency or of the existing software elements which are
affected by the new requirements (requirements, specification, design, code, test data).
The maintainer has to find where the resources were excessively consumed in order to

make an optimisation.

Maintenance tools:

— code analyser (see section 4.2.1.-1 and A.1.1)

— code visualisation (see section 4.2.1.-2 and A.1.2)

64

— debugger (see section 4.2.1.-5 and A.1.5)

— cross referencer (see section 4.2.1.-3 and A.1.3)

o Adaptive Maintenance
Localisation of all software elements aflected by the change. When there is a change
in the data environment, the maintainer must find the parts of the system that use or
set the data that is being changed. It is necessary to have some knowledge of what the
system inputs and outputs are, where they are used, and what their properties are. This

knowledge can be kept in a data dictionary.

Maintenance tools:

code analyser (see section 4.2.1.-1 and A.1.1)

code visualisation (see section 4.2.1.-2 and A.1.2)

debugger (see section 4.2.1.-5 and A.1.5)

cross referencer (see section 4.2.1.-3 and A.1.3).

e Preventive Maintenance
Localisation of the existing elements which are concerned with the modification request.
The maintainer has to to locate the part of the software where there is a lack of main-
tainability.

Maintenance tools:

code analyser, quality analyser (see section 4.2.1.-1 and A.1.1)

code visnalisation (see section 4.2.1.-2 and A.1.2)

debugger (see section 4.2.1.-5 and A.1.5)

cross referencer (see section 4.2.1.-3 and A.1.3)

For more details on program comprehension and fault localisation see also section 4.3.1. and
4.3.2.
. Design of the modification and impact analysis

This task decides what the correct properties should be, how these properties are to be

established, and determines the extend of any ripple-effect.

The impact analysis evaluates the effects of a proposed change. This activity determines
whether the change can be made without adversely affecting the rest of the software. Deter-

mining the impact of the change is an evaluation of the number and size of system artifacts

G5

that will be affected by the change. Traceability suggests the connectivity of the relevant
workproducts and whether traceability can be established once the proposed change is made.
If the impact is too large, or if the traceability is severely hampered by the change, manage-

ment may choose at this point not to implement the change.

The design of modification requires an examination of the side-effects of changes. Depen-
dencies are easier to establish when properties are stated explicitly, and are traceable in the
design and code. Components can be troublesome if they are complex, or highly coupled to

other parts of the system.

In this phase, the problem severity is evaluated, a proposed modification is carried out on a

feasibility study, an estimation of the modification cost made and the side-effects minimized.

This involves a search through the specification, design, code, test suites, documentation ...
within the changed module and continuing to all other modules which share global variables
or common routines with the changed module. Also, only one module should be changed at
a time and the potential ripple effects of each change should be determined before changing

the next module in sequence.

Maintenance tools:

o test coverage monitor (see section 4.2.3.-1 and A.3.1)

o test regression testing (see section 4.2.3.-2 and A.3.2)

o test impact analysis (see section 4.3.3. and B.3

o test ripple eflect analyser (see section 4.3.3.-2 and B.3.2)
o test modification cost

This phase ends with acceptance/ rejection of the proposed modification by the CCB.

. Implementation of Modification
Implementation of all the modifications identified in the impact analysis phase. The mainte-
nance tools that can be used are the same as the previous phase, but for preventive mainte-

nance we need to use reverse engineering tools (see section 4.2.2. and A.2).

. Revalidation
This phase is to ensure the reliability of the modified system. The process of revalidating a

program [163] consists of system testing, regression testing (test of unmodified portions), and

66

change testing (test of modified portions). The original test cases and test data should be

utilised as much as possible.
o Change testing: testing the modified portions of the program to determine if the change
was designed and implemented correctly.

o Regression testing: testing the unmodified portions of the program to determine if those

areas still operate correctly.
6 System testing: testing to be ascertain that the entire system as a whole is still operating

correctly.

Furthermore, for perfective maintenance, there is a need to compare the performance before
and after modification or 1o test the validation of the new or altered requirements.

Maintenance tools:

o test coverage analyser (see section 4.2.3.-2 and A.3.1)

o regression testing (see section 4.2.3.-1 and A.3.2)

The software maintenance process ends after the user has accepted the modified system and all

documentation has been satisfactorily updated.

If a severe error exists (e.g. a critical system cannot function), maintenance staff are immediately

assigned to the software maintenance process and some of the maintenance tasks can be shortened.

Other Activities

Other activities are performed in parallel with the software maintenance process:

1. .Software configuration management
The preliminary objective of the software configuration management {181}, generally referred
to as the management of software modification, is the release of operationally-correct, and

cost-effective software. SCM is an integrated set of four subdisciplines:

(a) Software Configuration Identification is the definition of the different baselines and asso-

ciated components of a system, and any change made to these components and baselines.

(b) Software Configuration Control is the control procedures for making changes to compo-

nents and baselines.

67

(¢) Software Configuration Status Accounting is the provision of an administrative history

of the evolution of a software system.

(d) Software Configuration Audit determines whether or not baselines meet their require-

ments.

SCM helps to ensure that software change satisfies specified requirements and change criteria.

SCM also should provide record retention, disaster recovery, library activities, a software
repository, and ensures that the necessary coordination and approval are obtained prior to
changing the baseline. SCM helps to track all actions associated with problem reports or

change requests.

Maintenance tool: Software configuration management (see section 4.2.4. and A.4.1).

. Quality Assurance

Software quality assurance is an activity that is applied throughout the software life cycle. It

encompasses [198):

o analysis, design, coding, and testing methods and tools.
o formal technical reviews that are applied during each phase of the software life-cycle.
o control of software documentation and the changes made to it

o a procedure to assure compliance with software development and maintenance standards

(when applicable).

o measurement and reporting mechanism.

It is essential that all change considered for a system are formally requested in writing. The
analysis of the complexity of the software and the relationship between products is essential
to determine whether the overall maintainability of the system will enhanced or degraded by

‘the modification.

If the Configuration Control Board is unhappy with the likely degradation of these system
characteristics, the desirability for the change may be reassessed or the way in which the

change is to be implemented may be reevaluated.

The maintainability measures give management and customer an idea of the likely overall
quality of the resulting product. By monitoring product quality with each change, the software
maintenance process model can be used to increase overall quality and enhance maintenance

productivity.

68

The most formal maintenance review occurs at the conclusion of revalidation émnd is called
configuration review. The configuration review ensure that all elements of the software con-
figuration are complete, understandable, and filed for change control. During development,
maintainability reviews should be conducted repeatedly as each step in the software engineer-
ing process is completed. Maintenance tools: quality analyser (see section 4.2.1.-1 and A.1.1).

3. Maintenance repository

It is essential that a maintenance repository that store information associated with each
project throughout the project life cycle is established and preferably computer-based that
will contain:

o all change requests

o progress of change

o modification impact list

o list of known errors and omissions

e test database

o hardware and software history

e review reports

o system configuration data

o revalidation data

(]

reliability data

Maintenance Tool: Product Management (see section 4.2.4. and A.4.7).

3.4.4 Technical Information for Maintenance Staff

Information for maintenance can be collected from a number of sources, including the source code,
internal documentation, external docuinentation, the system developers, and any body else who

happens to know about the system.

The previous section has described the maintenance tasks through different software mainte-
nance models and this leads to identify the technical information necessary to perform effectively

software maintenance [189, 53]:

69

. Requirements information:

It is important that both the functional and performance requirements for the existing system
be known and understood so that they can be preserved during the modification process.
A sufficient understanding of the application area should be provided which includes the

perceived needs and desires of the end users.

The additional requirements planned or anticipated but not implemented should be identified.

Specification information:

Maintenance staff need to have knowledge of both high and low level system behaviour which

includes what a system does and how it does it and why the user wants the system to do this.

The functional specifications should be organised in a manner that they can explain the

relationship and interactions between functions.

The method used for the specification phase and the way to modify it should be explained.

. Architectural and low level design information:

Design principles and decisions should be understood. This includes why certain design al-
ternative were chosen and others were disregarded. Maintenance personnel need to have
knowledge of all algorithms that are used regardless of their complexity. Coding style, stan-

dards and other implementation convention should be understood.

. Processing environment information:

The interactions within the total processing environment need to be known. This includes

resource requirements such as the hardware and support software.

Declaration, control and data flow information:

At the source code level, a maintainer must have knowledge of a program’s control flow, its
invocation hierarchy, data flow, data aliasing, loop termination conditions, entry and exit
assertions for all procedures (functions), and all over syntactic elements which contributes to
an understanding of a program’s run time behaviour. A maintainer must also have knowledge

of the declaration information for all data object in a program.

Traceability between life-cycle products:

Knowledge of the functional and performance requirements of a system should ideally allow a
maintainer to relate what the system does with the various software components that causes

it to function.

70

This implies traceability from the specification to the design and source code. Furthermore,
knowledge of software requirements should contain an understanding of the relationship and

interaction between different soltware functions.

7. Test environment information:

Comprehensive knowledge of diagnostic and regression tests must be available as well as an
understanding of how to use them. This will include available test cases, expected results

and a test case history.

8. Document organisation information:

The maintainer should also understand how the specification, design, test cases, etc are or-
ganised, this will allow quick localisation of items of interest rather than unnecessary lengthy
searches through documentation. It is important that the maintainer has access to the appro-
priate level of detail at any point in time. If there is a document dedicated to maintenance,
it should be stored in a database based on hypertext technology in order easily to browse in

the documentation.

9. Anticipated features for enhancement:

The maintainer should have knowledge of anticipated additional features that have not yet
‘been implemented, This would avoid redundant effort spent in rethinking requirements anal-

ysis and design.

3.4.5 Conclusion

In this section, software maintenance tasks model have been surveyed and a model for software
maintenance of Aerospace systems proposed with useful proposed tools at the different phases. This
model is described with the different tasks e.g. identification of need for modification, program
comprehensioﬁ and localisation of modification, design of the modification and impact analysis,
implementation of modification and revalidation along with software configuration and quality
assurance. The use of software metrics applied to maintenance has been emphasised to facilitate
maintenance tasks, improve the quality of the results and predict the need for further efforts. The

technical information to carry out maintenance has been presented.

3.5 Summary

This chapter has pyeéé_nted a report on software inaintenance hest-practice based on an dlla}ytical
approach of the éoftivafe mhinteﬁa.nae process and a.dfdréssed‘ at three different levels: organ.isa.-
tio’nal, mé.nagéridl‘ and technical in order to-define the best 1‘1_1_et‘jhod"for,majnfte'na;nce; The ‘seniblr
mzinagemént sllgﬁld,be iﬁvol;{e(l to define the maJ nte11a_héé-‘s’tféte§y a.C(:';Ord’ih:g‘to the overall one of
the coxﬁpéﬁy. The nia'intena.uv(»:e a}cl_;i,\'/ibt;y isvhoul'(‘l’_:rl_)e §eﬁ‘cz§g‘;'-a.si ‘a 'vp'li-(’)duct su.ppor»t_h or’ganjs'a;'t'ioi-l.’ The
improved éoft\vadle maif}tgl,lénce process should be planned, monitored and coutrolled with appro-
pﬂate tools. The maintenance department should be managed in ‘a.n.:"e,fﬁcient manner in order to
increase its efficiency, prodvuctjvity émd t_he motivation of the maintenaﬁce staff. A model for the

software maintenance tasks dedicated to Aerospace systems has been presented and the importance

of data collection and software metrics emphasised.

Now, we shall define and survey the maintenance tools available to perform maintenance and

the on-going research projects and prototypes.

72

Chapter 4

Software Maintenance Tools

4.1 Introduction

Several surveys on software maintenance tools have been reported. The General Service Admin-
istration’s Office of Software Development and Information Technology (GSA) devised software
maintenance tools into eleven categories and brought them together in what is termed a Program-
mer’s Workbench(PWB) [243]. The PWB is specifically oriented to Cobol applications on IBM
architectures. The Software Maintenance News surveyed Software Maintenance Tools in 1989 {244].

These are dedicated both to scientific and business applications.

The objective of this chapter is to present a survey on commercially available tools and pro-
totypes that can be useful for the software maintenance process. The scope of the survey is to
discuss software tools which can be used in the maintenance of scientific or real-time systems. This
survey is not exhaustive but the tools listed are meant to be representative of the techniques that
are currently commercially available. With the prototypes and research projects in progress, it will

be easier to outline the research trends in order to make better and more efficient tools.

The information on tools was obtained in our survey from several sources including product
descriptions from tool vendors, earlier survey articles [273, 180, 251, 243, 244], conference pa-

pers [111, 112, 113, 114, 115), and research papers.

73

This chapter is divided into two parts:

1. Comunercially available tools

2. Prototypes and research projects

Further comprehensive details of tools and prototypes are given in Appendix A and B.

4.2 Commercially Available Tools

In this section, commercial tools are classified into four categories: tools that are useful for program

comprehension, reverse engineering. testing and maintenance management.

4.2.1 Tools for Program Comprehension

Program comprehension is tlie most expensive phase of the software life cycle [246] and it is sug-
gested that 40 % of the maintenance effort is spent in trying to understand how the existing software
works. It seems worthwhile then to investigate tools and techniques to reduce these costs and then

a significant saving can be made.

Code Analysis is used for examining a piece of program code, and is used for determining the
dependencies hetween different entities and analysing the usage of entities. Different techniques

are used:

o data flow analysis examines the piece of program code in order to determine if there are any

anomalous use of variables within that code.

o program slicing is a form of program decomposition based on control flow and data flow

analysis in coherent modules.

o call graphs is a directed graph that represents the dynamic relations between routines and

calls. This technique make use of control flow graphs in order to perform the desired analysis.

74

o program transformation systems systems are systems that transform a program into a pro-

gram structurally different but logically equivalent. Program transformation tools are divided

into restructurers and formal transformations.

Many tools can be useful in supporting program comprehension at the code level e.g. code anal-
yser, code visualisation, cross referencer, source code comparer and execution monitor/ debugger.

We shall now investigate these in more details.

1. Static Code analyser
Static analysers include tools that analyse a program’s control structure data flow. By static
we mean that the program itself is not executed and therefore its run-time behaviour is not

executed.

VAX SCA, ISAS and F-SCAN are common static code analysers (for further details see
Appendix A):

(a) VAX SCA provides facilities such as logic tracing, data flow tracing, and consistency
analysis as well as a cross referencer

(b) ISAS reports and charts procedure hierarchy, data references, control flow, system struc-
ture

(c) F-SCAN provides structure charts, Call/Vcalled tables, Set/Used tables, and diagrams

of Common.

(d) MALPAS [250] provides control flow, data use, information flow, partial programmer,

semantic and compliance Analyser.

ACT, BATTLE MAP and LOGISCOPE also calculate software complexity metrics that are

useful for quality assurance.

(a) ACT [165] is driven by and analyses source code, producing a graphical representation
of module structure, and also calculates the McCabe cyclomatic complexity metric and
generates the basis set of test paths that should be exercised for each module within the

source code.

(b) BATTLE MAP [165] allows the user productively to reverse engineer large existing sys-
tems by providing a comprehensive, visual understanding of the entire program structure

along with its quality attributes .

75

(c)

LOGISCOPE [169] shows the internal logic structure of each module of code, as well as

the structural relationships of all the modules.
The results provided by the Complexity Analyser are:
o quantitative with Halstead, McCabe and Mohanty metrics;
o qualitative with control graphs, call graphs, criteria graphs and Kiviat diagrams;

LOGISCOPE is a very useful tool for Quality Assurance with the software complexity

analyser.

2. Code visualisation

Code visualisation[180) is a tool to help the maintainers analyse and understand the code

through a powerful man machine interface. While all these tools show how a program is

structured, they use different means to achieve different ends.

(a)

(b)

(d)

OBJECTIVE-C Browser [180] uses a windowing approach that displays hierarchical and

functional information about code object in C or Objective-C.
It provides three types of information about the source code:
o the contents
o available cross-referencing data
o source code contents with respect to the inheritance hierarchy.
VIFOR (202] on the other hand, takes a different approach for FORTRAN visualisation.

The browser has a graphical interface that allows the user to select, move, and zoom into

icons representing parts of the program. As such, it gives a graphical editing capability.

SEELA [98] takes yet another approach to visualisation by using Reverse Engineering. It
converts code into a program design language and lets the user edit the structure chart,
cut and paste to and from the code, and generate high-level documentation describing
the code structure. Thus, it gives and logical path between code and its corresponding

design language.

Unlike SEELA, which works with many languages,

GRASP/ADA [180] is an example of a comprehension tool tailored to specific language.
This tool builds graphical control-structure diagrams that high-light the control paths

in and among Ada tasks.

76

Mg

(e) ACT and BATTLE MAP [165] take an entirely different approach to visualisation control
path in graphs of all control paths in order easily to produce the control flow and

corresponding complexity.

(f) EDSA [265] uses program slicing for collapsing and depicting large amounts of code in

a small window.

3. Cross referencer

These tools trace the use of data elements, named paragraphs, and/or procedures through a
program. Object references are usually identified by source statement numbers. Associated
with the statement numbers may be additional information such as the type of statement
involved (move, assignment, conditional, etc) or perhaps a copy of the statement itself. These
tools will identify all occurrences of data names, words or literals within a program. It is a

useful tool for navigating around source code.

Cross referencers will typically:

e identify and trace data element modification, branch logic and program calls

o generate graphic record layouts visually to communicate data structures and lormats

Cross referencers output is typically either a printed report or an on-line display.

Examples of commercial cross-referencers e.g. ADPL, Autoref, BPA, CICS-OLFU ... are
given in Appendix A.

Cross-referencers are very common maintenance tools usually used with interface analysers

and code analysers in order to understand the source code.

. Source Code Comparison

These tools are designed to help programmers quickly identify changes between program code

versions.

ISAS, Matchbook, S/Compare, Text Comparator detect and highlight differences between two
or more files including additions, deletions and in some tools, moves. Source code comparison
can be a significant aid in determining the rational for previous undocumented maintenance

and should be included in version control.

5. Execution Monitoring /Debugging

This group of tools allows the programmer interactively to monitor and manipulate the

-1

-l

progress of a program as it executes. lu doing so, the maintainer can directly examine the
behaviour of a program and the effects of various inputs. It is imuportant to distinguish
between the terms fault localisation, fault repair, and debugging. Myers defines debugging

as:

The activity that one performs after executing a successful test case (successful in

a term that it found an error).

Deécribing it in a more concrete terms, debugging is a two part process; it begins with some
indication of the existence of an error (e.g. the result of a successful test case), and it is the

activity of:

(a) determining the exact nature and location of the suspected error within the program.

(b) fixing or repairing the error [174].

Thus debugging entails both fault localisation and repair.

Ducassé and Emde [74] review 18 existing automated systems on program debugging and a
dozen cognitive studies on debugging. A large subset of the following are related to the tu-
toring task (IPA [220], Pudsy [157], Laura [2], Phenarete [270], Proust [116, 118}, Talus [173],
Apropos [156]).

Another group is composed of general purpose debugging systems (Sniffer {232], Kraut [37),
Focus {159], Falosy [228]).

All the other systems are enhanced Prolog tracers (PTP [76], Preset [258], Opium [233}).
A particular group of enhanced Prolog tracers is made out of the systems following the
trend established by Shapiro in Algorithmic Program Debugging [233) (RD [191], DED [155],
EDS (84]).

The table No 4.1 summarises the result of their study.

The debugging knowledge types that have been identified are:

o

knowledge of the indented program (intended [/0O, Behavior, Implementation).

(o]

knowledge of the actual program (intended I/0, Behavior, Implementation).

o]

understanding of the programming language (Lan).

o]

general programming expertise (Pro).

78

o knowledge of the application domain (Dom).
o knowledge of the errors (Bug).

o knowledge on debugging methods.
and the classification of global debugging strategies are:

(a) filtering.
o tracing algorithms.
o tracing scenarios.
o path rules.
o slicing/dicing.
(b) checking computational equivalence of intended program and actual one.
o algorithm recognition.
e program transformation.
o assertions..
(c) checking the well-formedness of actual program
o language consistency checking.
o plan recognition.
(d) recognising stereotyped errors.

e error cliche recognition.

79

Debuggers KNOWLEDGE of Strategies
Intended Actual

I/O | Beh | Imp [{ I/O { Beh | Imp || Lan | Pro | Dom | Bugs
Focus * * a
Pudsy * * ¥ * * b
Phenarete * * * c
Talus * % * * * b
Laura * * * * b
IPA * * * * b+d
Proust * * * * * b+d
Apropos * * * * * * * a+b+ctd
Falosy * * * * * * * * atc+d
Sniffer * * * * * * a+d
Preset * * * a+tc
PTP * * * a+d
APD * * * a
EDS * * * a
DED * * * a
RD * * * a
Kraut * * a
Opium * a

Table No 4.1: Knowledge and Strategy Summary [74]

4.2.2 'Tools for Reverse Engineering

Chikofsky and Cross [46] defined reverse engineering as:

Reverse Engineering tools are used to provide better program comprehension when the code is un-

structured, poorly written or documented, or when system requirements or design are unavailable.

The process of analysing a subject system to identify the system’s components and their

80

inter-relationships, and to create representations of the system in another form or at a

higher level of abstraction.

Different techniques are used at different level of abstraction.

1.

Restructurer

Restructurers accept unstructured code as input and produce a structured program
with the same functionality as output. Restructuring is the transformation from
one representation to another at the same level of abstraction. If a system is old,
poorly documented and poorly structured, it might be possible [135] to restructure
it possibly incrementaly. This can take much effort, and might be worth while
only if the system is expected to be maintained for several years. Some problems
with automatic restructurer have been identified by Calliss [38]. For example the
amount of code produced by a restructurer is usually greater than the original
program, and many of the restructuring algorithms make use of state variables

which the restructurer adds to the program.

Reformatter

Reformatters improve the format of a source file for easier reading. Tools in this
category are also known as pretty-printers, and as such will layout source code in
a standard format. They transform old, large, or poorly written or documented

programs into standardised formats that are more readily and easily maintained.

Example are given in Appendix A.

. Re-engineering

Reengineering is the examination and alteration of a subject system to reconstitute
it in a new form and the subsequent implementation of the new form.

Here is an example of a set of software re-engineering tools:

BAL/SRW [133] helps to recover the design of an assembly language program.
This is achieved through a series of abstractions, which effectively collapse program
functionality into progressively higher level concepts. The program is analysed and
its internal representation is created in the knowledge base. In order to learn about

the program logic the analyst can

o Search for programming patterns present in the program and replace them
with natural or formal language sentences in order to make the code more

understandable.

81

o Navigate throigh both the source code and control flow view of the program.

o Simp‘lify the program a.utoma,ﬁéally by recoghising control flow patterns,viden-
ti,fyiiig subroutines and s 1fench"&|ﬂ;ef$édi onsof the code, and by l[idilugﬁse}écted'
coutrol_‘ﬂow patlis upon sﬁec’iﬁed'ﬂconydiﬂtions.

o Simplify the prggr'mﬁ inanua.liy» by sﬁbspitﬁtillg' analyst defined comments for
program s’e’c‘tirons.? - o '

. Revei‘ééiEnrgirﬁgeri_i\g’

Reverse Engineering {273] involves the identification or 'recovery‘ of program re-

quirements and/or design specifications -‘tilat car.i aid in uﬁdéfs_taudixig the program

to modify it.

Duriﬁg maintenance, the maintainer needs to develop a level of program compre-

hension commensurate with the task in hand. Wlien this necessitates the recovéry

of lost or-otherwise unavailable information concerning system requirements and/or

design, it involves a complex cognitive process called Reverse Engineering,.

(a) PRODOC [225] is well suited for renovating existing systems. It uses FLOW-
forms to rebresent systems at arbitrary levels of abstraction in a highly inter-
active visual environment. Among other things:

o the use of FLOWforms helps-eliminate representational inconsistencies and
awkward transitions between analysis and design.

0 -highﬁ level"(leéigxls can be translated au tomatically into any of the languages
supported by PRODOC.

o existing Soufée code can be revenge—enginee_rédi

o PRODOC éan conQe’rt code ,fl"oﬁl an old environment to news one-with its
abi-lity' autdrnaticélly.-tb ti‘ahslzife betWeeh pEeiidocode ldngnages:

(b) I‘he Softwaxe Reﬁnely [180] isa fanuly of prod ucts for bulldmg automated soft-
ware processmg tools that take source code as’ mput and/or produce source
code as output Softwale Leﬁne;y 1_ncludes; tluee ,Qrp_c_l‘uc,_ts REFINE DI
ALECT aud INTERSTA

o RLFIN }L is a pwglammmg envuonmeut for bujldmg sofLwa,re analysxs and.

nansfommtlou Loulq Ils featmes a vely lugh level executable spemﬁcatlonz .

1anguage a spetlﬁcauon langudge compllen an obJect; ouent,ed database

a cmtounzed ed(ton mtexfa(e and tr acmg a,nd debuggmg tOOIS I‘lus t,ool

translates source languages into a specifications language (PSL/PSA).
This tool converts (using reverse engineering) code into program design
language and lets the maintainers edit the structure chart , cut and paste
to and from the code, and generate high-level documentation describing
the code structure. Thus, it gives an electronic path between code and its
corresponding design language.

o DIALECT is a tool that generates programming language parsers and
printers from grammars. It includes a high level language for specifying
language, a specifying grammars and a grammar compiler.

o INTERVISTA is a toolkit for building graphical interfaces to Software Re-
finery applications. It provides windows, diagrams, menus, and hypertext.

Software refinery analyses and translates software in the programming lan-

guage that need to be used.

4.2.3 Tools for Testing

1. Regression Testing

Regression testing [252] verifies that ouly desired output changes occur from mod-
ified programs. Ideally, with each required change, all test cases should be re-
executed and the results re-evaluated from unit level through system level testing.
However, schedule and resources constraints almost always prevent this from oc-
curring when modifying large software systems.

Regression testing tools execute various test cases using prerecorded keystroke
inputs and then compare actual results of the current test session with expected
results. These tools [251] are characterised by the high level capabilities of capture,

replay, and compare.

e Capture is the capability of recording the input (scripts) and outputs (bench-
marks) of a test session. Typically, inputs consist of keyboard inputs and
outputs consist of terminal screen displays. Text editors create and modify
script files or test drivers for some regression tools.

o Replay is the capability of reissuing prerecorded iuputs (playing back the
script). This ensure that test case inputs are the same as in previous tests

and minimize the tedious, error-prone procedures that must be executed.

33

o Compare is the capability of determining that the actual results of the current
test session are the same as those previous test session (benchmarks). This
allows the tester to focus his attention on resolving discrepancies instead of

locating the discrepancies.

Different regression testing tools are reported in [252] and each of them provides

one, two or three of the regression testing characteristics:
o Capture regression testing tools.

(a) ‘Bloodhound’[252] captures an unlimited number of keystrokes and screens
in text mode. Screen images can be automatically captured whenever the
screen scrolls. Screens can also be captured at arbitrary points in the user
program. Tests can be run after changes to see if any regressions have
occurred.

(b) ‘VAX/Test Manager’ [252] automates the regression testing of software.
TM runs user-supplied tests, and the results are automatically compared
to their expected results. Regression testing assures that changes have
not affected the previous execution of the software. TM operates both in
interactive and batch modes. It has a DEC windows interface which is
consistent with other window applications, making it easy to learn.

o Capture-replay regression testing tools.

(a) AUTOMATOR (252] provides repetitive task automation. It supports
regression testing by the recording of scrips and also the writing of scrips
in a scripting language. Performance testing is provided by a function that
records the screen, keyboard and internal lock, thus providing execution
data. AUTOMATOR has the ability to generate random tests given an
array of possible entries and combining them into new tests.

(b) ‘CapBak’[252] captures keystroke sequences for automatic playback. Cap-
Bak includes screen-save capabilities, replay timing adjustments, and fa-
cilities to edit captured key-save files. Dynamic playback programming is
provided by the use of IF and WHILE clauses in the keysave files.

(c) CARBONCopy [252] is a terminal 1/O capture program. Terminal keystrokes

are recorded to a file where they can be replayed, edited or printed.

(d) ‘Check*Mate’ [252] can perform individual tests of new functions using

84

(e)

()

keystrokes capture or manual coding depending on the complexity of the
test. By using keystroke capture, testing operations need to be performed
once; then they can be replayed to test the function again.

‘Evaluator’ [252] has a record mode where scripts are automatically recorded.
In replay or playback mode, Evaluator replays the recorded keystrokes
from the recording session. Playback mode can run unattended and save
the results to files. In programming mode scrips may be edited in the
TEST Control Language (TCL).

TRAPS [252] is menu-driven and allows recording, editing and replay of

test scripts.

o Capture-replay-comparator regression testing tools.

(a)

‘Autotester’ [252] is capable of testing applications on PCs, minis, and
mainframe computers. The link is through asynchronous communication.
It records tests and allows easy editing and playback capabilities. Au-
totester supports a structure method that promotes test modularisation
and documentation. Procedures (scrips) may be used over and over again
to test similar functions that occur at different times during a test session.
DCATS (252] provides a method of writing a test script and inputting
the expected results in order to record scripts. This script can then be
executed and the results compared to the expected results. Diflerence in

actual and expected outcomes are reported.

2. Test Coverage Monitor

This group contains tools that monitor test case coverage and keep track of which

parts of a program are executed when a given set of test data is run. This involves

executing an ‘instrumented’ version of the program with the test data provided.

Test monitors can enhance a programmer’s understanding of a program by identi-

fying the code segment associated with particular user oriented functions.

They address the following important aspects of program testing :

o preparation of test data.

e measurement of test data coverage.

They should :

e compile and run programs with all available test data.

85

o identify.and report any fogical decision path or executa;ble'efatements within -
the prograii). that th'e ﬁest;' deta 'fa.i_ls' ‘toiexercise.. A

Wiﬂth‘,'the’ i'nﬁfrmatibh f‘fro"ﬁi atest coverage ‘1’11'0111!;61';, "programmers can evélué,iie.

areas-of-a plogram that xequues fur thel t.e‘;tmg, and software quahty assurance

personnel can ‘make more accurate and rehable Judgements of a:program’s readiness

for productlon nnplementatlon

(a) LTS _.[208] is a test'covefag_e‘_11'10ﬁit,6r and a regression testing tools. 1t is
an utility system that can be iiit_égrat;ed with the but’put of a programining
environmeit ‘to test and vaJidaéethéresUlts of the development eflorts. The
test coverage analysis tool guides development of test suites, assess testing
progress, and aid error detection. The regression testing tool tests and retests
candidate systems’ functionality.

(b) ISAS reports and charts procedure hierarchy, data references, control flow and
system structures.

(¢) SMARTS [180] with EXDIFF execute, evaluate and report on thousands of
tests automatically. Both interactive and-batch tests are scripted in easy to
maintain test files. SMARTS and EXDIFF, plus CAPBAK (see regression
testing tools), plus if necessary, a 3270 emulation back end, forms a power-
ful system of tools for planning, executing, logging, and analysing complex
repetitive test snites.

(d) TCAT [251] ineasures test thoroughness in terms of logical branchs, instead

of statement coverage that comimon profilers use.

4.2.4 Tools for Maintenance Manageiment.

Two categories are identified to be useful for the management of maintenance: soltware-

configuration management and product- miljla.gement. "

1. Soﬁ'twalre Conﬁgulatnon Management :
The purpose of conﬂguratlon m"magement [250] is: to ensure tha,t; at all times, the -
status of all vemons of- all development products I8 kuown ;md that the 10cat10n of
all coptes is known 1t is pal Llculally Jequued that the s!a,tus of all: shared ObJeCtS

is: calefullv comlollcd an(l Ihat unauthoused changes are prevented In. addltlon

L

customers standards may require that other records are maintained, for example,
detailed explanations of the reasons for changes in passing from one version to the
next.

The controlled intermediate products (baselines), and the milestones at which
they are established, form a vital unifying link between the control of the software
developent process and the control of the software product. The status of, and
the access to, the intermediate products are strictly controlled but configuration

management also means that:

e only the controlled versions can be used as input to other activities

e any proposed changes to the baselines must be processed through the formal

change control procedures.

Existing configuration management tools range from simple tools such as Unix ver-
sion control to complete configuration management systems such as CCC, Lifespan,
and to integrated programming environments with software configuration manage-

ment support built in like DSEE {138, 139], Adele [?], Aspect and ISTAR.

Configuration management can be seen to have three main functions [250):

e Version and Variant Control which identifies all relevant items and records
the history of their development through successive versions, permitting this
history to be used retrospectively and previous states of parts of the project
to be restored selectively. Version control is responsible for ensuring that all
items are reliably stored, so that this restoralion is always possible. Effec-
tive version control is necessary to support all other conliguration functions.
SCCS [211], CMS and RCS [261] are typical of simple change and version
control tools with the function to manage and control the changes made to
individual components.

e Configuration control which is concerned with the building of appropriately
structured systems from their constituent parts.

e Change control which is the operation of applying changes, with suitable au-
thorisation to establish new states though which the project passes. The
authorisation required to establish a change allows the continuous application

of quality assurance procedures throughout the project.

87

For more details of Software Configuration Management tools, see Appendix A

and B.

. Product Managément

As mention in Appendix A, three tools are commercially available for managing

majntena,nce prbducts*

(a) SABLIME [115] is'a complehenswe p:oduct admmxstratlon system that tracks

(b)

changes to a product consisting: of soft\vare hardware ﬁrmware and/m doc-
uments, from its »orlglnrrna.t}onv, t_hrovugh_ma.mtena.nce, deh_very,and support. Its
integrated Modification Request '(M_'R)"a.nd Cé_nﬁguration-M_anagement capa-
bilities make it a unique tool for managers and product develo‘pers‘e.like.

RA-METRICS {115] and SMR [115] provide a softw:ﬁe metric repository. RA-
METRICS supports all of the management reporting metrics and it reports:
functional and technical quality, user satisfaction, defects counts, CASE/Tool
Usage, development and maintenance history, financial history and estima-
tion accuracy whereas the Software Metric Repository (SMR) is a menu and
mouse driven database featuring a ‘point and Shot’ user friendly interface.
The database incorporates the software metrics generated by PC-Metric as
well as Functions Points and project data. The browse and reporting capa-
bilities are encouraging to examine and analyse the raw data. PC-Metric is a
software metric generation pa;(;ke.ge. It analyses the source code and computes

numerous size and complexity metrics.

4.3 Prpmtypes and AReSQarCh Projects

4.3.1

Plototypeq and research pl‘OJe(ts for- mmntennnce are dlvxded mto four ca,tegorxes pro-

gra'n comprehensxon hult localisation, unpact analysm and knowledge based systems

Prototypes "for: Pﬂrogralﬁ_C’oimppezh-eus__i‘pni

In this sectlon on. plot‘.otypeq fcu plogl am (_omplehemlon, we glve Some exa.mples that

use code analysls zmd othel techmques m o;der to complehend Lhe code

(a) AQAP (Ada Statlc Source Code Analyser P1ogram) is an automated tool for

static code :umlysns of p10g1am wntteu i the ADA pxoglammmg language

| 88

(b)

(d)

(e)

(f)

(8)

(h)

The purpose of this analysis is to collect and store information e.g. compilation
unit'’s size, complexity, usage of ADA language constructs and features, and
static interface with other ADA compilation units.

Another example is the prototype ISMM for incremental static analysis of C
programs.

The goal of ISMM is to demonstrate the feasibility and practicability of using
incremental static analysis to aid in the maintenance phase of the software
life cycle. ISMM [221, 222] consists of two modules: FREND, a front end
which parses the C source code and convert it into an annotated directed
graph representation of system calling structure, and BEND, a back end which
performs both the incremental and exhaustive analysis.

A prototype from IBM [49] combines a data base to store the program with a
display ‘viewer’ that allows a programmer easily to browse through it in many
ways to accumulate information for a maintenance task.

MICROSCOPE [4] is an ambitious program analysis system using static and
dynamic analysis of Common Lisp and Common Objects. This prototype
permits different view of the source code and perform impact analysis, and
also records a browsing execution history in a knowledge base.

PUNS [50] is a Program Understanding Support Environment that gives
multiple views of the program and a strategy for moving between views and
exploring views in depth. It comprises two components, a repository and a

user interface.

AEGIS is used to maintain very large Navy weapons control system using
the method to capture a large volume of data about the components of the
software in a data base that can be queried or from which reports can be
printed.

SCORE/RM [52] provides a mechanism by which a maintainer can systemat-
ically work through the code and comprehend its purpose, produces a set of
documentation to reduce future learning curves and modify the code so that
it becomes easier to maintain.

The University of Linz [224] has produce a prototype to helps programmers

understand object-oriented software systems written in C++. It enables its

89

users to easily ‘browse through the system based on the relations among its

classes, files and even identifiers.

4.3.2 Prototypes for ']Fault’:]hoe'z‘_ilisrét'iml

‘Error Ioca,hsatlon [l'ﬂ] in ploglam debuggmg is the process of rdentlfymg program
statements whlch cause mcorrect l)eha,wour Accordmg to some researchers the error.
locating process represents 95 percent of the debuggmg [174] Examples of debuggers
have been given in sectlon . Cur reutly, many techmques and tools are used to perform
fault localisation a.nd these methods can be classified as either kuowledge—ba;sed' or non-
knowledge-based. Knowledge-based fault localisation systems can be-identified by their
autonomous behaviour. The system themselves interpret the information they generate
to localise faults; the informa.tion is not passed to a user for interprétation, as is the

case in a non-knowledge-based system.

(a) PROUST [118] is a knowledge-based fault localisation system designed to cre-
ate a framevsprk sufficient to catch all possible errors in small programs. The
aim of PROUST is to understand the nature of the errors, state the errors, and
suggest a form of solution. To accomplish these ob jectives, the system requires
that the prograin be totally and correctly specified. The major limitations of
this system is that it is extremely- difficult to form such specifications even for
small programs, and there .isno way to guarantee the specifications are correct
or eo111plete even after they h’a.ve heen stated.

(b) PTA[42]isa Knowledge Based Plogla,m Testing Assistant deve]oped by Chap-
man. As programs are developed and tested, a user can request that the sys-
‘tem automatically store the test cases for future use. When an error auses
i feature lwnng.tosto(l the %sv':l‘om in coordn‘mtron -wnth the user can reqnest
that the appxopuate ‘saved test cases be 1erun automatlca]ly elther before the
system has been 1epaned to aJd in 1dent1fymg the ploblem or after the system
las been’ repaued Lo ensme its cor xectuess In conJunctlon thh ths ca,pabrhty
the PTA heuustr(a.lly modrfies the correspondmg test cases when the source

code is changed '[lus preserves the al)lhty of the svstem to contmue to use 1f

of the code

(c)

PELAS [131] is an error localisation assistant system which guides a program-
mer during debugging of Pascal programs. The systemn is interactive: it queries
the programmer for the correctness of the program behaviour and uses answers
to focus the programmer’s attention on an erroneous part of the program (it
can localise a faulty statement). This system uses the knowledge of program
structure represented by the dependence network used by the error locating
reasoning mechanism to guide the construction, evaluation and modification

of hypothesis of possible causes of the errors.

New techniques for fault localisation are currently being developed:

(a)

(b)

(c)

Collofello and Cousin [63] developed a theory called relational path analy-
sis that suggest that there exists information associated with the execution
paths of programs which when analysed heuristically can produce statistically
significant fault localisation.

Korel and Laski [132] presented a novel fault localisation algorithm that is
capable of identifying a restricted class of programming faults for the Pascal
language. The algorithm uses the computation trajectory-based influence re-
lations to formulate hypotheses about the nature of the fault and user input is
needed to asses correctness of intermediate situation on the trajectory. As the
complexity and size of software systems continues to increase dramatically,
emphasis is needed on developing automated methods [54] to help perform
fault localisation an repair activities.

Shahmehri [231] presented a semi-automatic error localisation method for Pas-
cal, Fortran or C with side-eflects. They are using program slicing and a data
flow analysis technique to dynamically compute which parts of the program are
relevant for the search. A prototype error localisation has been implemented

in Pascal.

4.3.3 Prototypes for Impact Analysis

Impact analysis evaluates the effects of a proposed change. This activity determines

whether the change can be made without adversely affecting the rest of the software.

Traceability suggests the connectivity of the relevant Software Configuration Items

91

(SCI) and whether traceability can be established once the proposed change is made.

The design of modification requires an examination of the side-effects of changes.

1. Traceability

Some attempts have been reported at examining a change before its implemen-
tation. Some examples are given: Requirements traceability has been extended
beyond the traditional tracking of requirements to making predictions of the ef-
fects of changed requirements [201]. Honeywell’s Requirements to‘Test Tracking
Systems (RTTS) tracks the Navy’s documents specified by MIL-STD-1679. RTTS
creates, analyses, and maintains traceability links among life-cycle documents.
Other systems using traceability are: SOFTLIB, GENESIS, CMVT, NSE.

The maintenance process is viewed by Pfleeger [197] in terms of the software
workproduct as a graph of software life-cycle objects connected by horizontal and
vertical traceability. The former (dependencies analysis) addresses the relation-
ships among the parts of the workproduct. The later addresses the relationships
of these components across pairs of workproduct. Both types of traceability are
necessary to understand the complete set of relationships to be assumed during
impact analysis.

Vertical traceability has been addressed, but is still restricted to the source code.

(a) The University of West Florida [273] is building a dependency analysis tool
set with a dependency analyser and a tool for building comprehension tools.
The intent behind this tool is to provide a basis for determining program
dependencies (data flow, calling, functional and definitional), so by creating
the application specific front-end, the comprehension aid can be tailored.

(b) The University of Naples [47] is using reverse engineering and static code

analysis that enable the identification of the actual and potential intermodular

dataflow relationship.

Some software development environment have incorporate horizontal traceability

as part of their overall approach to development {197} e.g. ALICIA, SODOS [105,
106], PMBS, and DIF [176, 86].

(a) ALICIA addresses Software Life-cycle Objects (SLO) granularity using infor-
mation content rather than the entire documents. It support completeness and

consistency checking of traceability relationships as well as navigation among

92

SLOs in the project database.

SODOS supports the development and maintenance of software documenta-
tion. It manages SLO using an object-oriented model and a hypermedia graph
of relationships. The documents are defined in a declarative fashion using a
structural hierarchy, information content, and intra/inter document relation-
ships and navigation among SLOs.

DIF is a hypertext-based documentation integration facility that provides a
mechanism for developing and maintaining software documentation with its
associated relationships. It enables visualisation of objects in the software
system, hierarchy charts of software objects, and display the dependencies of

related software objects.

. Ripple-effects

Ripple effect is the phenomena by which changes to one program area have ten-

dencies to be felt in other program areas. Some examples are given:

(2)

(b)

(¢)

Arizona State University [54] have done research on a ripple effect analyser
and have implemented one in prototype environment.

Surgeon’s Assistant is a prototype from Gallagher that slices up programs, ex-
tract pertinent information, and displays data links and related characteristics
so the user can track the changes and influence on targeted structures. It de-
livers semantic information and editing guidance to help the user to formulate
a maintenance solution with no undetected link to unmodified code, thereby
eliminating the need for regression testing.

The Software Engineering Research Center [281] is producing a prototype
system for a reduced set of Ada languages that has been implemented to

demonstrate the usefulness of logical ripple effect analysis.

4.3.4 Prototypes for Knowledge-based Systems in Maintenance

A Knowledge Based System contains large amounts of expert knowledge which can
be brought to bear on a given task. An expert system is a species of knowledge based
systems which has built into it the knowledge and capability that will allow it to operate

at the expert practitioner’s level.

A knowledge based systemn essentially consists of:

93

(e}

a knowledge base containing facts, rules, heuristics, and procedural knowledge,

acquired and stored declaratively in a basical random order.

o an inference engine, which consists of reasoning, problem solving and research

strategies.

o a user interface for the dialog with the user.

o an explanation generator, which is a set of procedures dedicated to answering

such questions as why a goal was met, or how a set of assumptions might lead to

alternative conclusions.

There has been little reported work on the use of knowledge based systems in software

maintenance:

(@)

Cross [64] described an Expert System approach to building an informa-
tion/maintenance tool for an existing target system of both hardware and
software components. The purpose of tool is to help the user identify the
components they seek and to antomate the identification of the remaining
supporting components required. The tool uses its rules rules-based knowl-
edge and the user selections to identify the desired components and their
supporting components.
Pau and Negret [190] described a software maintenance knowledge based sys-
tem called SOF'T'M which was designed for the following purposes:

o to assist software programmers in the application code maintenance task.

o to generate and update automatically software correction documentation.

o to help the end user register, and possibly interpret, errors in successive

application code versions.

SOFTM relies on a unique ATN (Augmented Transition Network) based code
description, a diagnostic inference procedure based on pattern classification,
and on a maintenance log report generator. The system is able to a range of
programming languages provided that code descriptors can be extracted from
the code. SOFTM has 3 types of knowledge base:

o Facts about error types, error locations, diagnostic classes, and the envi-

ronment.
o Code independent rules that apply to the general software maintenance

task.

94

e Symbolic descriptors derived by rewriting, in predicate form, features of
programming languages provided by the compiler, the specification lan-
guage, or the data flow model.

(¢) Calliss, Kalil, Munro and Ward [40] described an intelligent, knowledge ap-
proach to software maintenance by describing a tool that is intended to help
reduce the amount of time spent analysing code. They have identified 3 types
of knowledge:

o Maintenance Knowledge: this is the knowledge about how the maintenance
programmers do their work and is elicited from expert maintainers. This
knowledge provides the bulk of a systems heuristic knowledge that dedicate
the weighting patierns on searches through the expert system.

o Program Plans: they are two different categories of program plans:

- General program plans with a small set of plans that show commonly
occurring activities in computer programs.

- Program class knowledge with a set of plans common to a particular type
of program.

e Program Specific Knowledge: this is the internal representation of the
source code together with knowledge obtained from using static code anal-
ysis tools such as cross referencers, data flow analysers, call graph gener-

ator, etc.

4.4 Summary

Currently, there is research on soltware maintenance tools but which is far smaller than

for development tools.

At this time, no one method with tools and environments has succeeded in integrating
the diversity of maintenance tasks, tools and situations in a consistent way. Tool support
is usually restricted to a single phase of the maintenance process. There is a lack of
maintenance tools like the concept of intelligent maintainer’s assistant that could be
semi-automatic and could help the maintainer during the whole software maintenance

process from identification of modification to revalidation.

Chapter 5

Integrated Project Support

Environments

5.1 Introduction

The objectives of this chapter are to define an IPSE with its features, to describe
the requirements for the next generation of software in the aerospace industry, and to

- evaluate current IPSEs according to some of these requirements.

5.2 What is an L.P.S.E. ?

5.2.1 Introduction

The IPSL arose’ from the obsen'atjou tlmt in many plO_]eCtS useful data was generated
aud used by the- ploje(,t tools set as pmt of thc developmcnt pm(O’iS Ilowever, n was :
dnmcult to get. fools to exchc\uge data beeause they used mcompatlble dat.a formats
These tools gave ouly partial, ﬁagmented support to the managerlal techmca.l “and

’admmlstratlve tasks mvolved in the development and mmntenance plocess

'vlt was - 1ec0gmsed [161] Lhat a plofusmu of Lools dlone is not enough to mstxll good
eugmeermg plactxces in Lhe mdustlv what is 1equned is-a qtable conslstent and mte-
'grated appjoach to the WOJI\mg envuou ment Thus, the Ilﬂegrated Product Support

'Enwronmem (IPSD) concepl was bonn

An Integrated Project Support Environment [259] is an integrated environment that
focuses on the developmental aspects of the software life cycle. It may not include all

phases, e.g. maintenance.

5.2.2 Features of an IPSE

This section describes the features and structure of an IPSE. At the logical centre of
an IPSE there is a basic set of facilities termed a kernel. An extra set of facilities may
be provided which extend those of the kernel and built using kernel facilities. The user
can use both the facilities of the kernel and the extended facilities and these together

constitute the infrastructure.

The tools of an IPSE will be implemented using the facilities of the infrastructure. The
kernel, together with the infrastructure and tools constitute a populated IPSE. In some

IPSEs, it may be possible to extend the kernel by incorporating user tools into it.

IPSE products provide facilities in four main areas {250]: Human Computer Interface,

Data Management, Activity Management and Integration of tools

e The Human Computer Interface (HCI) or Man Machine Interface (MMI), or User
Interface (UI) is probably the most important factor in producing an IPSE that
will be acceptable and therefore used. The concept of an IPSE is that it will be
used by all project staff whether engineer or manager. Therefore the users should
have a clear conceptual model of the IPSE and the information it contains and that
the style of the tools should be dictated by this model and by the requirements of
the tasks at hand. So, the IPSE needs to handle the user interface service, instead
of leaving it to each tool. HCI facilities should be varied, flexible and multi-
windowed with menu, mouse and command line. The kind of interface required

may be different for the different types of user and different types of activities.

e The IPSE Data Base needs to contain the repository of all project information:
requirements, designs, code, test cases, documents and other relevant information.
The data base should support modelling of all aspects of data associated with the
development process and should be extensible and configurable to allow extension
and adaptation of the IPSEE as a whole to individual project requirements. The

infrastructure of the IPSE should support software confignration management.

o The Activity Management is the ability to -model and ma,na,g'e speciﬁ‘c'activities
essociatéd with project: procedure and. hletllods It is composed of the means
to define a process structule, the facnhtles to define the order and type of tool
invocation, and the facilities to model methods spemﬁc processes
For example, after a file has been edited, thevconﬁlguratlon control tool should be
ibnvo'ked.‘ | | |

o The ildtegratriofx of;toojlsgr ;;;_m be seen through a Public Tools Interface (PTI) and a
Foreign '1"oolsrluterl'"éicej(FT1):

~ The PTI is an interface for tools written specially for the IPSE.
— The FTI is an interface for existing or commercial tools that we want to

integrate in the IPSE.

5.2.3 The Ideal IPSE

The ideal IPSE [250] according to Aerospace criteria will provide a context for software

development over the whole life-cycle and will:

o be capable of supporting the development of large, complex and high quality soft-
ware

o provide controls and facilities to allow projects to be carried out with optimum
productivity and quality

o be fully integrated so that information can be freely exchanged within the project

o provide all users with an appropriate and tailored set of facilities with which to

carry out their tasks

Across a company and its prOJect a vanety of dlffeLent tools methods and procedules

-are used, some tailored to specific [)IOJeLL needs In~ addltlon the need of prOJects

may well change aud evolve as new methods and tools are developed and are made

commermal]v avallable

Ver510n contml and conﬁgulatlon management ale cuLlcaJ to ensmmg the consxstency
imd 1eproduceab111hy of dehveled svstems It is lmp01 tanL (.hat support is glven m the

IPSh for these fundamental actnvmes -

Chauge control must I)e suppo; Lcd hy the xecordmg of dnps-ndenmes and trarmg mfor—

mation wnthm the IPSL database I‘hns mus(, be done auoqs the whole llfe cycle by

providing the relationship between design and requirements, code and designs, docu-

ment and code.

Thus, the ideal IPSE will need to be extensible and adaptable to individual needs.

5.2.4 Conclusion

The ideal IPSE is a blend of:

o flexibility, giving users the capability of tailoring the IPSE to their requirements
and ensure that its capability will accommodate any changes in these requirements
as the project evolves. It will ensure that all the activities in the project can be
supported.

o integration, ensuring that the users have a consistent and uniform view of the

IPSE.

However, no IPSE so far has approached the ideal blend with flexibility and integration

5.3 Requirements for Software in the Aerospace Indus-

try

5.3.1 Introduction

The next generatiou of software in the Aerospace industry will be large and complex,
developed by many groups of people at many locations, and will be expected to operate

safely and undergo extensive evolution over its lifetime.

Requirements for software maintenance in the Aerospace domain [238] will increase for

the following reasons:

5.3.2 Safety Critical Systems

A system or sub-system may be described as safety-critical if there are potential con-
sequences of using the system that are so serious that it cannot be used at all unless
the probability of a high-cost event (an accident) occurring is very low. For example, a

system is usually considered safety-critical if some behaviour of the system can result in

99

http://icle.il

death, injury, loss of equipment or pmperW or en'v.iro’nmental'1i-a,frn When computers
are used to control safety eritical processeq the]e is need to verify that the software will

not cause or coutrlbute to an acmdent [41]

Some aerospace syst‘ems wnll‘ become Safetv critical - with manned »spaee vﬁight like the

launcher ARIANE 5, the space p]ane IIERMES and the station COLUMBUS

Therefore the IPSLS that WJII suppcnt the development of the software should prowde
specific support for’ the: developmient and veuﬁcatnon of safety cntu,al software and for

fault tolerant software (Ievelopmeut

5.3.3 Increasing Software Size

Software size will increase by a factor of ten. Currently less than a million lines of
code is used for a satellite ground system while few millions lines of code for HERMES,

COLUMBUS.

The IPSE should support the development of very large scale software.

5.3.4 Increasing System Lifespan

Software lifespan will increase from less than 10 years to more than 20 years. System

architecture will need to be flexible in order to take into account new technologies.

Therefore, the extensibility of the IPSE is a major criteria as is the integration of the

new.tools in the environment.

5.3.5 Dist;filbt_;ted Deﬁelbpinents

fhe trend toward the developmeut of lalge mteglated so[twam systems in short tlme
scale leads to the nced for a dxbtubuted development capablhty Ma,ny lalge prOJects
mvolve colla.bora,twe workmg betweeu paltneLS i a consm tlum and supphels and sub-

contlactors often on a Eu10pean or Iutematxonal basxs

» Software mmntenance methods qhould Lal\e mto account the fact Lha,t a,eroqpace data

processmg pIOJecl,s \Vlll mvolve contubul,lom f1 om sevelal subcontlactms

IIFRMFS is domnmted by annce C()LUMBU‘S by Gelmany, aund the remamder of the

‘13 ESA countues contubute mth vely dlﬂelent scales to each pmJect wherea,s some

“100

countries contribute to only one of the two projects.

Because ESA (European Space Agency) follows the fair return principle, that means
a participating country receives industrial work in relation to its contribution, and as
projects have the responsibility to follow this principle it is extremely difficult to release
financial responsibility from a project for a common development. In this case, how can

maintenance be adequately performed ?

In situations where the purchaser requires that the software be maintained by the
purchasing authority, or a third party, then the overall development must be controlled

to produce a unified product that appears to have been generated by a single team.

This mean that all contributors must [250]:

o use identical tools and environments
o produce consistent documentation
o operate standards procedures

o use standard reporting formats

o

deliver all design documentation and tools data

The software will be developed in several geographical locations using the same IPSE
facilities and communication between the IPSEs is required. Wide areas communication
based on commercial products should be provided to support remote logging and file
transfer from one site to another. The concept of remote maintenance for corrective
activities should be investigated and an important attribute of distribution is granularity

which is the size of object that can be exchanged between machines or operational sites.

5.3.6 System Perenniality

With the increasing system lifespan, system perenniality is becoming a major problem

for both hardware and software.

Software environments are using tools that are primarily commercial off-the-shelf prod-
uct and the perenniality of these toals must be assured before buying commercial tools.
The stability and maturity of both the commercial tools and its supplier must be clearly

established to keep the product operational during its lifespan. The product manager

101

must ensure that projected functional releases of the tools accord with the release of

the product.

Therefore, the concept of extensibility of the IPSE to incorporate extra facilities should

be evaluated as well as the integration of these tools into the IPSE.

5.3.7 Reuse

The development of aerospace products requires intensive development of large complex
soltware system and for these reasons, special attention [75] is currently devoted to the

minimisation of effort and thus to cost reduction.

Therefore, the IPSE should provide an environment to support reuse of software el-
ements at different level of abstraction (e.g. specification, design, code, documenta-

tion ...). This is a field of much current research.

5.3.8 Training and Knowledge Transfer

The loss of an employee is very damaging to a company’s prospects. Adequate training
and knowledge transfer will continue to be required as there is no evidence that the

software engineering staff turnover rate will slow down in the near future.

The IPSE should provide training facilities for each tool and for the environment.

5.3.9 Conclusion

It is not possible to evaluate all current IPSEs and this is not the objective of this
thesis. Therefore from the requirements, some criteria remain the same like integration,

Mlexibility and distribution (see Table No 5.1).

102

Requirements

for Aerospace Systems

IPSE should

support

Criteria for

evaluating current IPSE

Safety Critical Systems

Safety Critical Systems

Increasing Software Size

Very Large Scale Software

Increasing Lifespan

SCM

Flexibility

Distributed Development || SCM Distribution, Communication
System Perenniality Extensibility, Integration
Reuse Reuse

Training Training

Table No 5.1: Prospective requirements and their effects on the IPSE

5.4 Criteria for Analysing IPSEs

5.4.1 Introduction

As mention in the previous section on requirements for the aerospace industry, we need

to define the three criteria for analysing current IPSEs: flexibility, integration and

distribution.

5.4.2 Flexibility

Flexibility is the measure of how easy it is for the user to adapt an IPSE to support the

activities of a given project. This can be done in two ways

o by extending the facilities of the IPSE

o by tailoring the existing facilities of the IPSEs to particular project needs (instan-

tiating a generic IPSE).

1. Extensibility

Extensibility is the ability to incorporate extra facilities into the IPSE. Two cat-

egories of tools can be added: native and foreign tools. The former are built

especially to work in the IPSE and fully integrated through a Public Tools Inter-

103

face. The latter might be rehosted from a foreign environment and therefore, the

interface will need to be adapted to those of the IPSE.

The IPSE might allow the kernel to be extended, for example by enabling extra

facilities to be incorporated or defining a new type in the data base.
2. Tailorability

Tailorability is the ability to adapt the existing facilities of the IPSE so as to

provide support for a project.
A project involves a range of different structures and activities.
o The structures are those associated with the product and those associated
with management.

o The activities are those associated with project procedures such as coding,

configuration control and project mmanagement.

An IPSE is supplied with the basic set of facilities from which support for a project
need to be fashioned according to the wide range of users from programmers to
managers.

Tailorability is an assessment of the extent to which support for project activities
can be constructed, the range of structures that can be reflected into the IPSE and

scope for building interfaces suited to particular user needs.

5.4.3 Integration

Integration in an IPSE is the degree to which such things as common definitions and

uniform styles of interaction are supported and facilitated.

There are three facts of integration:

o user interface
o data management

o activity support

1. User Interface

Integration of the user interface is related to the way a user interacts with the

IPSE. A user requires a consistent style in the user interface of all tools and to

104

the IPSE infrastructure. The style of presentation and responses to such things as
menus, icons and function buttons must be uniform.
2. Data Management

Integration of data management does not simply imply that tools share a common
data base. It is that the structure of the data is also held separately, rather than
being implicit in the tools themselves. The IPSE data base should provide a
uniform means of accessing and manipulating the data for both direct user access
and tool access. The data base may also include facilities to enforce any consistency
constraints specified for a project. The smallest size of object that can be referred

to in an IPSE will have a bearing on the degree of integration.

Thus an IPSE which only allows reference at file leyel will still leave the interpre-

tation of the formalt of the contents within the file to individual tools.

3. Activity Support

Integration of the management is the way in which tools are interrelated, the
way the development process can be moulded into a logical whole, rather than

comprising a series of independent tasks.

5.4.4 Distribution

Distribution covers both:

o The physical aspects of the system (Hardware and Software)

e The logical architecture of the IPSE itself

1. Physical Aspects
The physical aspects are concerned with whether the facilities of a single IPSE are
accessible over Local Area Networks (LAN) or Wide Area Networks (WAN).

2. Logical Aspects

The logical aspects are concerned with the way in which the underlying database

and kernel facilities are shared across different machines.

105

5.4.5 Conclusion

IPSEs should be able to incorporate new facilities and to adapt the existing one to
projects during the software life-cycle they support. The integration level of tools and
user interface is of critical importance to obtain a consistent IPSE. The distributed

development requires information shared across different machines and accessible over
networks.

The above criteria are used to evaluate the current IPSEs.

5.5 Evaluation of IPSEs

5.5.1 Introduction

IPSEs havé only been available for a short time. The DTI and NCC have made an
evaluation of IPSEs [250]. They assess different IPSEs e.g. ALS, ASPECT, BIS-IPSE,
DSEE, Eclipse, EPOS, Genos, ISTAR, Maestro, PACT, PCTE Emeraude, Perspective,
Perspective Kernel, Prados and Rational. Some of these [PSEs will not be evaluated

because they do not conform to the criteria on prospective requirements:

o ALS, ASPECT, BIS-IPSE, DSEE, EPOS, Maestro, Perspective and Prados are
limited by the size of the project.

o BIS-IPSE is primarily designed to support the design and development of com-
mercial Data Processing systems.

o Perspective is language orjented (Pascal).

o Rational provides a program development and support environment for users of

the Rational range of computers.

The IPSE that will be evaluated are the following:
(a) Eclipse
Eclipse is PCTE based initially supporting MASCOT 3 (a method for design-
ing and building software aimed at real-time embedded systems) and LSDM
(a method for structured system for analysis and design). It is being produced

to run under the Emeraude implementation of PCTE.

106

Eclipse is a British project which chose the PCTE interfaces: on which to
develop a set of general mechanisms available to tool writers; a tool set built
using these facilities; general tool builder support facilities, and a research
program. Its objectives are centred around the use of an advanced database
system specifically written to address the data management issues associated
with software development.

(b) Genos
Genos provides a distributed open and incremental integrated environment for
the development of software projects.

(c) ISTAR
ISTAR is an Integrated Project Support Environment.

(d) PACT
PACT is an ESPRIT project that is building an integrated environment on
the PCTE interfaces. It aims to provides an integrated toolset.

(e) PCTE Emeraude
EMERAUDE is a project undertaken by a French consortium of three compa-
nies, to produce an industrial quality implementation of the PCTE interfaces.

(f} Perspective Kernel
Perspective Kernel provides a gencral IPSE infrastructure incorporating the

ideas and tools of Perspective, but open to new tools and methods.

5.5.2 Evaluation of IPSEs with the criteria

1. Flexibility
¢ Extensibility
(a) PCTE Emeraude is very flexible allowing new tools to be incorporated.
The purpose of PCTE as a tools interface and the movement of it toward

standardisation is to encourage the third party production of compatible
and integrated tools.

(b) Eclipse and PACT are open IPSEs based on PCTE. PACT with the Com-
mon Service layer provides a PTI above the level of that provided by
PCTE. The facilities provided by the the PACT kernel and PCTE are

extensible by the definition of new schemas and data structures. Eclipse

107

(c)

(d)

(e)

can integrate -'ﬁew nativé txool‘s—-\ﬁt,h PClE and is fully compalible with
most Unix tools.

Genos has the'ca pabllrty of integrating new tools very easdy elther through
the external tool: interface or by encapsuldtlon (lependmg on their inter-

action with the opel atmg system

ISTAR nal;:ve and forelgn tools can l)e mteglate(] usmg the I‘;TAR tool
bulldmg tools. - To ensure tl\a,t_ fore;gn tools can explm,t phe{ _da,ta,_ba,se. and.
wiH_‘.1;eﬂeCt'.-1S'1‘AR’s’use'r-'i:ntei‘fa:.ce 'coh@ntions, the fore,ién tools are pack-
aged in an 'envelope®.

Perspective Kernel has the capability to integrate native and foreign tools.
With the former, it will be through a native tool interface whereby tools

can be written to take advantage of the facilities of the kernel directly.

- With the latter only with VAX/VMS tools written without knowledge of

the kernel. The kernel data structures will themselves be extensible.

o Tailorability

(2)

(b)

(d)

(e)- I

Eclipse supports the contractual model of project control in its configura-
tion control system. Data base structure is described by schemas that can
be modified and added. There is a facility for defining the appearance of
the end-user interface based on an interpreted language. The user inter-
face andfhe kernel structures are coufigurable by the tool builder but not

by the end-user.

'Genos has a flexible way of modelling project process so that tool invoca-
_t:io:ns:a.re‘ integrated With‘,i)rd_ject pro_ces-scs.

(c) "

fISTARéalf be tailored-to project needs by struct'urhig' contl'acts and Sup-

plymg smtable \soxkbenches The ploduct strucLure can be reﬁected mto‘
the st1 ucture of coutl a.cts 'l he user mtexfa,ce can be tmnlored and forms

and menus generated f01 specnﬁc apphcatlons

'PACT Common Selvmes prov1de extended suppmt f01 ‘the composmon of

tools.; Geuenc tools can- brA p]oducpd to opelate on da,h obJects i, the

PCTI1 ObJecL Man'\gemeut Q\'stem (OMS) -

,Ewtenslve suppmt is plowded by the PC'JE OMC; a.nd the tallored fea—

tures of the conﬁgmatlon nmnagoment tool fOJ the (leﬁmtxon of product

(g)

structure, although no explicit structures are defined be PACT.

PCTE Emeraude is capable of capturing a very wide range of data struc-
tures and no particular developinent process is assumed. Data is described
by easily modifiable schema. It has no explicit support to enable an end-
user configurable interface.

Perspective Kernel will be tailorable by tool composition, extending the
data base structure and by defining an appropriate project structure. The
data base will have a type structure with inheritance allowing generic tools
to be provided and specialised for particular organisations, projects and

applications.

2. Integration

o Integration of the user interface

(a)

(b)

(c)

Eclipse has a high level interface and therefore native Eclipse tools are

highly integrated as regarded user integration.

Genos has a uniform interface used throughout by all tools and Perspective

kernel will provide a uniform one for native tools.

PCTE has graphics capabilities and pop-up menus that present a consis-

" tent user interface.

(e)

ISTAR. provides a uniform set of terminal independent logical services for
all styles of interaction.

PACT will provide and enforce a uniform and coherent user interface
tlirough the use of PCTE facilities and PACT Common Services to imple-

ment all integration between tools and the user.

e Integration of data management

(a)

(b)

Eclipse native tools store all their data in a highly structured way within
the data base. The database interface is at a high level and supports
retrieval by pattern matching and simple value comparison. In this way
information retrieval by different tools is highly integrated and there will
be no inconsistencies when logically equivalent data is shvown to the user.
Genos supports typed data and allows tools to access common data struc-
tures, so that generic tools can be produced to operate on common types

of data from within the user interface. For the data base implementation

109

F
£
£
E

(c)

(d)

(e)

such as PCTE a more complex data model is supported which allows tools
access to relationships between data objects and more extensive attribute
information.

With ISTAR, data types can be defined and shared via workbenches.
PACT integrates data in a consistent way with the use of the PCTE OMS
and the PACT Integration Rules.

With PCTE Emeraude, foreign Unix tools are not really integrated in
their data management and native tools have not yet been built. However
there are mechanisms which allow the integration of foreign tools to be
improved.

Perspective kernel will integrate both native and foreign tools via shared

data.

o Integration of the activity management

(a)

(b)

(c)

(d)

(e)

Process management is very closely integrated into Genos in the support
for project structures, so that the use of particular tools can be integrated
into the development process.

With ISTAR, standard procedures can be defined as scripts and shared
via workbenches.

PACT provides some support for tool compaosition through the Unix shell
component of the initial tool set and some further support for tool com-
position using the OMS is planned.

PCTE is similar to Unix, but can also represent the relationship between
an interpreter and its code on the database.

Perspective kernel will provide some degree of process integration via the

process structure and transaction facilities.

3. Distribution

o Physical Aspects

(2)

PCTE is designed as a distributed system supporting a network of work-
stations distributed over an Ethernet LAN of heterogeneous machines.

The granularity of distribution is an object.

(b) Eclipse and PACT are potentially distributed because they are PCTE

based.

110

(c) Genos exploits both LAN & WAN distribution over heterogeneous systems.
For existing systems the granularity of distribution is at the level of a file
so that Genos can take advantage of distributed file systems. For data
base implementation the granularity of distribution is an object.

(d) ISTAR can make use of both LAN & WAN because of its contract struc-
ture. However, a contract is usually restricted Lo one host while subcon-
tracts can be on other hosts. The machine within the network need to be
of the same type as long as they exchange data over the network.

(e) Perspective Kernel is not a distributed system but is available on VAX
clusters,

o Logical Aspects

(a) PCTE distinguishes process distribution and the data base distribution of
objects. Facilities exists that enable the user to control the distribution.

(b) With PCTE, PACT and Eclipse, the distribution of objects is invisible to
the end-user.

{¢) The logical model for distribution by Genos is based on the project view
from which projects are built. Within a single project, the project views
may be distributed over a number of systems.

(d) With ISTAR, contracts can be allocated to particular hosts with the data
associated with the contracts. A particular host may have a particular set
of workbenches to carry out its contracts.

(e) Perspective Kernel is not a distributed system but is available on VAX

clusters.

From the evaluation of current IPSEs according to the above criteria, a summary is

given in Table No 5.2.

111

3
;
.

i

EVALUATION Integrated Project Support Environments
CRITERIA ECLIPSE GENOS ISTAR PACT PCTE E. | PERSP.K.
FLEXIBILITY
1. Extensibility
for Native tools PCTE PCTE PCTE PTi
for Foreign tools {{ Unix tools | FTT or ‘enc.” | ‘envelope’ PCTE - PCTE Vax/Vms
for Data Base data struc. data struc.
2. Tailorability project project structuring tool project
control process contracts composition structure
data base workbench SCM data base | data base
INTEGRATION
1. User I/F Ingh uniform uniform uniform consistent uniform
level & coherent
2. Data Mgt. support data data data share
retrieval type type type data
data struc. | data struc.
3. Activity Mgt. ? Yes standard tool like process
procedure | composition Unix structure
DISTRIBUTION
1. Physical Asp. LAN LANSWAN | LAN&WAN LAN No
2. Logical Asp. invisible Yes contracts invisible invisible No

Table No 5.2: Summary of the current IPSEs’ Evaluation

5.5.3 Conclusion

- As described in the previous section (evaluation of IPSEs according to three criteria)

no IPSEs so far has approached the the ideal blend with flexibility and integration.

Furthermore, ECLIPSE uses MASCOT and LSDM methods which are not supported

by the European Space Agency’s standards. GENOS uses no standard configuration

management tools and does not supports a particular specification and design method.

ISTAR is mainly dedicated to real-time systems with the use of CORE method for

specification and SDL for design.

Perspective Kernel is not a distributed system. PCTE Emeraude is very interesting

112

with the use of the European standard PCTE, but should use foreign tools that are

compatible with PCTE. None of these IPSEs supports reuse of components.

For these reasons, the aerospace industry had to build their own IPSE to develop the

software according to requirements of different projects.

5.6 IPSEs for Aerospace Systems

5.6.1 Introduction

In this section, an evaluation of IPSEs for aerospace applications is performed. The
IPSEs used for the software development of HERMES/COLUMBUS and FREEDOM

are integrating tools that are primarily commercial off-the-shelf.

5.6.2 HERMES/COLUMBUS

The Hermes Software Development Environment (HSDE) [27] and the Colombus Soft-
ware Development Environment (Columbus is the European contribution to the In-
ternational Space Station) both support methods and standards, allowing distributed
development and management of large, complex and critical Ada software. The HSDE

is dedicated to the development of the HERMES’ software (European Space Shuttle).

The European Space Agency has provided appropriate standards, recommendation and
infrastructure to ensure the successful and timely production of reliable software. These
consideration has has led to the requirement specification of the European Space Soft-
ware Development Environment (ESSDE) which for its life-cycle approach is based on
the well established ESA Software Engineering Standards (ESA PSS-05-0, Jan 1987).
The Columbus and Hermes projects [226] have used these requirements as input to
their projects specific IPSE’s and as a consequence many of the methods and tools are

similar.

Due to the project autonomy, two separate teams (a Columbus team and a Hermes one)

were established to produce the two IPSE’s and although working to the same functional

113

requirements to individual projects requirements were not sufficiently detailed to enforce

commonality.

An evaluation has been made at ESTEC [226] of the first version of both IPSEs:

o all the commercial tools are different except for the requirement analysis and the

syntax editor.
o all the developed tools are different in concept or implementation
o both environments present good and not so good concepts

o choosing oune of the IPSEs’s as the ESSDE would mean giving up the good concepts

implemented by the other one

A combination of a the best concepts implemented in either IPSE will be used for the

ESSDE.

5.6.3 FREEDOM

The Space Station Freedom Program has required the use of a common software en-
gineering environment for the development of all its operational software, both flight
and ground based. This environment, known as the Software Support Environment
(SEE) [108], is really a large collection of tools, rules and procedures from several
technologies. The SEE uses tools that primarily coinmercial-of-the-shelf, with limited

capabilities being provided by custom tools.

The generic SSE [203] is an ordered collection of tools, rules and procedures which may
be instantiated, or subsetted, to provide a wide range of software life cycle support

systems.

114

5.6.4 Evaluation of Aerospace IPSEs

EVALUATION "

NAME of Aerospace IPSEs

CRITERIA || HERMES/COLUMBUS | FREEDOM

FLEXIBILITY
1. Extensibility

for Native tools encapsulation ?

for Foreign tools encapsulation 7

for Data Base Yes Yes
2. Tailorability Yes Yes
INTEGRATION
{. User I/F high level high level
2. Data Mgt. support retrieval support, retrieval

object/sub-ob ject object

3. Activity Mgt. Yes Yes
DISTRIBUTION
1. Physical Asp. LAN&WAN LAN&WAN
2. Logical Asp. invisible invisible

Table No 5.3: Summary of the Aerospace IPSEs’ Evaluation

SEE and ESSDE are flexible and integrated environments, and a good distribution is

provided.

SEE and ESSDE are built with tools that are primarily commercial-off-the-shell. There-
fore, it is diflicult to maintain traceability across the software life-cycle between require-
ments, specification, design and test components. For example, outputs {rom specifica-
tion are not compatible with inputs for design because the tools are designed to support

different methods.

These environments do not provide tool support for program comprehension with error
localisation and impact analysis, which is essential for maintenance, neither is there

support for the costing of modifications to software.
These environments are not using standards for tools interface, thus it will be difficult

115

to add foreign tools that will be fully integrated within the environment.

5.8.5 Conclusion

The ‘construction’ of an IPSE from existing tools [226], well established development
concepts and a bit of glue software has proven to be surprisingly difficult. By building
bottom-up, a universal multi-project IPSE could not be realised. There is a need to

build these environments with a bottom-up and a top-down approach.

5.7 Summary

In this chapter, an evaluation of current IPSEs for development has been achieved
and it seems that they do not support maintenance in an efficient way. The IPSE for
the aerospace industry should support the development and maintenance of large and
high quality software; running over many years in different locations. According to the
requirements in the aerospace industry, there is a need to address the requirements for

a software maintenance support environment.

116

Chapter 6

Requirements for a Software
Maintenance Support

Environment

6.1 Introduction

The previous chapters have discussed a method to perform software maintenance at
three levels, described tools to support the software maintenance process and presented
an evaluation of current IPSIEs. As has been mentioned, these environments are ad-

dressed to development but do not fully support maintenance.

This chapter specifies the requiretnents for a Software Maintenance Support Environ-

ment (SMSE) for Aerospace software.

The SMSE should be customisable and extensible and should be able to support the
maintenance of large to very large scale software. The SMSE should cover the full range
of software maintenance activities described in the previous chapters. The SMSF should
support a software maintenance process with sufficient precision and clarity to foster
understanding, communication and effective support by means of tools. The toolset

should include tools supplied by the development environment and tools dedicated for

117

the maintenance phase.

The toolset should remain open-ended, extensible and should allow the addition of new
tools through a standard Public Tool Interface. The SMSE should be flexible to accom-
modate change by permitting tool introduction, removal, replacement, customisation,

extension, etc.

6.2 Data Base

The data base should act as a central repository for information associated with each
project throughout the project life cycle. The data base should be extensible and
configurable to allow extension and adaptation of the SMSE as a whole to individual
project requirements. The data base should store information which allows management

reports to be generated.

The Data Base Management System should store and retrieve all the data object pro-
duced by the project and should support software configuration management by retain-

ing the currently approved versions of all controlled products.

6.3 Human Computer Interaction
The Human Computer Interaction (HCI) facilities should be varied, flexible and multi-
windowed with menu, mouse and command line.

The HCI [(acilities should be tailorable to maintenance needs. The HCI should help
and assist efficiently the maintenance stafl during the operational phase. The kind of
interface required may be diflerent for the different types of user and different types of

activities.

Two aspects should be considered:

o surface aspect: interface design must enforce ergonomical concepts (e.g. colour,

screen object localisation, interaction mode, user background and task to be per-

118

formed)

o architecture: object-oriented approach is widely used structuring HCI items

6.4 Software Configuration Management

The SMSE should support software configuration management with the following ac-

tivities:

e software configuration identification

e software version control

e software change and configuration control
o software configuration status accounting

e software configuration audit

6.4.1 Software Configuration Identification

A software configuration item (SCI) is a 'manageable’ software entity within a config-
uration e.g. requirement document, specification document, design document, source

code, data file, documentation, test procedure.

Software configuration identification should support:

e definition of the different baselines and associated SCls of a system
o identification of any change made to these components and baselines
.e identification of the relationship between SCls

identification of the version of the tool that generated the SCI

6.4.2 Software Version Control

Software version control should:

e support version control for SCI

119

o track the historical record of each SCI
o store relevant information about each change performed on any SCI
o control multiple versions of the SCls

o identify differences between two versions of a particular SCI including additions,

deletions and moves

o correct the documentation and highlight changes made in a documentation

6.4.3 Software Change and Configuration Control

Software configuration control should:

Q

allow the partitioning of the software product in different geographical sites:
~ reference site
— maintenance site
— operational sites

o store required information to

— create and control a new SCI

— build and control a new release

— modify a SCI
o manage a link between problem reports and SCls
o manage a link between change request forms and SCls
o manage change control forms on-line

— use of standard format of the forms

— creation of the software problem report
— creation of the change request forms

— -progress of change

— approval (signature)

- report of modification

120

6.4.4 Software Configuration Status Accounting

Software configuration status accounting should provide an administrative history of

the evolution of a software system by:

o reporting all configuration items including status of:

— all software problems

— all software documentation

— all software release

— all changes allecting the SCls

and generating information with statistics

e reporting the number of anomaly/modification request per category, site, SCI
¢ providing list of known errors and omissions
¢ identifying all SCls potentially affected by a proposed change

e providing information of all software problems before a new release of a software

product and the reasons for changes from one version to the next one

6.4.5 Software Configuration Audit

Software configuration audit should determines whether or not baselines meet their

requirements and whether correct procedures have been adhered to.

6.5 Program Comprehension

The SMSE should support program conmprehension with static, dynamic, impact anal-
ysis and traceability tools. These tools should be interfaced with the Software Config-

uration Management facilities.

6.5.1 Static analysis

The SMSE should support static analysis by providing:

121

o language audit:

— conformance to project naming convention

— absence of duplicate names

— absence of non-standard language features
o control flow analysis:
— absence of structurally unreachable code
— absence of structurally non-terminating loops
— absence of multiple entries to loops
- conforma.nce to I’(‘,ClII'SiOl'l COllVell(.iOllS
o data use analysis:
— initialisation of data before use
— use of all declared variables
— absence of redundant writes
o information flow analysis:
— the set of output variable
— the set of input variable

— the relationship between the above (which output variables may be affected

by a change in a given input variable)

o symbolic execution (automated form of desk walkthrough in which execution of

the code is replaced by symbolic operations)
o semantic analysis
o complexity measurement analysis:

code metrics e.g. program size, control graph, call graph

count of the independent logical paths through a procedure e.g. cyclomatic

metrics

accessibility of a module, testability of a path, a system e.g. Mohanty’s metric

amount of information which flow in and out a procedure e.g. Henry and

Kafura’s metric

counts of operands within a code procedure e.g. Halstead’s metric

o cross reference and information reported therein

122

6.5.2 Dynamic analysis

The SMSE should support dynamic analysis by providing:

o test data generators for two types of testing:

— black box testing (functional technique) where there is no knowledge of the
internal operation of the component of software being tested and data is gen-
erated purely from the functional specification.

— white box testing (structural technique) where the internal operation of the
software is known and the data is generated in order to exercise the code and

determine what it actually does.

e data flow generators that:

generate data for error detection

}

analyse the variables with respect of change of values and usage

|

debugging of incorrect use of parameters

generate the expected result
o test drivers that:

— execute the software using liles of test data and record the output

— provide the stub (a dummy component or object used to simulate the be-

haviour of real component) required in top-down testing
e regression testing that:

— records the input and output of a test session (capture)
— reissues prerecorded inputs (replay)

— determines that the actual results of the current test session are the same as

those previous test session (compare)
e diagnosis with:
— a sequential trace of the execution
— a record of changes to selected data

— an analysis of the above information to provide more comprehensive reports
e coverage analysis including:

~ code coverage

123

— system coverage
— interface coverage
o performance analysis

o test result analysis

6.5.3 Impact analysis

The SMSE should support impact analysis.

The impact analysis tool should:

o evaluate change requests for potential impact on the system, documentation, hard-

ware, data structure and users
o utilise stability measurements and ripple eflect analysis

o develop a preliminary resource estimate and provide an accurate cost of the mod-

ification

o document the scope of the requested change and update the change request

6.5.4 Traceability

The SMSE should support traceability. The traceability toolkit should provide:

o horizontal traceability, (‘is implemented by’) between SCls related to different life

cycle phases (for example, links between design document and code document)

o vertical traceabhility, (‘calls’, ‘uses’, ...) between SCIs related to the same life cycle
M

phases (for example, links between source code SCls, dependency analysis)

o structural traceability, (‘is composed of*) between SCls of same nature

o relational traceability, (‘is described by*, ...) between SCIs of different types

6.6 Quality Assurance

The SMSE should support quality assurance.

124

The quality assurance tool should:

e manage a link between reviews and SCls

o track the quality evolution of SCls through the use of quality metrics

o give the current status of the product and conformance to quality plan

o indicate the trends that can be expected to influence the future status of the
v product

e collect metrics about 1naintainabﬁity

o provigle information on stability of the SCls e.g.:

~ number of change request per SCls
- measures of the impact of a change to single variable definition on the rest of

the program modules

6.7 Planning and Controlling maintenance

The SMSE should support planning and scheduling the maintenance process as de-

‘scribed in section 3.3.2.

6.8 Distribution

o Physical distribution
The SMSE should support Local Area Networks (LAN) and Wide Area Networks

(WAN) for inter site communication facilities.

. Logical distribution

The SMSE should support the logical aspect of distribution (process, data base).

125

6.9 Others

6.9.1 Reuse

The SMSE should support reuse of SCIs at different level of abstraction (e.g. specifica-

tion, design, code, documentation ...). May unsolved research problems.

6.9.2 Reverse Engineering

The SMSE should support reverse engineering. The reverse engineering tools should be

used for the identification or recovery of the software requirements and/or design.

6.9.3 Safety Critical Systems

The SMSE should provide specific support for the maintenance and the verification of
safety critical software and fault tolerant software e.g. Fault Tree Analysis, Software

Replaceable Unit concept, safety critical software components.

8.9.4 Environment simulator

The SMSE should provide an environment sitnulator. The environment simulator should
enable the maintainer to model the external environmment of real-time software and then

simulate actual operating conditions dynamically.

6.9.5 Documentation for Maintenance

The SMSE should provide documentation for maintenance. Documentation should
be produced during the development phase according to the maintainer’s needs and
should be completed by them during the maintenance phase to complement the existing
documentation and to help their personal cognitive understanding. This document

should use hypertext technology easily to browse through the documentation.

126

6.9.6 Training

The SMSE should provide training facilities for each tool and for the environment.

6.9.7 Knowledge Transfer

The SMSE should support knowledge transfer by recording knowledge acquisition on
maintainer’s expertise through a knowledge base. The maintenance knowledge should

be stored and will simplify the learning task for replacement personnel.

6.10 Summary

The SMSE is an environment that should support all software maintenance tasks from
identification of modification to revalidation along with software configuration manage-
ment and quality assurance. The SMSE is based on an open architecture that should
allow the addition of new tools, a data base that should act as a central repository,
and a HCI that should be flexible and tailorable to maintenance needs. The SMSE is
supported by a traceability toolkit that should be interfaced with the SCM system and

the toolset.

The sofltware maiutenance process should be tailored to the organisation’s needs and to

the SMSE.

127

Chapter 7

Conclusions and Further

Research

This chapter presents the conclusions of the work undertaken for the thesis, including

suggestions for applicable {urther research.

7.1 Conclusions

The research described in this thesis has achieved the objectives outlined in section 1.2
with careful use of existing ideas to support maintenance, but without radical change

in technology.

The work started with the premise that software maintenaunce is most expensive phase
lof the software life cycle, and that there is a lack of good maintenance practice as well as
environments for maintenance. It is well known that software maintenance dominates
the high cost of software and an effective approach to reducing the maintenance cost
is to provide a software maintenance method with a software maintenance support

environment.

The software maintenance method has been defined as ‘software maintenance best prac-

tice’ based on an analytical approach of the current software maintenance process and

128

analysis of reported maintenance problems. This method has been addressed with an
hierarchical view of the software maintenance process at three different level: organisa-

tional, managerial and technical.

The organisational level has been addressed with the view of software maintenance as
product support. The strategy to adopt and the identification of the market trend
for the maintenance activity has been defined. The need for the involvement of senior

management and effective communication in the company has been outlined.

The management level has been addressed with the provision of a maintenance plan
for the management and tools to monitor and control this activity. The management
of the maintenance department has been presented in a manner, such that, if adopted
by a maintenance organisation, that would increase the productivity and motivation of

the maintenance stafl.

The technical level has been addressed with a survey of software maintenance tasks
models and a proposition for a software maintenance task model for Aerospace systems.
The need for software metrics applied to maintenance has been emphasised to facilitate

maintenance tasks and management control.

"A survey of software maintenance tools has been presented, and it has been emphasised
that there is a lack of tools and methods that support the whole software maintenance

process.

Current Integrated Project Support Environments have been evaluated according to
their flexibility, integration and distribution, and the conclusion is that they do not

support maintenance in an efficient way.

The requirements for a Software Maintenance Support Environment has been specified
using the best software maintenance practice, the analysis of software maintenance tools

and the evaluation of current [PSEs.

129

7.2 TFurther Research

Points for consideration:

o This software maintenance best practice is based on an analytical approach of the
software mamtenauce process, and should be vallda,ted via e‘(penmenta.l ‘approach -

in the worl\ e11v1r011111e11L

o The software ‘maiitenance best practice has been described with the different or-
ganisational, managerial and technical tasks during the software maintenance pro-
cess, and therefore this model should be expressed in a more dynamic style with

the information flow.

o The requirements for a Software Maintenance Support Environment should be
impleménted in the real world in order to build a real environinent for maintenance
and some requirements should be used in industry to build IPSEs that address
the development and maintenance of software and can provide more maintainable

software.

o A plan should be elaborated on how to advise people to use this software mainte-

nance method and how to implement the ideas of the SMSE in a company.

o A transition plan should be elabarated for the transfer from the development phase
to the maintenance.phase with a plan for Maintenance, for Quality Assurance and

for Software Configuration Management.

o Research should be perforined to find the interconiiections between the software
development process aud the software maintenance process_and the evql.utionémry

aspects of the software inaintenance-process should he analysed.'

o Research should be pelfouned to’ develop s plocess mo(lel for the ovelaJl SMSL
with the descx lptlon of. the- envuon ment s boundauy wnth busmess usmg the process_

model .

o Research should be pe1formed on Lhe HC] w1th Lhe best method to dlsplay the

neceqsaly mfm 1nat10n [cqunod f01 the mamtal ne1 wnlh Lhe surface and a,rchltectme‘

‘aspects

0 Resea1c11 should be per fonme(] on how to ostnna,te Lhe cosb of 1110d1ﬁcat1011 or- of a

new. 1elease of the SOfthlG

130 S

o Research should be performed on recording the knowledge gained by the maintain-
ers during the software maintenance process. This knowledge can then be used by
other maintainers working in the same area or by the new maintainers to facilitate

the knowledge transfer.

o Research should be performed on applying artificial intelligence techniques to the
software maintenance process with the development of an intelligent maintenance

assistant that can support the whole process with more automation.

131

Appendix A

Software Maintenance Tools

Commercially Available

A.1 Tools for Program Comprehension

A.1.1 Code Analyser

(a) ACT
Tool: Analysis of Complexity Tool (ACT)
Category: Code analyser, code visualisation
Produced/Supplied by: McCabe & associates Inc., 5501 Twin Knolls Road,
suite 111, Columbia, Maryland 21045
Target Language: ADA, C, FORTRAN, PASCAL, BASIC, PL/I, ASSEM-
BLY (8086, 6502), COBOL
Platform: runs IBM PCs, Sun, Apollo, HP, on DEC VAX workstations un-
der Unix, and on DEC VAX mainframes under VMS with Ultrix.

Description: ACT [165] is driven by and analyses source code, producing a
graphical representation of module structure, and aiso calculates the McCabe
cyclomatic complexity metric and generates the basis set of test paths that
should be exercised for each module within the source code.

This tool has been evaluated by the STSC.

132

(b)

(¢)

AdaMAT

Tool: AdaMAT

Category: Static code analyser

Produced/Supplied by: Dynamic Research Corporation, Andover, MA,
tel: 508-475-9090

Target Language: ADA

Platform: runs on DEC VAX, Rational

Cost: $5000-$24995

Description: AdaMAT [251] analyses Ada source code against more than
150 parameters. Parameters such as relative reliability, maintainability and
portability are all measured. Lower level paraineters might target specific pro-
gramming practices. Other criteria measured include anomalies, modularity,
independence, self-descriptiveness, simplicity and clarity.

This tool has been evaluated by the STSC.

ATVS

Tool: ATVS (Ada Test and Verification System)

Category: Static code analyser, coverage/Frequency analysis, performance
analysis

Produced/Supplied by: Janice Smith, General Research Corporation, Santa
Barbara, CA, tel: 805-964-7724

Target Language: ADA

Platform: runs on DEC VAX

Description: ATVS static analysis [251] examines the branching structure
of the program and identifies unreachable code, identifies logic errors such as
objects assigned a value and never used, and perforins audits against project-
specific programming standards. ATVS dynamic analysis identifies unexe-
cuted code and aids modification of the test data to achieve complete test
coverage. A task analyser is also included.

This tool has heen evaluated by the STSC.

BATTLE MAP

Tool: BATTLE MAP

Category: Code analyser, code visualisation

Produced/Supplied by: McCabe & Associates Inc., 5501 Twin Knolls

133

http://McCa.be

(e)

Road, suite 111, C.olumbla Marylaud 2[040
Target Language: ADA, C, FORTRAN, PASCAL, BASIC PL/I, ASSLM-
BLY (8086, Go02), COBOL
]P’latform runs on PCs uirder MSDOS on HP, on. DEC VAX workstations
under Unix, and on DLC VAX mal'nframes under VMS with- Ultrix.
Cost § ()000 for PCS $21 300 for the workstation versnon, and $,29000 for-a
16 user VA}\ mamfname versmn
Description: This tool [-165_]: displays the ét'rnfcture“‘o[any system or sub-
systein gifapiﬂcélly, USing sbe}dal syrﬁbols to indicate tl'ré complexity of each
piece of code in the design. Battlemap allbw'sfhe user to productiively reverse
engineer on large existing systems by providing a comprehensive, visual un-
derstanding of the entire program structure along with its quality attributes.
EDSA
Tool: EDSA (Expert Dataflow and Static Analysis)
Category: Code analyser, code visualisation
Produced/Supplied by: Array Systems Computing, 5000 Dufferin Street,
Suite 200, Downsview, Ont. M3H5T5, CANADA
Target Language: ADA
Platform: runs on PCs under MSDOS, on Sun, Apollo, and DEC work-
sta.tibns under Unix, and on VAX mainframe under Unixand on DEC VAX
m_a‘iAnframes under VMS with U‘ltr»ix‘
Cost:- $*24;50-;__Ior PCs, $3250 [or Sun, Apollo, and VAXstalion workstation,
aﬁd{ $ 11000 to $22000 for VAX mainframes. _ |
Dés;cvrirp?timi: This tool lets the user identify which stl‘ucti;i'es Vh'é/she is intéy-
estedin a.n"dr thé'n, remqveé' e_xtraneoﬁs (iutervening) cbdg, tilé}éﬁyé 1§ttill'g the
user see the big' pi('tm'é [lXU] EIZ)S'/\' [ZOG] pru\rri«!esv'L'Irlfl.'ee kin(iﬂof faéilil.icés:

o It helps to, bmwse Llnough code followmg either the control ﬂow or-data-

ﬂow \ather thau the 01de| in wluch Lhe (.Od(, happens Lo be wutten

o lt dlsplays code \Vlth ummpmtant qource lmeq ellded 50 that the user can

get a mone glohal v1ew of the plogram

o It prowdes sparcll management to ma ke n, eamel to e‘iarmne all possnblhtles

when? browsmg

(f)

(g)

Flint

Tool: Flint

Category: Static code analyser

Produced/Supplied by: Pacific-Sierra Research, Los Angeles, CA, tel: 213-
820-2200

Target Language: FORTRAN

Platform: runs on DIEC VAX, ABM370, and any UNIX machine.
Description: Flint [251] is a lint-like utility supporting FORTRAN programs.
This includes types checking and function parameter checking not performed
by the FORTRAN compiler.

FORTRAN-lint

Tool: FORTRAN-lint.

Category: Static code analyser

Produced/Supplied by: Information Processing Techniques, Inc., Palo Alto,
tel: 415-494-7500

Target Language: FORTRAN

Platform: runs on DEC VAX and Data General MV

Cost: $3550 -$9450

Description: FORTRAN-lint [251]is a static analyser that detects coding
p.roblems similar to what lint utilities do for C programs. Among the prob-
lems detected are parameter checking and type checking of variables. Other
checks include the use of variables before declaration and non-use of declared

variable.

) F-SCAN

Tool: F-SCAN

Category: Cross referencer, Diagram generator, Code analyser
Produced/Supplied by: Koso Inc., 114 Sansome St, Suite 1203, San Fran-
cisco CA 94104 or International Logic Corp.

Target Language: FORTRAN

Description: This tool provides structure charts, Call/Vcalled tables, Set/Used
tables, and diagrams of Common.

ISAS

Tool: ISAS

135

- ()

Category: Cross-referencer, diagram generator, code analyser, source code
comparison

Produced/Supplied by: Singer Dalmo Victor Division, 6365 E. Tanque
Verde Road, Tucson AZ 85715 or System & Software Eng.

Target Language: FORTRAN, ASSEMBLER

Description: This tool reports and charts procedure hierarchy, data refer-
ences, control flow, system structure, etc.

Lint

Tool: Lint

Category: Static code analyser

Produced/Supplied by: UNIX vendors

Target Language: C

Platform: runs on UNIX machine

Cost: Usually included in UNIX

Description: Lint [251] detects C code features that are likely to develop
into bugs, procedure non-portable code, or produce inefficient code. Lint also
performs a more complete type check than the C compiler. Lint detects un-
reachable code segments, loop errors, and parameter checking on function
calls.

Lint-PLUS

Tool: Lint-PLUS

Category: Static code analyser

Produced/Supplied by: Information Processing Techniques, Inc., Palo Alto,
CA, tel: 415-494-7500

Target Language: C

Piatform: runs on DEC/VAX, DATA General Nova, and Eclipse

Cost: $3550-$9450

Description: Lint-PLUS [251] is a lint utility that provides static code analy-
sis on C code. Lint-PLUS provides information on type checking and function
parameter checking. Other metrics include the conformance to standards and
portability. Lint-PLUS allows the user to vary the amount of metrics received.
LOGISCOPE

Tool: LOGISCOPE

136

Category: Automated Source Code Analyser (Complexity analysis, Test cov-
erage analysis)

Produced/Supplied by: Verilog S.A., 150 rue Vauquelin, Toulouse 31081
Target Language: ADA, FORTRAN, ASSEMBLER, PASCAL, C, MOD-
ULA 2, COBOL

Platform: DEC, IBM Mainframe, SUN workstation

Cost: Fr 100000

Description: LOGISCOPE [169, 251] visualises the internal logic structure of
each module of codé, as well as the structural relationships of all the modules.
The results provided by the Complexity Analyser are:

e textual and quantitative: Halstead, McCabe and Mohanty metrics;

o graphic and qualitative: control graphs, call graphs, criteria graphs and
Kiviat diagrams;

This tool has heen evaluated by the STSC.

MALPAS

Tool: MALPAS (Malvern Program Analysis Suite)

Category: Static code analyser

Produced/Supplied by: Rex, Thompson & Partners Limited, West Street,
Faruham, Surrey, GU9 7EQ, Tel: (44) 252 711414.

Platform: VAX/VMS

Cost: Fr 150000

Description: This tool [250] is a suite of software tools for the automatic,
static analysis of programs written in a variety of programming languages. Six
f;ypes of analysis may be performed:

e Control Flow Analyser: examines the topological structure of the software
and identifies: all possible starts and ends; unreachable code and dynamic
halt; the location of loops with their entry and possible and exit point and
reveals the high-level control structure of the software.

e Data Use Analyser: deals with the sequential reading and writing of data
and will identify unset and unused variables and incorrectly used used

variables.

137

http://McCa.be

(n)

(o) P

o Information Fiow Ane,lyser: identifies the input variables on which each
output variable depends.
o Partial Programmer: decompose the software-into a set of sub-programs
prior to semantic analysis
0 Sefnavzgtic Analyser: provides fdrmulfz'e relating the initial and final states of
the va‘ri.a.ble. Tlie r’eSu’lfs -are represented as 'a._se:t‘.'of _ giiéjoillt inpuf domain
conditions, together wit'h; the set of output variai;le "feSu]t' expressions for
each domain
o Compliance Analyser: is a variant of the semantic analyser which compares
the results of the analysis with a formal specification of what the software
is expected to do.
MAT
Tool: MAT(Maintainability Analysis Tool)
Category: Static code analyser
Produced/Supplied by: Science Application International, Corp., Arling-
ton VA, tel: 703-979-5910
Target L.anguage: FORTRAN
Platform: runs on DEC/VAX, IBM, Apollo, Prime, HP, MAC’s, PC’s, Sun,
Unisys and others.
Descrlptlon MAT [251] is a static analyser tool for FORTRAN. MAT reads,

parses and analyses each FORTRAN source module. MAT provides infor-

mation on errors, _transportability problems discrepancies, and poor usages

Informatjon such as wxong data types and wrong number of: a.rguments are
p10v1des by MA’l MAT (loulments each module mtelface and generates tex-
tua.l ca.ll tlees aud Cross- 1efe1enung]m;s MAT 1dent1ﬁes all multlply defined
names cn(ul;u callmg of modules aud lists all (,allers of a module MAT"

prowdes 111a111tamab111ty Sta,l,lStICS on each modules

'llus t;ool haq been evaluated by Llle STSC

PC- M]E’]I.‘R][CS L

Tool PC MJ"TRI("S :

Category Code andlysel quahtv aualysel =

Produced/Supplned by SLT Lahmatoueq Inc PorLland OR teli 50.3; ‘
289 4(58

(p)

(q)

Target Language: Ada, FORTRAN, ASSEMBLER, PASCAL, C, C++,
MODULA 2, COBOL
Platform: runs on UNIX systems
Cost: $199-$8500
Description: PC-METRICS [251] computes software science and cyclomatic
complexity metrics. Other measurements include module size, data frequence
span, coding and standards compliance. Still other metrics include the number
of unique operand (see also SMR).
This tool has been evaluated by the STSC.
RXVP80
Tool: RXVP80
Category: Cross referencer, diagram generator, test coverage analyser , code
analyser, program documentation, Reformatter
Produced/Supplied by: General Research Corp., The Software Workshop,
5383 Hoolister Avenue, Santa Barbara CA 93111, tel: 805-964-7724
Target Language: FORTRAN
Platform: runs on IBM PCs
Cost: $10000
Description: This tool [66] is an automated verification system that consists
of a set of tools that assist in all phases of software development. Many
program errors will be detected earlier in the software life cycle, resulting in
cost savings and more reliable, easier to maintain software.
RXVPS80 (commercially available since 1980) includes:

¢ syntactical, structural, and statistical analysis to detect inconstancies in

program structure and in the use of variables
e source code instrumentation

o analysis of testing coverage

© o comprehensive automatic documentation

This tool has been evaluated by the STSC.

‘Reftran

Tool: Reftran

Category: Code analyser, Program documentation, Cross referencer

139

Produced/Supplied by: William R. DeHaan

Target Language: FORTRAN
(r) VAX SCA
Tool: VAX Source Code Analyser
Category: Code analyser
Produced/Supplied by: DEC
Target Language: Multiple languages
Description: This tool provides facilities such as logic tracing, data flow

tracing, and consistency analysis as well as cross referencer.

140

A.1.2

(a)

(b)

Code Visualisation

BATTLE MAP

Tool: BATTLE MAP

Category: Code analyser, code visualisation

Produced/Supplied by: McCabe & associates, Columbia MD, tel: 800-638-
6316

Target Language: ADA, C, FORTRAN, PASCAL, BASIC, PL/I, ASSEM-
BLY (8086, 6502), COBOL

Platform: runs on PCs under MSDOS, on HP, on DEC VAX workstations
under Unix, and on DEC VAX mainframes under VMS with Ultrix.

Cost: $ 6500 for PCs, $21500 for the workstation version, and § 29000 for a
16-user VAX mainframe version.

Description: This tool [180] displays the structure of aﬁy system or subsys-
tem graphically, using special symbols to indicate the complexity of each piece
of code in the design.

EDSA

Tool: EDSA (Expert Dataflow and Static Analysis)

Category: Code analyser, code visualisation

Produced/Supplied by: Array Systems Computing

Target Language: ADA

Platform: runs on PCs under MSDOS, on Sun, Apollo, and DEC work-
stations under Unix, and on VAX mainframe under Unixand on DEC VAX
mainframes under VMS with Ultrix.

Cost: § 2450 for PCs, $3250 for Sun, Apollo, and VAXstation workstation,
and $ 11000 to $22000 for VAX mainframes.

Description: This tool [180] lets the users identify which structures are in-
teresting and then removes extraneous (intervening) code , thereby letting the

users see the hig picture.

) GRASP/ADA

Tool: GRASP/ADA
Category: Code visualisation

Produced/Supplied by: James Cross 11, Auburn University

141

- (d)

(e)

Target Language: ADA
Platform: runs on Sun 4 workstation under SunOS 4.0.3 or later on X Win-
dows 11.7 or later. DEC VAX/VMS mainframes and workstations.
Cost: $ 50 distribution fee.
Description: This tool {180] builds graphical control-structure diagrams that
high-light the control paths in and among Ada tasks. It is a comprehension
tool tailored to a specific language.
OBJECTIVE-C Browser
Tool: OBJECTIVE-C Browser
Category: Code visualisation, code analyser
Produced/Supplied by: Stepstone
Target Language: C
Platform: runs on Sun 3, 4 , and 386i, HP 9000, DEC VAX, and IBM RT
PC workstations using Unix.
Cost: § 995
Description: OBJECTIVE-C Browser[180] uses a windowing approach that
displays hierarchical, functional, and inheritance information about code ob-
ject in C or Objective-C.
It provides 3 types of information source code:

o the contents,

o available cross-referencing data, and

o source code contents with respect to the inheritance hierarchy.
SEELA
Tool: SEELA
Category: Code visualisation, reverse engineering, source code document
generator
Produced/Supplied by: Tuval Software Industries, 520 South El Camino
REal, suite 700, San Mateo, CA 94402-1720, tel: 1-800-777-9996.
Target Language: ADA, C, FORTAN, PASCAL, COBOL, PL/M,
Platform: runs on DEC VAX/VMS mainframes and workstations.
Cost: $ 2000 on VAX stations
Description: This tool {180, 98] converts (using reverse engineering) code

into program design language and lets the users edit the structure chart ,

142

(f)

cut and paste to and from the code, and generate high-level documentation
déscribing the code structure. Thus, it gives and electronic path between code
and its corresponding design language.

VIFOR

Tool: VIFOR

Category: Code visualisation

Produced/Supplied by: Software tools and technologies

Target Language: F'ORTRAN

Platform: runs on DEC VAX station 2000 and MicroVAX I1PSs under Ultrix
and on Sun workstations under Sun News.

Cost: § 1995

Description: This tool [180] has a graphical interface that let the users select,
move, and zoom into icones representing parts of the program. As such, it gives

a graphical editing capability.

143

A.1.3 Cross Referencer

(a) ADPL
Tool: ADPL
Category: Program documentation, Cross referencer
Produced /Supplied by: Advanced Computer Concepts
Target Language: PASCAL, C, FORTRAN

(b) Autoref
Tool: Autoref
Category: Cross referencer

g Produced/Supplied by: Siegel Software Service

Target Language: ASSEMBLER, COBOL

(c) BPA
Tool: Basic Program Analyser
(see section A.2.2).

(d) CICS-OLFU
Tool: CICS-OLFU
Category: Cross referencer
Produced /Supplied by: MacKinney Systems, 2674-A South Highland Av-
enue, Lombard IL 60148
Target Language: Any

(e) Dossier Browse
Tool: Dossier Browse
Category: Program documentation, Cross referencer
Produced/Supplied by: Concept Computer
Target Language: Any

(f) F-SCAN

(see section A.l1.1).
(g) ISAS

(see section A.1.1).
(h) MAD/3000

Tool: MAD/3000

Category: Program documentation, Cross referencer

144

Produced/Supplied by: Related Computer Technology, 154 S. Main, Box
523, Keller TX 76248
Target Language: COBOL, FORTRAN, BASIC
(i) Reftran
(see section A.l1.1).
(j) SOFTOOL Programming Environment
(see section A.3.1).
(k) Source Print
(see section A.2.2).

A.l4

(a)

(b)

(¢)

(d)

A.1.5

(b)

Source Code Comparison

ISAS

(see section A.1.1).

Matchbook

Tool: Matchbook

Category: Source code comparison
Produced/Supplied by: Westinghouse Management Systems
Target Language: ASSEMBLER

S/Compare

Tool: S/Compare

Category: Source code comparison
Produced/Supplied by: ALDON Computer Group
Ta‘rget Language: C

Text Comparator

Tool: Text Comparator

Category: source code comparison
Produced/Supplied by: Dataware

Target Language: COBOL, ASSEMBLER

Execution Monitoring /Debugging

C-Tracer

Tool: C-Tracer

Category: Execution monitoring/debugging

Producedl/Supplied by: IPT Corp.

Target Language: C

Description: This tool provides a history of a program’s execution by build-
ing a record of various program statements as they are executed.

FBUG /1000

‘Tool: FBUG/1000

Category: Execution monitoring/debugging

Produced/Supplied by: Corporate Computer Systems Inc.

146

Target Language: FORTRAN

(c) Intertest/CICS
Tool: Intertest/CICS
Category: Execution monitoring/debugging
Produced/Supplied by: On-Line Software International, Inc., Executive
Drive, Fort Lee NJ 07024
Target Language: ASSEMBLER

~ (d) JSADebug-Assembler
Tool: JSADebug-Assembler
Category: Execution monitoring/debugging
Produced/Supplied by: Computer Consulting & Software
Target Language: ASSEMBLER

(e) Superbug
Tool: Superbug
Category: Execution monitoring/Debugging
Produced/Supplied by: Techuology Consulling Corporation
Target Language: ASSEMBLER

(f) Trace
(see section A.3.1).

(g) Tracer
Tool: Tracer
Category: Execution monitoring/debugging
Produced/Supplied by: IPT Corp., Palo Alto CA, tel: 415-494-7500
Target Language: FORTRAN, ASSEMBLER

(h) XDebug
Tool: XDebug
Category: Execution monitoring/Debugging
Produced /Supplied by: Kolinar Corp.
Target Language: ASSEMBLER

(i) XPF/Assembler

(see section A.3.1).

A.2 Tools for Reverse Engineering

A.2.1

(a)

A.2.2

(b)

(d)

(e)

Restructurer

SPAG

Tool: SPAG

Category: Restructurer

Produced/Supplied by: OTG System Inc., Suite 300, P.O.BOX 5250, 308
Mulberry Street, Scranton PA 18505-5250 USA.

Térget Language: FORTRAN

Part of the PRISM Toolkit

Reformatter

BPA

Tool: Basic Program Analyser

Category: Cross referencer, Reformatter

Produced/Supplied by: Expert Systems

Target Language: BASIC

Basic-Doc

Tool: Basic-Doc

Category: Reformatter

Produced /Supplied by: Applied Business Systems

Target Language: BASIC

RXVPS80

(see section A.1.1)

SEELA

(see section A.1.2).

Source Print Tool: Source Print

Category: Cross referencer, Relormatter

Produced/Supplied by: Aldebaran Laboratories, or Powerline, Inc., 2531
Baker Street, San Francisco CA 94123 USA

Target Language: FORTRAN, COBOL, C, PASCAL, DBASE, MODULA 2

148

Description: This tool pages, indexes, and annotated with structure lines

source code.

A.2.3 Reengineering

(a) BAL/SRW
Tool: Basic Assembler Language Software Re-engineering Workbench
i Category: Re-Engineering
Produced/Supplied by: Daniel Marks, Andersen Consulting, 33 West Mon-
roe Street, Chicago, Illinois 60603, tel: 312-507-6748.
Target Language: Assembly
Platform: SUN under UNIX, use of X-Windows.
Description: The BAL/SRW [133] is a set of software re-engineering tools to
helb an analyst to recover the design of an assembly program. This is achieved
through a series of abstractions, which effectively collapse program function-
ality into progressively higher level concepts. The program is analysed and
its internal representation is created in the knowledge base. In order to learn
about the program logic the analyst can
o Search for programming patterns present in the program and replace them
with natural or formal language sentences in order to make the code more
understandable.
¢ Navigate through both the source code and control flow view of the pro-
gram.
¢ Simplify the program automatically by recognising control flow patterns,
identifying subroutines and unreachable sections of the code, and by hiding
selected control flow paths upon specified conditions.
o Simplify the program manually by substituting analyst defined comments

for program sections.

149

A.2.4

Reverse Engineering

(a) Reverse Engineering

(b)

Tool: Reverse Engineering

Category: reverse. Engmeermg, Code analyser, Program documentation

Produced /S upphed by: Advanced Systems Technology Corp 9111 Ed-

monston Road suite 404, Greenbelt MD 20770 USA

Target Language: FORTRAN C, ASSEMBLY ‘

Descrlptlon Thls tool translates source languages into a specxﬁca,tlons lan-
guage (PSL/PSA).

SEELA

Tool: SEELA

Category: Code visualisation, reverse engineering, source code document
generator

Produced/Supplied by: Tuval Software Industries, 520 South El Camino
REal, suite 700, San Mateo, CA 94402-1720, tel: 1-800-777-9996.

Target Language: ADA, C, FORTAN, PASCAL, COBOL, PL/M,
Platform: runs on DEC VAX/VMS mainframes and workstations.

Cost: § 2000 on VAX stations

Description: This tool [180] converts using reverse engineering code into

.p;~og1jah1 design language a.nglﬁl’ets the users edit the structure chart , cut and

pasté to amd from-the code; and generate high-level documentation describing

the code;sti'il‘ctore'. Thus, it ‘gi'_ve'é an. elQot;‘oxiic path between code and its
corresponding design iahgua.ge. |
Software ‘Refinery)

’I‘ools REF[NE DIALEC'I and INTERVIS'lA

Category Revelse Englneeung

Produced/Supphed by Lawxence Mmkosnau Reasonmg Systems, Inc.,

-3260 Hlll\'lew Avenue Palo Alto CA 94304 tel 415 494 6201

:Cost see each tool

’]I‘argefc]Language C ADA Foman Cobol SQL

'Descrnptmn So[twale ReﬁHEIy«lS a fmmlly of p1oducts for bulldmg auto—

mated softwale plocessmg tools ~‘Tools that take source code as mput and/or

(d)

(f)

produce source code as output. Software refinery includes three products:
REFINE, DIALECT, and INTERSTA.

REFINE

Tool: REFINE

Category: Re-Engineering

Produced /Supplied by: Lawrence Markosian, Reasoning Systems, Inc.,
3260 Hillview Avenue, Palo Alto, CA 94304, tel: 415-494-6201.

Cost: $ 7900 on SUN-3 and $10700 on SPARC

Target Language: C, ADA, Fortran, Cobol, SQL.

Description: REFINE is a programming environment for building software
analysis and transformation tools. Its features a very high level executable
specification language, a specification language compiler, an object oriented
daga,base, a customised editor interface, and tracing and debugging tools.
DIALECT

Tools: DIALECT

Category: Re-Engineering

Produced/Supplied by: Lawrence Markosian, Reasoning Systems, Inc.,
3260 Hillview Avenue, Palo Alto, CA 94304, tel: 415-494-G201.

Cost: § 3700 on SUN-3 and $4900 on SPARC

Target Language: C, ADA, Fortran, Cobol, SQL.

Description: DIALECT is a tool that generates programming language
parsers and printers from grammars. It includes a high level language for
specifying language, a specifying grammars and a grammar compiler.
INTERVISTA

Tools: INTERVISTA

Category: Reverse Engineering

Produced/Supplied by: Lawrence Markosian, Reasoning Systems, Inc.,
3260 Hillview Avenue, Palo Alto, CA 94304, tel: 415-494-6201.

Cost: $ 2300 on SUN-3 and $3100 on SPARC

Target Language: C, ADA, Fortran, Cobol, SQL.

Description: INTERVISTA is a toolkit for building graphical interfaces to
Software Refinery applications. It provides windows, diagrams, menus, and

hypertext.

151

(g) PRODOC
Tool: PRODOC re/NuSys Workbench
‘Category: Reverse Engineering
.Prod uced /Supplied by: Scandura Intelligent Systems, 1249 Greentree Lane,
Narberth, PA 19072, U.S.A. (215.664.1207).
Target Language: PASCAL, C, ADA, COBOL, FORTRAN
Description: PRODOC [225] uses FLOWforms to represent systems at arbi-

. trary levels of abstraction in a highly interactive visual environment. Among
other things:
o the use of FLOWforms helps eliminate representétional inconsistencies and
awkward transitions between analysis and design.
o high level designs can be translated automatically into any of the languages
~ supported by PRODOC.
o existing source code can be reverse-engineered at roughly the speed of a
compiler
o PRODOC can convert from old to new environments with its ability to

automatically translate between pseudocode languages.

152

A.3 Tools for Testing

A3.1

(b)

(¢)

(d)

Test Coverage Monitors

CCA

Tool: CCA (Code Coverage Analyser)

Category: Test coverage monitor

Produced/Supplied by: HRB-Singer

Target Language: FORTRAN

FUS

Tool: FUS

Category: Test coverage monitor

Produced/Supplied by: Digital Solutions

Target Language: FORTRAN

IITS

Tool: IITS (Integrated Test Tool System)

Category: Test coverage monitor, regression testing

Produced/Supplied by: Edouard Miller, Software Research, Inc., 625 Third
Street, San Fancisco CA 94107-1997

Target Language: ADA, C, FORTRAN, PASCAL, COBOL

Platform: runs on Unix, X Windows, MS-DOS, 0S/2 systems.

Cost: $ 7400 for MSDOS and 0S/2 systems, $ 32250 for Unix workstations.
Description: IITS [208] is a test coverage monitor and a regression testing
tools. It is an utility system that can be integrated with the output of a
programming environment to test and validate the results of the development
efforts. The test coverage analysis tool guides development of test suites, assess
testing progress, and aid error detection. The regression testing tool tests and
retests candidate systems’ functionality.

ISAS

Tool: ISAS

Category: Cross referencer, diagram generator, code analyser, source code
comparison

Produced/Supplied by: Singler Dalmo Victor Division, System & Soft-

153

(f)

(8)

(i)

ware Eng.

Target Language: FORTRAN, ASSEMBLER

Description: This tool reports and charts procedure hierarchy, data refer-
ences, control flow, system structures ...

LOGISCOPE

(see section A.1.1)

RXVP80

(see section A.l.1)

SMARTS

Tool: SMARTS (Software Maintenance and Regression Test System)
Category: Test coverage monitor, regression test

Produced/Supplied by: Software Research Inc. 625 Third Street, San
Francisco, CA 94107-1997

Platform: PC or 386 machine under MS-DOS or XENIX.

Description: This tool with EXDIFF execute, evaluate and report on thou-
sands of tests automatically. Both interactive and batch tests are scripted
in easy to maintain test files. SMARTS and EXDIFF, plus CAPBAK (which
capture keystrokes), plus if necessary, a 3270 emulation back end, forms a pow-
erful system of tools for planning, executing, logging, and analysing complex

repetitive test suites.

) SOFTOOL Programming Environment

Tool: Softool Programming Environment
Category: Cross referencer, Test coverage monitor

Produced/Supplied by: Softool Corp., 340 South Kellogg Ave, Goleta CA
93117

Target Language: FORTRAN, COBOL, C
TCAT
Tool: TCAT

Category: Test coverage monitor

Produced/Supplied by: Software Research Inc. 625 Third Street, San

Francisco, CA 94107-1997
Target Language: ADA, FORTRAN, Pascal, COBOL, C
Platform: IBM-PC, Sun, AT&T, DEC/VAX, Apollo

154

()

(k)

)

{m)

Cost: $1400-821500

Description: This tool uses the source code to make the test suites more
complete than ever before. It measures test thoroughness in terms of logical
branchs, instead of statement coverage that common profilers use [251].

This tool has been evaluated by the STSC.

Testing Instrumenters

Tool: Testing Instrumenters

Category: Test coverage monitor

Produced/Supplied by: Softool Corp., 340 South Kellogg Ave, Goleta CA
93117

Target Language: FORTRAN, COBOL, C

Trace

Tool: Trace

Category: Execution monitoring/debugging, test coverage monitor/monitor
Produced/Supplied by: AK Iuc.

Target Language: Any

TVVT

Tool: TVVT

Category: Test coverage monitor

Produced/Supplied by: AMG Associates

Target Language: FORTRAN, JOVIAL

XPF/Assembler

Tool: XPF/Assembler

Category: Execution monitoring/Debugging, Test coverage monitor
Produced/Supplied by: Boole & Babbage lnc., 510 Oakmead Parkway,
Sunnyvale CA 94086 or Phansophic Systems, Phansophic house, Nol, York
Road, UXbridge Middlesex UK8 1RN, UK

Platform: IBM

Target Language: ASSEMBLER

155

A.3.2

Regressnon Tesﬁ;mg

@)AUTOMATORqa

(b)

Tool: AUTOMATOR. qa’
@a"teg.o’j’fy' AR;égf?és"s"ié:ﬁ "Tes’tirizg'

Praduced/Supphed by: Iuteractive Solution Inc., Bogota, NJ, Tel:201-488-

3708

Platform "IBM- PCs

Target Language. Language independent

Cost: $5495

Description: AUTOMATOR qa [251] provides repetitive task automation.
It supports regression testing by the recording of scrips and also the writing of
scrips in a scripting language. Performance testing is provided by a function
that records the screen, keyboard and internal lock, thus providing execution
data. AUTOMATOR qa has the ability to generate random tests given an
array of possible entries and combining them into new tests.

This tool has been evaluated by the STSC.

AutoTester

Tool: AutoTester

Catégory: Regression Testing

Prbdpi'céd/Suépﬁied by Software Recording Corp., Dallas, TX, Tel: 214-
368-1196.

'P.latfb:rmvz IBM-PCs

dTargAet Laﬁguégg: Language independent

Cdst' $30000 for IU'éoﬁies

Descmptnon -AutoTe ster [251]‘is a capture replay compar'at;brtool that ris
capable of testmg apphcatlom on PCS mmls and mamflame computers The
hnk is tluough asynchxonous comnmmcat]on It 1ecoxds tests and a,llows easy
ed1tmg and playback capablhtles Autotestel supports a structure met;hodi’
that promotes test modularnsatlon a.nd documentatlon Procedures (scrlps)
may be. used ove1 and over agam to test snmlal funcuons that occur at dxﬂerent‘
tlmes durmg a test sessmn |

Thm tool has been evaluated bv the STSC

86

(c)

(d)

Bloodhound

Tool: Bloodhound

Category: Regression Testing

Produced /Supplied by: Goldbrick Software

Platform: IBM-PCs

Target Language: Language independent

Cost: $50 shareware

Description: Bloodhound [251] captures an unlimited number of keystrokes
and screens in text mode. Screen images can be automatically captured when-
ever the screen scrolls. Screens can also be captured at arbitrary points in the
user program. Tests can be run after changes to see if any regressions have
occurred.

This tool has been evaluated by the STSC.

CAMOTE

Tool: CAMOTE (Computer Aided MOdule Testing and design Environment)
Category: Regression Testing, module design and test
Produced/Supplied by: T. Dogsa, University of Maribor, Faculty of Tech-
nical Sciences, Smetanova 17, YU-62000 MARIBOR.

Platform: VAX(VMS) Version 4.5

Description: CAMOTE [71] provides unit testing, program testing, test cov-
erage data, regression testing, decision-condition coverage monitoring, auto-
matic driver modules source generation, automatic collection of data needed
in reliability research projects.

CapBak

Tool: CapBak

Category: Regression Testing

Produced/Supplied by: Software Research Inc.

Platform: [BM PC/XT/AT

Target Language: Language independent

Description: CapBak [251] captures keystroke sequences for automatic play-

back. CapBak includes screen-save capabilities, replay timing adjustments,
and facilities to edit captured keysave files. Dynamic playback programming

is provided by the use of IF and WHILE clauses in the keysave files.

157

(8)

(h)

This tool has been evaluated by the STSC.

CARBONCopy

Tool: CARBONCopy

Category: Regression Testing

Produced/Supplied by: Clyde Digital Systems, Inc.

Platform: DEC/VAX, DEC/MicroVAX

Target Language: Language independent

Description: CARBONCopy [251] is a terminal I/O capture program. Ter-
minal keystrokes are recorded to a file where they can be replayed, edited or
printed. CARBONCopy provides regression testing support.

This tool has been evaluated by the STSC.

Check*Mate

Tool: Check*Mate

Category: Regression Testing

Produced/Supplied by: Pilot Research Associates, Inc.

Platform: IBM-PC, DEC/VAX

Target Language: Lauguage independent

Cost: $5750 first year

Description: Check*Mate [251] can perform individual tests of new functions
using keystrokes capture or manual coding depending on the complexity of
the test. By using keystroke capture, testing operations need to be performed
once; then they can be replayed to test the function again.

This tool has been evaluated by the STSC.

DCATS

Tool: DCATS

Category: Regression Testing

Produced/Supplied by: System Design and Development Corp.
Platform: IBM mainframe, HP

Target Language: Language independent

Cost: $75000

Description: DCATS (251} is a capture-replay-comparator tool. It provides
a method of writing a test script and inputting the expected results in order to

record scripts. This script can then be executed and the results compared to

158

it e A 2 e B e gl L

()

)

the expected results. Difference in actual and expected outcomes are reported.
This tool has been evaluated by the STSC.

Evaluator

Tool: Evaluator

Category: Regression Testing

Produced/Supplied by: Cadre

Platform: IBM-PCs

Target Language: Language independent

Description: Evaluator (251] is a capture-replay tool. It has a record mode
where scripts are aurtomatically recorded. In replay or playback mode, Eval-
uator replays the recorded keystrokes from the recording session. Playback
mode can run unattended and save the resuits to files. In programming mode
scrips may be edited in the TEST Control Language (TCL).

This tool has been evaluated by the STSC.

IITS

(see section A.3.1)

SMARTS

(see section A.3.1)

TRAPS

Tool: TRAPS

Category: Regression Testing

Produced/Supplied by: TravTech, Inc.

Platform: IBM mainframe, DEC/VAX, IBM-PCs

Target Language: Language independent

Description: TRAPS (251} is a menu-driven capture-replay tool. It allows
recording, editing and replay of test scripts.

This tool has been evaluated by the STSC.

UATL

Tool: UATL (Universal Ada Test Language)

Category: Regression testing

Produced/Supplied by: J. Ziegler, ITT Avionics, 390 Washington Avenue,
Nutley, NJ 07110-3603

Target Language: ADA

159

(n)

Platform: MicroVAX, IBM PC/AT compatible, HP 9000/serie 300 processor
Description: The UATL provides a consistency {ramework for testing com-
plex systems at all stages of the software/system development, production, and
maintenance cycle. It consists of a set of Ada packages that provide the user
with a complete complement of standardised reusable test function; including
an interactive menu driven test manager, on-line operator control displays,
real-time "closed loop”, test data stimulus/response, test instrument drivers,
data recording [284].

VAX DEC/Test Manager (TM)

Tool: VAX DEC/Test Manager (TM)

Category: Regression Testing

Produced/Supplied by: DEC

Platform: DEC/VAX

Target Language: Language independent

Cost: $4800-$24000

Description: VAX/Test Manager [251] automates the regression testing of
software. TM runs user-supplied tests, and the results are automatically com-
pared to their expected results. Regression testing assures that changes have
not affected the previous execution of the software. TM operates both in inter-
active and batch modes. It has a DEC windows interface which is consistent
with other window applications, making it easy to learn.

This tool has been evaluated by the STSC.

160

A.4 Tools for Maintenance Management

A.4.1

(b)

Software Configuration Management

ccCcC

Tool: CCC (Change and Configuration Control)

Cafegory: Software Configuration Management

Produced/Supplied by: SOFTOOL/K3

Platform: VAX (VMS/ULTRIX), IBM (MVS/SP, MVS/XA, VM/CMS),
SUN(UNIX), HP9000(HP-UX) ...

Interface VAX: all environment including Ada.

Description: CCC offers facilities to manage all aspects of changes to any
machine readable units of information (code, executable, objects, shell scripts,
documents, JCL etc.) through well defined access controls, change identifica-
tion, control and audit procedures.

It provides Change tracking, change control, configuration control, access con-
trol, auditing, baseline creation, impact analysis, dependency reporting, can
be used to satisfy MIL-STD requirements.

CHANGEMAN

Tool: CHANGEMAN

Category: Software Configuration Management

Produced/Supplied by: SD-SCICON/SD Software Technology Centre
Platform: MicroVAX, VAX(VMS)

Description: CHANGEMAN is built on the Oracle relational database. It

provides configuration identification, change and change request control and

documentation, make facility, recording of build details, impact analysis and
reporting, change control authorisation and the review process, extensive re-
porting facilities, configuration audit, task allocation and project security fea-
tures, archiving and backup facilities, fully multi-user.

CMAS

Tool: CMAS (Configuration Management Automation System)

Category: Software Configuration Management

Produced/Supplied by: BTG

161

(d)

()

Platform:

Description: CMAS is an application based on SOFTOOL’s CCC. It pro-
vides document production, cross referencing and status accounting.

CMF

Tool: CMF (Configuration Management Facility)

Category: Software Configuration Management

Produced/Supplied by: LOGSYS (Advances Systems Ltd)

Platform: UNIX,VAX(VMS)

Description: It combines CMT and DST, complies with MIL-STD-490 and
automates the implementation of DoD-STD-2167.

CMF controls software, hardware and document changes and releases through-
out the system life cycle. It coordinates traditional configuration management
functions with comprehensive problem reporting and tracking, powerful release
management, and flexible template/form generation and support.
CMT(Configuration Management Toolkit) is an integrated set of tools for
controlling change and releases in system development, and a part of CMF.
It provides configuration manager integrity and different tools: verifier, con-
figuration control, system problem reporting, version description and build
specification.

DST(Documentation Support Toolkit) is an integrated set of documentation
support tools for producing and controlling documents, forms and templates.
CMS

Tool: CMS (Code Management System)

Category: Software Configuration Management

Produced/Supplied by: DEC

Platform: MicroVAX, VAX(VMS)

Description: CMS is a library system that allows changes to text files to
be tracked, reporting when, why and by whom modification were made. It
provides library management and maintains audit trail.

It may also be integrated with other DEC/VAX products: MMS; VAX/LSE;
VAX/SCA; VAX/Test.

DSEE

Tool: DSEE (Domain Software Engineering Environment)

162

(8)

Category: Software Configuration Management

Produced/Supplied by: Apollo Computer UK

Platform: Platformm independent (Apollo and other workstations, PCs, mi-
nis, mainframes, embedded microprocessor systems).

Description: DSEE is one of the most sophisticated configuration tools based
on Unix. DSEE [138, 139] is a set of 4 management tools: history man-
ager, configuration manager, task manager and monitor manager. It provides
storage, control and tracking of source code, concurrency control, audit trail
maintenance, system building, software release, automatic change notification
and support distributed environments.

ENDEVOR

Tool: ENDEVOR(ENvironment for DEVelopment OpeRations)

Category: Software Configuration Management

Produced/Supplied by: BST(Business Software Technology)

Platform: IBM

Description: It provides inventory and library management, change control,
configuration management and release management.

ISPW

Tool: ISPW

Category: Software Configuration Management

Produced/Supplied by: Benchmark Technologies Ltd

Platform: IBM(MVS)

Description: IPSW is an IPSE which provides project/work management,
tool/technology management, change control, standards, procedures and audit
compliance, source management, library management and production imple-
mentation.

LIFESPAN

Tool: LIFESPAN

Category: Software Configuration Management

Produced/Supplied by: YARD Software Systems Ltd

Platform: VAX(VMS)

Description: It provides configuration management, change control, quality

assurance and automatic notification of proposed change. It provides con-

163

(i)-

(k)

(1)

trolled access to-a software database, enabling computerised information to be
identified, alranged and re- used easnly and securely

ILCS/CMF

Tool LCS/CMF (lerary Control System/Cha,nge Management Facility)
Category. Software Conﬁguratlon Management

Produced/Supphed by: IBM(TSO)

Platform VAX(VMS)

Descmptnon 'LCS/CMF is composed of Panvalet(source library) and Pa,nexec
(obJect_llbra.ry).

MOSAIX

Tool: MOSAIX

Category: Software Configuration Management

Produced/Supplied by: GEC Software Ltd.

Platform: VAX(VMS)

Description: MOSAIX is an automated interactive database system with
configuration management, quality management. It guarantees consistency
among components and product composition definition.

PCMS

Tool: PCMS(Product Configuration Management System)

Category: Software Configuration Management

Prodncéd/Supplied by: SQL System International/Alcatel Engineering
Support Center

Platform VAX(VMS ULTRI)\)

]Descrnptnon PCMS is_an mteglated development environment which: pro-
vndes conﬁgurat;on ma.nagemont.

PCS o

’]I‘oo]l PCS(P)OJect Contlol System)

g _Category Softwale Conﬁgmat:on Management

‘;Produced/Suppﬂned by Sc1con Consultancy Internatlonal

:*’]P’]latform VAX

Descmptnon PCS is pmt of BAPSE (Bates Plogxammmg Support Dnvuon-

: ment) and prov1cles p10Ject contlol document atlon contlol a.nd productlon

'desngn and bulld contlol of CORAL/MASCOT systems a,nd conﬁguratmn

i _71'1‘64 Y.

(a)

management.

PVCS

Tool: PVCS

Category: Software Configuration Management

Produced/Supplied by: Polytron Corp., Beaverton OR, tel: 800-547-4000

/The Software Construction Company

Platform: PCs (MS-DOS, 05/2), VAX(VMS), MAcintosh(MPW), Sun(SunOS)

Description: PVCS records revisions and provides an history of revisions.
SCCS

Tool: SCCS (Source Code Control System)

Category: Software Configuration Management

Produced/Supplied by: Supplied as part of UNIX

Platform: Various UNIX

Description: SCCS [211] provides change control, version control and main-
tains change history.

S/COMPARE-HARMONISER

Tool: S/COMPARE-HARMONISER

Category: Software Configuration Management

Produced/Supplied by: ALDON Computer Group, Qakland CA, tel: 415-
839-3535

Platform: IBM(MVS), IBM System 38, HP3000

Description: S/COMPARE-HARMONISER. identifies changes, documents
changes and integrates modifications into software.

SDS

Tool: SDS

Category: Software Configuration Management

Produced/Supplied by: Software Science Ltd.

Platform: VAX(VMS), IBM(MVS/TSO)

Description: SDS is a database tool for teams developing large systems. SDS
records attributes and references to items (but does not hold actual items),

assists configuring and change reports.

165

(r)

(s)

(t)

(u)

SIBS

Tool: SIBS(Software Integration & Building System

Category: Software Configuration Management

Produced/Supplied by: Marconi Radar Systems

Platform: GEC 4000 (0S4000)

Description: SIBS is a system building from given components and records
versions(components, tools).

SourceTools

Tool: SourceTools

Category: Software Configuration Management

Produced/Supplied by: Real Time Product Ltd.

Platform: VAX(VMS), PDP-11(RSX/RSTS), PCs(MSDOS)

Description: SOURCECON controls access to source files, MAKE rebuilds
systems, TEXCOM and SEDIT detects differences between source files and
build edit scripts. SourceTools is language independent.

SVM

Tool: SVM

Category: Software Configuration Management

Produced/Supplied by: Semantics

Platform: IBM PC

Description: SVM provides configuration management and version control.
TAGS

Tool: TAGS (Technology for the Automatic Generation of Systems)
Category: Software Configuration Management

Produced /Supplied by: Teledyne Brown Engineering, San Diego CA, tel:
619-260-4487

Description: TAGS is a software documentation and program simulation
generator and document manager.

This tool has been evaluated by the STSC (see [252])

166

A.4.2

(a)

(b)

(c)

(d)

A.4.3

Program Synthesis

MMS

Tool: MMS (Module Management System)
Category: Program synthesis
Produced/Supplied by: DEC
Platform: MicroVAX, VAX(VMS)
Advantage Make

Tool: Advantage Make

Category: Program synthesis
Produced/Supplied by:

Platform: PCs

Description: Make Utility

BSM-Make

Tool: BSM-Make

Category: Program synthesis
Produced/Supplied by:

Platform: PCs

Description: Make Utility

MAKE

Tool: MAKE

Category: Program synthesis
Produced/Supplied by: Supplied as part of UNIX
Platform: Various UNIX

Description: The Make facility is based on the UNIX operating system. A

Makefile is a kind of command file and contains two different kinds of elements:
e elements that describe dependencies between building blocks

e commands that must be executed in order to make the program system.

Library Management

Change Man

Tool: Change Man

167

(b)

(c)

(d)

A.4.4

(a)

Category: Library management, change management
Produced/Supplied by: SERENA Consulting/CCR Softserv
Platform: IBM(MVS, MVS/XA, TSO/ISPF)

Librarian

Tool: Librarian

Category: library management, change control
Produced/Supplied by: ADR(Applied Data Research)
Platform: IBM(MVS/TSO,ISPF)

PolyLibrarian

Tool: PolyLibrarian

Gategory: library management
Produced/Supplied by: Polytron Corp.
Platform: PCs (MS-DOS)

Description: PolyLibrarian manages object code libraries.
VMLIB

Tool: VMLIB

Category: library management
Produced/Supplied by: Pansofic Systems
Platform: IBM (VM /CMS)

Change Management

Change Man

Tool: Change Man

Category: Software Configuration Management
Produced/Supplied by: SERENA Consulting/CCR Softserv
Platform: IBM(MVS, MVS/XA, TSO/ISPF)

Description: Library management, change management

168

A.4.5 Change Control

(a) Librarian
Tool: Librarian
Category: library management and change control
Produced/Supplied by: ADR(Applied Data Research)
Platform: IBM(MVS/TSO,ISPF)

A.4.6 Version Control

(a) TexSys
Tool: TexSys
Category: Version Control
Produced/Supplied by:
Platform: PCs

(b) TLIB
Tool: TLIB
Category: Version Control
Produced/Supplied by:
~ Platform: PCs

(c) TMS
Tool: TMS (Text Management System)
Category: Version Control
Produced/Supplied by: Marconi Radar Systems/GEC Computers Ltd.
Platform: GEC 4000 (054000)

Description: TMS is a document version storage and access control.

169

A.4.7T

(a)

(b)

(c)

Product Management

SABLIME

Tool: SABLIME

Category: Product Administration System

Produced/Supplied by: Steve Cichinski, AT&T Bell Laboratories, 184 Lib-
erty Corner Road, Warren, NJ 07060, Room 4N-CO01, tel: 908-580-4358.
Platform: VAX line, SUN 3/4/SPARC, AT&T ..., HP 9000-300/800, IBMS,
MOTOROLA 68030, PYRAMID 9825

Description: SABLIME is a comprehensive product administration system
that tracks changes to a product consisting of software, hardware, firmware,
and/or documents, from its origination, through maintenance, delivery, and
support. Its integrated Modification Request (MR) and Configuration Man-
bagement capabilities make it a unique tool for managers and product develop-
ers alike (informations from AT&T).

RA-METRICS

Tool: RA-METRICS

Category: Software Metric Repository

Produced/Supplied by: Howard Rubiu Associates, Inc., Winterbottom
Lane, Pound Ridge, Ny 10576, tel: 914-833-3130.

Description: RA-METRICS supports all of the management reporting met-
rics and it reports: functional and technical quality, user satisfaction, defects
counts, CASE/Tool Usage, development/maintenance history, financial his-
tory and estimation accuracy.(from advertising)

SMR

Tool: Software Metric Repository

Category: Software Metric Repository

Produced/Supplied by: Denver Metrics Group, tel: 303-360-9558, USA.
Target Language: Ada, Assembler, C, C++, Fortran, Basic, Modula-2,
Cobol

 Description: The Software Metric Repository is a menu and mouse driven

database featuring a “point and Shot” user friendly interface. The database

incorporates the software metrics generated by PC-Metric (see section A.1.1)

170

as well as Functions Points and project data. The browse and reporting ca-
pabilities help the user to examine and analyse the raw data.
PC-Metric is a software metric generation package. It analyses the source code

and computes numerous size and complexity metrics.

171

Appendix B

Software Maintenance
Prototypes and Research

Projects

B.1 Prototypes for Program Comprehension

B.1.1 Code Analyser

(a) AEGIS
Tool: AEGIS
Category: Code analyser, dependency analyser
Used by: Computer Sciences Corporation
Target Language: ?, used to maintain very large Navy weapons control
system
Description: The method is to capture a large volume of data about the
components of the software in a data base that can be queried or from which
reports can be printed.

(b) ASAP
Tool: ASAP (Ada Static Source Code Analyser Program)

172

(d)

B.1.2

(a)

Category: Code analyser

Target Language: ADA

Description: This tool is an automated tool for static code analysis of pro-
gram written in the ADA programming language.

The purpose of this analysis is to collect and store information pertaining to
be analysed ADA compilation unit’s size, complexity, usage of ADA language
constructs and features, and static interface with other ADA com;.)ilation units.
ISMM

Tool: ISMM: The Incremental Software Maintenance Manager

Category: Code analyser, incremental static analyser

Prototyped by: B. Ryder, Department of Computer Science, Rutgers Uni-
versity, New Brunswick, New Jersey 08903.

Target Language: C

Déscription: ISMM is a prototype software tool for incremental static anal-
ysis of C programs. The goal of ISMM is to demonstrate the feasibility and
praticabilityl of using incremental static analysis to aid in the maintenance
phase of the software life cycle.

ISMM consists of two modules: FREND, a front end which parses the C source
code and convert it into an annotated directed graph representation of system
calling structure, and BEND, a back end which performs both the incremental
and exhaustive analysis [221, 222].

noname

Tool: noname

Category: Code analyser, dependency analyser

Prototyped by: IBM

Description: This prototype combines a data base to store the program with
a display "viewer” that allows a programmer to browse easily through it in

many ways to accumulate information for a maintenance task [49].

Program Understanding

PUNS

Category: Program comprehension

173

(b)

(c)

B.1.3

Describtion' PUNS. (Program Unders'tanding'Support~Enviro’nment) [50)gives

multlple views of the ploglam and a strategy for moving between. views and

explormg views ‘in depth It compnses two components, ‘a xepos;tory and a

user Jnterfa,ce.

SCORE/RM

Category Program comprehensmn

Prototyped by: Lloy’s Reglster of Shlppmg, UK.

Descrlpitlon: SCORE/ RM [52] provides a mechanism by which a maintainer
can systematic‘ally work through tlie code and comprehend its purpose, pro-
duces a set { documentation to reduce future learning curves and modify the
code so that it becomes easier to maintain.

noname

Category: Program comprehension

Prototyped by: J. Sametinger, Institut fur Wirtsinformatik, University of
Linz, A-4040 Linz, Austria.

Implementation: It was implemented with C++ under UNIX on Sun Work-
station.

Target Language: C ++

D_escriotbio'n: This prototype [224] helps programmers understand object-
orie'_nted.soft\ivare systems written in C+4+. It enables its users-to easily browse
t'hronghi the system based »on~the relations among its classes, files and even

identifiers.

Knofwledge Based .Sy'stem and. Mainfenance_j Assistant

E]POS

',Prototype POS(E\peJt System for Progl am and Sysl,em Development)

Category E\(pert System Software Conﬁguratlon Management

. ,vPrototyped by

i Platfon'm

Descrnptlon EPOS is a geneuc l\elnel envnonment p10v1d1ng a ﬂemble in-

‘ﬁastlucture to suppoxt the evoJutlon of producuon scale saftware system It

has four level connected by mtexhces

.:1'74

(b)

o an X Window user interface

o EPOS kernel tools

o programming tools and activity manager

o a configuration managenient system
It utilises change orientated versioning based on functional changes , and man-
ages the software development process through knowledge based planning of
tools invocations. The product model is based on semantic data model similar
to the Adele product model. Smart builds are supported and it is language
and method independent.
ES
Prototype: ES
Category: Expert System
Prototyped by: F. Cross
Description: F. Cross [64] described an E.S. approach to building an in-
formation/maintenance tool for an existing target system of both hardware
and software components. The purpose of tool is to help the user identify the
components they seek and to automate the identification of the remaining sup-
porting components required. The tool uses its rules rules-based knowledge
and the user selections to identify the desired components and their supporting
components.
SOFTM
Prototype: SOFTM
Category: Expert System
Prototyped by: L.Pau and J.M. Negret
Descript.ion: L.Pau and J.M. Negret [190] described a software maintenance
knowledge based system called SOFTM which was designed for the following
purposes:

e to assist software programmers in the application code maintenance task.

e to generate and update automatically soltware correction documentation.

e to help the end user register, and possibly interpret, errors in successive

application code versions.

(d)

SOFTM relies on an unique ATN (Augmented Transition Network) based code
description, a diagnostic inference procedure based on pattern classification,
and on a maintenance log report generator. The system is able to a range of
programming languages provided that code descriptors can be extracted from
the code. SOFTM has 3 types of knowledge base:

o Facts about error types, error locations, diagnostic classes, and the envi-
ronment.

o Code independent rules that apply to the general software maintenance
task.

o Symbolic descriptors derived by rewriting, in predicate form, features of
programming languages provided by the compiler, the specification lan-
guage, or the data flow model.

Maintainer’s Assistant

Prototype: Maintainer’s Assistant

Category: Expert System

Prototyped by: University of Durham

Description: Calliss, Kalil, Munro and Ward [39] describe an intelligent,
knowledge approach to software maintenance by describing a tool that is in-
tended to help reduce the amount of time spent analysing code. They have
identified 3 types of knowledge:

o Maintenance Knowledge which is the knowledge about how the mainte-
nance programmers do their work and is elicited from expert maintainers.
This knowledge provides the bulk of a systems heuristic knowledge that
dedicate the weighting patterns on searches through the expert system.

o Program Plans divided into two different categories:

- General program plans: a small set of plans that show commonly occur-
ring activities in computer programs.

- Program class knowledge: a set of plans common to a particular type of
program.

o Program Specific Knowledge which is the internal representation of the
source code together with knowledge obtained from using static code anal-

ysis tools such as cross referencers, data flow analysers, call graph gener-

176

(e)

ator, etc.

MACS
Prototype: MACS (MAintenance Assistance Capability for Software)
Category: Maintenance Assistant
Prototyped by: ESPRIT Project
Description: The aim of this project [88] is to provide assistance to main-
tainers in maintaining medium to large scale of software applications.
The project is based on the fact that all the basic maintenance activities require
an understanding on the system. MACS presents two views of the system.

o a WHAT to describes the elements of the systemn

o a WHY to describe the design
MACS will also, with the exploitation of the tools being developed, guide the
maintainer (HOW) to do it. Using knowledge based techniques, MACS will
develop a tool kit that will allow the user to analyse an existing system, and
capture information.
MACS is being designed so that it will be applicable to both new and existing
applications. The tool set will be customise for the domain of the software.
The initial tool set will address the C programming language, and graphic

interface software. These will be adapted to exploit HOOD software develop-

‘ment method documentation and data structures. Validation activities will

take place to verify the adaptability to other domains such as COBOL.
MARVEL

Prototype: MARVEL

Category: Maintenance assistant

Prototyped by:

Platform:

Description: MARVEL [120, 121, 122] is an intelligent assistant software
engineering environment that has a certain understanding of systems being
developed and how to use tools to produce software. its key feature is op-
portunistic processing which means that MARVEL can undertake simple de-
velopment task automatically (it can detect when source modules change and

initiate the appropriate drivers to rederive objects).

177

~—

()

(h)

The Maintenance Assistant

Prototype: The Maintenance Assistant

Category: Maintenance assistant, dependencies analysis, reverse engineering,
program change analysis

Prototyped by: Norman Wilde, Department of Computer Science, Bldg.
79, University of West Florida, 11000 University Parkway, Pensacola, Florida
32514. or Software Engineering Research Center .

Target Language: C

Description: The aim of this project [273]is to develop methodologies and
tools to aid in the complex tasks associated with making changes to software
systems. Three broad approaches are currently being explored:

o dependencies analysis which involves capturing the dependencies between

~entitjes in the software system and the development of tools to present
and analyse these dependencies.

o reverse engineering which involves the identification or "recovery” of pro-
gram requirements and/or design specification that can help in under-
standing and and modifying it.

o program change analysis which involves methods for analysing differences
between two versions of a program in order to understand a change that
has been made and detect possible maintenance induced errors.

Nomame

Project: Noname

Category: Data flow analyser , maintenance assistant

Project by: Norman Wilde, Software Engineering Research Center
Description: On going effort {273] to develop strategies based on incremental
data flow analysis techniques that will:

o support management by providing information that can be used to guide in

the allocation of resources for testing and and other maintenance activities

o improve the effectiveness of testers by helping them to generate new tests
or select regression tests that will have a high likelyhood of detecting errors

and

178

o help programmers understand rapidly the consequences of change and thus
avoid making unexpected errors.

The Software Engineering Research Center is an Industry/University research
center, and the companies provide funding of $30000 per year to the center.
The objective of this project is not to produce polished commercial software
tool but rather to explore and test methodologies.
REDO
Prototype: REDO (Maintenance, Validation, and Documentation of Soft-
ware Systems)
Category: Software Maintenance Environment
Prototyped by: ESPRIT Project
Description: The aim of the REDO project [205] is to assist software engi-
neers in the maintenance, restructuring and validation of large software sys-
tems, and their transportation between different environments.
The project will provide a framework around which the engineers can work
and this will include both methods and tools. The approach will cover a
broad range of computer science based disciplines, from formal software de-
sign methods, to artificial intelligence techniques. The work will be structured
into program definition, domain specific prototype applications, research into
maintenance and validation, the application of knowledge bases, toolkit con-
struction, and integration and evaluation.

After 18 months two approaches to reverse enginnering have taken place
o the first relies on SQL database repository holding the data required for
the reverse engineering process.
o the second relies on fine grain object oriented repository with associated
schema descriptions
An intermediate language has been designed to connect with business appli-

cation languages. The user interface is regarded as having great importance.

B.2 Pi_z‘ottypes for ;Fault:LOCa‘lliéation

B.2.1

(a)

(b)

]E‘ault]Detecti‘o'n_ ‘
Metlrlc classnﬁcatxon tree
Prototype' Softwale metuc olass1ﬁcat1011 tree help guide the ma.mtenance of
large scale. systems
Category: Fault deteétion, F@ultlocaﬂsation
Px:oto“typedrf,by: ':Depa’r‘-fme‘ﬁtof Iofof;ﬁation and Computer Science, Univer-
sity of California, Irvine, Ca.li‘tf'o_rnia. 92717
Platform: The classification ’tree generation tools are environment indepen-
dent.
Description: This study [230] proposes an automated method for generating
empirically-based models of error-prone software object- These models are in-
tended to help localise the "troublesome 20 percent” (the "80:20 rule” states
that approximately 20 % of a software system is responsible for 80% of its
errors). The proposed method uses a recursive algorithm to automatically
generate classification trees, whose nodes are multi-valued functions based on
software metrics. The proposed of the classification trees is to identify compo-
nents'tha.t are likely to be error prone or costly, so that developers can focus
their resources accordingly. |
Feasxblhty study

o 1st: 16 NASA projects (3000 112000 lines), (results 79 3% of the software

modules had hlgh developmenl; effort or faults)
o 2nd Hughes mamtenance envuonment to 1dentxfy fault prone and change
prone components ina lalge qca,le system (mme than 100000 hnes)

New fault detectnon techmque : - |
Prototype Rethmkmg the taxonomy of Fa,ult Detectlon techmques
Categox‘y Fault detectlon : V

Paper from M Young, Depart of Informatxon a,nd Computer Scmnce Um-

-VGISlty of Cahfouua Ilvme 92717

]Descmpt ion: The convenLloual classlﬁcatlon of soft;ware fault detectlon tech-

mques by thenr opelatlonal chancteustlcs (statlc kvs dyna,rmc analvsxs) lS‘

s

inadequate [283] as a basis for identifying useful relationship between tech-
niques. A more useful distinction is between techniques which sample the

space of possible executions, and techniques which fold the space.

B.2.2 Fault/Error Localisation

(a) PELAS
Prototype: PELAS (Program Error-Locating Assistant System)
Category: Error localisation
Prototyped by: Department of computer Science, Wayne State University,
Detroit, MI48202
Target language: Pascal
Description: This prototype [131, 132] is an error localisation assistant sys-
tem which guides a programmer during debugging of Pascal programs. The
system is interactive: it queries the programmer for the correctness of the
program behaviour and uses answers to focus the programer’s attention on
an erroneou; part of the program (it can localise a faulty statement). This
system uses the knowledge of program structure represented by the depen-_
dence network used by the error locating reasoning mechanism to guide the
construction, evaluation and modification of hypothesis of possible causes of
the errors.

(b) POLYLITH
Prototype: POLYLITH
Category: Module fault localisation
Description: A fault localisation capability has been incorporate into POLYLITH [102],
an environment that supports the interconnection of heterogeneous (multi-
language and possibly distributed) software modules. This capability origi-
nated from techniques developed in the context of diagnosis in general techni-
cal systems, and requires a knowledge base that describes both the structure
and intended behaviour of the system to be diagnosed.
The POLYLITH module interconnection language (MIL) provides the de-
scription of software interconnectivity (structure), which is enhanced in the

approach by attributes specifying the high level behaviour of the modules.

181

(c)

(d)

(e)

Furthermore, the POLYLITH software bus gives us transparent instrumen-
tation as the actual behaviour of the system under consideration. With this
information, it is possible to determine a module or set of modules, that must
be faulty in order to explain the given observations.

PROUST

Prototype: PROUST

Prototyped by: Johnson and Soloway

Category: Fault localisation

Description: PROUST [118] is a knowledge-based fault localisation system
designed to create a framework sufficient to catch all possible errors in small
programs. They also wanted the program to understand the nature of the
bugs, state it, and suggest a form of solution. To accomplish these objectives,
the system requires that the program be totally and correctly specified. The
major limitations of this system is that it is extremely difficult to form such
specifications even for small programs, and there is no way to guarantee the
specifications are corrects even after they have been stated.

PTA

Prototype: PTA

Category: Fault localisation

Description: PTA [42] is a Knowledge-Based Program Testing Assistant.
As programs are developed and tested , a user can request that the system
automatically store the test cases for future use. When a bug arises in feature
being tested , the system in coordination with the user can request that the
appropriate saved test cases be rerun automatically -either before the system
has been repaired to aid in identifying the problem or after the system has
been repaired to ensure its correctness. In conjunction with this capability,
the PTA heuristically modifies the corresponding test cases when the source
code is changed. This preserves the ability of the system to continue to use, if
possible, previous test cases to perform a type of automated regression testing
of the code .

Error localisation

Study: Error localisation during software maintenance: generating hierarchi-

cal system description from source code alone

182

Category: Fault localisation, data bindings (measure of software interaction)
Study from: R.Selby and V.Basili, Depart. of Information and Computer
Science, University of California, Irvine 92717 and University of Maryland

Description: The purpose of this study [229] is to quantify ratios of coupling
among components and cohesion within them, and use them in the generation
of hierarchical system descriptions. The ability of the hierarchical descriptions
to localise errors by identifying error prone system structure is evaluated using
actual errors data. An analysis of variance model is used to characterise sub-
systems and individual routines that had either many/few errors or high/low

error correction effort.

183

B.3 Impact Analysis

B.3.1

(2)

B::'?*’fz I'

Dépéndéhléy Aﬁélyéﬁé

Dependency Analysns tool Set

Category Dependency analysm

Prototyped by. Norma.n Wllde Umversnty of West Florida

Target]Language c

Platform: runs on MSDOS PCs with 2 Mbytes of RAM and Unix-based
workstation.

Description: This tool is a dependency analyser and a tool for building
comprehension tools. The intent behind the tool is to provide a basis for
determining program dependencies (data, calling, functional and definitional),
so by creating your own application specific front-end, you can ta.ilo‘r—fnake
your own comprehension aid.

Intermodular Dependency

Category: Dependency analysis

Work by: Department of Informatica e Sistemistica, University of Naples,
Via Claudio, 21 80125 Napoli, Itﬁly.

Target Language: Pascal

Th.i"s‘ paper outlinicis: that >‘actua1fand' mainly potential intermodular dependen-
Ci_esi'pllnéy'in t,he"»ma.iptenaﬁcé phase éf a software product. The prrbbl'emjs
diéc’u‘s‘séd'with'refefence to:Péscal sy»s'tems and it shows how réverSé engineer-'
ing and static code analySJS enable the identification of the actual and potentlal

mtermodular data ﬂow 1ela,txonshlp [47]

'Ripple' Eﬁ'elcv:t ‘A‘nmlysen"“"

] Surgeon s Assnstant

'Prototype Surgeon s Assnsl:ant

Categon-y rlpple effect analysel mamtenance a1d

Prototyped by I\exth Gallaghex Loyola College in Ma.ryland and the Um—

7 *'ver51ty of Marlland aL Baltxmme

184

Target Language: C

Platform: runs on Sun workstation with Sun View under SunOS Version 4.
Description: This tool slices up programs, extract pertinent information, and
displays data links and related characteristics so you can track the changes and
influence on targeted structures. It delivers semantic information and editing
guidance to help you formulate a maintenance solution with no undetected

link to unmodified code, thereby eliminating the need for regression testing.

185

B.4 Managemcem Prototypes

B.4.1

(a)

(b)

(¢)

goftwere C:oxa:iﬁg;_uration' Managenient

ACTM

Prototype' ACTM (Advanced Conﬁguratlon Management Toolset)
Categon‘y Configuration Management Toolset

Platform: IBM 7

Description: ACMT [103]. assists configuration management and project
managexﬁent activities and supports SID (IBM Systems Integration Division)
’s life cycle model orientation.

ACMS

Prototype: ACMS (Automated Configuration Management System)
Cetegory: Software Configuration Management

Description: CMS [285] enhances manual techniques for project tracking
and change control. It integrates the paperwork associated with configura-
tion 111a11agehe11t with the configuration control. Configuration management
procedures start when the required paperwork describing a problem, change
proposal or new function is entered into the system via standard forms on
the terminal. Change notices are prepared if approved are assigned to the
programmer.

CLEMMA

Prototype: CLEMMA

Category: Soft'\\(are Conﬁguration Management

Platform UNIX env.

']Descmptnon CLEMMA [209] 1mp]ements the basic functlons of 1dent1ﬁca-

tnon"analysm and change'contro] on pl’OJeCt 'conﬁguratlons It manages a
hbrary ol" components, wluch is composed of an ob ject reposntory and a data
descnptmn repos:tory It utlhsee 1elat10ua1 database technology, based on an

e‘(tended relatnonal model of sof twale development in whxch components have

'an obJect 011ented 1ep1eseutatnou One ma_m featule 1snt s exploltatlon of l;he‘-

'rela,txonal database mformatlon retrjeval capab:htles t;o enable conﬁguratlons

to- be selected on the basus on both statlc and dynamlc agglegates

BT SRR

(d)

(1)

CRUISE

Prototype: CRUISE (Controlling Rigourously the Use of Interfaces in Soft-
ware Evolution)

Category: Software Configuration Management

Description: CRUISE [254] is based on interfaces hierarchies. It consists of
a representation scheme for software evolution, a MIL to express.a,rchitectura.l
design information and attributes information for identification and retrieval,
a repository (the CRUISE Grid) to store design descriptions and an analytic
framework to estimate the impact of changes to design description.

GDIST

Prototype: GDIST(Global Distribution)

Category: Configuration Control System

Description: GDIST (26] is a distributed configuration control system that
adds simple access to the configuration control database (e.g. RCS, SCCS,
SPMS) from anywhere in the network. It also provides automatic and reliable
copying of updates, and can coordinate compilation on diverse hosts via a
'global-make’ command which initiates locals 'Makes’. It checks for errors,
monitors and audits and notifies affected users by E-mail.

INSCAPE

Prototype: INSCAPE

Category: IPSE, version control system

Prototyped by: D.E.Perry, AT&T Bell Laboratories, Murray Hill, NJ 97974.
Description: INSCAPE [194] is an Integrated Software Development Envi-
ronment for for building large software systems by large group of developers.
The version control system (INVARIANT) extends GANDALF’s SVCE through
the incorporation of knowledge about the semantics of module interfaces , to
achieve a more flexible method of system composition than in other typed
systems. It also enables INVARIANT to distinguish between parallel versions
and provide a formalisation of the notions of version equivalence and compat-

ibility to the extent of providing the system builder with the concept of plug

‘compa,tibili ty.

IPSEN
Prototype: IPSEN (Incremental Project Support ENvironment)

187

(h)

(i)

()

Category: Software Configuration Management

Description: IPSEN [146] is a support environment that integrates the
project management, control and development activities occurring during the
software life cycle. The architecture of a software system is expressed in terms
of modules and module interconnections using a particular system description
language. The system architecture are created and ma.intained. by means of
integrated syntax-directed editors for the system description language and the
variant descriptions. Revision control is via a mechanism similar to the re-
vision trees used in RCS, which are created and maintained using a general
interactive revision editor. Configurations are built according to a given set
of variant attributes and revision time stamps, or through the use of explicit
variant /revision lists.

Los Alamos Hybrid Environment

Prototype: Los Alamos Hybrid Environment

Category: Software Configuration Management

Description: Los Alamos Hybrid Environment [61] is an integrated develop-
ment/configuration management system which is a Hybrid system combining
features of the VMS host operating system and elements of the Softool CCC
configuration management tool.

NAVE

Prototype: NAVE (Networked, Automated Versioning Environment)
Category: Software Configuration Management

Description: NAVE [275] is an environment that supports both a diverse
host machine environment and a diverse target machine environment. It’s
key function is to provide the disciplines of configuration identification, con-
figuration control, status accounting and auditing, without a high degree of
administrative overhead.

ODIN

Prototype: ODIN System

Category: Software Configuration Management

‘Description: ODIN System [48] is an extensible object manager for software
development environment, which used Make as it’s conceptual starting point.

It consists of:

188

(k)

o a specification language for describing the objects to be managed and the
tools to produce them
o an object oriented request language which a user or tool can name a desired
object

o an interpreter that accepts the request and produces the object
It extends the standard UNIX hierarchical file structure by the addition of
user file types and operations. it deals with the information produced by
software tools by invoking the appropriate set of tools needed to generate the
objects that contain the data. The specification language has been designed to
allow the integration of any existing tool or set of tools into the ODIN system
without modification to the tools themselves, and can easily be extended to
accommodate new tools. the ODIN system does not have a specific form of
built-in version control, rather it considers a version control tool to be just
another tool that can be specified in the ODIN specification language.
PAPICS
Prototype: PAPICS (Product and Project Information Control System)
Category: Software Configuration Management
Platform: VMS
Description: PAPICS [67] is built on top of a VMS kernel and has access
to the tools of the OS through defined interfaces. It supports configuration
management and project management for a developing software system and
provides archive and help facilities. PAPICS provides facilities like: automatic
configuration assembly, independent further development for all version, dis-
crete handling of numerous versions and on-line access to all versions.
PRODAT
Prototype: PRODAT
Category: Software Configuration Management
Description: PRODAT [15] is the database component of the PROSYT soft-
ware engineering environment. 1t provides concepts to create and manipulate
versions and configurations, and for incremental archiving of these compo-
nents. It uses a procedural interface to tools and a graphical interface to users

instead of a query language.

189

(m).

{ (n)

(o)

RCS ,
Prototype: RCS (Revision Control System)

.Ca‘t;egory: ‘Software Configuration Management

Pn‘ototy’ped by: W. Tichy

‘Description' RCS (260, 2617] is a,' widel‘y used source code control system
that assists in keepmg software system consxstmg of many versions and con-
ﬁguratlons well orgamsed

SERS

Prototype: SERS (Software Engineering Release System)

Category: Software Configuration Management

Prototyped by: GTE Communication Systems

Platform: IBM 3084 (UTS), VAX/VMS

Description: SERS [206] is an interactive, menu driven configuration man-
agement system and supports configuration identification, change control, sta-
tus accounting and auditing of system components. Significantly, it integrates
change administration with system building and demands that the change
itself actually drives the system.

It ensures integrity and completeness by tracing each problem from identifi-
catlon to solution throughout the life cycle It has five functional roles: task
management, file management, conﬁgurat:on management, report manage-
mient and administration managelnent.

SHAPE

Prot!otype: SHAPE

Category VelSlon Contml System

Descrnptmn The Sllape [160] (00”\”. consists of an obJect ba,se for attubutes
softwale obJects a dedlca,tes VQISIOJI contlol system and the sha,pe proglam
1tself SHAPE has adopted l:he hest concepts of make, Adele and DSEE a.nd
enhanced them w1th full access to the ol)Ject base and supp01t of conﬁguratjon
1ules SHAPE oﬂ"ers mme complete ulteglatlon between source code control

and conﬁgulatlon control tlnough 1ts Attubuted Flle Stme SHAPE opera,tes'

' "on obJects m the oblecL base lathel than on UNIX file system obJect as m

Ma}\e Whan 1nvoked Shape seanches the ObJECt base f01 obJects mstalls them

tempoxally as Umx hles evokes standald Un]x tools on them and st01es the

100

(p)

(a)

resulting derived objects in the object base.

SIDS

Tool: SIDS (Self-Identifying Software)

Category: Software Configuration Management

Produced by: Honeywell Bull

Implemented in: all deliverables which includes source (typical source, JCL,
COBAL Copy libraries, Include Files etc.) objects and executable forms.
Description: SIDS [91] reduces problem analysis time by marking each
software.change with a change identifier (transmittal number) as part of the
revision level information (e.g. source name, source protection notice, base
data, transmittal numbe, transmittal reason).

For source code the revision information resides in the source as comments
at the beginning of the module, and for objects and executable modules the
revision information is prefixed by keywords for ease of identification or ex-
traction. An automated configuration manager is used to manage the software
changes and marking.

Smalltalk-80

Prototype: Smalltalk-80 Version Manager

Category: Source Code Version Management

Description: The code and version histories are stored in a hypertext database
management system. The system provides easy access to old versions of source
code. Composite source code items, such as Smalltalk class can be viewed ex-
actly as they appeared at an earlier time using a special browser, the Version
Browser. Additionally two versions of the same source code item may be

viewed simultaneously with their differences highlighted

191

B.4.2

Inverse Software Configuration Management

(a) PISCES

B.4.3

(a)

Prototype: PISCES (Proforma Identification SCHEME for Configurations
of Existing Systems)

Category: Inverse Software Configuration Management

Prototyped by: R. Kenning, University of Durham, UK.

Description: At Durham [129], an inverse software configuration manage-
ment has been identified as the process of bringing an existing software system
under éonﬁguration control. PISCES is a tool under development to help the
process of bringing an existing software system under configuration control.

PISCES identifies and documents the configurations of an existing system.

Product Management

SCIMM

Prototypé: SCIMM (Software Change Information for Maintenance Man-
agement)

Category: Product Management

Prototyped by: S.Cooper, University of Durham, England

Platform: 7

Description: SCIMM {60] is a prototype system under development for stor-
age, retrieval and analysis of software change information. SCIMM collects and
stores information about requests for changes and changes made to software
systems. bit also tries to capture information about the process involved in
producing the change, including the diagnostics of the problem , and the de-
sign of the change. Cross referencing procedures based on a keyword system
for describing a change request and its subsequent diagnosis allow searches
to be made similar past changes. It also provides change metrics based on

a before/after system of program complexity measurement, about individual

~changes and the system being maintained as a whole.

192

B.5 Environment Prototypes

B.5.1

(a)

(b)

Programming Environment

ADELE
Prototype: ADELE
Category: Programming Environment, Software Configuration ‘Management
Prototyped by: J.Estublier, Laboratoire de Genie Informatique (IMAG),
Grenoble
Target Language: Independent
Platform: VAX/VMS, MS-DOS, UNIX
Description: ADELE (?, 79] has four main components:
~ © a program editor

o compiler and debugger

o a parametrised code generator

o a user interface and a program base
Components are identified by a quadruple (family name, variant id, version
id, revision number). The program base is essentially a database based MIL
of program information that is used to support a configuration management

system.

ALS

Prototype: ALS (Ada Language System)

Category: Programming Environment

Description: ALS [12] supports the development of large scale Ada software
for real-time microprocessor-based applications. |

CONMAN

Prototype: CONMAN

Category: Programming Environment, Software Configuration Management

Description: CONMAN consist of an object base and a set of tools to help

~ the programmer interactively construct and debug inconsistent systems. CON-

MAN automatically identifies and tracks 6 kinds of inconsistencies , without
requiring that the user remove them immediately. It reduces the cost of re-

building a system after source code changes through the use of smarter re-

193

(d)

(e)

()

(8)

compilation, which uses link consistency to determine which modules must be

rederived.

Gro'_nus{

Prototype: .Cronus Distributed Operating System

Categqry: Softw‘a.re-yDevelopment En#ironment, Software C'onﬁgrura»tion:Man-
agemien,t | ' | »]
Description: Cronus establishes a SDE for a distributed and heterogeneous
set of computers. Its features includes a source control-system , a Bug report
manager to record orgaﬁise and process reports of problems, and a configu-
ration management plan to control distribution of software to a varied set of
supported hardware/software systems [24].

DARWIN

Prototype: DARWIN

Category: Programming Invironment, Software Configuration Management
Description: DARWIN supports the notion of law-governed systems and
consensus based configuration binding. It views the system as a collection
of attributed objects , grouped into classes to form an inheritance hierarchy.
Development and system evolution is managed by the passing of a message
between object according to rules, the law of the system, which define what
can be done to an object. Such ‘a framework supports consensus based con-
ﬁguratlon binding -which takes into account all the constramts 1mposed by
managers, bu1lders and users on the use of versions.

DIF

Pn‘ototyﬁe' DIF (Documents 'Iiltegl'ati011 Facility)

Category Ploglmnnung Envuonment Soltware Conﬁgmatlon Management
]Descnptnon DIF [86] IS a softwale hypeltext system whlch when combmed
W1t11 sevexal softwme eugmeeung tools provxdes an envuoument for mtegra.tmg
and managmg the document and code ploduced duung the software hfe cycle
The ‘N uMIL plocessmg env1ronment is used to ma,na,ge the deSJgn a,nd evolu—
tlou of softwale conﬁgmatlons the NIVEZ system xepresents the descrlpuons
of conﬁguratlons m a glaphlcal mannel, and RCS is used f01 versmn c0nL101
GANDALF" L .
Px‘ototype:

ol -

(h)

Category: Software Deveiopment Environment, Software Configuration Man-

agement

Description: GANDALF [179, 94] is implemented as an extension to UNIX

and designed for projects that use Ada. It consists of three main components:
o an Integrated Program Construction Facility including a syntax directed

editor and a syntax directed debugger

o a System Composition and Generation Facility providing a system genera-
tion facility based on system descriptions and consists of both Cooprider’s
version control system and Tichy’s Software Development Control Facility

o a Project Management Facility dealing which issues such as conflict avoid-
ance, access rights and documentation control.

NuMIL

Prototype: NuMIL

Category: Programming Environment

Prototyped by:

Platform:

Description: The NuMIL environment {176] controls software development
and maintenance through system descriptions stored in the INGRES relational
database. The system consists of two central repositories of information: the
first holds processes NuMIL descriptions, and the second consists of all the
source files and revisions which are stored using RCS. It uses the notion of
families to control incremental modification of systems and to provide feed-
back about effect of proposed changes to a system. Preconditions and post-
conditions are used to emphasizes behavioural aspects of a system. It also
supports the notion of upward compatibility as a means of reducing the cost

of analysing the effect of alterations to system configuration.

195

B.5.2

-

(a)

(b)

Software Maintenance Environment

A.S.U.

Project: A.S.U.

Category: Software Maintenance Environment

Project by: Arizona State University

Description: The objective of this project [55] is the development of a prac-
tical software maintenance environment to support managerial and technical
maintenance tasks which include:

o understanding software

o changing software

(o]

tracing ripple effect

o

retesting changed software

o documenting acquired knowledge

o planning and scheduling maintenance tasks
GALILEO
Prototype: GALILEO
Category: Software Maintenance Environment, Software Configuration Man-
agement
Prototyped by: Rational Technology
Description: GALILEO [212] provides change control and configuration
management in a distributed, heterogeneous environment. It is a client server
system and is based on the Ingres relational database. It offers change con-
trol facilities similar to those of SCCS, RCS and CMS, but augments change
management with methods for change distribution. The unit of change is the
change record which binds together new versions of elements that results from
modules changed for the same reason. It does not rigorously enforce the par-
allel development approach, but embodies a dynamic model of maintenance
which allows maintainers to build upon each others work, taking updates from
the master version before making changes. Integration testing of changes is
carried out at client sites which are selected to encompass the variety of dis-

similar hardware and operating systems supported.

196

(c) ISCM

(d)

Prototype: ISCM
Category: Software Maintenance Environment, Software Configuration Man-
agement
Platform:
Description: ISCM is integrated software maintenance environment for soft-
ware maintenance. The essential feature is bridging configuration management
and quality management. It consists of three major subsystems [7]:

o an Extended Configuration Management System (ECMS)

o a Problem Report Management and Inquiry System (PROMIS)

o a Reference Evaluator for Mode and Interface (REMIE)

which are all coordinate through a relational database management system.
Configuration management is based on the property of conformity, well formed-
ness and upward compatibility. CHILL is used to manage the resources of the
system such as type definitions and global names, and maintains change his-
tories and information and information regarding verification of changes.
MICROSCOPE

Prototype: MICROSCOPE

Category: Software Development/Maintenance Environment, program anal-
ysis system

Prototyped by: HP Laboratories, P.O. Box 10490, Palo Alto CA 94303-
0971

Description: Microscope [4] is a knowledge-based tool to assist program-
mers in developing an understanding of large and complex programs. This
prototype provides static and dynamic analysis, execution monitoring and
assistance with program modification and bug location. All program informa-
tion, including source, documentation, execution histories, program analysis

result and Microscope’s strategies for advising the programmer, are stored in
P 3 g prog

a central knowledge base [4].

197

Bibliography

[1] R. Arnold, B. Blum and V. Rajlich, 1989, Bridge Technologies for Soft-
ware Maintenance, Proceedings of Conference on Software Maintenance, IEEE,

pp 230-231.

[2] A. Adam, J.P. Laurent, 1980, LAURA, A System to Debug Student Pro-
grams; Artificial Intellingence Vol. 15,
pp 75-122.

(3] A. Alderson, M.F. Bott and M.E. Falla, 1986, The ECLIPSE Object Manage-

ment System, Software Engineering Journal, January, pp 240-246.

\ (4] J. Ambras and V. O’Day, 1987, MICROSCOPE: A Program Analysis Sys-
tem, Proceedings 20th International Conference on System Sciences, Hawaii,

pp 71-81.

[5] T. Anderson and P.A. Lee, 1981, Fault Tolerance: Principle and Practice,
Prentice-Hall, pp 52-53.

[6] ANSI/IEEE Std 729., 1983, Software Engineering Standards.,

[7) M. Aoyama, Y. Hanai, and M. Suzuki, 1988, An Integrated Software Main-

tenance Environment: bridging configuration management and quality

management, Proceedings of Conference on Software Maintenance, IEEE, pp 40-

44.

[8] R.S. Arnold and D.A. Parker, 1982, The Dimensions of Healthy Maintenance,

Proceedings 6th International Conference on Software Engineering, pp 10-27.

[9] R.S .Arnold, 1989, Software Restruring, Proceeding of the IEEE, Vol 77, No 4,
pp 607-616.

198

[10]

(11]
(12)
[13]
[14]

(15]

(16]
(17]

(18]

(19]

[20]
[21]

(22]

(23]

R.S. Arnold, N.F. Schneidewind, and N, Zvegintzov, 1984, A Software Main-
tenance Workshop, Communication of the ACM, Vol 27, no 11, pp 1120-1121,
1158.

D.J. Atkinson, M.L. James, 1990, Applications of Al for Automated Moni-
toring: The Sharp System, Proceedings AIAA/NASA.

W. Babich, 1986, Software Configuration Management, Addison-Wesley, pp
162.

!

,V.R. Basili and H.D. Mills, 1982, Understanding and Documenting Pro-

grams, [EEE Transactions on Software Engineering, Vol 8, no 3, pp 270-283.
V.R. Basili, January 1990, Viewing Maintenance as Reuse-Oriented Soft-

ware Developement, IEEE Software, pp 19-25.

P. Baumann and D. Kohler, 1988, Archiving Versions and Configurations in
the Database System for System Engineering Environment, International

Workshop on Software Version and Configuration Control, pp 313-325.

F.L. Bauer, 1976,,Programming as an Evolutionary Process, Lecture notes
in Computer Science, {6, Springer- Verlag.

F.L. Bauer, 1979, Program Development by Stepwise Transformations the

Project CIP, Lecture notes in Computer Science, 69, Springer- Verlag.

L. Belady and M. Lehman, 1972, An Introduction to Growth Dynainics, Sta-
tistical Computer Performance Evaluation, W. Freiberger (Ed.), Academic Press,

pp 503-511.

K.H. Bennett, B.J. Cornelius, M. Munro and D.J. Robson, 1988, Software Main-
tenance : A Key Area For Research, University Computing, 10 (4), pp 184-
188.

K.H. Bennett, 1989, Software Engineering Environments : Research and

Practice, Ellis Horwood.

K.H. Bennett, 1990, REFORM: Transforming Code into Specifications,
Proceedings 7T DPMA.

K.Ii. Bennett, 1990, The Process of Software Maintenance, to be published.
K.H. Bennett, E. Younger, J. Estdale, I. Khabaza, M. Price and H. van Zuylen,

1990, Reverse Engineering Handbook, 2487-TN-WL-1027, Version No 0.3.

199

[24] P. Bicknell, 1988, Software Development and Configuration Management
in the Cronus Distributed Operating System, Proceedings of Conference on

Software Maintenance, IEEE, IFEE, pp 143-151
[25] M. Branch, M. Jackson and M. Laviollete, 1985, Software Maintenance Man-

agement, Proceedings Conference on Software Maintenance, pp 62-68.

[26] P.E. Black, 1988, GDIST: A Distributed Configuration Control System,
International Workshop on Software Version and Configuration Control, pp 276-

1284,

[27] A. Blanc and A. Mosnier, 1990, Hermes Avionic, Proceedings AIAA/NASA.
[28] J.P. Blanquart, 1990, Ada Oriented Software Development Environment
AN Example: The Hermes One, Ist Symposium in Aerospace; Barcelona.

[29] B.W. Boehm, 1973, Software and its Impact: a Quantative Assessment,
Damation, Vol 6, pp 48-59.

[30] B.W. Boehm, E. Horowitz (Ed.), Reading, Mass: Addison-Wesley., The High
Cost of Software, In Pactical Strategies for Developing Large Software Systems,
1975.

(31] B.W. Boehm, 1976, Software Engineering, I[EEE Transactions on Computer,
25, (12), pp 1226-1224.

[32] B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. MacLeod and M.J. Merritt,
1978, Characteristics of Software Quality, North-Holland Publishing Com-
pany.

(33] B.W. Boehm, 1981, Software Engineering Economics, Prentice-Hall, Engle-

wood Cliffs, N.J.

[34] B.W. Boehm, 1983, The Economics of Software Maintenance, Proceedings
Software Maintenance Workshop, IEEE, pp 9-37.

(35] K.M. Broadley, A. Colbrook, M. Munro and D. Robson, 1989, Block Structured
Cross References for Pascal and C, University Computing, 11 (3), pp 120-128.

[36] R. Brooks, 1983, Toward a Theory of the Comprehension of Computer
Programs, International Journal on Man-Machine Studies, 18, pp 543-554.

[37] B. Bruegge, P. Hibbard, 1983, Generalized Path Expressions: A High-Level
Debugging Mechanism, The Journal of Systems and Software, Vol3 pp 265-276.

200

[38] F.W. Calliss, 1987, Problems with Automatic Restructurers, SIGPLAN No-

[39]

(40]

[41)

(42]
(43)
[44]

(45]

[46]

[47)

48]
[49]
(50]

[51]

tices, 23, pp 13-21.

F.W. Calliss, S.D. Cooper, R.J. Kenning, and M. Munro, 1988, Notes of the
Second Software Maintenance Workshop, Centre for Software Maintenance,

Durham, England.

F.W. Calliss, M. Ward and M. Munro, 1989, The Maintainer’s Assistant, Pro-
ceedings of Conference on Software Maintenance, IEEE, pp 307-315.

S. Cha, N. Leveson and T. Shimeall, 1988, Safety Verification in Murphy Us-
ing Fault Tree Analysis, Proceedings 10 th Conference on Software Engineering,
pp 377-386.

D. Chapman, 1982, A Program Testing Assistant, Communication of the ACM,
pp 625-634.

N. Chaﬁin, 1985, Software Maintenance: A different view, Proceedings of

Conference AFIPS, Vol 54, pp 509-513.
N. Chapin, 1987, T"he Job of Software Maintenance, Proceedings of Conference

on Software Maintenance, IEEE, IEEE, pp 4-12.

S. Chen, K.G. Heisler, W.T. Tsai, X. Chen and E. Leung, 1990, A Model for As-
sembly Program Maintenance, Software Maintenance: Research and Practice,

Vol 2, p.3-32.

E. Chikofsky and J. Cross 11, January, 1990, Reverse Engineering and Design
Recovery: a Taxomany, IEELE Software, Voll, Nol, pp 13-18.

A. Cimitile, G.A. Di Lucca and P. Maresca, 1990, Maintenance and Inter-
modular Dependencies in Pascal Environment, Proceedings Conference on

Software Maintenance, pp 72-83.

G.M. Clemm, 1988, The ODIN Specification Language, International Work-
shop on Software Version and Configuration Control, pp 144-158.

L. Cleveland, 1988, An Environment for Understanding Programs, Proceed-

ings Hawaii International Conference on System Science, pp 500-509.

L. Cleveland, 1989, An Programs Understanding Support Environment,
IBM Syst. J. Vol 28 No 2. pp 324-344.

E.S. Cohen and all, 1988, Version Management in Gypsy, ACM, pp 201-215.

201

[52]

[54]

[55]

(57]
(58]

(59]

[60]

1)
I52)

'[63]

A. Colbrook C. Smythe and A. Balhsou, 1990, Data Abstractxon in a Soft-
ware Re-engmeermg Reference Model Pmceedmgq Coriference on Software
Mamtenance pp2-1L ' '

J.S. Cﬁollofellova.nd-S.J .~Bortman, ‘1’986,:A'h',Aoalys,is' ‘of the Teehnical]I‘nﬁfor-
mation Necessary ‘to Perfor‘m Eﬁ'ectiye Software Mainjtehe}nce, Pm&éédinyé_.
Phoeniz Conference C’omputer and VC’omrnnunic:'af;i'on, Vol 54:,'.p‘pv '4-20-42-3"

J.S. Collofello and J.J. Buck, 1987 Software Quahty Assurance for Mainte-

‘mance, IEEE Software, pp 46-51.

J. Collofello and M. Orn, 1988, A Practical Software Maintenance Environ-

ment, Proceedings of Conference on Software Maintenance, IEEE, pp 45-51.

M.A. Colter, 1988, Strategies for Software Maintenance Management, Pro-
ceedings Conference on Software Maintenance, Chicago, Software Maintenance As-

sociation.

M.A. Colter, 1988, The Business of Software Maintenance, Second Software
Maintenance Workshop Notes, Centre for Software Maintenance, University of

Durham.

R. Conradi, A. Lie, T.M. Didriksen, and E. Karlsson, 1989, Change Orientated
Versioning in a Software Engineering Database,‘ACM, Software Engineering
Notes, Vol 14, No 7, pp -5_6-65.

L.L. Constantme W.P. Stevens and G.J. Myers, 1974, Structured Design, IBM
Sy<temc Journal 2, pp 115-139.

S. Coopel a,nd M. Munro 1()89 Software Change Informatlon for Mainte-
nance management Ter'hmcal In’epmt //5‘9 Compute1 Science; Umverszty of

Dur ham

G. Cort, 19‘15 The Los Alamos Hybrld IE)nvnronment Arﬂ Integraﬂted De-

ve]lopment/Conﬁguratnon Management System IFE‘F pp 11 17

L Cougal and S Zawadu 1980 Motlvatmg and Managmg Computer Per-.

sonne]l]ohn IVzley

J Collofello and L Cousms 198r Towards Automatlc Software IE‘ault]Loca«

tlom through Decnslom-to—PaMn Analysns Na!wnal Conzpuie7 Conference ’

Cao02

[64] F. Cross, 1987, An Expert System approach to a Program’s Informa-
tion/Maintenance System, Proceedings of Conference on Software Mainte-
nance

[65] B. Curtis and S.B. Sheppard, 1979, Identification and Validation of Quan-
titative Measures of the Psychology Complexity of Software, Software
Management Research. .

[66] C. Curtis and W. DeHaan, 1984, RXVP80 - The Verification and Validation
t System for FORTRAN, Proceedings of Conference on Software Maintenance
[67] N. Demleitner, 1988, PAPICS: A Practical Approach to Configuration
Management, International Workshop on Software Version and Configuration

Control, pp 381-390.

[68] J.P. Denier and J. Estublier, 1988, Software Maintenance : a survey, In
Proceedings International Workshop on Software Engineering and its Applications,
Toulouse, pp 323-342.

(69] V. Dhar and M. Jarke, 1988, Dependency Directed Reasoning and Learning
in Systems Maintenance Support, IEFEE Transactions on Engineering, Vol 14,
No 2, pp 211-214.

[70] A.E. Ditri, J.C. Shaw and W. Atkins, 1971, Managing the EDP function,

 McGraw-Hill

(71] T. Dogsa and I. Rozma, 1988, CAMOTE-Computer Aided Module Testing
and Design Environment, Proceedings of Conference on Software Maintenance,
IEEE, pp 404-408.

[72] M. Dowson, & J. C. Wiledden, July 1985, A Brief Report on the International
Workshop on the Software Process and Software Environments, ACM
Software E’ngineéring Notes, Vol 10, No 3.

[73] M. Ducassé, 1986, OPIUM: A Sophisticated Tracting Tool for Prolog, Acte
Seminaire de programmation en logique, CNET Lannion Tregastel.

[74] M. Ducassé and A. Emde, 1988, A Review of Automated Debugging Sys-
tems: Knowledge, Strategies and Technique, Proceedings 10 th Conference
on Software Engineering, 162-171.

{75) B. Durin, J. Abadir, B. Mouton, 1990, Software Reuse, The Challenge of The
90’s in Software Development, Proceedings AIAA/NASA.

203

[76]

[77)

(78]

(79},

(80]

(81]

(82]

(83]

[84]

(85]

[86)

(87]

[88]

[89]

[90]

M. Eisenstadt, 1985, Retrospective Zooming, A Knowledge Based Tracing

and Debugging Methodology For Logic Programming, Procedings of the
9th IJCAI

ESA, 1991, Software Engineering Standards, P55-05 Issue.

ESA, 1990, European Space Software Development Environment, Soft-

ware Requirements Document, WME/87-409 [ssue 2.

J. Estublier and N. Belkahtir, 1987, Experiences with a Database of Pro-
grams, In Proceedings of the Software Engineering Symposium on Practicle Soft-
ware Development Environment. ACM SIGPLAN Notices, Vol 22, No 1, pp 84-91.
M. Evans, 1989, The Software Factory, John Wiley & Sons.

M. Faden, 1987, Tools for Managing Change that Don’t Mess up the Sys-
tem, DEC USER, November, pp 44-47.

R. Fairley, 1985, Software Engineering Concepts, McGraw Hill, NY.

S. Feldman, 1979, MAKE - A Computer Program for Maintaining Com-

puter Programs, Software Practice and Experiences, No9.

G. Ferrand, 1987, Error Diagnosis in Logic Programming, Journal of Logic
Programming, No 4, pp 177-198.

S. Gamalel-Din and L. Osterweil, 1988, New perspectives on Software Main-
tenance Processes, In Proceedings Conference on Software Maintenance. pp 14-

22.

P.K. Garg and W. Scacchi, 1988, A Software Hypertext Environment for
Configured Software Descriptions, International Workshop on Software Ver-

sion and Configuration Control, pp 326-343.

J.R. Garman, 1990, Perspective on NASA Software Development Apollo,
Shuttle, Space Station, Proceedings AIAA/NASA.

M. Georges, Sept 1989, The MACS project, Proceedings 3rd Durham Workshop

on Software Maintenance.

G.R. Gladden, 1982, Stop the Life Cycle, I Want to Get Off, ACM Software
Engineering Notes, 7, (2), pp 35-39.

R.L. Glass, R.A. Noiseux, 1981, Software Maintenance Guidebook, Prentice-
Hall.

204

[91] L. Greene, 1988, Self-Identifying Software, Proceedings of Conference on Soft-
ware Maintenance, IEEE, pp 126-131.

(92] M. Griffiths, 1976, Program Production by Successive Transformation, Lec-

ture Notes in Computer Science, 46.

(93] C. Gunn and D. Jolly, 1988, Commercial Software - Development versus

Maintenance, Proceedings Second Durham Workshop on Software Maintenance

(94] N. Haberman, 1986, GANDALF: Software Development Environment,
f
'IEEE Transactions on Software Engineering, SE-12, pp 1117-1127.

[95] J. Hager, 1989, Developing Maintainable Systems: a full life-cycle ap-

proach, Proceedings Conference on Software Maintenance, pp 271-278.

[96] J. Hager, 1989, Software Cost Reduction Methods in Practice, IEFE Trans-
action on Software Engineering, Vol 15,No 12, pp 1638-1644.

[97] M. Harandi and J. Ning, 1988, PAT: A Knowledge-based Program Analysis

Tool, Proceedings Conference on Software Maintenance, pp 312-318.

[98] J. Harband, 1990, SEELA: Interactive Top-down Program Displays, Pro-

ceedings Conference on Software Maintenance, pp 146.

[99] W. Harrison and K.I. Magel, 1981, A Complexity Measure Based on Nesting
" Level, ACM SIGPLAN Notices, pp 63-74.

(100] M. J. Harrold, M. Soffa and R. Gupta, 1990, A Methodology for Controlling
the Size of a Test Suite, Proceedings Conference on Software Maintenance,

pp 302-310.

[101] P. Hayes and J. Pepper, 1989, Towards An Integrated Maintenance Advi-
sor, Hypertext '89 Procedings, pp 119-127.

(102) D. Hernandez and L. Kanal, 1989, Module Fault Localisation in a Software
Toolbus Based System, Technical Report 20742, Computer Science, University
of Maryland. '

[103] C.G. Horne and R. Seeger, 1988, An Advanced Configuration Management
Tool Set, Proceedings Conference on Software Maintenance, pp 229-234.

[104] R.S. Hornstein, 1990, Distributed Decision-Making For Space Operations
A Programmatic Perspective, Proceedings AIAA/NASA.

205

{105] E. Horowitz and R. AW.il_‘lii_zL‘mson A'ugus't 1986, ‘SODOS a Soft;Vare ‘Docu-
'inenfhtion Environ’mnént Its Deﬁnntlons {EFE: Transaction on S’oftware

Engmeerzng, SE'-I.? (8}, pp 849 859

[106] E. Horowntz and R. Wllhammn November 1986, SODOS a Soﬂ:ware Docu-
mentatlon Envnronnment Its. Use IEEE' Tmmactzan on Software Engmeer- '
ing, SE-12 (11) pp 1076 1087 :

(107] Hoskyns Ltd., 1973, Implications of Using Modular Pirqgravmming,i Hoskyns.

! Systems Research, London.i
[108] N. Howes and G. Raines, 1987, TAVERNS and the Space Station Software

Support Environment, Proceedings of the Ada-Europe International Conference

pp 46-58.
[109] W. Humphrey, 1989, Managing the Sofiware Process, Addison-Wesley.

[110] ANSI/IEEE Standard 729, 1983, IEEE Standard Glossary of Software En-
gineering Terminology, IFEE.

[111) IEEE, 1985., Conference on Software Maintenance-1985, Conference Pro-

ceedings.

[112] IEEE, 1987, Conference on Software Maintenance-1987, Conference Pro-
ceedings. ‘

[113]]EEE? 1988, Conference on Software Maintenance-1988, C’onfererice Pro-
ceedings. | :

[11'4]‘ IEEE, 1989, Conference on Software Maintenance-1889, Conference Pro-
ceedings. | ‘ | »

[115] IE'EE' -19;)0, "Cdnfererﬁcg-o’fn» ngtvéiare Maintenance—iggﬂ,- Conference Pro-
ceedzngc ' - . | -

116] WJ Jolmson E. Soloway, 1984]Intensnon-Based Dnagnosns of Pmogram—
mmg Errors Proceedzngs of ihe 31([4AA[Confemnce 1)p 162 1(‘8

[111] W L Johnson a,nd Soloway, 1985 PROUST An Automatnc Debugger for
]Pascal Progn'ams B) YE pp 179 190 : o

[118] W L. .]ohnson a,nd E. Soloway, 11)83 PROUST Knowledge-Based Progn‘am’g 7
Understandmg,[EL‘b Tlmmactzmm on Soﬂwcue E'ngzneenng,lVol 11 No kS
pp267275 ‘ e

206

[119] K.H. Bennett & M. Colter (Eds.), Chichester, UK., Journal of Software Main-
tenance: Research and Practice, John Wiley Ltd, August 1989

[120] G. Kaiser and B. Feiler, 1987, An Architecture for Intelligent Assistance in
Software Development, In Proceeding 9th International Conference on Software

Engineering, pp 180-188.

[121] G. Kaiser and D. Perry, 1987, Workspaces and Experimental Databases:
automated support for software maintenance and evolution, Proceedings

‘of Conference on Software Maintenance, IEEE, pp 108-114.

[122] G. Kaiser, B. Feiler and S. Popovitch, 1990, Intelligent Assistance for Soft-

ware Developement and Maintenance, IEEFE Software, January.

[123] D. Kafura and G.R. Reddy, 1987, The Use of Software Complexity Metrics
in Software Maintenance, I[EEE Transaction on Software Engineering, SE-13

(3), pp 303-310.

(124] V. Karakostas, 1990, Modelling and Maintenance Software Systems at
the Teleological Level, Software Maintenance: Research And Practice, Vol 2,

pp 47-59

[125] M. Kellner, 1988, Modeling Software Maintenance Process: analytic sum-
mary model, Proceedings of Conference on Software Maintenance, IEFE, pp 208-
285.

[126] M. Kellner and H. Rombach, 1989, Process-Focused Model of Software
Maintenance, Proceedings of Conference on Software Maintenance, IEEE, pp 81.

[127] M. Kellner, 1989, Modeling Software Maintenance Process, Proceedings of
Conference on Software Maintenance, IEEE, pp 81.

[128) M. Kellner, 1989, Non-Traditional Perspectives on Software Maintenance,

Proceedings of Conference on Software Maintenance, IEFEE, pp 220.

(129] R.J. Kenning and M. Munro, 1990, Understanding the Configuration of
Operational Systems, Proceedings Conference on Software Maintenance, pp 20-

29
[130] B. Kernighan and P. Plauger, 1978, The Elements of Style, McGraw- Hill.
[131] B. Korel, 1988, PELAS- Program Error-Locating Assistant System, IEEE

Transaction on Software Engineering, SE-14 (9), pp 1253-1260.

207

[132] B. Korel and J. Laski, 1991, Algorithmic Software Fault Localisation, Pro-
ceeding of the Twenty-Four Annual Hawaii International Conference on System
Science. pp 246-251.

[133] W. Kozaczynski, 1990, Basic Assembler Language Software Reengineering
Workbench, Proceedings Conference on Software Maintenance, pp 215.

[134] B. L#breuille, 1990, Overview of the Software Replaceable Unit Concept
and Mechanisms Supported by the Columbus Data Management Sys-

f tem, Proceedings AIAA/NASA.

(135] D.A. Lamb, 1988, Software Engineering: Planning for Change, Prentice-
Hall.

[136) P.J. Layzell and L. Macaulay, 1990, An Investigation into Software Main-
tenance - Perception and Practice, Proceedings of Conference of Software
Maintenance, pp 130-139.

[137] R.J. Leach, 1990, Software Metrics and Software Maintenance, Software
Maintenance: Research and Practice, Vol 2, pp 133-142.

{138] D.B. Leblang, 1984, Computer Aided Software Engineering in
a Distributed Workstation FEnvironment, In Proceedings ACM SIG-
SOFT/SIGPLAN Software FEngineering Symposium on Practical Software Devel-
opment Environment, pp 104-112. .

(139] D.B. Leblang, 1988, Increasing Productivity with a parallel Configura-
tion Manager, International Workshop on Software Version and Configuration
Control, pp 104-112.

(140] M.M. Lehman and L.A. Belady, 1976, A Model of Large Program Develop-
ment, IBM Syst. J., 15, (3), pp 225-252.

(141] M.M. Lehman, >1980, Programs, Life Cycles, and Laws of Software Evolu-
tion, Proceedings IFEE, 19, Vol 68, No 9, pp 1060-1076.

[142] M.M. Lehman, 1984, Program Evolution, Information Processing Manage-
ment, 20, pp 19-36.

[143] M. Lehman and L. Belady, 1985, Program Evolution: Processes of Software
Change, Academic Press.

[144] P. Leluc and Y. Salomon, 1986, Enquete sur les Couts de Maintenance,
Genie Logiciel, Vol 5, pp 330-366.

208

(145] S. Letovsky, 1986, Cognitive Processes in Program Comprehension, Em-
pirical Studies of Programmers, Ablex, Norwood, pp 80-96.

[146] C. Lewerentz, 1988, Variant and Revision Control within an Incremental
Programming Environment, International Workshop on Software Version and
Configuration Control, pp 426-429.

[147] J.A. Lewis and S.M. Henry, 1989, A Methodology for Integrating Maintain-
ability using Software Metrics, Proceedings Conference on Software Mainte-

! nance, pp 32-39

[148] J.A. Lewis and S.M. Henry, 1990, On the Benefits and Difficulties of a
Maintenability via Metrics Methodology, Software Maintenance: Research
and Practice, Vol2, pp 113-131.

(149] B. Lientz and E. Swanson, 1976, The Dimensions of Maintenance, 2nd Con-
ference on Software Engineering.

[150] B. Lientz and E. Swanson and G.E. Tompkins, 1978, Characteristics of Appli-
cation Software Maintenance, Communication of the ACM, 21, (6), pp 466-
471.

(151] B. Lientz and E. Swanson, 1980, Software Maintenance Management,
Addison-Wesley.

(152] S. Linkman, L. Pickard, N. Ross, 1989, A Pratical Procedure For Intro-
ducing Data Collection (with example from maintenance), In Sotware
Engineering for Large Soflware Systems, pp 281-303.

[153] D.C. Littman, J. Pinto, S. Levovsky and E. Soloway, 1986, Mental Models and
Software Maintenance, Empirical Studies of Programmers, E. Soloway and S.
Iyengar, Ablez, Norwood, pp 80-96.

(154] C.C. Liu, 1976, A Look at Software Maintenance, Datamation, 22, (11), pp
51-55.

(155) J.W. Llyod, 1986, Declarative Error Diagnosis, Technical Report 86/3, De-
partement of Computer Science, University of Melbourne.

[156]) C. Looi, P. Ross, 1987, Automatic Program Analysis for a Prolog Intelli-
gent Tutoring System, Research Paper 307, DAI University of Eindinburgh.

(157] F.J. Lukey, 1980, Understanding and Debugging Programs, International
Journal on Man-Machine Studies, Vol 12, No2 pp 75-122.

209

L

[158] F. J Lul\ev, 1989, Understandmg and Debbugmg Programs, Internatzonal
Journal of Mnn Machzne Studzes 18, pp 202.

[159] J R Lyle and M. Welser 1987 Automatnc Progn‘am Bug]Locatmn by Pro-
gram Shcmg, vaceedmgs Second Internanonal Conference on. Computers and

Applicatwn A

{160] A.. Mahler and- A. Lampen. 1988 An Integmted Toolset fox' Emgmeermg
Software Conﬁgur&tlons Commumcatzon of the ACM pp 191- 200.

[161] PA. M-a.lr, 1986, IPSE : State of the Art Report, NCC Lid.

[162] D. Maftél,-lQQO; A Study of'the Ir;ipactbf C++ on Software Maintenance,
Proceedings Conference on Software Maintenance, pp 63-69.

[163] J. Martin and C. McClure, 1983, Software Maintenance : The Problems
and its Solutions, Prentice-Hall.

(164] J.A. McCall, M.A. Herdon and W.M. Oshorne, 1985, Software Maintenance
Management, National Bureau Standards, NBS Special Publ. 500-129.

(165] T. McCABE, 1990, Analysis of Complexity Tool (ACT) with Battlemap
(BAT), Proceedings Conference on Software Maintenance, pp 147-149.

[166] C.L. McClure, 1981, Managing Software Development and Maintenance,
New York : Van Nostrand.

[167] DD MéCra.pkeJ) and M.A. Jackson, 1982, Life Cycle Concept Considered
Haijmful, ACM Software 'Enginjeevjihg' Notes 7, (2), pp 29-32.

[168] J.R. McKee, 1984, Maihteﬁance'hs" a;]Function of Design, Proceedings of
Conference AFIPS, Vol 53, pp i’87-193.

[169] J. Meekel and M. Viala, 1988,-ngg'SCOPE: A Tool for Maintenance, Pro-
ceediizg'srof"Conf;zrencé on-—'?oftiuafe -Mninten.(m'c'e IFEE»- pp"328533tl'

(170] J. C Mlller and B, M Stlauss IlI 1987]Imphcatnons of. Automatnc Restruc-

turmg of COBOL 91(’PLAN Notzces 22 (6) PP 41 49

[1(1] R] Mlara 1A Musselma,n 1A Navarro andB Shnelderman 1983 leglram
]Imdexntatlon annd Comprelhenmbnhty, Commumcatzon of the ACM 26(11)
p861 867.. Do |

(172] M Mumo and 1 Wi Calhsq 1981 Notes of the Fnrst SoR'tware Mam&ezﬂamce

Worksho[p, Centve fo1 Soﬂwa?'e Mamtena,nce Du7hmn anland

: 210 R

[173] W.R. Murray, 1985, Heuristic and Formal Methods in Automatic Pro-
gram Debugging, Proceeding of the 9th 1JCAI pp 15-19.

[174] G.J. Myers, 1979, The Art of Software Testing, New York: John Wiley.
[175] W. Myers, 1989, Allow Plenty of Time for Large-Scale Software, [EEE
Software, pp 92-99.

[L176] K. Narayanaswamy. and W. Scacchi, 1987, Maintaining Configuration of
Evolving Software Systems, IEEFE Transaction on Software Engineering, SE-
' 18 (3), pp 324-334.

[177) J. Neighbors, 1984, The Draco Approach to Construction Software from
Reusable Components, IEEE Transaction on Software Engineering, SE 10, No
5.

[178] R.J. Martin and W.M. Osborne, 1983, Guidance on Software Maintenance,
National Bureau Standards, NBS Special Publ. 500-106.

[179] D.S. Notkin, 1985, The GANDHALF Project, Journal of Systems and Soft-
ware, Vol 5, No 2, PP 91-105.
(180] P. Oman, May 1990, Maintenance Tools, IEEFE Software, pp 63.

[181] W. Osborne, 1987, Building and Sustaining Software Maintainability, Pro-

ceedings Conference on Software Maintenance, pp 14-23.

[182] L. Osterwiel and S. Gamalel-Din, 1988, New Perspective on Software Main-
tenance Processes, Proceedings of Conference on Software Maintenance, I[EEFE,

pp 44-22.

(183] J.C. Palous, 1990, Columbus Data Management System, Proceedings
AIAA/NASA.

[184] G. Parikh, 19‘8‘2, Techniques of Program and System Maintenance,

Winthrop Publishers.

(185) G. Parikh, 1982, Some Tips, Techniques, and Guidelines for Program
and System Maintenance, Techniques of Program and System Maintenance,

Winthrop Publishers, pp 65-70.

(186] G. Parikh and N. Zvegintzov, 1983, Tutorial on Software Maintenance, IEEE

Computer Society.

(187] G. Parikh, 1986, Handbook of Software Maintenance, John Wiley & Sons.

211

[188] D. Parnas, 1972, On the Criteria to be used in Decomposing Systems into
Modules, Communication of the ACM, 15(2), pp 1053-1058.

(189] B.H. Patkaw, December 1983, A Foundation for Software Maintenance,

MSc. Thesis, Department of Computer Science, University of Toronto.

[190] L. Pau and J.M. Negret, 1988, SOFTM: A Software Maintenance Expert
System in Prolog, Proceedings Conference on Software Maintenance, pp 306-

311.

[191] L.M. Pereira, 1986, Rational Debugging in Logic Programming, 3rd Logic
Programming Conference, London pp 203-210.

(192] D. Perkins, W.F. Truszkowski, 1990, Launching Al in NASA Ground Sys-
tems, Proceedings AIAA/NASA.

(193] W.E. Perry and S. Perry, 1985, A plan of Action for Software Maintenance,
Data Management, 23 (3).

[194) D.E. Perry, 1987, Version Control in the INSCAPE Environment, In Pro-

ceedings 9th International Conference on Software Engineering, pp 142-149.

(195] D.E. Perry, 1989, The INSCAPE Environment, Communication of the ACM,
pp 2-12.

‘[196] S.L. Pfleeger, 1987, Software Engineering: the production of quality soft-
ware, Macmillan Publishing.

(197) S.L. Pfleeger, S.A. Bohner, 1990, A Framework For Software Maintenance
Metrics, Proceedings of Conference on Software Maintenance, IEEE, pp 320-327.

[198] R.S. Pressman, 1987, Software Engineering: A Practitioner’s Approach,

McGraw-Hill, NY.

[199] R.S. Pressman, 1988, Making Software Engineering Happen, Prentice Hall,
New Jersey.

[200] K.J. Pulford, 1989, The Maintenance of Large, Real-Time Embedded Sys-
tems from the Perspective of Knowledge Engineering, In Software Engi-

neering For Large Software Systems, pp 267-279.

[201] RADC-TR-86-197, 1986, Automated Life Cycle Impact Analysis System,

Rome Air Development Center, Air Force Systems Command, Rome, NY.

212

AT

[202] V. Rajlich, 1990, VIFOR: Visual Interactive FORTRAN, Proceedings Con-

ference on Software Maintenance.

[203] J.L. Raney, 1990, FY90 Status Report On SSE System Project As Viewed
From Just Outside The Project, Proceedings AIAA/NASA.

(204] C.V. Ramamoorthy, A. Prakash, W. Tsai and Y.Usuda, 1984, Software Engi-
neering: Problems and Perspectives, Computer, Vol. 17, No 10, pp 191-209.

[205] T. Katsoulakis, Sept 1989, The REDQO Project, Proceedings 3rd. Durham

E Workshop on Software Maintenance.

[206] S. Reghabi and D. Wright, 1988, SERS: Software Engineering Release Sys-
tem, International Workshop on Software Version and Configuration Control,

pp 244-263.

[207] R.J. Reifer, 1979, The Nature of Software Management, Tulorial: Software
Management, IEE, pp 2-5.

[208] S. Reisman, May 1990, Management and Integrated Tools, IEEE Software,
pp 75. |

[209] H.S. Render and R.H. Campbell, 1988, CLEMMA - The Design of a Practi-

cal Configuration Librarian, Proceedings Conference on Software Maintenance,

pPp 222-228.

[210] D.J. Robson, B.J. Cornelius and M. Munro, 1988, An Approach to Soft-
ware Maintenance Education, Centre for Software Maintenance, University

of Durham, UK.

[211] M. Rochkind, December, 1975, The Source Code Control System, IFEE
Transaction on Software Engineering, pp 364-370.

[212] R. Rohrback and C. Seiwald, 1988, GALILEO: A Software Maintenance
Environment, [nlernational Workshop on Software Version and Configuration

Control, pp 265-275.

(213] H. Rombach, 1987, A Controlled Experiment on the Impact of Software
Maintenance Structure on Maintainability, IEEFE Transaction on Software

Engineering,

(214] H. Rombach and V. Basili, 1987, Quantitative Assessment of Software

Maintenance, Proceedings of Conference on Software Maintenance. pp 133-143.

213

[215] H. Rombagh, 1988, Can we- Exploit: the Rellatlonslup between Reuse and
Mamtenance 7, Panel Dlscussmn, Proceequs of Conference on Saftware

Mamtenance, IEEE, pp 2-4

[216] H. Rombach and B. Ulery, 1989 Establishinga Measurement Based Main-
tenance Improvement]Program lesson learned m the SEL, Proceedings of
Conference on Software Maintenance, IEEE, pp 50-59.

[217] H. Rombach, 1989, An Exjiérirn‘ental Process Modeling Language, Pro-

! ceedings of Conference on Software Maintenance. »

[218] H. Rombach, 1990, Design Measurement: some leassons learned, IEEE
Software, March, pp 17-24.

[219] K. Rubin, P. Jones and C. Mitchell, 1988, A Smalltalk Implementation of an
Intelligent Operator’s Associate, Proceedings OOPSLA.

[220] G.R. Ruth, 1976, Intelligent Program Analysis, Artificial Intelligence, Vol 7,
No 1, pp 65-85.

[221] B. Ryder, 1987, An Application of Static Program Analysis to Software
Maintenance, Proceedings of the Twentieth Annual Hawaii International Confer-
ence -on-System Science, pp 82-91.

A [222] ‘B. Ryder, 1989, ISMM: The Incremental Software Maintenance Manager,
Prbceedz'ngs of C’ohfé?‘ence on .Softztid_r'e-Ma'inl,enance, fEEE, pp 142-165.

[223] G.-Salton and.M.J. Mc-G'bill,>11983k,_Ihtrqdructi‘om to Modern Information Re-
triéw}al New)'gfk NY: McG'mw-]]ill‘Book C(jmpany

[224] 1. Sametmgel 1()90 A ']I‘ool ﬁ'or the Mamtenance of C++ on Pn‘ograms

ProceedmgL Conference on Software antenance pp H4- 59

'[225] J. M Scandura, 1990 Cogmtlve Approach to Systems]Emgmeermg and
Re-Engmeermg Imtegratmg New Desngns w1th old Systems Software
Mamtenance Recemrh an(l Pructzce Vol 2, pp 145 156

' '[226] A .] Schelﬂel 1990 ’]I‘he Europeam Space Software Development Envnron-
: ment cheedzngs AIAA/NASA :

[227] N. F. Schneldewmd 1987, The State of Software Manntenance IEEE Tmns- ,
‘ artzons on. Softw(ue EnJmeersz, 13 (3’} pp 303 310.

RETIV.

(228] R.L. Seldmeyer, W.B. Thompson, P.E. Johnson, 1983, Knowledge-based Fault
Localization in Debugging, Proceeding of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on High-level Debugging, Communication of the

ACM, pp 25-31.

[229] R. Selby and V. Basili, 1988, Error Localization during Software Main-
tenance: generating hierarchical system description from source cede

alone, Proceedings of Conference on Software Maintenance, IEEE, pp 192-197.

[230] R. Selby and A. Porter, 1989, Software Metric Classification Tree help
guide the Maintenance of Large Scale Systems, Proceedings of Conference

on Software Maintenance, IEFEE, pp 116-123.

[231] N. Shahmehri, M. Kamkar, and P. Fritzson, 1990, Semi Automatic Bug Local-
ization in Software Maintenance, Proceedings Conference on Software Main-

tenance.

[232] D.G. Shapiro, 1981, Sniffer: A System that Understands Bugs, Al Memo
638, MIT, AI Laboratory.

(233] E.Y. Shapiro, 1982, Algorithmic Program Debugging, PhD Dissertation,
Yale University, Technical report MCS8002447

-[234) W.K. Sharpley, 1977, Software Maintenance Planning for Embedded |
Computer Systems, Proceedins IEFE COMPSAC 77, pp 520-526.

[235] S.C. Chang and C. McGowan, 1987, Full Text Retrieval in Software Main-

tenance, Proceedings Conference on Software Maintenance, pp 53-57.

[236] B. Shneiderman and R. Mayer, 1979, Syntactic/Semantic Interactions in
Programming Behaviour: A Model, International Journal on Computer and
Information Science, 8(3), pp 219-238.

[237] B. Shneiderman, P. Shafer, R. Simon, L. Weldon, 1986, Display Strategies
for Program Browsing: Concepts and an Experiment, Conmputer science,

Technical Report Series, University of Maryland.

(238] A. Simon, J.L. Ducuing, O. Pasero and J.P. Denier, 1990, Software Mainte-
nance Ground Systems, International Symposium on the Management of Large

Software Projects in the Space Industry, pp 405-417.

215

(239] A.Simon, 1991, Requirements for a Software Maintenance Support Envi-
ronment, M.Sc. by Thesis, School of Engineering and Applied Science, University

of Durham.

[240] A. Simon, 1991, Tools for Software Maintenance, Matra-Espace, Technical
Report.

[241] A. Simon, 1991, Prototypes and Research Projects on Software Mainte-

nance, Matra-Espace, Technical Report.

[242]) 1. Smith, 1987, Guidelines for the Maintenance and Modification of Safety
Related Computer Systems, European Workshop on Industrial Computer Sys-

tems.

[243] Software Maintenance News, 1986, GSA Launches the PWB, September,
November and December 36.

[244] N. Zvegintzov (Ed.), 1989, Software Maintenance Tools, Software Mainte-

nance News.

[245] H. Sneed and J. Jandrasics, 1987, Software Recycling, Proceedings of Confer-
ence on Software Maintenance, IEEE, IEEE, pp 82-90.

(246] H. Sneed, 1988, Software Renewal: a case study, IEEE Software 1(3), pp
56-63.

[247] R.A. Snowdon, North Holland., CADES and Software Development, In Soft-
ware Engineering Environments, H. Huenke (Ed.) 1981.

[248] E. Soloway and W.L. Johnson, 1980, Knowledge based program understand-
ing, IEEE Transactions on Software Engineering, SE-11 (3), pp 265-275.

[249] 1. Sommerville, Second edition, 1985., Software Engineering, Addison- Wesley.
(250] DTI and NCC, 1987, The STARTS Guide, NCC.

[251] STSC, 1990, Internal Report on Software Test Tools, Software Technology
Support Center.

[252] STSC, 1990, Internal Report on Software Documentation Tools, Software
Technology Support Center.

(253] STSC, 1990, Internal Report on Software Requirements Tools, Software
Technology Support Center.

216

[254] S. Subramanian, 1988, CRUISE: Using Interface Hierarchies to Support
Software Evolution, Proceedings of Conference on Software Maintenance, IEEE,
pp 132-142.

[255] W. Suydam, 1987, CASE makes strides toward Automated Software De-
velopment, Computer Design, pp 49-70.

[256] E.B. Swanson, 1976, The Dimension of Maintenance, Proceedings 2nd Inter-
national Conference of Software Engineering, IEEE, pp 492-497.

[257] E.B. Swanson and C.M. Beath, 1990, Departmentalization in Software De-
velopment and Maintenance, Communication of the ACM, Vol 33, No 6.
[258] H. Takahashi, E. Shibayama, 1985, PRESET - A Debugging Environment

for Prolog, Logic Programming Conference, Tokyo, pp 90-99.

[259] B. Terry and D. Lodgee, 1990, Terminology for Software Engineering Envi-
ronment and Computer-Aided Software Engineering, Software Engineering
notes, Vol 15, No 2, pp 83-94.

[260] W. Tichy, 1982, Design, Implementation, and Evaluation of a Revision
Control System, Proceedings of the 6th International Conference on Software
Engineering, pp 58-67.

[261) W. Tichy, 1985, RCS - A System for Version Control, Software Practice and
Ezperience, Vol 15, No 7, pp 637-654.

[262] C. Tully (Ed.), 1989, Proceedings of 4th. International Software Process
Workshop, ACM Software Engineering Notes, Vol. 14, no. 4.

[263] R.J. Turver, 1989, Software Maintenance : Generating Front Ends for
Cross Referencer Tools, M.Sc. by Thesis, School of Engineering and Applied
Science, University of Durham.

[264] J. Valett and F. McGarry, 1989, A Summary of Software Measurement
Experiences in the Software Engineering Laboratory, Journal of System
and Software, pp 136-147.

[265] L. Vanek and M. Culp, 1989, Static Analysis of Program Source Code using
EDSA, Proceedings Conference on Software Maintenance, pp 192-199.

[266) Wake and J. Henry, 1988, A Model Based on Software Quality factors
which Predicts Maintainability, Proceeding Conference on Software Mainte-

nance. pp 382-387.

217

[267) M. Ward and M. Munro, 1988, Intelligent Program Analysis Tools
for Maintaining Software, The 1988 UK IT Conference, University College

Swansea.

[268] M. Ward, 1988, Transforming a Program into a Specification, University
of Durham, Computer Science, Technical Report 88/1.

(269) R. Warden, 1988, Re-Engineering for Business Change, Second Software
Maintenance Workshop Notes, Centre for Software Maintenance, University of

" Durham.

[270] H. Wertz, 1982, Stereotyped Program Debugging, International Journal on
Man-Machine Studies, Vol 186,

[271] N. Wilde and S. Thebaut, 1989, The Maintenance Assistant: work in
progress, Journal of Systems and Software, No 9, pp 3-17.

[272] L. Weissman, 1976, Psychological Complexity of Computer Programs :
An Experimental Methodology, SIGPLAN Notices, 9.

[273] N. Wilde and S. Thebaut, 1989, The Maintenance Assistant work in
Progress, Journal of System and Software, pp 3-18.

[274] A. Wingrove, 1986, The Problem of Managing Software Projects, Software
Engineering Journal, Vol 1, pp 3-6.
[275] D. Wright, 1988, Configuration Management in a Heterogeneous Envi-

ronment, Proceedings of Conference on Software Maintenance.

[276] S. Yau, J.S. Collofello and T. MacGregor, 1978, Ripple Effect Analysis of
Software Maintenance, Proceedings IEEE COMPSAC 78, pp 492-497.

[277] S.S. Yau and J.S. Collofello, 1979, Some stability Measures for Software
Maintenance, Proceedings of the Computer Software and Applications Confer-

ence, IEEE, 1979 pp 674-679.

[278] S.S. Yau and J.S) Coliofello, 1980, Some Stability Measures for Software
Maintenance, IEEE Transaction Software Engineering, Vol 6, No 6, pp 545-552.

[279] S. Yau and J. Collofello, 1985, Design Stability Measures for Software
Maihtenance, IEEE Transaction on Software Engineering, Vol SE-11, No 9,
pp 849-856.

218

e

[280] S. Yau and J. Tsai, 1987, Knowledge representation of Software Compo-
nent Interconnection Information for Large Scale Software Modification,

IEEE Transaction on Software Engineering, pp 355-361.

[281] S. Yau and S.-S. Liu, 1987, Some Approaches to Logical Ripple Effect Anal-
ysis, Technical Report, SERC-TR-24-F, Software Engineering Research Center,
University of Florida.

[282] S. Yau, R. Nicholl, J. Tsai and S. Liu, 1988, An Integrated Life Cycle Model

for Software Maintenance, IEFEFE Transaction on Software Engineering. Vol

SE-14, No 8, pp 1128-1144.

[283] M. Young and R. Taylor, 1989, Rethinking the Taxonomy of Fault Detec-
tion Techniques, Communication of the ACM, pp 53-61

[284] J. Ziegler, J. Grasso and L. Burgermeister, 1989, An Ada based Real-Time
Closed-loop Integration and Regression Test Tool, Proceedings of Confer-

ence on Software Maintenance, IEFE, pp 81-88.

[285] S. Zucker and K.B. Christian, 1986, Automated Configuration Management
on a DoD Satellite Ground System, [EFE Aerospace and Flectronic Magazine,
pp 10-15.

