
Durham E-Theses

Requirements for a software maintenance support

environment

Simon, Amaury

How to cite:

Simon, Amaury (1991) Requirements for a software maintenance support environment, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5861/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5861/
 http://etheses.dur.ac.uk/5861/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

School of Engineering and Applied Science

(Computer Science)

Requirements for a

Software Maintenance Support Environment

Thesis submitted for the degree of

Master of Science

Amaury S I M O N

4th October 1991

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

t JUL B92

Abstract

This thesis surveys the field of software maintenance, and addresses the maintenance requirements of

the Aerospace Industry, which is developing lingo projects, running over many years, and sometimes

safety critical in nature (e.g. ARIANE 5, HERMES, COLUMBUS). Some projects are collaborative

between distributed European partners.

The industry will have to cope in the near and far future with the maintenance of these products

and it will be essential to improve the software maintenance process and the environments for

maintenance.

Cost effective software maintenance needs an efficient, high quality and homogeneous environ­

ment or Integrated Project Support Environment (IPSE). Most IPSE work has addressed software

development, and has not fully considered the requirements of software maintenance.

The aim of this project is to draw up a set of priorities and requirements for a Maintenance IPSE.

An IPSE, however can only support a software maintenance method. The first stage of this project

is to define 'software maintenance best practice" addressing the organisational, managerial and

technical aspects, along with an evaluation of software maintenance tools for Aerospace systems.

From this and an evaluation of current IPSEs, the requirements for a Software Maintenance Support

Environment are presented for maintenance of Aerospace software.

Acknowledgements

This thesis is dedicated to my wife and parents.

I would like to thank them for the support and encouragement that they have given me.

I am grateful to my supervisor Professor Keith BENNETT and to Jean-Paul DENIER for their

encouragement and guidance throughout this study.

This work was supported by MATRA-ESPACE.

ii

Contents

1 Introduction 1

1.1 Purpose of the research 1

1.2 Objectives of the research 2

1.3 Thesis Structure 2

2 What is Software Maintenance ? 4

2.1 Introduction 4

2.2 Software Maintenance Activities 4

2.2.1 Introduction 4

2.2.2 Software Maintenance 5

2.2.3 Corrective Maintenance 6

2.2.4 Adaptive Maintenance 7

2.2.5 Perfective Maintenance 8

2.2.6 Preventive Maintenance 9

iii

2.2.7 Conclusion H

2.3 Maintenance and the Software Life-cycle 12

2.3.1 Introduction 12

2.3.2 The Software Life-cycle 12

2.3.3 Criticisms of the Classical Life-cycle 13

2.3.4 Conclusion 14

2.4 Maintenance Problems 15

2.4.1 Introduction 15

2.4.2 Activity 15

2.4.3 Process 16

2.4.4 Quality 16

2.4.5 Software 19

2.4.6 Maintainability 19

2.4.7 Documentation 20

2.4.8 Users 21

2.4.9 Staff 22

2.4.10 Conclusion 22

2.5 The Economics of Software Maintenance 23

2.5.1 Introduction 23

2.5.2 Software Maintenance Costs 23

iv

2.5.3 Software Maintenance Cost Estimation 26

2.5.4 Conclusion 30

2.6 Summary 30

3 Software Maintenance Best Practice 31

3.1 Introduction 31

3.2 The Organisational side of Software Maintenance 33

3.2.1 Introduction 33

3.2.2 Strategy for implementing software maintenance process change 33

3.2.3 Organising the maintenance activity 35

3.2.4 Organising the maintenance of systems 38

3.2.5 Conclusion 40

3.3 The Management side of Software Maintenance 41

3.3.1 Introduction 41

3.3.2 Planning for maintenance 41

3.3.3 Monitoring and controlling maintenance 43

3.3.4 Tools for maintenance, management 46

3.3.5 Organising the maintenance department 48

3.3.6 Managing the maintenance team 53

3.3.7 Conclusion 56

v

3.4 The Technical side of Maintenance 57

3.4.1 Introduction 57

3.4.2 Software Maintenance Models 57

3.4.3 Software Maintenance Model for Aerospace Systems 63

3.4.4 Technical Information for Maintenance Staff 71

3.4.5 Conclusion 73

3.5 Summary 74

4 Software Maintenance Tools 75

4.1 Introduction 75

4.2 Commercially Available Tools 76

4.2.1 Tools for Program Comprehension 76

4.2.2 Tools for Reverse Engineering 82

4.2.3 Tools for Testing 85

4.2.4 Tools for Maintenance Management 89

4.3 Prototypes and Research Projects 91

4.3.1 Prototypes for Program Comprehension 91

4.3.2 Prototypes for Fault Localisation 93

4.3.3 Prototypes for Impact Analysis 95

4.3.4 Prototypes for Knowledge-based Systems in Maintenance 97

vi

4.4 Summary 99

5 Integrated Project Support Environments 100

5.1 Introduction 100

5.2 What is an I.P.S.E. ? 100

•5.2.1 Introduction . 100

5.2.2 Features of an IPSE 101

5.2.3 The Ideal IPSE 102

5.2.4 Conclusion 103

5.3 Requirements for Software in the Aerospace Industry 104

5.3.1 Introduction 104

5.3.2 Safety Critical Systems 104

5.3.3 Increasing Software Size 104

5.3.4 Increasing System Lifespan 105

5.3.5 Distributed Developments 105

5.3.6 System Perenniality 106

5.3.7 Reuse 106

5.3.8 Training and Knowledge Transfer 107

5.3.9 Conclusion 1 ° 7

5.4 Criteria for Analysing IPSEs 108

vii

5.4.1 Introduction 108

5.4.2 Flexibility 108

5.4.3 Integration 109

5.4.4 Distribution 110

5.4.5 Conclusion 110

5.5 Evaluation of IPSEs I l l

5.5.1 Introduction H I

5.5.2 Evaluation of IPSEs with the criteria 112

5.5.3 Conclusion 117

5.6 IPSEs for Aerospace Systems 118

5.6.1 Introduction 118

5.6.2 HERMES/COLUMBUS 118

5.6.3 FREEDOM 119

5.6.4 Evaluation of Aerospace IPSEs 120

5.6.5 Conclusion 121

517 Summary 121

Requirements for a Software Maintenance Support Environment 122

6.1 Introduction 122

6.2 Data Base 123

viii

6.3 Human Computer Interaction 123

6.4 Software Configuration Management 124

6.4.1 Software Configuration Iclent.irica.tion 124

6.4.2 Software Version Control 124

6.4.3 Software Change and Configuration Control 125

6.4.4 Software Configuration Status Accounting 125

6.4.5 Software Configuration Audit 126

6.5 Program Comprehension 126

6.5.1 Static analysis '26

6.5.2 Dynamic analysis 128

6.5.3 Impact analysis 129

6.5.4 Traceability 129

6.6 Quality Assurance 130

6.7 Planning and Controlling maintenance 130

6.8 Distribution 130

6.9 Others 1 3 1

6.9.1 Reuse 131

6.9.2 Reverse Engineering 131

6.9.3 Safety Critical Systems 131

6.9.4 Environment simulator 131

ix

http://Iclent.irica.tion

6.9.5 Documentation for Maintenance 131

6.9.6 Training 132

6.9.7 Knowledge Transfer 132

6.10 Summary 132

7 Conclusions and Further Research 133

7.1 Conclusions 133

7.2 Further Research 135

A Software Maintenance Tools Commercially Available 137

A . l Tools for Program Comprehension 137

A.1.1 Code Analyser 137

A. 1.2 Code Visualisation 147

A.1.3 Cross Referencer 150

A. 1.4 Source Code Comparison 152

A.1.5 Execution Monitoring /Debugging 152

A.2 Tools for Reverse Engineering 155

A.2.1 Restructurer 155

A.2.2 Reformatter 155

A.2.3 Reengineering 156

A.2.4 Reverse Engineering 157

x

A.3 Tools for Testing 160

A.3.1 Test Coverage Monitors 160

A.3.2 Regression Testing 164

A. 4 Tools for Maintenance Management 170

A.4.1 Software Configuration Management 170

A.4.2 Program Synthesis 177

A.4.3 Library Management 178

A.4.4 Change Management 178

A.4.5 Change Control 179

A.4.6 Version Control 179

A. 4.7 Product Management 181

B Software Maintenance Prototypes and Research Projects 183

B. l Prototypes for Program Comprehension 183

B. l . l Code Analyser 183

B.l .2 Program Understanding 185

B.l.3 Knowledge Based System and Maintenance Assistant 185

B.2 Prototypes for Fault Localisation 192

B.2.1 Fault Detection 192

B.2.2 Fault/Error Localisation 193

X I

B.3 Impact Analysis 196

B.3.1 Dependency Analysis 196

B.3.2 Ripple Effect Analyser 196

B.4 Management Prototypes 198

B.4.1 Software Configuration Management 198

B.4.2 Inverse Software Configuration Management 205

B.4.3 Product Management 205

B.5 Environment Prototypes 206

B.5.1 Programming Environment 206

B.5.2 Software Maintenance Environment 210

Chapter 1

In t roduct ion

1.1 Purpose of the research

The Aerospace industry is concerned with huge software projects, sometimes safety-critical in

nature, containing millions of lines of code, whose development times are typically of the order of

several years. These projects are collaborative between distributed European partners.

The industry will have to cope in the near and far future with the maintenance of these products

and improve the software maintenance process and the environments for maintenance. There lias

been much research on software development environments and some of them are commercially

available, but environments for maintenance have not been addressed in fu l l .

Cost effective software maintenance needs an efficient, high quality and homogeneous environ­

ment (or IPSE). An Integrated Project Support Environment is an integrated environment that

focuses on the developmental aspects of the software life-cycle. Most IPSE work has addressed

software development, and has not considered the fully requirements for software maintenance.

The purpose of this research is to draw up a set of priorities and requirements for a Software

Maintenance Support Environment that could be used in the Aerospace industry.

1

1.2 Objectives of the research

Software maintenance is usually the most expensive phase of the software life-cycle [151], and there

is a lack of good maintenance practice as well as environments for maintenance in most industrial

and commercial organisations.

The work in this thesis is firstly concerned with identifying the best way to cope with software

maintenance by defining 'software maintenance best practice' based on current practice and analysis

of the maintenance problem.

Software maintenance best practice is addressed at different levels: organisational, managerial

and technical.

The organisational level is concerned with the adoption of the best strategy for this activity

and for the software products. The current software maintenance process has to be analysed to

reveal its weaknesses in order to define a better software maintenance process. The maintenance

department has to be organised so that it can become more efficient and productive.

The management level is concerned with the best ways to manage, plan and control the software

maintenance process, and to organise and manage the maintenance department.

The technical level is concerned with the different tasks in the software maintenance process

and the technical information needed to perform maintenance.

From the best method to perform maintenance, a survey on software maintenance tools and an

evaluation of current IPSEs, the requirements for a Software Maintenance Support Environment

are presented.

1.3 Thesis Structure

The second chapter describes software maintenance in terms of its different activities. The place

allocated to software maintenance within the software life-cycle is evaluated, the problems with the

maintenance activity are listed and the economics of software maintenance are investigated.

2

The third chapter defines 'software maintenance best practice' on the basis of maintenance prob­

lems enumerated in the previous chapter and analysis of current practice. Software maintenance

best practice is separated into three categories:

o organisational

o management

o technical

The fourth chapter presents a survey on software maintenance tools that can be utilised for

Aerospace systems. This survey is divided into commercially available tools and prototypes and

research projects.

The fifth chapter surveys and assess current IPSEs according to requirements in the aerospace

industry.

The sixth chapter specifies the requirements for a Software Maintenance Support Environment

based on software maintenance best practice and an evaluation of software maintenance tools and

current IPSEs.

The seventh chapter contains conclusions and further research.

3

Chapter 2

What is Software Maletemaece 1

2.1 Introduct ion

The objective of this first chapter is to define software maintenance and to explain the place for

maintenance in the software life-cycle. We identify the major maintenance problems and the cost

of software maintenance itself.

2.2 Software Maintenance Activit ies

2.2.1 Introduct ion

Software maintenance is a complex and serious problem, serious because of the costs, and complex

because of the wide range of activities involved e.g. requirement analysis, error diagnosis, program

comprehension, impact analysis, solution analysis, software changes, test and simulation, repair or

installation, change control, and quality assurance.

This section outlines software maintenance in terms of its different activities.

4

2.2.2 Software Maintenance

There is a growing interest in software maintenance as seen in the number of articles, reports and

textbooks on the sub ject, and this field has become established as a sub-discipline within the general

field of software engineering. Software maintenance has traditionally been seen as the final phase

of the software life-cycle and given low priority whereas the development phases of requirement,

design, code, testing have been given greater prominence.

The term 'software maintenance' is now well established in the computing profession and in­

dustries, but in many ways it is an unfortunate choice of words, suggesting parallels or similarities

with hardware maintenance. However, hardware maintenance is usually required because of the

progressive degradation or wearing out of physical materials, while software is not subject to such

factors.

Furthermore 'maintenance' carries undesirable connotations for many people, implying that

some rather low-level, unintellectual activity is being undertaken. Instead of maintenance, other

terms have been employed like enhancement, support, further development, program evo­

lution or logistic support. Often, software maintenance refers only to debugging. In this report,

we shall use the wider ANSI-IEEE definition [110]:

Software maintenance is the modification of a software product after delivery to correct

faults, to improve performance or other attributes, or to adapt the product to a changed

environment.

It is the set of activities which result in change to the originally accepted product set. The

changes arise because of modifications created by correcting, inserting, deleting, extending, and

enhancing the baseline system.

The baseline [12] is the foundation for configuration management (see section 4.2.4- 1). I t

provides the official standard on which subsequent work is based and to which only authorised

changes are made. After an initial baseline is established and frozen, every subsequent change is

recorded as a delta until the next baseline is set.

Software maintenance activities have been divided into three categories by Swanson in 1978

5

[150]: corrective, adaptive and perfective. These terms have been widely adopted in "the industry

and form a useful distinction in classifying types of software maintenance.

Whereas corrective maintenance, refers to a changes usually triggered by"a failure of the soft­

ware detected during operation, adaptive and perfective maintenance refers to changes due to user

requests. These terms are denned in section 2.2.3-4-5 below. Some authors (Swanson, 1976; Glass

and Noiseaux, 1981; Arnold and Parker; Pressman, 1987; Pfleeger, 1987; Gamalel-Din and Oster-

weil, 1988) [256, 90, 8, 198, 196, 85] refer to an additional form termed preventive maintenance

which is the work that is done in order to try to anticipate and prevent malfunctions or improve

quality attributes in particular maintainability,

Lientz and Swanson have administered a survey (1980) to determine how much time each type

of maintenance activity requires [151]:

Perfective Maintenance 50%

Adaptive Maintenance 25%

Corrective Maintenance 21%

Preventive Maintenance 4%

Also, we shall refer to another type of maintenance, Slum clearance, which is the extreme case

of software maintenance when the software can ho longer be maintained, or at least the cost of

imposing any change would exceed the cost of complete replacement. Slum clearance can be seen

as the t e rmina t i on or re t i rement of the software.

In the Aerospace industry, the. term evolutive maintenance is used and refers to any effort

which is initiated as the result of modifications in the mission according to changing needs or

requirements. This can be seen as enhancement according to different authors and perfective

maintenance according to above definition.

6

2.2.3 Correc t ive Maintenance

Corrective maintenance refers to changes necessitated by actual errors in a system. It consists of

activities normally considered to be error correction, required to keep the system operational and

that must often be corrected immediately.

The terms error and fault for a specific defect within a system are usually used. Anderson [5]

defined an error as a. part of an erroneous state which constitutes a difference from a valid state,

and an error in a component or the design of a system as a fault in the system. A component fault

in a system is an error in the internal state of a component, and a. design fault in a system is an

error in the state of the design.

The fault is manifested in software deviating from its intended function. Examples of errors

or faults include omission or misinterpretation of user requirements in a software specification,

incorrect translation or omission of a requirement in the design specification.

Corrective maintenance is needed as the result of three main causes [178]: design, logic and

coding errors.

1. Design errors are generally the result of erroneous or incomplete design. When a user gives

incorrect, incomplete, or unclear descriptions of the system being requested, or when the

analyst/designer does not fully understand what the user is requesting, the resulting system

will often contain design errors.

2. Logic errors are typically the result of invalid tests and conclusions, faulty logic flow and

incorrect implementation of the life-cycle steps, and are usually attributable to the designer

or earlier maintenance work. Often logic errors occurs when unique or unusual combinations

of data, which were not tested during the development or previous maintenance phases, are

encountered.

3. Coding errors are the result of either incorrect implementation of the detailed logic design,

or the incorrect use of the source code. These errors are caused by the programmer; they are

usually errors of negligence and are the most inexcusable.

2.2.4 Adapt ive Maintenance

Adaptive maintenance involved any effort which is initiated as a result of changes in the environment

in which a software system must operate. This maintenance activity is performed in order to make

the software product usable in the changed environment.

For example, new versions of the operating system may be introduced, or the software may be

moved to new or different hardware. These environmental changes are normally beyond the control

of the software maintainer and consist primarily of change to the:

o system software, e.g., operating systems, compilers, utilities

o hardware configurations, e.g., new terminals, local printers

o data, formats, file structures

Changes to operating system software (compilers, utilities, etc) can have varying effects on the

existing application systems. These effects can range from requiring little or no reprogramming, to

simply recompiling all of the source code, to rewriting code which contains non-supported features

of a language that are no longer available under the new software.

Changes to the computer hardware (new terminals, local printers, etc) which support the ap­

plication system are usually performed to take advantage of new and or improved features which

will benefit the user. They are normally performed on a scheduled basis. The usual aim of this

maintenance is to improve the operation and response of the application system.

Changes to data formats and file structures may require extensive maintenance on a system if

it was not properly designed and implemented, f f reading or writing of data is isolated in specific

modules, changes may have less impact. If it is embedded throughout the code, the effort can

become very lengthy and costly.

Maintenance resulting from changes in the requirements specifications by the user, however is

considered to be perfective, not adaptive maintenance.

8

2.2.5 Perfect ive Maintenance

Perfective maintenance includes all changes, insertions, deletions, modifications, extensions, and

enhancements which are made to the system to meet the evolving and/or expanding needs of the

users.

For example, a tax program may need to be modified to reflect new tajc laws or a payroll program

may need to be modified to incorporate a new union settlement, but usually, modifications are much

more substantial.

Perfective maintenance refers to enhancements made to improve software functionality. I t is

generally performed as a result of new or changing requirements, or in an attempt to augment the

software. Optimisation of the performance of the code to make it run faster or use storage more

efficiently is also included in the perfective category.

Perfective maintenance is required as a result of both the failures and successes of the original

system. A failure is the inability of a system or system component to perform a required function

within specified limits. I f the system works well, the user will want additional features and capabil­

ities. If the systems works poorly, it must be fixed. As requirement change and the user becomes

more sophisticated, there will be change requested to make functions easier and/or clearer to use.

Perfective maintenance is the method usually employed to keep the system up-to-date, responsive

and germane to the mission of the organisation.

There is a further aspect of perfective maintenance that is having a serious economic impact.

In order to maintain a competitive edge, a company must prepare new products, services, etc.

Often this demand changes to the company's software and there is evidence that serious delays

are occurring because the software cannot be modified easily, quickly and reliably. Delays of up to

two years have been reported informally, with consequent elTects upon the organisation's marketing

strategy. It would seem that the backlog is not simply attributable to poor project scheduling and

planning; i t is rather that changing existing software is a difficult and skilled task.

9

2.2.6 Prevent ive Maintenance

Preventive maintenance includes the activities designed to make the code, design and documenta­
tion easier to understand and to work with, such as restructuring or documentation up-dates. For
example a section of code that has had many alterations made to i t may be completely rewritten,
to improve its maintainability.

Typically, the need for preventive, maintenance is stimulated from within the maintenance or­

ganisation, although it is recognised that such a. need can be a consequence of a major change

request from a user, which is infeasible to implement using the software as i t is.

Fine tuning existing systems to eliminate shortcomings and inefficiencies and to optimise the

process is often referred to as preventive maintenance. It can have dramatic effects on old, poorly

written systems both in terms of reducing resource requirements, and in making the system more

maintainable and thus, easier to change or enhance.

Preventive maintenance may also include the study and examination of the system prior to the

occurrence of errors or problems. Fine tuning is an excellent vehicle for introducing the programmer

to the code, while at the same time reducing the likelihood of serious errors in the future.

The extreme case of preventive maintenance can be seen as Slum Clearance and the onset of

this activity may be triggered by any of several things:

o The inability to maintain the support software or hardware.

o The loss of the only person who understood an undocumented program.

o The inadvertent loss of the source code (through fire, flood or lack of effective configuration

management).

o Deliberate and rational decision.

Whatever the cause, the effect is that the software can no longer be maintained, or at least the

cost of imposing any change would exceed the cost of complete replacement. However the only

significant problem appears to be that of deciding when the phase should start (assuming it is by

decision rather than by accident).

10

A feature of maintenance work is the degradation of the system being maintained, usually

demonstrated by an increase in the difficulty of working with the system or more faults. Eventually

the system must be replaced by a. new system as maintenance becomes too costly or the system

becomes obsolescent.

The reasons for the degradation are many, but include the fact that a larger number of people

work on the system, over a longer period of time than in any other phase of development and the

time available is often much shorter.

2.2.7 Conc lus ion

Software Maintenance has been defined in terms of categorisation of tasks and different categories of

maintenance e.g. corrective, perfective, adaptive and preventive have been explained. A clear view

of the different categories will be useful for the following chapters to get a better understanding of

the softwa.re maintenance process.

As explained in this section, there are no common or agreed definitions for these different activ­

ities and there is some disagreement whether the addition of new capabilities should be considered

maintenance or additional development. Since it is an expansion of the existing system after it has

been placed into operation, and is usually performed by the same staff responsible for other forms

of maintenance, we shall classify it as maintenance to conform to the IEEE definition.

11

2.3 Maintenance and the Software Life-cycle

2.3.1 Introduct ion

In the previous section, the software maintenance activities have been defined; it is now important

to show the place of software maintenance in the software life-cycle.

2.3.2 T h e Software Life-cycle

The development life-cycle [6] is the period of time that begins with the decision to develop a

software product and ends when the product is delivered. The development cycle typically includes

a requirements phase, design phase, implementation phase, test phase, and sometimes, installation

and check out phase.

The software life-cycle [6] is the period of time that starts when a software product is conceived

and ends when the product is no longer available for use. The software life-cycle typically includes

the development life-cycle and the operation and maintenance phase.

1. The requirement phase [6] is the period of time during which the requirement for a software

product, such as the functional and performance capabilities are defined and documented.

2. The design phase [6] is the period of time during which the designs for architecture, software

components, interfaces, and data, are created, documented, and verified to satisfy require­

ments.

3. The implementation phase [6] is the period of time during which a software product is

created from design documentation and debugged. Design must be translated into a machine

executable form. The coding step accomplishes this translation through the use of conven­

tional programming languages (e.g., Fortran, Cobol, PL/1, Ada, C, Pascal) or so-called Fourth

Generation Languages.

4. The test pliase [6] is the period of time during which the components of a software product

are evaluated and integrated, and the software product is evaluated to determine whether or

not requirements have been satisfied.

12

Testing is multi-step activity that serves to verify that each software component properly

performs its required function with respect to the specifications and validates that the system

as a whole meets overall customer requirements. In any case, testing by means of program

execution is generally achieved bottom up, first at the unit (module or procedural) level,

then functionally, component by component. As tested components becomes available they

are then assembled into a system in an integration process and system test is initiated.

5. The installation and check-out phase [6] is the period of time during which the software

product is integrated into its operational environment and tested in this environment to

ensure that i t performs as required.

6. The operation and maintenance phase [6] is the period of time during which a software

product is employed in its operational environment,, monitored for satisfactory performance,

and modified as necessary to correct problems or to respond to changed requirements.

Once the system has been released the maintenance process begins. Main ten a.nce is actually the

re-application of each of the preceding activities for existing software. The re-application may be

required to correct an error in the original software, to adapt the software to changes in its external

environment, or to provide enhancement to function or performance requested by the customer.

2.3.3 C r i t i c i s m s of the Class ica l Life-cycle

Traditionally, the maintenance phase has been regarded as not belonging to the software develop­

ment life-cycle, but rather as occupying a detached position. However, it is inappropriate to regard

it as a stage that is independent of the other stages of the life-cycle. Sommerville [249] states:

The maintenance activity may involve changes in requirements, design and implemen­

tation or it may highlight the need for further system testing.

So the maintenance programmer may have to perform many of the activities that have been

performed during the development phases.

Lehman[141, 142] suggests that large software systems are never completed and that such

systems are always being maintained. He suggests that the term 'maintenance' should be avoided

13

and that 'program evolution' be used. Such an approach recognises that when a product is delivered

to the customer it is just the first of a number of releases in the evolution of the product.

McKee [168] advocates that maintenance would be more accurately portrayed as 2nd, 3rd,

nth round development.

There have been many criticisms of the classical software life-cycle model [167, 89]. In particular,

it has been argued that the model stresses the importance of the development stages and yet

maintenance is the main software engineering activity that takes place in the lifetime of a well-used

large software system.

2.3.4 Conclus ion

At the time, the traditional software life-cycle model was established, software maintenance had

not assumed the great importance it has today, and so the model was oriented almost exclusively

to the development of software. Consequently software maintenance has found its niche within the

model by default. The software life-cycle is product-based and the process that has created the

product is not mentioned with all management activities. Therefore, there is an important area of

research on the modelisation of all activities involved in the software development and maintenance

process. This section has revealed the shortcomings of the traditional software life-cycle model

with respect to the maintenance of software.

14

2.4 Maintenance Problems

2.4.1 Introduct ion

To attack intelligently software maintenance problems, we must know what they are in order to

define the software maintenance best practice. Generally, the software maintenance problems can

be categorised as organisational, managerial and technical. Most of these problems, however, can

be traced to inadequate management control of the software maintenance process.

A study of the reasons of the high cost of software in 1976 reported on 24 problems areas of

software maintenance; demand for enhancement and poor documentation lead the list [149]. Some

of the maintenance problems are cited from a survey [178] of selected Federal and private sector

ADP organisations conducted by the Institute for Computer Sciences and Technology (ICST).

This section presents different problems in software maintenance that can be seen in current

practice: the activity, the process, the software, the quality, the users, the documentation, the staff

and the maintainability.

2.4.2 A c t i v i t y

Traditionally, software maintenance has been regarded as not belonging to the software life-cycle

in the same sense as the earlier stages, but rather occupying a detached position and considered as

a post-delivery activity.

The word 'maintenance' carries connotations of a less intellectual activity than 'design' because:

s Maintenance is perceived as having a low profile and is a labour-intensive activity,

e Maintenance is extremely important but a highly neglected activity.

o Many people think that Software Maintenance is just the correction of errors resident in a

program when it is released.

o Many people think money spent in software maintenance is wasted.

15

o Maintenance is always under budgetary pressures.

Many people have a wrong idea on the software maintenance activity; it is important to clear this

view.

2.4.3 Process

There is no satisfactory general method for the software maintenance process which implies:

o Lack of management of software maintenance,

o Lack of management visibility of software maintenance,

o Lack of understanding of how to maintain software,

o Lack of metrics

o Lack of historical data on maintenance and error histories.

o Difficulty in tracing the product or the process that created the product.

o Difficulty in estimating the cost of modifications.

The reasons suggested for this [136] was that maintenance is too domain and system specific for

such a method to ever be developed. A software maintenance process should be developed and

tailor to organisation and products.

2.4.4 Q u a l i t y

Software quality is [6]:

1. The totality of features and characteristics of a software product that bear its ability to satisfy

given user needs; for example conform to specifications.

2. The degree to which software possesses a desired combination of attributes.

16

3. The degree to which a customer or user perceives that software meets his or her composite

expectations.

4. The composite characteristics of software that determines the degree to which the software

in use will meet the expectations of the customer.

There are many definitions of software quality and none of them is perfect because it seems difficult

to measure this criteria. There are maintenance problems arising from these definitions:

o During maintenance, the specification or design are rarely complete, precise or verifiable

according to the software product.

o What are the desired combination of attributes ?

o The user's needs are evolving (see section 2.4.8).

o How do we measure software quality ?

e During development and maintenance there is a lack of quality management.

Software quality attributes often deteriorates with time since older systems tend to grow with

age, to become less organised with change and become less understandable with staff turnover. A

lack of attention to software quality during the design and development phases generally leads to

excessive software maintenance cost.

It is difficult to have good quality software [J 78] with different software languages used, poor

quality design and code and a lack of common data definitions.

© Software languages:

The use of more than one programming language in an application system is often the cause

of many software maintenance problems. If the maintainer is not proficient in the use of

each of the specific languages, the quality and consistency of the system can be affected and

interfacing them can be very tricky because often there are ad-hoc.

o Poor software design:

The design specifications of a software system are vital to its correct development and imple­

mentation.

17

Poor software design can be attributed to [178]:

- a lack of understanding by the designer of what the user requested.

- poor interpretation of the design specifications by the developers.

- alack of discipline in the design which results in inconsistent logic.

- no design history.

- no standards.

- no methods.

o Poorly coded software:

As computer programming evolved, much of the code development was performed in an

undisciplined, unstructured manner. The result of poor programming practices is:

- few or no comments.

- poorly structured programs.

- use of non-standard language features of the compiler.

- lack of Quality Assurance and metrics.

It is even more difficult to understand poorly written code if the program has been modified

by different individuals with a multiplicity of programming styles.

o Lack of common data definitions:

An application system should have common data definitions (variable names, data types,

data structures, etc) for all segments of the system. These common definitions entail the

establishment of global variable names which are used to refer to the same data array or

record should be defined and used for all programs in the system.

2.4.5 Software

Corrective, adaptive and perfective maintenance activities typically result in growth and degrada­

tion of the software's structure (this is known as program entropy). Lehman [142, 143] stated in

his second law of program evolution:

18

As an evolving program is continually changed its complexity, reflecting deteriorating

structure, increases unless work is done to maintain and reduce i t .

The net result of continual modification is that software tends to increase in size and its structure

tends to degrade with time. For example [99], the average program grows by 10% every year,

resulting in its doubling in size every seven years. It is important to increase the maintainability

of software to cope with its increasing lifespan (see section 5.3.4) in order easily to maintain i t .

It is also difficult adequately to maintain software because:

o Software were created without maintenance in mind.

o A change in one component often affects another one by introducing unforeseen side effects.

o The average life expectancy of a software has increased from about three years, two decades

ago, to seven to ten, and even more for example in the Aerospace industry (see section 5.3.4).

Therefore, with the degradation of the software structure and the increasing size of the soft­

ware, it will be more difficult to maintain it.

2.4.6" Mainta inabi l i ty

Maintainability is defined by Martin and McClure [163] as:

The ease with which a software system can be corrected when errors or deficiencies

occur, and can be expanded or contracted to satisfy new requirements.

No quantitative or contractual definition of maintainability are available. There is a need to think

about the maintainability of the software at the beginning of the life-cycle, which will require extra

cost that cannot be easily justified. The maintainability of software deteriorates during the software

life-cycle because:

o The need to change the software have been underestimated in the development and the

modifications affect the maintainability of the software.

19

o Maintenance changes tend to degrade the structure and quality of programs by increasing

their complexity and making them more complex and more difficult to maintain next time.

o Maintainability requirements are omitted in system requirement specification [95].

o Many systems have been designed and developed without any serious consideration being

given to their long term maintainability [128].

An alternative approach is to assess maintainability indirectly in terms of the software itself e.g.

modularity, cohesion and coupling.

2.4.7 Documentat ion

Software documentation is the technical data or information, including computer listings and print­

out, in human readable form, that describe or specify the design or details, explain the capabilities,

or provides operating instructions for using the software to obtain the desired results from a software

system.

The software documentation is one of the major problem of software maintenance because:

o Software documentation arouses very little interest amongst programmers. It is often consid­

ered to be one of those jobs that should be put ofT until the last opportunity and in many

cases it is put off indefinitely. Perhaps this low view of documentation is perpetuated by its

consistent poor quality.

o Document structure does not provide enough visibility for maintenance concerns [95]. When

a maintainer has to perform his job, the only source of information available may be the

documentation and the code.

o Software documentation is often inadequate, incomplete, non-existent, or out-of-date. Where

it does exists, it usually consists of an unmanageable set of unstructured papers that are

difficult to access and impossible to maintain. The development team has some difficulties to

understand needs of maintainers and prefers to answer their own needs.

o Software documentation is written by developers who don't understand maintenance.

20

o Schneidewind [227] reports that it is very difficult to maintain software which was not ade­

quately documented.

o A survey from Chapin [43] showed that poor documentation is the biggest problem in the

software maintenance work.

2.4.8 Users

A critical part of effective maintenance is communications, both among development personnel and

between the development and user organisations. Users have a lack of understanding on systems

and are not adequately trained. User demand for enhancement and extension of their systems is a

major problem for the maintenance team because:

o Users are often unable concisely to specify what they want from an application system and

express requirements in a way totally different to system structure or behaviour.

© If a system does what the user needs, the user will often think of things to add. The more

successful a system is [178], the more additional features the user will think of and sometimes

user expectations are unrealistic.

e If a system does not work well [178], there will be a constant demand for remedial a.ction to

make it function properly.

o The user is often unaware of the impact that one change can have on both the system and

the maintenance workload, and expects a rapid response to his or her needs.

2.4.9 Staff

The Lientz and Swanson studies [149] indicates low morale and productivity as a major problem

during maintenance. It is difficult to motivate maintenance staff and to have a maintenance team

working properly because:

e Development is seen in a company when it is complete as a successful achievement whereas

maintenance will not receive any such consideration; maintenance is an on-going activity.

21

o Software maintenance is considered as unimportant, unchallenging, uncreative work.

o Staff have competing demands on their personnel time (poor availability of maintenance

staff).

o Maintenance staff usually have not been involved in the development of the product so they

have no knowledge of the process that made the product.

o Maintenance staff turnover is very high. Experienced personnel are replaced with new per­

sonnel who are unfamiliar with the applications software, and may be unfamiliar with the

programming environment (tools, methods, software maintenance process ...) as well. The

turnover rate is so high that there is little time allocated to update the documentation ade­

quately.

o Maintenance is often used in a company as training for new programmers who have little

software engineering or application domain knowledge.

o No time is spent for adequate training and there is the remaining problem of how to train

the maintenance stall'.

2.4.10 Conclus ion

This section described the various maintenance problems in order to better understand why main­

tenance costs huge amount of money and often seen as a bottleneck. These problems are perceived

as being organisational, managerial and technical. We need to solve these problems by defining a

good method to perform the software maintenance process.

22

2.5 The Economics of Software Maintenance

2.5.1 Introduct ion

The objective of this section is to explain the economics of software maintenance with different

citations and studies from the literature, to define the models for estimating the cost of maintenance

and to make criticism on them.

2.5.2 Software Maintenance Cos t s

Since estimating software maintenance costs is very difficult, we shall provide some citations to

better understand its propensity and magnitude, and to recognise that large amount of money are

i n vol ved:

o Maintenance cost in the U S federal government:

It owns about 25 billion lines of code and is spending $3.75 billion on its Information

Technology budget on maintenance (Lientz and Swanson, 1980) [151].

o Maintenance cost in the U S DoD:

It was estimated in 1985 that the DoD spends about three-four percent of its

budget, or approximately 10 billion dollars per year on software and this number

is expected to increase rapidly in the next few years [82].

e Maintenance cost in the U S :

I t was estimated that $30 billion are been spent on maintenance in the USA annually

[151] and it has been reported that the United States spends 2% of its GNP on

software maintenance.

© Maintenance cost Worldwide:

Martin and McClure say that in 1983 more than $ 30 billion per year are being

spent on maintenance worldwide [163].

23

Hardware/Software cost trend:

Boehm [29], first presented the Hardware/ Software cost trends diagram that pre­

dicted a dramatic rise in software cost relative to Hardware cost at a time when

spending more on software than Hardware was difficult for many to perceive.

DoD software market share:

The total software budget of the DoD was estimated to be 5 % of the market, and

to include $ 10 billion spent on embedded systems [255].

Maintenance programmers/programmers time:

There are an estimated one million programmers in the US alone and more than

half the programmer's time is devoted to maintenance [187].

Maintenance phase/Life-cycle cost:

A survey by Lientz and Swanson reported that more than 50 % of the budget is

spent on the maintenance phase in (1983) and Hager says that 60 % of the software

costs associated with the design, development and implementation of computer

systems occurs in the maintenance phase [96].

Development/Maintenance cost:

On a relative comparison between development and maintenance cost, it was esti­

mated that one US Air Force System cost $30 per instruction to develop and $4000

per instruction to maintain over its life-time (Boehm, 1975) [30].

Real-time/Business applications costs:

Comparing the relative costs of a source instruction in the development and main­

tenance phase, it appears [144] that maintenance of real-time applications is pro­

portionally much higher that the maintenance of business applications (see table

No 2.1).

24

Application Real-time S/W Business S/W

Development n n

Corrective Maintenance 11.75*n 5*n

Adaptive Maintenance 5*n 3.5*n

Perfective Maintenance 5*n 2.5*n

Evolutive Maintenance 5*n 2*n

A l l mixed Maintenance 6.75*n 3.25*n

Table No 2.1: Relative cost of a source instruction

o Projection of the cost in the 90's:

Pfleeger [196] said in in 1987 that the trend towards higher maintenance costs is

expected to continue, and three-quarters of the system's cost is likely to be devoted

to maintenance by the 1990's (see table No 2.2).

% of the software budget 1970s 1980s 1990s

Development 60-65% 60-40% 20-30%

Maintenance 35-40% 40-60% 79-80%

Table No 2.2: Escalating maintenance costs (Pfleeger 87; Pressman 87)

Although some of these figures must be treated with great scepticism, there is a wide agreement

that software maintenance is a huge consumer of resources. Although software maintenance expen­

diture is hard to quantify, most companies would consider that they spend far too much effort on

software maintenance.

With such a large proportion of the total software expenditure being spent on software main­

tenance, this area has the greatest potential of any in the life-cycle for reducing the overall system

costs. The direction of money into the maintenance of existing systems has caused new develop­

ments to be postponed due to lack of financial and personnel resources. Any freeing of money from

software maintenance, by increasing maintenance productivity, would help reduce the development

backlog created by these resources shortages.

Although new development, have traditionally been the focus of attention for the software com­

munity, these economics realities are drawing increasing attention to software support activities.

The situation is especially acute in the DoD, where some agencies are predicting that maintenance

requirements will more than double over the next five years. This problem results from the expected

inflow of massive new systems, and the slow retirement of old systems. 'Getting the requirements

right' is only transitory; they can only be 'right' at a given point in time.

2.5.3 Software Maintenance Cos t Es t imat ion

An estimation model for computer software uses empirically derived formulae to predict data that

are required. The empirical data that support most models are derived from a limited sample of

projects. For this reason no estimation model is appropriate for all class of software and no model

can fully reflect the product's characteristics, the development environment and the many relevant

personnel considerations. Software cost models should be used with care. If they are not calibrated

to the specific organisation's experience. Models should thus be used to augment the estimation

process and not replace i t .

Software maintenance cost estimation models have largely been based on simple linear ratios

depending on the size of the product, its development cost and the number of instruction changed.

This section will define the maintenance/development ratio, Boehm's and Belady's model and the

multiplicity of factors dependent on the software maintenance cost. In order to understand these

models and ratios, we need to explain terms used:

Terms Explanation

M M man-months

(MM)mo overall maintenance cost in man-month

(M M)m.year maintenance cost in man-month per year

KDSI thousands of delivered source instruction

1. The Maintenance/Development cost ratio:

The Maintenance/Development cost ratio (M / D) is used to estimate the overall life-cycle

maintenance cost (MM)m dependent of the development cost (MM)d:

26

(M M) m = (M / D) (M M) d

For example, a program lias 32000 delivered source instructions and this product required

200 man-months to develop.

If we consider a (M / D) ratio of 1.5 (i.e. 60 % time of its software life-cycle is spent for

maintenance), i t would require and estimated of 300 man-month for maintenance:

(MM)ra = (1.5)(200) = 300 M M

If we consider a (M / D) ratio of 2.0 (i.e. 66 % time of its software life-cycle is spent for

maintenance), it would require and estimated of 400 man-month for maintenance:

(MM)ra = (2.0)(200) = 400 M M

2. The annual maintenance effort:

Boehm [33] developed a. model COCOMO (Constructive COst MOdel) to estimate annual

software maintenance in terms of a quantity called Annual Change Traffic (ACT) I t is the

fraction of the software product's source instructions which undergo change during a (typical)

year, either through addition or modification.

For example suppose that the 32KDSI product had 4000 DSI added and 2400 DSI modified

during its first year of maintenance. Then

ACT = (4000 + 2400)/32000 = 0.20

The COCOMO equation for estimating basic annual maintenance effort (MM)am, given the

estimated development effort (MM)cl, is:

(MM)m.year = (ACT)(MM)d = (0.2)(200) = 40 M M

This model gives no more than a rough approximation to maintenance costs. However, i t

serves as a basis for computing a more accurate figure.

Belady [18] developed a formula from studies that reflected the factors involved in the main­

tenance cost:

M = p + K*exp(c - d)

27

where:

M is the total maintenance effort,

p represents productive effort,

c is a measure of the complexity caused by the lack of structured design and documentation,

d is the degree of familiarity from the maintenance team with the software,

K is an empirical constant depending on the application.

This model indicates that the maintenance effort can increase exponentially if a poor software

development approach was used, and the person that used the approach is not available for

the maintenance team.

These two models do not reveal the true maintenance costs because they are only dependent

on few parameters (see next section). Furthermore, the estimation of the maintenance cost

is problematic for many reasons:

o Maintenance costs can fluctuate considerably from project to project and for a given

project from year to year (user requests, change in environment are not easily pre­

dictable).

o Degradation of the software quality during the software life-cycle will have an adverse

effect on maintenance effort

The software maintenance cost:

The software maintenance cost is not only dependent on the size of the product, its develop­

ment cost and the number of instruction changes, it depends on a multiplicity of factors and

some of them are not easily quantifiable:

(a) Factors dependent on the software:

o size of the system

o number of delivered source instruction

o programming language

o lifetime of the system

o age of the system

o number of release

o system stability

o system reliability

28

o software complexity

o software modularity

o performance constraints

o history of the software

o quality and quantity of documentation

o quality of tests

(b) Factors dependent on the staff:

o availability of staff

o experience of the staff in the system

o senior/junior staff

o participation of the maintenance team in the system development process

o staff turnover

o organisation of the maintenance department

o staff under pressure because of user's requests

o user's knowledge of the system

o user's request quality

(c) Factors dependent on the application type:

o application type (Business/Scientific/Real-time)

e number of sites

© development cost

o tools, methods and environments used

Models for cost estimation provide a means of maintenance cost prediction (which is better than

nothing), but they need to be tailored to the application domain and specific project.

2.5.4 Conc lus ion

The software maintenance cost is probably around 65% and 85% of all software cost. Because of

the multiplicity of factors depending on the software maintenance cost, a model to predict it is

very difficult to elaborate as there is no underlying theory to be based on. One of the best way

29

to evaluate the overall maintenance cost or a change request is to tune the cost model used to the

organisation and to provide an automated calibration based on actual product and change request

histories.

2.6 Summary

The main points in this chapter have stressed the need to understand the nature, the cost and the

problems of software maintenance. As explained in this chapter, maintenance is the most expensive

phase of the software life-cycle, difficult to cost and carries many unsolved problems for companies.

The escalating maintenance costs need to be stopped and decreased by defining a a good practice

for software maintenance along with adequate maintenance tools. To make this activity more

productive, a 'software maintenance best practice' report is presented in the next chapter.

30

Chapter 3

Software Maintenance Best Practice

3.1 Introduction

The issue that is addressed in this chapter is to reduce the software maintenance cost in most

organisations by improving the software maintenance process and providing a good method for

maintenance. This leads to better productivity, lower application backlog and clearer management

visibility. The method advocated in this thesis is based on an analytical approach of the software

maintenance process instead of experiments. Software maintenance best practice is defined from

current practice and maintenance problems, and is addressed at different levels: organisational,

managerial and technical, in order to solve these problems within a company. Because the software

maintenance process will be improved according to criteria defined below and established by the

senior management, this method can be stated as best practice.

This chapter proposes a model within which the managerial and technical issues can be presented

and discussed:

The organisational level is concerned with the finances of the maintenance activity, communi­

cation with upper management and the adoption of the best strategy for this activity and for the

software products to be maintained. The current software maintenance process has to be analysed

to reveal its weaknesses in order to correct them and define a better software maintenance process.

31

The management level is concerned with the best ways to manage, plan and control the software

maintenance process, and the organisation and management of the maintenance department in a

more efficient and productive manner.

The technical level is concerned with the different tasks in the software maintenance process

and the technical information needed to perform maintenance.

32

3.2 The Organisational side of Software Maintenance

3.2.1 Introduct ion

The organisational level is concerned with the adoption of the best strategy for the maintenance

activity and for the software products to be maintained. The current software maintenance process

has to be analysed by the senior management to reveal its weaknesses in order to define a better

one and avoiding some maintenance problems within a company. Special attention needs to be

given to the organisational role of the maintenance organisation, particularly with regard to its

financial aspect. As stated in section 2.4.2, 'the maintenance activity is perceived as having a low

profile, being a labour intensive activity, extremely important but highly neglected thus, there

is a need to change this statement by providing suitable advice for the maintenance organisation.

The organisational view of software maintenance is generally of critica.1 importance to the suc­

cess of this activity, and yet there is a lack of a general and agreed model for describing the soft­

ware maintenance process in such a way that different teams can be compared under a standard

paradigm.

Pressman [198] pointed out that 'there are almost as many organisational structures for software

maintenance as there are for software development'. In the case of software maintenance, however,

formal organisation rarely exist, but it seems valuable to give information on adopting a good

strategy to obtain an appropriate maintenance organisation.

3.2.2 Strategy for implementing software maintenance process change

As explained by Humphrey in his book 'Managing the Software Process' [109] most organisations

can improve their software maintenance process and need to change their organisation structure,

their management system, their procedures, their tools and methods, but the implementation of

the necessary changes must be handled with care (if it is too didactic, they will face a general

resistance from employees).

The major changes to the software maintenance process must start at the management level in

33

the company and everyone must be involved. Effective changes by the senior management requires

knowledge of the current software maintenance'process.'

A descriptive approach of the current software-maintenance process must be observed and

assessed in real life in order to learn how the software organisation actually works. A list of major

problems within the organisation must be edited and it is important to collect information on the

current software maintenance process in terms of statistics.

Some' indicators of less than adequate good practice could include:

o high staff turnover

o lack of metrics, statistics and visibility on software maintenance

o lack of historical data and error history on maintenance

o absence of quality plan, maintenance pla.n

o no use of configuration management and versioning tools

o inadequate or unused documentation

It seems evident that in many organisations, current practice differs substantially from potential

best practice. Colter [56] has argued that best practice involve software maintenance as product

support. Corrective, adaptive and perfective maintenance require a product support organisation to

receive problem report, distribute upgraded versions of the software and keep customers informed

of problems, solutions and new versions. This concept introduces a number of notions including

the strong relationship of software maintenance to the need of the business, but also to gather

round the software product a group of people committed over a number of years to its successful

evolution.

The product is expected to undergo a series of evolutionary steps over its lifetime, and this is

planned from the outset, including the recognition of the need for business justification for doing

so. ' -

34

3.2.3 Organis ing the maintenance activity

The organisation of the maintenance activity by senior management starts by developing a strategy

and identifying this activity. The organisational role of the maintenance activity [22] need to

be given particularly in financial terms. The approach advocated is to justify the added value

provided by software maintenance, and thus the financial benefits to be gained by investment in

the maintenance process (for example, by buying better technology). This may require a concurrent

change from maintenance as merely a survival activity, in which employees are expected to meet the

on-going change load without frequent serious problems, to maintenance as a product management

activity [56, 57],

1. Develop a maintenance strategy

Strategy is an over-used word and we need to define what it implies. The strategic analysis

is an understanding of the strategic position of the organisation, e.g. the environment, value

expectations, objectives and resources. The strategic choice is the formulation of possible

courses of action, their evaluation and the choice between them, e.g. generation of options,

evaluation of options and selection of strategy. The strategic implementation is planning how

the strategy can be put into effect, e.g. resource planning, organisation structure, people and

system. The strategy for maintenance should be linked to the overall strategy of the company

(for example providing software of good quality to customers). To develop a good strategy

for this activity, i t is necessary to save the 'savoir-faire' and to understand the importance of

the software to be maintained.

o Who will perform maintenance ?

At the stage of how to organise maintenance, a decision should be made as whether

maintenance will be performed in-house, by the customer, or by a third party.

o Preserving the know-how

A company with a long established software development culture often find it difficult

to adopt new methods, tools and procedures. Yet, management at these companies

recognises that the old culture is ineffective and in some cases detrimental to the overall

strategic objectives.

The software maintenance strategy need to protect the extremely valuable corporate

'know-how' that is tied up in existing software.

35

o Importance of the software for the organisation:

The strategy for the maintenance activity needs to consider the quality of the software

that are maintained within the company. If a software is very important both at present

and in the future to the organisation, and is of high quality, this would suggest continued

enhancement of the existing system. A similarly important package of very low quality

may merit rewriting or reengineering. Even very coarsely graduated metrics can be of

considerable help to the decision process, especially if there is strong clustering.

Identify the market trend

In order to determine the market trend for maintenance, the organisation should define its

objectives according to the maintenance activity, understand the differences with the devel­

opment activity, prove that with a good strategy for maintenance advantageous return on

investments can be obtained and reduce maintenance costs.

o Objectives of the maintenance activity

The aim of software maintenance is to extend the life of the product as much as possible,

whereas initial development requires the project to be completed within budget and

on time. If the overall strategy of the company is to provide software that are highly

maintainable and inspire customer confidence and satisfaction, the maintenance strategy

can be to keep this level of maintainability and to continualy satisfy the customer with

the software.

The objectives of the maintenance activity have to be defined within the company in

relations with other activities. It is essential that a bridge is established between the

corporate strategy and the maintenance strategy.

o Compare Development and Maintenance

Because more programs are developed and place into the operation phase, a direct effect

is the growing needs for maintenance and an increasing importance of the maintenance

activity within the data processing organisations.

- Development:

The initial development of software is usually project based; it is undertaken to a

budget and timescale; there is (hopefully) a clear product defined through require­

ments analysis; the project exists because of an identified market (or other) need;

and the organisation may have submitted a competitive tender to win the work.

36

Prime objectives are expressed mainly in terms of functional and performance at­

tributes of the software.

- Maintenance:

In contrast, software maintenance is usually revenue based; in financial terms it is

seen as a continuing consumer of resource with a nebulous and unquantified benefit

to the organisation.

The development of a system requires to be considered as product based in order

to provide a better credibility with customers. Thus, the company develop a sys­

tem, is able to maintain it and to provide support throughout its lifespan with a

comprehensive plan.

- Development and Maintenance costs:

Development and maintenance are generally separated budgets managed by different

groups. I t is important to know what are the current annual development costs and

what are the current annual maintenance costs in order to compare them.

Prove that maintenance can give a good return on investment

Maintenance is the biggest business in the software industry and it is totally out of

control (COLTER 1988) [57] we need to prove that maintenance can give a good return

on investment.

A major problem faced by the maintenance community is the lack of recognition by

senior management of the problems of maintenance (see section 2.4.2) and the benefits

and returns on investment that maintenance work provides. The reason behind this is

the lack of effective communication between managers of the maintenance team and the

senior management responsible for running the business.

It is necessary for the maintenance manager is to talk the 'language of business' in order

to present their case effectively [57]. This, by necessity, required the measurement of the

processes involved and the provision of statistics for consumption by managers with a

justification of the added value provided by an optimised software maintenance process.

The key parameter for the organisation's board of directors is money and profit whereas

for the maintenance manager it may be quality or time for completing a task.

Example: I f we consider economics, it will wise to pay, say 10 percent more for the

development of reliable software with proper documentation. This will more than pay

for itself in the long run through reduced maintenance and ease for redesign.

37

The problem is that development and maintenance are separated budgets managed by

different groups. Thus it is difficult for the development group to negotiate a 10 percent

price increase even if i t will represent a 20 percent price decrease later on in the main­

tenance budget. It is important in the initial planning to deal with total life-cycle cost

and to provide a maintenance plan; this can be addressed by senior management.

o Reduce maintenance cost. In reference to section 2.5.2, software maintenance is a

huge consumer of resources, therefore, it is important to find methods of reducing the

cost of maintenance, perhaps more important than finding new methods of developing

software as existing software is going to be with us for the foreseeable future.

A significant reduction in the maintenance costs can be realised with a design for change

philosophy integrated into the engineering life cycle. By carefully identifying the ex­

pected changes to a system and rigorously applying the concepts of information hiding

and abstraction of interface, the changeable aspects of a system can be isolated [96].

3.2.4 Organis ing the maintenance of systems

1. Maintenance of exis t ing systems

A maintenance plan is essential for each product with replacement, retirement and new release

taking into account the quality and the importance of the software.

During the maintenance process faults will be observed, reported and corrected and where

appropriate, repairs to the code, the specification, the design and to the documentation will

be authorised.

Pfleeger [196] notes that the maintenance team is always involved in balancing one set of

goals with another. Conflict arises between system availability for users and implementation

of modifications, corrections and enhancements. Another conflict arises whenever a change is

necessary. Often, a problem may be fixed in one of two ways: a quick but inelegant way that

works but do not fit in with the design or coding strategy of the system, or a more involved

but elegant way that is consistent with the guiding principles used to generate the role of the

system. Maintainers may be forced to compromise elegance and design principles because a

change is needed immediately. When, such compromise is made, several events are likely to

make system maintenance more difficult in the future.

The particular strategy adopted in any instance will depend on:

38

o the nature, criticality and the severity of the fault

o the size and difficulty of the change required

o the age of the software

o the structural complexity

o the intermodule coupling

o the historical rate of modifications

iO the number and the nature of the program installations

o user organisations.

And this strategy will have a profound impact on:

o the rate of system complexity growth

o the life cycle cost of the system

o the life expectancy of t.lie system

Harrison [100] lias developed a model of software maintenance to determine whether a given

module can be effectively modified or if it should instead be rewritten. This model suggest

early identification of change prone modules tlirough the use of change measures across release

cycles.

2. Maintenance of future systems

With the traditional software life-cycle, we must give the priority to the maintenance phase

and establishing development methods to support maintenance.

I t seems [162] that the concepts of information hiding, modularisation and abstraction of

interfaces are more maintainable than classical programming languages.

3. Links between existing and future systems

As Parikh [187] pointed out, there is a gap between modern technologies used for developing

systems and maintenance of old, unstructured software systems.

A company needs to use bridge technologies [1] to help transition from maintenance using

obsolescent methods and tools to maintenance using modern practices. Without technologies

like Inverse Software Configuration Management [129], Reverse Engineering, the software

community will be destined to manage to diverging set of tasks:

39

o Maintaining old code with archaic methods.

o Creating new products in advanced environments.

3.2.5 Conclus ion

In this section a strategy for maintenance has been denned, the ways to identify the market trend

for the maintenance activity and a strategy for implementing a change in the software maintenance

process. The main problems for the organisational side of the maintenance activity are that senior

management should be involved to define the priorities and objectives of this activity in accordance

with the overall strategy of the company. The need for effective communication has been outlined.

Therefore, the management side of the maintenance process has to be defined in accordance to the

maintenance organisation.

40

3.3 The Management side of Software Maintenance

3.3.1 Introduct ion

The general principles of management are well defined and understood, allowing projects to be

completed on time and within budget, but there seems to be resistance [274] to applying these in

the maintenance field because maintenance is revenue-based and also poses special problems to a

manager [123].

A more diverse group over a. longer period of time, work on the software, with fewer defined work

standards or methods, than in any of the other phase in the software life-cycle. A large proportion

of time consists of trying to respond ra,pidly to change request due to the direct impact on the

customer, so the maintenance activity takes on a fire fighting role. This role causes the backlog of

less urgent requests to increase, and rules out any more controlled preventive maintenance work

with a view towards reducing problem areas.

Compared to maintenance organisation defined in the previous section, the objectives of this

section are concerned with adequately managing the software maintenance activity: the software

maintenance process must be planned, monitored and controlled, and the maintenance department

organised and managed in an efficient way.

3.3.2 P l a n n i n g for maintenance

Planning for maintenance has the particular problem that it is very hard to estimate the likely

demand for work, since one needs to know how many change requests the users will make.

To overcome this task, it is important carefully to define a maintenance plan [164] and to use

an appropriate tool.

Perry [193] has defined a plan of action for software maintenance with the following attributes:

© It is obtainable with existing resources.

41

o It will improve tlie productivity and quality of software maintenance.

o I t will put the software maintenance group in charge of software maintenance,

Five objectives for a software maintenance plan of action are required:

1. Appoint someone responsible for the software maintenance process (see section 'organising

the maintenance team').

2. Set software maintenance objectives (see section 'objective of the maintenance activity').

3. Move to the maintenance release mode method of installing a group of changes on a quar­

terly or semiannual basis (see section 'prove that maintenance can give a good return on

investment').

4. Calculate the value added by maintenance. If the value of change cannot be quantified, then

management should question the purpose of i t .

5. Subject maintenance to quality control and quality assurance procedures.

These objectives depend on the importance of software for the company. A schedule [135] is a

plan for when task should start and when they should finish. Each maintenance task has several

properties:

o The duration is the length of time it takes for each maintenance task and for, the overall

software maintenance process. During planning, durations are always estimated.

o The resources needed to complete the ..maintenance tasks include personnel, machine time,

supplies ...

o The dependencies of the task are other maintenance tasks that must finish before it starts,

o The planned completion date is the date when the task is expected to be finished,

o The promise date is the last date, the planned completion has been changed.

3.3.3 Moni tor ing and controlling maintenance

The high cost of maintenance ca.n, in part, be attributed to the greater difficulty in controlling the

maintenance process than processes in other phases of the life cycle.

Without proper tools, some questions remain difficult to answer:

o How long are defect fixes tacking ?

o Which programs have most defects ?

o Has this particular problem occurred before ?

These tools must:

o Store details of all problems and their solutions.

o Reports: list problems by customers, by modules, by products.

Key process parameters include:

o Response time to undertake changes

o Resource required to make a change

o The distribution of this resource across the several maintenance and Quality Assurance ac­

tivities.

1. Controlling the software maintenance process

The control of software maintena.nce can in part be realised through the use of three easily

understood and implemented methods and techniques: configuration management, change

control and communication [25].

Configuration management is explained and example of tools are given in section 4.2.4.-1

43

Without good communica t ion (see section 3.3.5.-4), control is lost, the effectiveness of

maintenance procedures cannot be determined, and resource management becomes impossi­

ble. Without monitoring software quality, it will quickly degrade. It is not simply the code

that requires monitoring, but documentation, design information etc.

The main ingredient of a good change cont ro l facility are [250]:

o a formal mechanism for identifying and communicating problems and change require­

ments

o reporting procedures that succinctly identify the nature, cost and timescale of the pro­

posed change Software Problem Report, Software Change Report)

o a visible organisational structure for the approval of changes (Configuration Control

Board)

o a powerful software configuration management capability to rework and control the

change

o a capability to analyse change status/trends.

2. Manag ing the Change

Successful management of change is crucial for a good release of the product without uncon­

trolled side effects.

The steps involved [250] are:

o to evaluate the impact of the change; the affected elements need to be determined, any

related element tracked and the impact established by appropriate methods

o to review the impact of the change on the project costs and timescales and decide on

the strategy for implementation if accepted,

o to control the elements under change and ensure that the later versions are released in

a compatible way

Change impact determination:

A configuration management system should allow enquiries to be made of its database so

that all elements related to those for which the change is proposed can be established. These

may be hardware, software and documentation elements. During this process, an indication

should also be obtained from a good configuration management tool (see section 4.2.4.-1) to

any other changes pending on any of these elements.

44

3. Collecting data

A key indicator of software quality is the defect or error rate. Poor maintenance may cause

this rate to rise, due to the ripple effects of a modification. Swanson has provided a more

detailed list of data that can usefully be recorded [256, 198] for each maintenance subproject:

o program identification

o number of source statements

o number of machine code instructions

o programming language used

o program installation date

a number of program runs since installation

o number of processing failures

o program change level and identification

o number of source statements added by program change

e number of source statements deleted by program change

o number of person hours spent per change

G program change date

o identification of software engineer

o change request identification

o maintenance type

e maintenance start and close dates

@ cumulative number of person-hours spent on maintenance

® net benefits associated with maintenance performed

These statistics are essential to provide evidence to more senior management of the mainte­

nance group's activities. Swanson further lists useful metrics by which software maintenance

may be evaluated:

o average number of processing failures per program run

a total person-hours spent in each maintenance category

45

o average number of program changes made per program, per language per maintenance

type

o average number of person-hours spent per source statement added or deleted due to

maintenance

o average person-hours spent per language

o average turn-around time for a change request

o percentage of maintenance requests by type

Swanson's work is expressed principally in term of source code. The ideas can be appro­

priately updated and extended to address for example design documentation, requirements,

specifications etc.

3.3.4 Tools for maintenance management

1. Tools for managing maintenance

Gamalel-Din and Osterweil [85] report that maintenance management activities can be di­

vided into two classes: product - related and process - related. The former is far better sup­

ported by computer aids, such as version control systems (RCS [261], SCCS [211] . . .) , reuse

support systems (Draco [177]) and configuration control systems (NuMil [176], Odin [48] . . .) .

The latter [163, 166, 187] which includes personnel and resource management, walk-throughs,

quality audit and planning are generally done manually.

To help maintenance managers overcome the difficulties in planning and scheduling of mainte­

nance activities, a system has been developed at the University of Durham. SCIMM (Software

Change Information for Maintenance Management) [60] stores information about requests for

changes and changes made to software systems, with a view to easy access and retrieval of

data, and the provision of analysis to aid managers in prediction and planning. The picture

of maintenance management is based on an increase in the visibility and understanding of the

work being undertaken. This takes the form of the production of progress reports, statistics

and more information on individual change; this information once collected can be stored.

This store of information provides a history of the work done, allowing it to be analysed to

find shortcomings in the maintenance methods being employed and the process involved, so

providing information to help future work.

46

In a more immediate sense, collection of data about the maintenance of a system increases

the visibility of the maintenance process and gives information to the senior management.

A record of changes to the system and their reasons, forms a permanent store of experience

gained by programmers while maintaining the system.

In a study conducted by Collofello and Buck [54] i t was seen that more than 50% of errors or

faults were introduced by previous changes, so the ripple effect is a major contributor to error

reports. Ripple effect [276, 277, 278] is the phenomena by which changes to one program

area have tendencies to be felt in other program areas. Using the records of past changes, the

original cause of ripple effect errors can be established, allowing the redesign of the original

change or at least a better understanding of the problem's cause.

2. Tools for product management

As mention in Appendix A, three tools are commercially available for managing maintenance

products: SABLIME [115] is a comprehensive product administration system that tracks

changes to a product consisting of software, hardware, firmware, and/or documents, from its

origination, through maintenance, delivery, and support. Its integrated Modification Request

(MR) and Configuration Management capabilities make it a unique tool for managers and

product developers alike [115].

RA-METRICS [251] and SMR [115] are software metric repository. RA-METRICS supports

all of the management reporting metrics and it reports: functional and technical quality,

user satisfaction, defects counts, CASE/Tool Usage, development and maintenance history,

financial history and estimation accuracy whereas the Software Metric Repository (SMR)

is a menu and mouse driven database featuring a 'point and Shot' user friendly interface.

The database incorporates the software metrics generated by PC-Metric as well as Functions

Points and project data. The browse and reporting capabilities are encouraging to examine

and analyse the raw data.

PC-Metric is a software metric generation package. I t analyses the source code and computes

numerous size and complexity metrics.

A Problem Monitoring System (PMS) has been reported in [93] which has been developed for

the specific purpose of controlling customer queries and problems. The PMS is a PC-based

system that holds customer and product information and is driven by a series of events that

are date and time stamped. PMS includes a flexible and powerful reporting facility that

provides

47

o Statistics

- time taken to resolve a change

- programs most affected

- requests outstanding

o Reports

- list by requests

- list by customers

3.3.5 Organis ing the maintenance department

The selection of the appropriate staff for a maintenance project is as important as the techniques

and approaches employed. There is a remaining question in the organisation of the maintenance

activity on whether or not the maintenance staff should be organised as a separate department.

1. Deve lopment / Maintenance depar tment

The industries surveyed in [151] by E. Swanson claimed that programmer productivity was

increased through programmer specialisation and that control of cost and effort was improved

when maintenance activities were separated from new development, (for small organisations,

maintenance may be a separate group, but a. specialist may handle the maintenance work).

Three cases studies have been reported by Swanson and Beath [257] about what kind of

departmentalisation in a company is necessary with its strength and weaknesses:

o Departmentalisation by work type (system analysis versus programming)

- Stength: development and specialisation of programming knowledge and skill

- Weakness: cost of coordination between systems analysis and programmers,

o Departmentalisation by application domain (group A versus group B):

- Stength: development and specialisation of application knowledge

- Weakness: cost of coordination and integration among application groups

o Departmentalisation by life-cycle phase: (development versus maintenance)

- Stength: development and specialisation of service orientation and maintenance

skills

48

- Weakness: cost of coordination between development and maintenance units

Many managers have indicated that separated department can improve the effectiveness of the

development and maintenance ones. However, the reality of size, organisation, budget, and

staff often prevent the establishment of separate maintenance and development departments.

Maintenance staff

The maintenance staff must effectively meet the challenge of maintaining a software system

while keeping the user satisfied, costs down, and the system operating efficiently. In this sec­

tion, the skill level needed for maintenance, the profile of the maintainers and the organisation

of the maintenance team are analysed.

© The skill level needed for software maintenance

The maintainer should be:

- Senior

- Experienced

- Knowledgeable about the existing system before attempting to change it

The maintainer has to [178]:

- Perform all the activities of the life-cycle

- Analyse the problem and the impacts on the program

- Determine the requirements and design changes necessary for the solution

- Test the solution until the desired results are obtained

- Release the revised software to operation or the users

Thus, there is a broad consensus that the successful maintainer needs to 'know everything

about everything'.

• The profile of the maintainer

The ideal maintainer requires the following qualities [90, 178]:

- Flexibility: the software maintainer must be able to adapt to different styles of

code, priorities, and user requests.

- Responsibility: performance of assigned tasks in a dependable, timely manner.

- Creativity: the ability to apply innovative and novel ideas which result in practical

solutions. Within the constraints of what is, please create something new.

49

— Sel f -mot iva t ion : the ability to independently initiate and complete work, after

receiving an assignment.

— Disc ip l ine : the ability to be consistent in the performance of duties and not prone

to trying hazard approaches.

— Patience: in liaison with customer

— H u m i l i t y : jn front of criticism

— Experience: software maintainer should have a broader education than software

developers; greater skill are needed because maintainers not have only to look for­

ward to new techniques, but also backward to previous ones.

— A n a l y t i c : a maintenance programmer must be able to analyse and understand

system's requirement, design, capabilities and limitations and problems, and to

correct problems and add capabilities.

Organis ing the maintenance team

In order to accomplish the task of maintenance, there is a framework within which the main­

tainer has to operate consisting of user requirements, the existing program, the tools available,

the environment and the maintainer's own capabilities. Maintenance staff should be organ­

ised in a manner that results in efficient use of human resources and effective application of

available skills.

Usually, maintenance staff has no knowledge on the process that created the product (see

section 2;4'.9), So, software maintenance may be undertaken by the original development

group, or responsibility may be given to a separate group. In the former case, there is a

strong case to make the software maintainable, although documentation quality may suffer

as staff see (even) less need for i t . In the latter case, the development team may be able to

move to new projects, and each group, develops;expertise.

The organisation of the maintenance team can be as follow:

The current practice (see section 2.4.2) reports that the maintenance activity is used as

training for new employees. The Guidance on Software Maintenance from the NBS [178]

suggest that 'Maintenance should NOT be used, as a training ground where junior staff are

left to sink-or-$wim\ Many authors are agreed that the maintenance teams should include a

mix of experienced and junior staff.

50

Boehm [34] suggests that the maintenance staff should be involved earlier in the software

process during standards preparation reviews and test preparation.

Fairley [82] recommands that the minimum size for a maintenance team is two because main­

tenance personnel can work more effectively when they check one another's work and when

they can learn from one another. By working with others, they are likely to find more errors

sooner and to perforin the job at less cost.

In larger teams, an identifiable quality assurance group should be established. There are

strong advantages if this group has a separate reporting structure, to maximise its indepen­

dence. The maintenance staff should be responsible, mobile and productive.

• Responsibi l i ty : Many authors consider that task responsibilities should be clearly

defined and technical specialisation among maintainors allowed to provide a higher mo­

tivation. Each team is responsible for the maintenance of one or more software systems.

A maintenance leader is defined in each teams which is directly responsible for technical

program support. He reports to the maintenance manager and the rest of the team

reports to him.

e M o b i l i t y : McClure [16G] suggested the maintenance personnel should be rotated be­

tween design and maintenance. It seems appropriate to rotated between projects, to

avoid individuals regarding the system as their private domain (this has management

advantage also, i f the person leaves). Boehm [32] suggest that someone from mainte­

nance be a part of the Quality Assurance team during development in order to make

the transition to maintenance more satisfactory. This suggestion will depend on the

organisation of the company.

• P r o d u c t i v i t y : Boehm [10] defined software maintenance productivity as the ratio of

the number of source instructions added or modified to the number of man-months of

maintenance effort. A company can increase maintenance productivity by using the best

method to perform this activity, providing the right procedures and tools and investing

in technology, so that maintainers will have similar facilities to developers.

Communica t ion i n the maintenance depar tment

A good communication inside and outside the maintenance team is essential to the success

of this activity.

• Communica t ion inside the maintenance team

51

Much of the communication is social chit-chat [135] but during these talks a surprising

amount of technical communication and learning takes place during the typical coffee

break.

In a maintenance environment, ensuring good communications is essential in order to

prevent chaos. The maintenance communications vehicles are meeting minutes. At

weekly team meeting, all members of the team are present, and each member reports

on progress since the last meeting. Each team member may introduce to the group new

ideas, requests for changes, and any other information he feels is to the benefit to the

group. It is essential that information about both the software being maintained and

the maintenance process is collected and reported to management.

To improve communication, we must encourage electronics mail which is fast, less ex­

pensive, more often read and answered,

o Communica t i on between maintenance team manager and upper management

A major problem faced by the maintenance community is the lack of recognition by

senior management of the problems of maintenance and the benefits and returns on

investment that maintenance work provides. The reason behind this is the lack of

effective communication between managers of the maintenance team and the senior

management responsible for running the business.

o Communica t i on between maintenance team and user

A user is a person or group that is directly involved in the actual use of the system. I t is

very important to provide good training for users. If they understand well the system,

they will require less from the maintenance staff. The maintenance team works with

users and try to understand the problem as expressed in the user's language. Then,

the problem is transformed into a request modification. The change request includes a

description of how the system works now, how the user wants the system to work and

what modifications are needed to produce the change. The user interface can often be

established with the concept of 'hot-line' or 'help-desk' (see section 3.4.2) .

3.3.6 Manag ia ig t h e m a i n t e n a n c e t e a m

Talented people comprise the single most, important element of a software maintenance organisation.

The crucial initial step is to make available the best people from within the organisation to work

52

in a well-structured and well-managed environment in which they can function as a team. Well-

motivated staff are likely to ensure stability within the maintenance organisation, adequate training

is vital to ensure that the maintenance team is highly productive.

1. M o t i v a t i n g the maintenance s taff

Some organisations have tried to improve the maintainer's motivation and the image of the

maintenance activity by simply giving another name which is a superficial approach. I t

changes nothing except the name. A better approach is to acknowledge the importance and

value of good maintenance to the organisation through career opportunities, recognition, and

compensation.

Here is some advices given to obtain a high motivation in the maintenance team [34]:

o Couple software maintenance objectives with organisational goal and link its rewards to

organisational performance.

o Integrate software maintenance personnel into operational team.

o Create a discretionary corrective maintenance budget.

o Rectify the negative image of software maintenance. I f a company wants to hire an

engineer for the software maintenance team, i t should talk about 'optimisation of existing

systems' instead of software maintenance.

o Clearly showing the importance of maintenance to organisational goals.

o Monitor the staff turnover which vary from location to location:

A rate under 10% is considered normal but much higher rates may be seen as a big

problem and senior management should probe to determine the cause [199]:

- Staff compensation adequate.

- Working environment adequate to motivate staff

- Clear career structure: have advancement paths been established (position advance­

ment are important to motivate software maintenance staff with promotion criterias,

frequencies . . .) .

In a nutshell, management have to demonstrate that maintenance is of equal value and is as

challenging as software development.

2. T ra in ing

Methods, tools and environments are changing so rapidly that it is difficult to determine what

kind of training does the maintenance team need.

A Brief look at existing training has to be analysed by:

o Basis: conceptual, procedural, survey, system specific, tool specific

o Level: strategic, managerial, technical

o Form: university, in-house, public, part of other courses, informal, on the job

Obstacles for sound training in software maintenance remain but opportunities are given to

cope with this lack:

o Obstacles: lack of accepted model and theory, inappropriate emphasis on development,

lack of interest

o Opportunities: university level courses with software engineering analysis and manage­

ment, and introduction of methodology with each new technique or tool and team by

team.

There are some existing courses on software maintenance:

o The University of Durham and the Polytechnic of Liverpool both include software main­

tenance issues within their software engineering courses.

o The University of Durham has begun trials of courses for industry aimed so far at

management.

o Brown University (USA) includes at least some software maintenance issues in its Com­

puter Science course

o Richard Ball (from Canada), Bob Wachtel (from the USA) and Nicholas Zvegintzov

(from the USA) give seminars on the subject, with occasional appearances in the UK.

o Integrated Computer Systems (ICS), a commercial training organisation, has introduced

a three-day course to run three times a year in UK.

A maintenance training should be composed with courses on the application domain, software

engineering, and syntax knowledge.

In general, a company should lie spending between 2% and 5% of software budget on training

that is between 7 and 15 days per year [199].

54

A good training plan provided to the maintenance team is important to its motivation and to

adequately perform its work.

3.3.7 C o n c l u s i o n

In this section a good management of the software maintenance activity and the software main­

tenance process is given along with advices, the type of data to collect and the tools to use. A

maintenance plan should be provided for the management of the maintenance activity. A soft­

ware configuration management tools should be used for controlling and monitoring the software

maintenance process. The maintenance department should provide a good training plan for the

maintenance staff and increase the staff motivation. Some data on each project should be collected

and statistics provided to senior management.

After defining the management of the maintenance activity, there is a need to understand the

different tasks involved in the software maintenance process and the technical information required

to perform maintenance.

55

3.4 The Technical side of Maintenance

3.4-1 I n t r o d u c t i o n

This section surveys the different software maintenance tasks models, presents an adequate mainte­

nance process for Aerospace systems and provides technical information required to achieve main­

tenance.

3.4.2 S o f t w a r e M a i n t e n a n c e M o d e l s

Modelling the software process is an important current area for research [262). This is not surprising,

since in order to understand and assess a software product, we need to understand and study the

process by which it was produced. Much of the work is addressing the initial software development,

although some research is also including the evolution and more general maintenance of software.

There would appear to be two approaches to work on software process models. In the first,

the descriptive approach, existing software development is observed in real life, and empirical

conclusions are abstracted from such analysis. In contrast, process models may be prescriptive,

so that a model derived from theoretical or abstract considerations is imposed on the software

development process. In practice, research is likely to move forward by a combination of these

approaches, and this reflects the description of maintenance models given in this chapter.

Cur ren t Models

The traditional life cycle model of software has always shown the software maintenance activity

as a single step at the end of the cycle. This model is summarised below (for more details see

section 2.3.3):

1. Requirements

2. Design

3. Implementation

56

4. Test

5. Installation and check-out

6. Operation and Maintenance

with possible feedback loops from each phase.

The model does not portray the system life; i t only shows the creation and development (or

youth) of a system. I t does not show the evolutionary development (or adulthood) that is the

characteristic of most software systems. The final step needs to be replaced by a model that

reflects this aspect of software evolution.

A number of authors have proposed models of the software maintenance process [154, 31, 234,

185, 163, 276, 189, 181, 14, 197]. The following is a summary of software maintenance tasks models

reported in the literature:

Boehm [31] outlines three major phases of a maintenance effort in his model:

1. understanding the existing software

2. modification of the existing software

3. revalidation of the modified software

The Martin-McClure model [163] is similar, consisting of three tasks:

1. program understanding

2. program modification

3. program revalidation

Parikh [185] has formulated a description of maintenance tasks that offers a very complete step

by step protocol which may be followed for a maintenance assignment:

1. identification of objectives

57

2. understanding the software

3. modification of the code

4. validation of the modified program

Sharpley [234] highlights more directly the process of correcting errors in existing systems:

1. problem verification

2. problem diagnosis

3. reprogramming

4. baseline verification/re verification

Yau [276] focuses his model on software stability through analysis of the ripple effect of software

changes. The five major activities of this model are:

1. determining the maintenance objective

2. understanding the program

3. generating a maintenance change proposal

4. accounting for the ripple-effect

5. regression testing the program

The Patkow model [189] concentrates on the front-end maintenance activities of specifying the

maintenance requirements. It consists of five generalised steps:

1. identifications and specification of the maintenance requirements

2. diagnosis and change localisation

3. design of the modification

4. implementation of the modification

58

5. validation of the new system

The two first steps depend on the software maintenance activities (either perfective, adaptive or

corrective).

Osborne [181] identified a model with more comprehensive phases:

1. determination of need for change

2. submission of change request

3. requirements analysis

4. approval/rejection of change request

5. scheduling of task

6. design analysis

7. design review

8. code changes and their debugging

9. review of proposed code changes

10. testing

11. update documentation

12. standards audit

13. installation

14. user acceptance

15. post installation review of changes

16. completion of task

Osborne points out that although the processes are presented in a linear fashion there are

a number of iterative steps involved within the model itself. For example, the results of the

59

design review may necessitate additional design analysis or even modification to the original change

request. Rapid prototyping can easily be applied to such models.

The maintenance models described here do not incorporates metrics explicitly as a method for

assessing and controlling change. The use of software metrics has been successfully applied to the

problem of software maintenance [123]. Methods based on metrics can facilitate maintenance tasks,

improve the quality of the results and predict the need for further maintenance effort [266, 147].

Rombach and Ulery [216] propose a method of software maintenance improvement by focusing the

goal, question and specific measurements associated with activities in the context of a software

maintenance organisation. The paradigm (goal/question/metrics) is based on the principle that

effective measurement procedures should be derived with a top-down approach from goal. It suggest

that the measurement needs to start with a precise specification of the goals, continue with the

refinement of each goal into a set of quantifiable questions, and end with a derivation of a set

of metrics. However, their method do not specify a framework for metrics that supports impact

analysis in the software maintenance process.

Pfleeger [197] describes a. model for the software maintenance process that depict where and

how metrics can be used to manage maintenance. The management of maintenance controls the

sequence of the different activities (with a number of iterative steps) by receiving feedback with

metrics and determining the next appropriate activity. The major activities are:

1. change request

2. analyse software change impact (impact/scope, traceability)

3. understand software under change (complexity, volume, documentation)

4. implement maintenance change (adaptability)

5. account for ripple effect (stability)

6. retest affected software (testability, verifiability)

The analysis and monitoring of the impact of change coupled with feedback and metrics, allows

management to confirm if the change meets the requirements, does not degrade the maintainability

and is being implemented in the best way.

60

Reques t -Dr iven M o d e l

Elements from these models can by combined to produce a task model that describes in detail

the activities that take place during maintenance. This model is a Request D r i v e n M o d e l that

attempts to portray the activities of software maintenance as dictated by users' requests for change.

The model consists of three major processes [23] called :

1. Request Control

2. Change Control

3. Release Control

It should be noted that the word Control has been deliberately used at the end of each process

name to imply that the model will not work effectively without strict control from management of

all the activities that take place.

The activities that take place in each of these process are now described :

1. Request Control

The major activities are :

o collect information about each request

a set up mechanisms to categorise requests

e use impact analysis to evaluate each request in terms of cost/benefit

© assign a, priority to each request

This initial step of collection should be carried out by a ' Help Desk' manned by staff who will

not be directly involved with the technical process of satisfying the request. I t is preferable

if the Help Desk is staffed by highly skilled Systems Analysts; such people can also distin­

guish genuine user change requests from queries arising from the misunderstanding of user

documentation etc.

2. Change Control

The activities during the change control process are :

61

o select from top of priority list

o reproduce the problem (if there is one)

o analysis of code, documentation and specifications

o design changes and tests

o quality assurance

3. Release Control

The activities are :

o release determination

o build a new release

- edit source

- archival and configuration management

- quality assurance

o confidence testing

o distribution

o acceptance testing

3.4.3 S o f t w a r e M a i n t e n a n c e M o d e l f o r Aerospace Sys tems

The different task models outlined in the previous section do not reflect the requirements for

Aerospace systems because their products usually have only one customer, they use higher level

languages like Ada, C and Fortran instead of Cobol and the staff is more skilled than for business

application; they sometimes need to do some quick fix for maintenance because of the criticity of

systems and they apply Aerospace system.standards (and also see section 5.3).

The models from Liu, Boehm and Osborne [154, 31, 181] do hot give any details of the different

tasks. Sharpley's task model [234] is only dedicated to corrective maintenance and there is no

information on retesting.: Pariklv, Yau, Pfleegef [185, 27(3, 197] are general task models.

Patkow's model [189] is very interesting because of its generalised model and its refined versions

for the different maintenance activities, but does not mention the need to check for the effects of a

change on those portions of a program that were not actually modified.

The Request-driven model [20, 23] is dedicated to companies with many customers and for

business applications.

Thus, for Aerospace systems, the following general model for software maintenance tasks is

proposed:

1. Identification of need for modification

2. Program comprehension and localisation of modification

3. Design of the modification and impact analysis

4. Implementation of modification

5. Revalidation

with software configuration management and quality assurance

This general task model can be refined for the different software maintenance activities: cor­

rective, perfective, adaptive and preventive.

1. Iden t i f i ca t ion o f need fo r modi f i ca t ion

• Corrective Maintenance

This activity starts when anomalous behaviour is observed to have occurred within the

system and as a result an anomaly report is issued by the operations staff. The nec­

essary maintenance action is then carried out by the maintenance staff [242]. The cur­

rent request with the previous maintenance requests is compared in order to determine

similarities. The task of identification is to reproduce fault situations, verify reported

problems and specify correct operation of the system. This task requires test data and

environment simulator (see section 6.9.3).

e Perfective Maintenance

Identification of a deficiency in functionality and specification of desired functionality.

Identification of new or altered requirements and the specification of the operation of

evolutive system. A modification request is issued.

63

o Adaptive Maintenance

Identification of a change in the processing or data environment, describe the change

and the revised specifications to reflect i t . A problem report is issued.

o Preventive Maintenance

Identification of deficiency in maintainability or quality standard and specification of the

desired quality standard. A problem report is issued.

All Anomaly reports, problem reports or modification request are submitted to the Configura­

tion Control Board (CCB) consisting of representatives from the maintenance team, quality,

configuration management and project management teams. The CCB has to approve on a

reported problem. If approved, a Software Change Request(SCR) is issued internally.

Program comprehension and localisation of modification

o Corrective Maintenance

Localisation of the part of the system which is responsible for the error. The diagnosis of

errors in a large system is often the most difficult and time consuming task in corrective

maintenance [234]. An anomaly diagnosis is carried out to identify the failed component

or module. Then, the failed items are identified, an analysis of the problem is carried out

to determine the cause of the failure and the form of corrective modification required.

Maintenance tools:

- code analyser (see section 4.2.1.-1 and A. 1.1)

- code visualisation (see section 4.2.1.-2 and A. 1.2)

- debugger (see section 4.2.1.-5 and A.1.5)

- cross referencer (see section 4.2.1.-3 and A.1.3).

o Perfective Maintenance

Localisation of the source of the deficiency or of the existing software elements which are

affected by the new requirements (requirements, specification, design, code, test data).

The maintainer has to find where the resources were excessively consumed in order to

make an optimisation.

Maintenance tools:

- code analyser (see section 4.2.1.-1 and A.1.1)

- code visualisation (see section 4.2.1.-2 and A.1.2)

64

- debugger (see section 4.2.1.-5 and A.1.5)

- cross referencer (see section 4.2.1.-3 and A.1.3)

o Adaptive Maintenance

Localisation of all software elements affected by the change. When there is a change

in the data environment, the maintainer must find the parts of the system that use or

set the data that is being changed. It is necessary to have some knowledge of what the

system inputs and outputs are, where they are used, and what their properties are. This

knowledge can be kept in a data dictionary.

Maintenance tools:

- code analyser (see section 4.2.1.-1 and A. 1.1)

- code visualisation (see section 4.2.1.-2 and A.1.2)

- debugger (see section 4.2.1.-5 and A.1.5)

- cross referencer (see section 4.2.1.-3 and A.1.3).

• Preventive Maintenance

Localisation of the existing elements which a.re concerned with the modification request.

The maintainer has to to locate the part of the software where there is a lack of main­

tainability.

Maintenance tools:

- code analyser, quality analyser (see section 4.2.1.-1 and A.1.1)

- code visualisation (see section 4.2.1.-2 and A.1.2)

- debugger (see section 4.2.1.-5 and A.1.5)

- cross referencer (see section 4.2.1.-3 and A. 1.3)

For more details on program comprehension and fault localisation see also section 4.3.1. and

4.3.2.

Design of the modification and impact analysis

This task decides what the correct properties should be, how these properties are to be

established, and determines the extend of any ripple-effect.

The impact analysis evaluates the effects of a proposed change. This activity determines

whether the change can be made without adversely affecting the rest of the software. Deter­

mining the impact of the change is an evaluation of the number and size of system artifacts

65

that will be affected by the change. Traceability suggests the connectivity of the relevant

workproducts and whether traceability can be established once the proposed change is made.

If the impact is too large, or if the traceability is severely hampered by the change, manage­

ment may choose at this point not to implement the change.

The design of modification requires an examination of the side-effects of changes. Depen­

dencies are easier to establish when properties are stated explicitly, and are traceable in the

design and code. Components can be troublesome if they are complex, or highly coupled to

other parts of the system.

In this phase, the problem severity is evaluated, a proposed modification is carried out on a

feasibility study, an estimation of the modification cost made and the side-effects minimized.

This involves a search through the specification, design, code, test suites, documentation ...

within the changed module and continuing to all other modules which share global variables

or common routines with the changed module. Also, only one module should be changed at

a time and the potential ripple effects of each change should be determined before changing

the next module in sequence.

Maintenance tools:

o test coverage monitor (see section 4.2.3.-1 and A.3.1)

o test regression testing (see section 4.2.3.-2 and A.3.2)

o test impact analysis (see section 4.3.3. and B.3

o test ripple effect analyser (see section 4.3.3.-2 and B.3.2)

o test modification cost

This phase ends with acceptance/ rejection of the proposed modification by the CCB.

4. Implementation of Modification

Implementation of all the modifications identified in the impact analysis phase. The mainte­

nance tools that can be used are the same as the previous phase, but for preventive mainte­

nance we need to use reverse engineering tools (see section 4.2.2. and A.2).

5. Revalidation

This phase is to ensure the reliability of the modified system. The process of revalidating a

program [163] consists of system testing, regression testing (test of unmodified portions), and

66

change testing (test of modified portions). The original test cases and test data should be

utilised as much as possible.

o Change testing: testing the modified portions of the program to determine i f the change

was designed and implemented correctly.

o Regression testing: testing the unmodified portions of the program to determine i f those

areas s t i l l operate correctly.

6 System testing: testing to be ascertain that the entire system as a whole is s t i l l operating

correctly.

Furthermore, for perfective maintenance, there is a need to compare the performance before

and after modif ica t ion or to test the validation of the new or altered requirements.

Maintenance tools:

o test coverage analyser (see section 4.2.3.-2 and A.3.1)

o regression testing (see section 4.2.3.-1 a.nd A.3.2)

The software maintenance process ends after the user has accepted the modif ied system and all

documentation has been satisfactorily updated.

I f a severe error exists (e.g. a cri t ical system cannot func t ion) , maintenance staff are immediately

assigned to the software maintenance process and some of the maintenance tasks can be shortened.

O t h e r A c t i v i t i e s

Other activities are performed in parallel w i t h the software maintenance process:

1. So f tware conf igurat ion management

The prel iminary objective of the software configuration management [181], generally referred

to as the management of software modif ica t ion , is the release of operationally-correct, and

cost-effective software. S C M is an integrated set of four subdisciplines:

(a) Software Configurat ion Identif icat ion is the def ini t ion of the different baselines and asso­

ciated components of a system, and any change made to these components and baselines.

(b) Software Configurat ion Control is the control procedures for making changes to compo­

nents and baselines.

67

(c) Software Configurat ion Status Accounting is the provision of an administrat ive history

of the evolution of a software system.

(d) Software Configurat ion A u d i t determines whether or not baselines meet their require­

ments.

S C M helps to ensure that software change satisfies specified requirements and change criteria.

S C M also should provide record retention, disaster recovery, l ib rary activit ies, a software

repository, and ensures that the necessary coordination and approval are obtained prior to

changing the baseline. S C M helps to track all actions associated w i t h problem reports or

change requests.

Maintenance tool: Software configuration management (see section 4.2.4. and A.4.1) .

2. Q u a l i t y A s s u r a n c e

Software quali ty assurance is an act iv i ty that is applied throughout the software life cycle. I t

encompasses [198]:

o analysis, design, coding, and testing methods and tools.

o formal technical reviews that are applied during each phase of the software life-cycle,

o control of software documentation and the changes made to i t

o a procedure to assure compliance wi th software development and maintenance standards

(when applicable),

o measurement and report ing mechanism.

I t is essential that all change considered for a system are formal ly requested in wr i t i ng . The

analysis of the complexity of the software and the relationship between products is essential

to determine whether the overall mainta inabi l i ty of the system w i l l enhanced or degraded by

the modif ica t ion.

I f the Configurat ion Control Board is unhappy w i t h the likely degradation of these system

characteristics, the desirability for the change may be reassessed or the way in which the

change is to be implemented may be reevaluated.

The mainta inabi l i ty measures give management and customer an idea of the likely overall

quality of the resulting product . By moni tor ing product quali ty w i t h each change, the software

maintenance process model can be used to increase overall quali ty and enhance maintenance

product iv i ty .

68

The most fo rmal maintenance review occurs at the conclusion of revalidation and is called

configuration review. The configuration review ensure that all elements of the software con­

figuration are complete, understandable, and filed for change control. D u r i n g development,

main ta inabi l i ty reviews should be conducted repeatedly as each step in the software engineer­

ing process is completed. Maintenance tools: quali ty analyser (see section 4.2.1.-1 and A.1.1) .

3. M a i n t e n a n c e repos i tory

I t is essential that a. maintenance repository that store informat ion associated wi th each

project throughout the project life cycle is established and preferably computer-based that

w i l l contain:

o all change requests

o progress of change

o modif ica t ion impact list

o list of known errors and omissions

o test database

o hardware and software history

e review reports

e system configuration data

a revalidation data.

Q rel iabil i ty data

Maintenance Tool : Product Management (see section 4.2.4. and A.4 .7) .

3.4 .4 T e c h n i c a l I n f o r m a t i o n for M a i n t e n a n c e S t a f f

Informat ion for maintenance can be collected from a number of sources, including the source code,

internal documentat ion, external documentation, the system developers, and any body else who

happens to know about the system.

The previous section has described the maintenance tasks through different software mainte­

nance models and this leads to ident i fy the technical informat ion necessary to perform effectively

software maintenance [189, 53]:

69

1. R e q u i r e m e n t s i n f o r m a t i o n :

I t is impor tan t that both the funct ional and performance requirements for the existing system

be known and understood so that they can be preserved dur ing the modif icat ion process.

A sufficient understanding of the application area should be provided which includes the

perceived needs and desires of the end users.

The addi t ional requirements planned or anticipated but not implemented should be identified.

2. S p e c i f i c a t i o n i n f o r m a t i o n :

Maintenance staff need to have knowledge of both high and low level system behaviour which

includes what a. system does and how i t does i t and why the user wants the system to do this.

The funct ional specifications should be organised in a manner that they can explain the

relationship and interactions between functions.

The method used for the specification phase and the way to mod i fy i t should be explained.

3. A r c h i t e c t u r a l a n d l o w leve l des ign i n f o r m a t i o n :

Design principles and decisions should be understood. This includes why certain design al­

ternative were chosen and others were disregarded. Maintenance personnel need to have

knowledge of all algorithms that are used regardless of their complexity. Coding style, stan­

dards and other implementat ion convention should be understood.

4. P r o c e s s i n g e n v i r o n m e n t i n f o r m a t i o n :

The interactions w i t h i n the to ta l processing environment need to be known. This includes

resource requirements such as the hardware and support software.

5. D e c l a r a t i o n , c o n t r o l a n d d a t a flow i n f o r m a t i o n :

A t the source code level, a maintainer must have knowledge of a program's control flow, its

invocation hierarchy, data flow, data aliasing, loop terminat ion conditions, entry and exit

assertions for all procedures (funct ions) , and all over syntactic elements which contributes to

an understanding of a program's run t ime behaviour. A maintainer must also have knowledge

of the declaration informat ion for all data object in a program.

6. T r a c e a b i l i t y b e t w e e n l i f e - c y c l e p r o d u c t s :

Knowledge of the funct ional and performance requirements of a system should ideally allow a

maintainer to relate what the system does wi th the various software components that causes

i t to func t ion .

70

This implies traceability f r o m the specification to the design and source code. Furthermore,

knowledge of software requirements should contain an understanding of the relationship and

interaction between different software functions.

7. Tes t e n v i r o n m e n t in format ion:

Comprehensive knowledge of diagnostic and regression tests must be available as well as an

understanding of how to use them. This w i l l include available test cases, expected results

and a test case history.

8. D o c u m e n t organisat ion in format ion:

The maintainer should also understand how the specification, design, test cases, etc are or­

ganised, this w i l l allow quick localisation of items of interest rather than unnecessary lengthy

searches through documentation. I t is impor tan t that the maintainer has access to the appro­

priate level of detail at any point in t ime. I f there is a document dedicated to maintenance,

i t should be stored in a database based on hypertext technology in order easily to browse in

the documentat ion.

9. A n t i c i p a t e d features for enhancement :

The maintainer should have knowledge of anticipated addi t ional features tha t have not yet

been implemented. This would avoid redundant effort spent in re th inking requirements anal­

ysis and design.

3 .4 .5 C o n c l u s i o n

In this section, software maintenance tasks model have been surveyed and a model for software

maintenance of Aerospace systems proposed wi th useful proposed tools at the different phases. This

model is described wi th the different tasks e.g. identif icat ion of need for modif ica t ion , program

comprehension and localisation of modif ica t ion, design of the modif icat ion and impact analysis,

implementat ion of modif icat ion and revalidation along wi th software configuration and quality

assurance. The use of software metrics applied to maintenance has been emphasised to facili tate

maintenance tasks, improve the quali ty of the results and predict the need for fur ther efforts. The

technical in fo rmat ion to carry out maintenance has been presented.

71

3.5 Summary

This chapter has presented a report on software maintenance best practice based on an analytical

approach of the software maintenance process and addressed at three different levels: organisa­

t iona l , managerial and technical in order to define the best method for maintenance. The senior

management should be involved to define the maintenance strategy according to the overall one of

the company. The maintenance act iv i ty should be seen as a product support organisation. The

improved software maintenance process should be planned, monitored and controlled wi th appro­

priate tools. The maintenance department should be managed in an efficient manner in order to

increase its efficiency, product iv i ty and the motivat ion of the maintenance staff. A model for the

software maintenance tasks dedicated to Aerospace systems has been presented and the importance

of data collection and software metrics emphasised.

Now, we shall define and survey the maintenance tools available to perform maintenance and

the on-going research projects and prototypes.

Chapter 4

lo f tware Maieteeairice Tools

4.1 In t roduct ion

Several surveys on software maintenance tools have been reported. The General Service A d m i n ­

istration's Office of Software Development and Informat ion Technology (GSA) devised software

maintenance tools in to eleven categories and brought them together i n what is termed a Program­

mer's Workbench(PWB) [243]. The P W B is specifically oriented to Cobol applications on I B M

architectures. The Software Maintenance News surveyed Software Maintenance Tools i n 1989 [244].

These are dedicated both to scientific and business applications.

The objective of this chapter is to present a survey on commercially available tools and pro­

totypes that can be useful for the software maintenance process. The scope of the survey is to

discuss software tools which can be used in the maintenance of scientific or real-time systems. This

survey is not exhaustive but the tools listed are meant to be representative of the techniques that

are currently commercially available. W i t h the prototypes and research projects in progress, i t w i l l

be easier to outline the research trends in order to make better and more efficient tools.

The in fo rmat ion on tools was obtained in our survey f r o m several sources including product

descriptions f r o m tool vendors, earlier survey articles [273, 180, 251, 243, 244], conference pa­

pers [111, 112, 113, 114, 115], and research papers.

73

This chapter is divided into two parts:

1. Commercially available tools

2. Prototypes and research projects

Further comprehensive details of tools and prototypes are given in Appendix A and B .

4.2 Commercially Available Tools

In this section, commercial tools are classified into four categories: tools that are useful for program

comprehension, reverse engineering, testing and maintenance management.

4.2.1 T o o l s for P r o g r a m C o m p r e h e n s i o n

Program comprehension is the most expensive phase of the software life cycle [246] and i t is sug­

gested tha t 40 % of the maintenance effort is spent in t ry ing to understand how the existing software

works. I t seems worthwhile then to investigate tools and techniques to reduce these costs and then

a significant saving can be made.

Code Analysis is used for examining a piece of program code, and is used for determining the

dependencies between different entities and analysing the usage of entities. Different techniques

are used:

o data flow analysis examines the piece of program code in order to determine i f there are any

anomalous use of variables w i t h i n that code.

o program slicing is a f o r m of program decomposition based on control flow and data flow

analysis in coherent, modules.

o call graphs is a directed graph that represents the dynamic relations between routines and

calls. This technique make use of control flow graphs in order to per form the desired analysis.

74

o program transformation systems systems are systems that t ransform a program into a pro­

gram structural ly different but logically equivalent. Program transformation tools are divided

into res t ruc tures and formal transformations.

Many tools can be useful in support ing program comprehension at the code level e.g. code anal­

yser, code visualisation, cross referencer, source code comparer and execution mon i to r / debugger.

We shall now investigate these in more details.

1. S t a t i c C o d e a n a l y s e r

Static analysers include tools that analyse a program's control structure data flow. By static,

we mean that the program itself is not executed and therefore its run- t ime behaviour is not

executed.

V A X SCA, ISAS and F-SCAN are common static code analysers (for fu r the r details see

Appendix A) :

(a) V A X SCA provides facilities such as logic tracing, data flow tracing, and consistency

analysis as well as a cross referencer

(b) ISAS reports and charts procedure hierarchy, data references, control f low, system struc­

ture

(c) F-SCAN provides structure charts, Ca l l /Vca l led tables, Set/Used tables, and diagrams

of Common.

(d) M A L P A S [250] provides control f low, data use, in format ion flow, par t ia l programmer,

semantic and compliance Analyser.

A C T , B A T T L E M A P and L O G I S C O P E also calculate software complexity metrics that are

useful for quali ty assurance.

(a) A C T [165] is driven by and analyses source code, producing a graphical representation

of module structure, and also calculates the McCabe cyclomatic complexity metric and

generates the basis set of test paths that should be exercised for each module w i t h i n the

source code.

(b) B A T T L E M A P [165] allows the user productively to reverse engineer large existing sys­

tems by providing a comprehensive, visual understanding of the entire program structure

along w i t h its quality attr ibutes .

75

(c) L O G I S C O P E [169] shows the internal logic structure of each module of code, as well as

the s t ructural relationships of all the modules.

The results provided by the Complexity Analyser are:

o quanti tat ive wi th Halstead, McCabe and Mohanty metrics;

o quali tative w i t h control graphs, call graphs, cri teria graphs and K i v i a t diagrams;

L O G I S C O P E is a very useful tool for Quali ty Assurance w i t h the software complexity

analyser.

C o d e v i sua l i sa t ion

Code visualisation[180] is a tool to help the maiutainers analyse and understand the code

through a powerful man machine interface. Whi le all these tools show how a program is

structured, they use different means to achieve different ends.

(a) O B J E C T I V E - C Browser [180] uses a. windowing approach that displays hierarchical and

funct ional informat ion about code object in C or Objective-C.

I t provides three types of informat ion about the source code:

o the contents

o available cross-referencing data

o source code contents w i th respect to the inheritance hierarchy.

(b) V I F O R [202] on the other hand, takes a different approach for F O R T R A N visualisation.

The browser has a graphical interface that allows the user to select, move, and zoom into

icons representing parts of the program. As such, i t gives a graphical edit ing capability.

(c) SEELA [98] takes yet another approach to visualisation by using Reverse Engineering. I t

converts code into a program design language and lets the user edit the structure chart,

cut and paste to and f rom the code, and generate high-level documentation describing

the code structure. Thus, i t gives and logical path between code and its corresponding

design language.

Unlike S E E L A , which works wi th many languages,

(d) G R A S P / A D A [180] is an example of a comprehension tool tailored to specific language.

This tool builds graphical control-structure diagrams tha t high-light the control paths

in and among A d a tasks.

76

(e) A C T and B A T T L E M A P [165] take an entirely different approach to visualisation control

path in graphs of all control paths in order easily to produce the control flow and

corresponding complexity.

(f) EDSA [265] uses program slicing for collapsing and depicting large amounts of code in

a small window.

3. C r o s s re ferencer

These tools trace the use of data elements, named paragraphs, and/or procedures through a

program. Object references are usually identif ied by source statement numbers. Associated

w i t h the statement numbers may be addit ional informat ion such as the type of statement

involved (move, assignment, condit ional , etc) or perhaps a copy of the statement itself. These

tools w i l l ident i fy all occurrences of data names, words or literals w i t h i n a program. I t is a

useful tool for navigating around source code.

Cross referencers w i l l typical ly:

a ident i fy and trace data element modif ica t ion , branch logic and program calls

s generate graphic record layouts visually to communicate data structures and formats

Cross referencers output is typically either a printed report or an on-line display.

Examples of commercial cross-referencers e.g. A D P L , Autoref , BPA, CICS-OLFTJ ... are

given in Appendix A .

Cross-referencers are very common maintenance tools usually used w i t h interface analysers

and code analysers in order to understand the source code.

4. Source C o d e C o m p a r i s o n

These tools are designed to help programmers quickly ident i fy changes between program code

versions.

ISAS, Matchbook, S/Compare, Text Comparator detect and highlight differences between two

or more files including additions, deletions and in some tools, moves. Source code comparison

can be a significant aid in determining the rat ional for previous undocumented maintenance

and should be included in version control.

5. E x e c u t i o n M o n i t o r i n g / D e b u g g i n g

This group of tools allows the programmer interactively to monitor and manipulate the

progress of a program as i t executes, hi doing so, the maintainer can direct ly examine the

behaviour of a program and the efFects of various inputs. I t is impor tan t to distinguish

between the terms faul t localisation, fault repair, and debugging. Myers defines debugging

as:

The act iv i ty that one performs after executing a successful test case (successful in

a term that i t found an error).

Describing i t in a more concrete terms, debugging is a two part process; i t begins w i t h some

indicat ion of the existence of an error (e.g. the result of a successful test case), and i t is the

ac t iv i ty of:

(a) determining the exact nature and location of the suspected error w i t h i n the program.

(b) f i x ing or repairing the error [174].

Thus debugging entails both fault localisation and repair.

Ducasse and Emde [74] review 18 existing automated systems on program debugging and a

dozen cognitive studies on debugging. A large subset of the fo l lowing are related to the tu­

tor ing task (TPA [220], Pudsy [157], Laura [2], Phenarete [270], Proust [116, 118], Talus [173],

Apropos [156]).

Another group is composed of general purpose debugging systems (Sniffer [232], K r a u t [37],

Focus [159], Falosy [228]).

A l l the other systems are enhanced Prolog tracers (P T P [76], Preset [258], Op ium [233]).

A part icular group of enhanced Prolog tracers is made out of the systems fol lowing the

trend established by Shapiro in Algor i thmic Program Debugging [233] (R D [191], D E D [155],

EDS [84]).

The table No 4.1 summarises the result of their study.

The debugging knowledge types that have been identif ied are:

o knowledge of the indented program (intended I / O , Behavior, Implementat ion) ,

o knowledge of the actual program (intended I / O , Behavior, Implementat ion) ,

o understanding of the programming language (Lan) .

o general programming expertise (Pro) .

78

o knowledge of the application domain (Dom) .

o knowledge of the errors (Bug) ,

o knowledge on debugging methods.

and the classification of global debugging strategies are:

(a) filtering.

o tracing algorithms,

o tracing scenarios,

o path rules,

o s l ic ing/dicing.

(b) checking computat ional equivalence of intended program and actual one.

o a lgor i thm recognition,

o program transformation.

© assertions..

(c) checking the well-formedness of actual program

e language consistency checking,

o plan recognition.

(d) recognising stereotyped errors.

e error cliche recognition.

79

Debuggers K N O W L E D G E of Strategies

Intended Actua l

I / O Beh I m p I / O Beh Imp Lan Pro Dom Bugs

Focus * * a

Pudsy * * * * * b

Phenarete * * * c

Talus * * * * * b

Laura * * * b

I PA * * * b - f d

Proust * * * * * b + d

Apropos * * * * * * * a + b + c + d

Falosy * * * * * * * a-f c-f d

Sniffer * * * * * * a + d

Preset * * * a+c

PTP * * * a-t-d

A P D * * * a

EDS * * * a

D E D * * * a

RD * * * a

Krau t * * a

Opium * a

T a b l e N o 4.1: K n o w l e d g e a n d Stra tegy S u m m a r y [74]

4 .2 .2 T o o l s for R e v e r s e E n g i n e e r i n g

Reverse Engineering tools are used to provide better program comprehension when the code is un­

structured, poorly wr i t ten or documented, or when system requirements or design are unavailable.

Chikofsky and Cross [46] defined reverse engineering as:

The process of analysing a subject system to identify the system's components and their

80

inter-relationships, and to create representations of the system in another f o r m or at a

higher level of abstraction.

Different techniques are used at different level of abstraction.

1. R e s t r u c t u r e r

Rest ruc tures accept unstructured code as input and produce a s tructured program

w i t h the same funct ional i ty as ou tpu t . Restructuring is the t ransformat ion f rom

one representation to another at the same level of abstraction. I f a system is old ,

poorly documented and poorly s tructured, i t might be possible [135] to restructure

i t possibly incrementaly. This can take much effor t , and might be wor th while

only i f the system is expected to be maintained for several years. Some problems

w i t h automatic restructurer have been identif ied by Calliss [38]. For example the

amount of code produced by a restructurer is usually greater than the original

program, and many of the restructuring algorithms make use of state variables

which the restructurer adds to the program.

2. R e f o r m a t t e r

Reformatters improve the format of a source file for easier reading. Tools in this

category are also known as pretty-printers, and as such wi l l layout source code in

a standard format . They transform old, large, or poorly wr i t t en or documented

programs into standardised formats that are more readily and easily maintained.

Example are given in Appendix A .

3. Re -eng ineer ing

Reengineering is the examination and al terat ion of a subject system to reconstitute

i t in a new form and the subsequent implementat ion of the new fo rm.

Here is an example of a set of software re-engineering tools:

B A L / S R W [133] helps to recover the design of an assembly language program.

This is achieved through a series of abstractions, which effectively collapse program

func t iona l i ty in to progressively higher level concepts. The program is analysed and

its internal representation is created in the knowledge base. In order to learn about

the program logic the analyst can

e Search for programming patterns present in the program and replace them

w i t h natural or formal language sentences in order to make the code more

understandable.

81

o Navigate through both the source code and control f low view of the program.

o Simpl i fy the program automatically by recognising control flow patterns, iden­

t i f y i n g subroutines and unreachable sections of the code, and by hiding selected

control flow paths upon specified conditions.

o Simpl i fy the program manually by subst i tut ing analyst defined comments for

program sections.

4. R e v e r s e E n g i n e e r i n g

Reverse Engineering [273] involves the identif ication or 'recovery' of program re­

quirements and/or design specifications that can aid in understanding the program

to modi fy i t .

Dur ing maintenance, the maintainer needs to develop a. level of program compre­

hension commensurate w i t h the task in hand. When this necessitates the recovery

of lost or otherwise unavailable informat ion concerning system requirements and/or

design, i t involves a complex cognitive process called Reverse Engineering.

(a) P R O D O C [225] is well suited for renovating existing systems. I t uses F L O W -

forms to represent systems at arbi t rary levels of abstraction in a highly inter­

active visual environment. Among other things:

o the use of F L O W f o r m s helps eliminate representational inconsistencies and

awkward transitions'between analysis and design,

o high leveldesigns can be translated automatically in to any o f the languages

supported by P R O D O C .

o existing source code can be reverse-engineered.

o P R O D O C can convert code f rom an old environment to news one wi th its

abi l i ty automat ica l ly , to translate between pseudocode languages.

(b) The Software Refinery [180] is a family of products.for bui ld ing automated soft­

ware processing tools . that take source code as input and/or produce source

code as output . Software refinery includes three products: R E F I N E , D I ­

A L E C T , and I N T E R S T A .

'a R E F I N E is a programming environment for bui ld ing software analysis and

t ransformat ion tools, ll.s features a very high level executable specification

language, a specification language "compiler, an object oriented database,

a customized editor, interface, and tracing and debugging tools. This tool

translates source languages into a specifications language (PSL/PSA).

This tool converts (using reverse engineering) code into program design

language and lets the maintainers edit the structure chart , cut and paste

to and from the code, and generate high-level documentation describing

the code structure. Thus, it gives an electronic path between code and its

corresponding design language,

o DIALECT is a tool that generates programming language parsers and

printers from grammars. I t includes a. high level language for specifying

language, a specifying grammars and a grammar compiler,

o INTER VISTA is a toolkit for building graphical interfaces to Software Re­

finery applications. It provides windows, diagrams, menus, and hypertext.

Software refinery analyses and translates software in the programming lan­

guage that need to be used.

.2.3 Tools f o r T e s t i n g

1. Regression Test ing

Regression testing [252] verifies that only desired output changes occur from mod­

ified programs. Ideally, with each required change, all test cases should be re-

executed and the results re-evaluated from unit level through system level testing.

However, schedule and resources constraints almost always prevent this from oc­

curring when modifying large software systems.

Regression testing tools execute various test cases using prerecorded keystroke

inputs and then compare actual results of the current test session with expected

results. These tools [251] are characterised by the high level capabilities of capture,

replay, and compare.

e Capture is the capability of recording the input (scripts) and outputs (bench­

marks) of a. test session. Typically, inputs consist of keyboard inputs and

outputs consist of terminal screen displays. Text editors create and modify

script files or test drivers for some regression tools.

o Replay is the capability of reissuing prerecorded inputs (playing back the

script). This ensure that test case inputs are the same as in previous tests

and minimize the tedious, error-prone procedures that must be executed.

o Compare is the capability of determining that the actual results of the current

test session are the same as those previous test session (benchmarks). This

allows the tester to focus his attention on resolving discrepancies instead of

locating the discrepancies.

Different regression testing tools are reported in [252] and each of them provides

one, two or three of the regression testing characteristics:

o Capture regression testing tools.

(a) 'Bloodhound' [252] captures an unlimited number of keystrokes and screens

in text mode. Screen images can be automatically captured whenever the

screen scrolls. Screens can also be captured at arbitrary points in the user

program. Tests can be run after changes to see if any regressions have

occurred.

(b) 'VAX/Test Manager' [252] automates the regression testing of software.

T M runs user-supplied tests, and the results are automatically compared

to their expected results. Regression testing assures that changes have

not affected the previous execution of the software. T M operates both in

interactive and batch modes. It has a DEC windows interface which is

consistent with other window applications, making i t easy to learn.

o Capture-replay regression testing tools.

(a) AUTOMATOR [252] provides repetitive task automation. I t supports

regression testing by the recording of scrips and also the writing of scrips

in a scripting language. Performance testing is provided by a function that

records the screen, keyboard and internal lock, thus providing execution

data. AUTOMATOR has the ability to generate random tests given an

array of possible entries and combining them into new tests.

(b) 'CapBak' [252] captures keystroke sequences for automatic playback. Cap-

Bak includes screen-save capabilities, replay timing adjustments, and fa­

cilities to edit captured key-save files. Dynamic playback programming is

provided by the use of IF and WHILE clauses in the keysave files.

(c) CARBONCopy [252] is a terminal 1/0 capture program. Terminal keystrokes

are recorded to a file where they can be replayed, edited or printed.

(d) 'Check*Mate' [252] can perform individual tests of new functions using

84

keystrokes capture or manual coding depending on the complexity of the

test. By using keystroke capture, testing operations need to be performed

once; then they can be replayed to test the function again.

(e) 'Evalua.tor' [252] has a record mode where scripts are automatically recorded.

In replay or playback mode, Evaluator replays the recorded keystrokes

from the recording session. Playback mode can run unattended and save

the results to files. In programming mode scrips may be edited in the

TEST Control Language (TCL).

(f) TRAPS [252] is menu-driven and allows recording, editing and replay of

test scripts.

o Capture-replay-comparator regression testing tools.

(a) 'Autotester' [252] is capable of testing applications on PCs, minis, and

mainframe computers. The link is through asynchronous communication.

It records tests and allows easy editing and playback capabilities. Au­

totester supports a structure method that promotes test modularisation

and documentation. Procedures (scrips) may be used over and over again

to test similar functions that occur at different, times during a test session.

(b) DCATS [252] provides a. method of writing a test script and inputting

the expected results in order to record scripts. This script can then be

executed and the results compared to the expected results. Difference in

actual and expected outcomes are reported.

Test Coverage M o n i t o r

This group contains tools that monitor test case coverage and keep track of which

parts of a program are executed when a given set of test data is run. This involves

executing an 'instrumented' version of the program with the test data provided.

Test monitors can enhance a programmer's understanding of a program by identi­

fying the code segment associated with particular user oriented functions.

They address the following important aspects of program testing :

e preparation of test data.

© measurement of test data coverage.

They should :

e compile and run programs with all available test data.

85

o identify and report any logical decision path or executable statements within

the program that the test data fails to exercise.

W i t h the information from a, test coverage monitor, programmers can evaluate

areas of-a program , that requires further testing, and software quality assurance

personnel can make more accurate and reliable judgements of a program's readiness

for production implementation.

(a) IITS [208] is a test coverage monitor and a. regression testing tools. I t is

an utility system that can be integrated with the output of a programming

environment to test and validate the results of the development efforts. The

test; coverage analysis tool guides development of test suites, assess testing

progress, and aid error detection. The regression testing tool tests and retests

candidate systems' functionality.

(b) ISAS reports and charts procedure hierarchy, data references, control flow and

system structures.

(c) SMARTS [180] with EXDIFF execute, evaluate and report on thousands of

tests automatically. Both interactive and batch tests are scripted in easy to

maintain test files. SMARTS and EXDIFF, plus CAPBAK (see regression

testing tools), plus if necessary, a. 3270 emulation back end, forms a power­

ful system of tools for planning, executing, logging, and analysing complex

repetitive test suites.

"(d) TCAT [251] measures test thoroughness in terms of logical branchs, instead

of statement coverage that common profilers use.

4.2.4 T o o l s . f o r M a i n t e n a n c e Management . -

Two categories are identified to be useful for the management of maintenance: software

configuration management and product management.

1. Sof tware Conf igura t ion Management

The purpose of configuration management [250] is to ensure that, at all times, the

status of all versions of all development products is known and that the location of

all copies is known;41 is particularlyrequired-that the status of all shared objects

is carefully cont rolled .and tlia.tunauthorised.changes are prevented. In. addition,

customers standards may require that other records are maintained, for example,

detailed explanations of the reasons for changes in passing from one version to the

next.

The controlled intermediate products (baselines), and the milestones at which

they are established, form a vital unifying link between the control of the software

development process and the control of the software product. The status of, and

the access to, the intermediate products are strictly controlled but configuration

management also means that:

e only the controlled versions can be used as input to other activities

• any proposed changes to the baselines must be processed through the formal

change control procedures.

Existing configuration management tools range from simple tools such as Unix ver­

sion control to complete configuration management systems such as CCC, Lifespan,

and to integrated programming environments with software configuration manage­

ment support built in like DSEE [138, 139], Adele [?], Aspect and ISTAR.

Configuration management can be seen to have three main functions [250]:

• Version and Variant Control which identifies all relevant items and records

the history of their development through successive versions, permitting this

history to be used retrospectively and previous states of parts of the project

to be restored selectively. Version control is responsible for ensuring that all

items are reliably stored, so that this restoration is always possible. Effec­

tive version control is necessary to support all other configuration functions.

SCCS [211], CMS and RCS [261] are typical of simple change and version

control tools with the function to manage and control the changes made to

individual components.

• Configuration control which is concerned with the building of appropriately

structured systems from their constituent parts.

• Change control which is the operation of applying changes, with suitable au­

thorisation to establish new states though which the project passes. The

authorisation required to establish a change allows the continuous application

of quality assurance procedures throughout the project.

87

For more details of Software Configuration Management tools, see Appendix A

an d B.

2. P roduc t Management

As mention in Appendix A, three tools are commercially available for managing

maintenance products:

(a) SAHLIMK [115] is a comprehensive product administration system that tracks

changes to a product consisting of software, hardware, firmware, and/or doc­

uments, from its origination, through maintenance, delivery, and support. Its

integrated Modification Request (MR) and Configuration Management capa­

bilities make i t a unique tool for managers and product developers alike.

(b) RA-METRICS [115] and SMR [115] provide a. software metric repository. RA-

METRICS supports all of the management reporting metrics and it reports:

functional and technical quality, user satisfaction, defects counts, CASE/Tool

Usage, development and maintenance history, financial history and estima­

tion accuracy whereas the Software Metric Repository (SMR) is a menu and

mouse driven database featuring a 'point and Shot' user friendly interface.

The database incorporates the software metrics generated by PC-Metric as

well as Functions Points and project data. The browse and reporting capa­

bilities are encouraging to examine and analyse the raw data. PC-Metric is a

software metric generation package. I t analyses the source code and computes

numerous size and complexity metrics.

4.3 Prototypes and Research. Projects

Prototypes and research projects f d r maintenance are divided into four categories: pro­

gram comprehension, fault localisation, impact anaJysis and knowledge:ba.sed systems.

4 .3.1 P r o t o t y p e s f o r P r o g r a m C o m p r e h e n s i o n

In this section on prototypes for program comprehension, we give some examples that

usp code analysis and other techniques i i i older to comprehend the code.

(a)" ASAP (Ada Static Source Code Analyser.Program) is an automated tool for

static code analysis of program written in the ADA programming language.

The purpose of this analysis is to collect and store information e.g. compilation

unit's size, complexity, usage of ADA language constructs and features, and

static interface with other ADA compilation units.

Another example is the prototype ISMM for incremental static analysis of C

programs.

(b) The goal of ISMM is to demonstrate the feasibility and practicability of using

incremental static analysis to aid in the maintenance phase of the software

life cycle. ISMM [221, 222] consists of two modules: FREND, a front end

which parses the C source code and convert it into an annotated directed

graph representation of system calling structure, and BEND, a. back end which

performs both the incremental and exhaustive analysis.

(c) A prototype from IBM [49] combines a data base to store the program with a

display 'viewer' that allows a programmer easily to browse through it in many

ways to accumulate information for a maintenance task.

(d) MICROSCOPE [4] is an ambitious program analysis system using static and

dynamic analysis of Common Lisp and Common Objects. This prototype

permits different view of the source code and perform impact analysis, and

also records a browsing execution history in a knowledge base.

(e) PUNS [50] is a Program Understanding Support Environment that gives

multiple views of the program and a strategy for moving between views and

exploring views in depth. I t comprises two components, a repository and a

user interface.

(f) AEGIS is used to maintain very large Navy weapons control system using

the method to capture a large volume of data about the components of the

software in a data base that can be queried or from which reports can be

printed.

(g) SCORE/RM [52] provides a mechanism by which a maintainer can systemat­

ically work through the code and comprehend its purpose, produces a set of

documentation to reduce future learning curves and modify the code so that

it becomes easier to maintain.

(h) The University of Linz [224] has produce a prototype to helps programmers

understand object-oriented software systems written in C-f-f . It enables its

89

users to easily browse through the system based on the relations among its

classes, files and even identifiers.

4.3.2 Prototypes for F a u l t Local i sat ion

Error localisation [131] in program debugging is the process of identifying program

statements which cause incorrect behaviour. According to some researchers, the error

locating process represents 95 percent of the debugging [174]. Examples of debuggers

have been given in section 5. Currently, many techniques and tools are used to perform

fault localisation and' these methods can be classified as either knowledge-based or non-

knowledge-based. Knowledge-based fault localisation systems can be identified by their

autonomous behaviour. The system themselves interpret the information they generate

to localise faults; the information is not passed to a user for interpretation, as is the

case in a non-knowledge-based system.

(a) PROUST [118] is a knowledge-based fault localisation system designed to cre­

ate a framework sufficient to catch all possible errors in small programs. The

aim of PROUST is to understand the nature of the errors, state the errors, and

suggest a form of solution. To accomplish these objectives, the system requires

that the program be totally and correctly specified. The major limitations of

this system is that i t is extremely difficult to form such specifications even for

small programs, and there-is no way to guarantee the specifications are correct

or complete even after they have been stated.

(b) PTA [42] is a Knowledge-Based Program Testing Assistant developed by Chap­

man. As programs are developed and tested, a user can request that the sys­

tem automatically store the test cases for future use. When an error arises

in feature being-tested, the system in coordination with the user can request

that the appropriate saved test cases be rerun automatically -either before the

system has;been repaired jto aid in identifying the problem or after the system

has been repaired to ensure its correctness.-'In conjunction with this capability,

the PTA: lieuristically modifies the corresponding test cases when the source

code is changed. This preserves the ability of the system to .continue to use,,if

possible, previous test cases to perform "a type of automated regression testing

of the ,code .

90

(c) PELAS [131] is an error localisation assistant system which guides a program­

mer during debugging of Pascal programs. The system is interactive: i t queries

the programmer for the correctness of the program behaviour and uses answers

to focus the programmer's attention on an erroneous part of the program (it

can localise a faulty statement). This system uses the knowledge of program

structure represented by the dependence network used by the error locating

reasoning mechanism to guide the construction, evaluation and modification

of hypothesis of possible causes of the errors.

New techniques for fault localisation are currently being developed:

(a) Collofello and Cousin [63] developed a theory called relational path analy­

sis that suggest that there exists information associated with the execution

paths of programs which when analysed heuristically can produce statistically

significant fault localisation.

(b) Korel and Laski [132] presented a novel fault localisation algorithm that is

capable of identifying a. restricted class of programming faults for the Pascal

language. The algorithm uses the computation trajectory-based influence re­

lations to formulate hypotheses about the nature of the fault and user input is

needed to asses correctness of intermediate situation on the trajectory. As the

complexity and size of software systems continues to increase dramatically,

emphasis is needed on developing automated methods [54] to help perform

fault localisation an repair activities.

(c) Shahmehri [231] presented a semi-automatic error localisation method for Pas­

cal, Fortran or C with side-effects. They are using program slicing and a data

flow analysis technique to dynamically compute which parts of the program are

relevant for the search. A prototype error localisation has been implemented

in Pascal.

4.3.3 Prototypes for I m p a c t Analys i s

Impact analysis evaluates the effects of a. proposed change. This activity determines

whether the change can be made without adversely affecting the rest of the software.

Traceability suggests the connectivity of the relevant Software Configuration Items

91

(SCI) and whether traceability can be established once the proposed change is made.

The design of modification requires an examination of the side-effects of changes.

1. Traceabi l i ty

Some attempts have been reported at examining a change before its implemen­

tation. Some examples are given: Requirements traceability has been extended

beyond the traditional tracking of requirements to making predictions of the ef­

fects of changed requirements [201]. Honeywell's Requirements to Test Tracking

Systems (RTTS) tracks the Navy's documents specified by MIL-STD-1679. RTTS

creates, analyses, and maintains traceability links among life-cycle documents.

Other systems using traceability are: SOFTL1B, GENESIS, C M V T , NSE.

The maintenance process is viewed by Pfleeger [197] in terms of the software

workproduct as a graph of software life-cycle objects connected by horizontal and

vertical traceability. The former (dependencies analysis) addresses the relation­

ships among the parts of the workproduct. The later addresses the relationships

of these components across pairs of workproduct. Both types of traceability are

necessary to understand the complete set of relationships to be assumed during

impact analysis.

Vertical traceability has been addressed, but is still restricted to the source code.

(a) The University of West Florida [273] is building a dependency analysis tool

set with a dependency analyser and a tool for building comprehension tools.

The intent behind this tool is to provide a basis for determining program

dependencies (data flow, calling, functional and definitional), so by creating

the application specific front-end, the comprehension aid can be tailored.

(b) The University of Naples [47] is using reverse engineering and static code

analysis that enable the identification of the actual and potential intermodular

dataflow relationship.

Some software development environment have incorporate horizontal traceability

as part of their overall approach to development [197] e.g. ALICIA, SODOS [105,

106], PMBS, and DIF [176, 86].

(a) ALICIA addresses Software Life-cycle Objects (SLO) granularity using infor­

mation content rather than the entire documents. I t support completeness and

consistency checking of traceability relationships as well as navigation among

92

SLOs in the project database.

(b) SODOS supports the development and maintenance of software documenta­

tion. It manages SLO using an object-oriented model and a hypermedia graph

of relationships. The documents are defined in a declarative fashion using a

structural hierarchy, information content, and intra/inter document relation­

ships and navigation among SLOs.

(c) DIF is a hypertext-based documentation integration facility that provides a

mechanism for developing and maintaining software documentation with its

associated relationships. It enables visualisation of objects in the software

system, hierarchy charts of software objects, and display the dependencies of

related software objects.

2. Ripple-effects

Ripple effect is the phenomena by which changes to one program area have ten­

dencies to be felt in other program areas. Some examples are given:

(a) Arizona State University [54] have done research on a ripple effect analyser

and have implemented one in prototype environment.

(b) Surgeon's Assistant is a prototype from Gallagher that slices up programs, ex­

tract pertinent information, and displays data links and related characteristics

so the user can track the changes and influence on targeted structures. I t de­

livers semantic information and editing guidance to help the user to formulate

a maintenance solution with no undetected link to unmodified code, thereby

eliminating the need for regression testing.

(c) The Software Engineering Research Center [281] is producing a prototype

system for a reduced set of Ada, languages that has been implemented to

demonstrate the usefulness of logical ripple effect analysis.

4.3.4 Prototypes for Knowledge-based Systems in Maintenance

A Knowledge Based System contains large amounts of expert knowledge which can

be brought to bear on a given task. An expert system is a species of knowledge based

systems which has built into i t the knowledge and capability that will allow it to operate

at the expert practitioner's level.

A knowledge based system essentially consists of:

93

o a knowledge base containing facts, rules, heuristics, and procedural knowledge,

acquired and stored declaratively in a basical random order,

o an inference engine, which consists of reasoning, problem solving and research

strategies.

o a user interface for the dialog with the user.

o an explanation generator, which is a set of procedures dedicated to answering

such questions as why a goal was met, or how a set of assumptions might lead to

alternative conclusions.

There has been little reported work on the use of knowledge based systems in software

maintenance:

(a) Cross [64] described an Expert System approach to building an informa­

tion/maintenance tool for an existing target system of both hardware and

software components. The purpose of tool is to help the user identify the

components they seek and to automate the identification of the remaining

supporting components required. The tool uses its rules rules-based knowl­

edge and the user selections to identify the desired components and their

supporting components.

(b) Pan and Negret [190] described a, software maintenance knowledge based sys­

tem called SOFTM which was designed for the following purposes:

o to assist software programmers in the application code maintenance task.

o to generate and update automatically software correction documentation.

o to help the end user register, and possibly interpret, errors in successive

application code versions.

SOFTM relies on a unique ATN (Augmented Transition Network) based code

description, a diagnostic inference procedure based on pattern classification,

and on a. maintenance log report generator. The system is able to a range of

programming languages provided that code descriptors can be extracted from

the code. SOFTM has 3 types of knowledge base:

o Facts about error types, error locations, diagnostic classes, and the envi­

ronment.

o Code independent rules that apply to the general software maintenance

task.

94

o Symbolic descriptors derived by rewriting, in predicate form, features of

programming languages provided by the compiler, the specification lan­

guage, or the data flow model,

(c) Calliss, Kalil , Munro and Ward [40] described an intelligent, knowledge ap­

proach to software maintenance by describing a tool that is intended to help

reduce the amount of time spent analysing code. They have identified 3 types

of knowledge:

o Maintenance Knowledge: this is the knowledge about how the maintenance

programmers do their work and is elicited from expert maintainers. This

knowledge provides the bulk of a systems heuristic knowledge that dedicate

the weighting patterns on searches through the expert system.

a Program Plans: they are two different categories of program plans:

- General program plans with a small set of plans that show commonly

occurring activities in computer programs.

- Program class knowledge with a set of plans common to a particular type

of program.

o Program Specific Knowledge: this is the internal representation of the

source code together with knowledge obtained from using static code anal­

ysis tools such as cross referencers, data flow analysers, call graph gener­

ator, etc.

4.4 Summary

Currently, there is research on software maintenance tools but which is far smaller than

for development tools.

At this time, no one method with tools and environments has succeeded in integrating

the diversity of maintenance tasks, tools and situations in a consistent way. Tool support

is usually restricted to a single phase of the maintenance process. There is a lack of

maintenance tools like the concept of intelligent maintainer's assistant that could be

semi-automatic and could help the maintainer during the whole software maintenance

process from identification of modification to revalidation.

95

Chapter .1

Integrated Project Support

E-wlroemeiriits

5 o l In t roduct ion

The objectives of this chapter are to define an IPSE with its features, to describe

the requirements for the next generation of software in the aerospace industry, and to

evaluate current IPSEs according to some of these requirements.

5.2 Wha t is am I.P .S .p . ?

5.2.1 Introduct ion

The IPSE arose from the observation that, in many projects, useful data was generated

and used by the project, tools set as part of'the development process. However, i t was

difficult to get tools to exchange data because they used incompatible data formats.

These tools gave only partial, fragmented support to the managerial, technical, and

administrative tasks involved in the development and maintenance process.

I t was recognised [161] that a profusion of tools alone is not enough to instill good

engineering practices in the industry; what is required is a stable, consistent and inte­

grated approach to the working environment. Thus, the Integrated Product Support

Environment (IPSE) concept.vvas born.

96

An Integrated Project Support Environment [259] is an integrated environment that

focuses on the developmental aspects of the software life cycle. I t may not include all

phases, e.g. maintenance.

5.2.2 Features of an I P S E

This section describes the features and structure of an IPSE. At the logical centre of

an IPSE there is a basic set of facilities termed a kernel. An extra set of facilities may

be provided which extend those of the kernel and built using kernel facilities. The user

can use both the facilities of the kernel and the extended facilities and these together

constitute the infrastructure.

The tools of an IPSE will be implemented using the facilities of the infrastructure. The

kernel, together with the infrastructure and tools constitute a populated IPSE. In some

IPSEs, it may be possible to extend the kernel by incorporating user tools into i t .

IPSE products provide facilities in four main areas [250]: Human Computer Interface,

Data Management, Activity Management and Integration of tools

e The Human Computer Interface (HCI) or Man Machine Interface (M M I) , or User

Interface (UI) is probably the most important factor in producing an IPSE that

will be acceptable and therefore used. The concept of an IPSE is that i t will be

used by all project staff whether engineer or manager. Therefore the users should

have a clear conceptual model of the IPSE and the information it contains and that

the style of the tools should be dictated by this model and by the requirements of

the tasks at hand. So, the IPSE needs to handle the user interface service, instead

of leaving it to each tool. HCI facilities should be varied, flexible and multi-

windowed with menu, mouse and command line. The kind of interface required

may be different for the different types of user and different types of activities.

• The IPSE Data Base needs to contain the repository of all project information:

requirements, designs, code, test cases, documents and other relevant information.

The data base should support modelling of all aspects of data associated with the

development process and should be extensible and configurable to allow extension

and adaptation of the IPSE as a whole to individual project requirements. The

infrastructure, of the IPSE should support software configuration management.

97

o The Activity Management is- the ability to model and manage specific activities

associated with project procedure and methods. It is composed of the means

to define a process structure, the facilities to define the order and type of tool

invocation, and the facilities to model methods specific processes.

For example, after a file has been edited, the configuration control tool should be

invoked.

o The integration of tools can be seen through a Public Tools Interface (PTI) arid a

' Foreign Tools Interface (FT1):

- The PTI is an interface for tools Written specially for the IPSE.

- The F T I is an interface for existing or commercial tools that we want to

integrate in the IPSE.

5.2.3 T h e Ideal I P S E

The ideal IPSE [250] according to Aerospace criteria will provide a context for software

development over the whole life-cycle and will:

o be capable of supporting the development of large, complex and high quality soft­

ware

o provide controls and facilities to allow projects to be carried out with optimum

productivity and quality

o be fully integrated so that information can be freely exchanged within the project

o provide all users with an appropriate and tailored set of facilities with which to

carry out thei r tasks

Across a company and its project, a variety of different tools, methods and procedures

•are used, some tailored to specific project needs. In addition, the need of projects

may well change and evolve as new methods and tools are developed and are made

commercially available.

Version control and configuration management are critical'to ensuring the consistency

and reproduceability of delivered systems. I t is important that support is given, in the

IPSE, for these fundamental activities.- » ":

Change control must be supported by the recording of dependencies arid tracing infor­

mation within the IPSE database. This must be,done across the whole life-cycle by

providing the relationship between design and requirements, code and designs, docu­

ment and code.

Thus, the icle.il IPSE will need to be extensible and adaptable to individual needs.

5.2.4 Conc lus ion

The ideal IPSE is a blend of:

o flexibility, giving users the capability of tailoring the IPSE to their requirements

and ensure that its capability will accommodate any changes in these requirements

as the project evolves. I t will ensure that all the activities in the project can be

supported.

o integration, ensuring that the users have a consistent and uniform view of the

IPSE.

However, no IPSE so far has approached the ideal blend with flexibility and integration

5.3 Requirements for Software in the Aerospace Indus­

t r y

5.3.1 Introduct ion

The next generation of software in the Aerospace industry will be large and complex,

developed by many groups of people at many locations, and will be expected to operate

safely and undergo extensive evolution over its lifetime.

Requirements for software maintenance in the Aerospace domain [238] will increase for

the following reasons:

5.3.2 Safety C r i t i c a l Systems

A system or sub-system may be described as safety-critical if there are potential con­

sequences of using the system that are so serious that it cannot be used at all unless

the probability of a high-cost event (an accident) occurring is very low. For example, a

system is usually considered safety-critical if some behaviour of the system can result in

99

http://icle.il

death, injury, loss of equipment or property, or environmental liarm. When computers

are used to control safety critical processes^ there is need to verify that the software will

not cause or contribute to an accident [41].

Some aerospace systems will become safety critical with manned space flight like the

launcher A R I A N E 5, the space plane HERMES and the station COLUMBUS.

Therefore, the IPSEs that will support the development of the software should provide

specific support for the development and verification of safety critical software, and for

fault tolerant software development.

5.3.3 Increas ing Software Size

Software size will increase by a factor of ten. Currently less than a million lines of

code is used for a satellite ground system while few millions lines of code for HERMES,

COLUMBUS.

The IPSE should support the development of very large scale software.

5.3.4 Increas ing Sys tem Li fespan

Software lifespan will increase from less than 10 years to more than 20 years. System

architecture will need to be flexible in order to take into account new technologies.

Therefore, the extensibility of the IPSE is a major criteria as is the integration of the

new tools in the environment.

5.3.5 Dis tr ibuted Developments

The trend toward the development of large integrated software systems in short time

scale leads to the need for a-distributed development capability. Many large projects

involve collaborative working between partners in a consortium, and suppliers and sub­

contractors, often on a European or International basis.

Software maintenance 'methods should take into account the fact that aerospace data

processing projects will involve contributions from several subcontractors. .

HERMES is dominated by Fran ce, GOL U MB US by Germany, and the remainder of the

13 ESA countries contribute with very different scales to each project whereas some

\ 100

countries contribute to only one of the two projects.

Because ESA (European Space Agency) follows the fair return principle, that means

a participating country receives industrial work in relation to its contribution, and as

projects have the responsibility to follow this principle it is extremely difficult to release

financial responsibility from a. project for a common development. In this case, how can

maintenance be adequately performed ?

In situations where the purchaser requires that the software be maintained by the

purchasing authority, or a third party, then the overall development must be controlled

to produce a unified product that appears to have been generated by a single team.

This mean that all contributors must [250]:

o use identical tools a.nd environments

o produce consistent documentation

o operate standards procedures

o use standard reporting formats

o deliver all design documentation and tools data

The software will be developed in several geographical locations using the same IPSE

facilities and communication between the IPSEs is required. Wide areas communication

based on commercial products should be provided to support remote logging and file

transfer from one site to another. The concept of remote maintenance for corrective

activities should be investigated and an important attribute of distribution is granularity

which is the size of object that can be exchanged between machines or operational sites.

5.3.6 Sys tem Perennia l i ty

With the increasing system lifespan, system perenniality is becoming a major problem

for both hardware and software.

Software environments are using tools that are primarily commercial off-the-shelf prod­

uct and the perenniality of these tools must be assured before buying commercial tools.

The stability and maturity of both the commercial tools and its supplier must be clearly

established to keep the product operational during its lifespan. The product, manager

101

must ensure that projected functional releases of the tools accord with the release of

the product.

Therefore, the concept of extensibility of the IPSE to incorporate extra facilities should

be evaluated as well as the integration of these tools into the IPSE.

5.3.7 Reuse

The development of aerospace products requires intensive development of large complex

software system and for these reasons, special attention [75] is currently devoted to the

minimisation of effort and thus to cost reduction.

Therefore, the IPSE should provide an environment to support reuse of software el­

ements at different level of abstraction (e.g. specification, design, code, documenta­

tion . . .) . This is a field of much current research.

5.3.8 T r a i n i n g and Knowledge Transfer

The loss of an employee is very damaging to a company's prospects. Adequate training

and knowledge transfer will continue to be required as there is no evidence that the

software engineering staff turnover rate will slow down in the near future.

The IPSE should provide training facilities for each tool and for the environment.

5.3.9 Conc lus ion

It is not possible to evaluate all current IPSEs and this is not the objective of this

thesis. Therefore from the requirements, some criteria remain the same like integration,

flexibility and distribution (see Table No 5.1).

102

Requirements IPSE should Criteria for

for Aerospace Systems support evaluating current IPSE

Safety Critical Systems Safety Critical Systems

Increasing Software Size Very Large Scale Software

Increasing Lifespan SCM Flexibility

Distributed Development SCM Distribution, Communication

System Perenniality Extensibility, Integration

Reuse Reuse

Training Training

Table No 5.1: Prospective requirements and their effects on the I P S E

5.4 Cri ter ia for Analysing IPSEs

5.4.1 Introduct ion

As mention in the previous section on requirements for the aerospace industry, we need

to define the three criteria for analysing current IPSEs: flexibility, integration and

distribution.

5.4.2 Flex ib i l i ty

Flexibility is the measure of how easy it is for the user to adapt an IPSE to support the

activities of a. given project. This can be done in two ways

o by extending the facilities of the IPSE

o by tailoring the existing facilities of the IPSEs to particular project needs (instan­

tiating a generic IPSE).

1. Extensibility

Extensibility is the ability to incorporate extra facilities into the IPSE. Two cat­

egories of tools can be added: native and foreign tools. The former are built

especially to work in the IPSE and fully integrated through a Public Tools Inter-

103

face. The latter might be rehosted from a foreign environment and therefore, the

interface will need to be adapted to those of the IPSE.

The IPSE might allow the kernel to be extended, for example by enabling extra

facilities to be incorporated or defining a new type in the data base.

2. Tailorability

Tailorability is the ability to adapt the existing facilities of the IPSE so as to

provide support for a project.

A project involves a range of different structures and activities.

o The structures are those associated with the product and those associated

with management.

o The activities are those associated with project procedures such as coding,

configuration control and project management.

An IPSE is supplied with the basic set of facilities from which support for a project

need to be fashioned according to the wide range of users from programmers to

managers.

Tailorability is an assessment of the extent to which support for project activities

can be constructed, the range of structures that can be reflected into the IPSE and

scope for building interfaces suited to particular user needs.

5.4.3 Integration

Integration in an IPSE is the degree to which such things as common definitions and

uniform styles of interaction are supported and facilitated.

There are three facts of integration:

o user interface

o data management

o activity support

1. User Interface

Integration of the user interface is related to the way a user interacts with the

IPSE. A user requires a consistent style in the user interface of all tools and to

104

the IPSE infrastructure. The style of presentation and responses to such things as

menus, icons and function buttons must be uniform.

2. Data Management

Integration of data management does not simply imply that tools share a common

data base. It is that the structure of the data is also held separately, rather than

being implicit in the tools themselves. The IPSE data base should provide a

uniform means of accessing and manipulating the data for both direct user access

and tool access. The data, base may also include facilities to enforce any consistency

constraints specified for a project. The smallest size of object that can be referred

to in an IPSE will have a bearing on the degree of integration.

Thus an IPSE which only allows reference at file level will still leave the interpre­

tation of the format, of the contents within the file to individual tools.

3. Activity Support

Integration of the management is the way in which tools are interrelated, the

way the development process can be moulded into a logical whole, rather than

comprising a series of independent tasks.

.4.4 Dis tr ibut ion

Distribution covers both:

• The physical aspects of the system (Hardware and Software)

e The logical architecture of the IPSE itself

1. Physical Aspects

The physical aspects are concerned with whether the facilities of a single IPSE are

accessible over Local Area Networks (LAN) or Wide Area Networks (WAN).

2. Logical Aspects

The logical aspects are concerned with the way in which the underlying database

and kernel facilities are shared across different machines.

105

5.4.5 Conc lus ion

IPSEs should be able to incorporate new facilities and to adapt the existing one to

projects during the software life-cycle they support. The integration level of tools and

user interface is of critical importance to obtain a consistent IPSE. The distributed

development requires information shared across different machines and accessible over

networks.

The above criteria are used to evaluate the current IPSEs.

5.5 Evaluation of IPSEs

5.5.1 Introduct ion

IPSEs have only been available for a short time. The D T I and NCC have made an

evaluation of IPSEs [250]. They assess different IPSEs e.g. ALS, ASPECT, BIS-IPSE,

DSEE, Eclipse, EPOS, Genos, ISTAR, Maestro, PACT, PCTE Emeraude, Perspective,

Perspective Kernel, Prados and Rational. Some of these IPSEs will not be evaluated

because they do not conform to the criteria on prospective requirements:

o ALS, ASPECT, BIS-IPSE, DSEE, EPOS, Maestro, Perspective and Prados are

limited by the size of the project.

o BIS-IPSE is primarily designed to support the design and development of com­

mercial Data Processing systems,

o Perspective is language oriented (Pascal).

o Rational provides a program development and support environment for users of

the Rational range of computers.

The IPSE that will be evaluated are the following:

(a) Eclipse

Eclipse is PCTE based initially supporting MASCOT 3 (a method for design­

ing and building software aimed at real-time embedded systems) and LSDM

(a method for structured system for analysis and design). I t is being produced

to run under the Emeraude implementation of PCTE.

106

Eclipse is a British project which chose the PCTE interfaces' on which to

develop a set of general mechanisms available to tool writers; a tool set built

using these facilities; genera] tool builder support facilities, and a research

program. Its objectives are centred around the use of an advanced database

system specifically written to address the data management issues associated

with software development.

(b) Genos

Genos provides a distributed open and incremental integrated environment for

the development of software projects.

(c) ISTAR

ISTAR is an Integrated Project Support Environment.

(d) PACT

PACT is an ESPRIT project that is building an integrated environment on

the PCTE interfaces. It aims to provides an integrated toolset.

(e) PCTE Emeraude

EMERAUDE is a project undertaken by a French consortium of three compa­

nies, to produce an industrial quality implementation of the PCTE interfaces.

(f) Perspective Kernel

Perspective Kernel provides a general IPSE infrastructure incorporating the

ideas and tools of Perspective, but open to new tools and methods.

5.5.2 Eva luat ion of I P S E s wi th the cr i ter ia

1. Flexibility

* Extensibility

(a) PCTE Emeraude is very flexible allowing new tools to be incorporated.

The purpose of PCTE as a tools interface and the movement of i t toward

standardisation is to encourage the third party production of compatible

and integrated tools.

(b) Eclipse and PACT are open IPSEs based on PCTE. PACT with the Com­

mon Service layer provides a PTI above the level of that provided by

PCTE. The facilities provided by the the PACT kernel and PCTE are

extensible by the definition of new schemas and data structures. Eclipse

107

can integrate new native tools with PCTE and is fully compatible with

most Unix tools.

(c) Genos has the capability of integrating new tools very easily either through

the external tools interface or by 'encapsulation' depending on their inter­

action with the operating system.

(d) ISTAR native and foreign tools can be integrated using the ISTAR tool

building tools. To ensure that foreign tools can exploit the database and

will reflect ISTAR's user interface conventions, the foreign tools are pack­

aged in an 'envelope'.

(e) Perspective Kernel has the capability to integrate native and foreign tools.

With the former, it will be through a native tool interface whereby tools

can be written to take advantage of the facilities of the kernel directly.

Wi th the latter only with VAX/VMS tools written without knowledge of

the kernel. The kernel data, structures wil l themselves be extensible.

Tailorability

(a) Eclipse supports the contractual model of project control in its configura­

tion control system. Data base structure is described by schemas that can

be modified and added. There is a facility for defining the appearance of

the end-user interface based on an interpreted language. The user inter­

face and the kernel structures are configurable by the tool builder but not

by the end-user.

(b) Genos has a flexible way of.modelling project process so that tool invoca­

tions are integrated with project processes.

(c) ISTAR can be tailored to project needs by structuring contracts and sup­

plying suitable workbenches. The product structure can be reflected into

the structure of. contracts. The user interface can be" tailored and forms

and menus generated for specific applications.

•(d) PACT Common Services provide extended-support for the composition of

tools.; Generic tools can be produced to operate on data objects in , the

PCTE Object Management System (QMS/);. . -.'"v •• J

(e) Extensive support is providecUby; the PCTE OMS and the tailored fea­

tures of theconfiguration management tool for the definition of product

108

structure, although no explicit structures are defined be PACT.

(f) PCTE Emeraude is capable of capturing a very wide range of data struc­

tures and no particular development process is assumed. Data is described

by easily modifiable schema.. It has no explicit support to enable an end-

user configurable interface.

(g) Perspective Kernel will be tailorable by tool composition, extending the

data base structure and by defining an appropriate project structure. The

data base will have a type structure with inheritance allowing generic tools

to be provided and specialised for particular organisations, projects and

applications.

Integration

o Integration of the user interface

(a) Eclipse has a high level interface and therefore native Eclipse tools are

highly integrated as regarded user integration.

(b) Genos has a uniform interface used throughout by all tools and Perspective

kernel will provide a uniform one for native tools.

(c) PCTE has graphics capabilities and pop-up menus that present a, consis­

tent user interface.

(d) ISTAR provides a uniform set of terminal independent logical services for

all styles of interaction.

(e) PACT will provide and enforce a uniform and coherent user interface

through the use of PCTE facilities and PACT Common Services to imple­

ment all integration between tools and the user.

e Integration of data management

(a) Eclipse native tools store all their data in a highly structured way within

the data base. The database interface is at a high level and supports

retrieval by pattern matching and simple value comparison. In this way

information retrieval by different tools is highly integrated and there will

be no inconsistencies when logically equivalent data is shown to the user.

(b) Genos supports typed data and allows tools to access common data struc­

tures, so that generic tools can be produced to operate on common types

of data from within the user interface. For the data base implementation

109

such as PCTE a more complex data model is supported which allows tools

access to relationships between data objects and more extensive attribute

information.

(c) With ISTAR, data types can be defined and shared via workbenches.

PACT integrates data in a consistent way with the use of the PCTE OMS

and the PACT Integration Rules.

(d) With PCTE Emeraude, foreign Unix tools are not really integrated in

their data management and native tools have not yet been built. However

there are mechanisms which allow the integration of foreign tools to be

improved.

(e) Perspective kernel will integrate both native and foreign tools via shared

data.

o Integration of the activity management

(a) Process management is very closely integrated into Genos in the support

for project structures, so that the use of particular tools can be integrated

into the development process.

(b) Wi th ISTAR, standard procedures can be defined as scripts and shared

via workbenches.

(c) PACT provides some support for tool composition through the Unix shell

component of the initial tool set and some further support for tool com­

position using the OMS is planned.

(d) PCTE is similar to Unix, but can also represent the relationship between

an interpreter and its code on the database.

(e) Perspective kernel will provide some degree of process integration via the

process structure and transaction facilities.

Distribution

o Physical Aspects

(a) PCTE is designed as a distributed system supporting a network of work­

stations distributed over an Ethernet LAN of heterogeneous machines.

The granularity of distribution is an object.

(b) Eclipse and PACT are potentially distributed because they are PCTE

based.

110

(c) Genos exploits both LAN & WAN distribution over heterogeneous systems.

For existing systems the granularity of distribution is at the level of a fde

so that Genos can take advantage of distributed fde systems. For data

base implementation the granularity of distribution is an object.

(d) ISTAR can make use of both LAN & WAN because of its contract struc­

ture. However, a contract is usually restricted to one host while subcon­

tracts can be on other hosts. The machine within the network need to be

of the same type as long as they exchange data, over the network.

(e) Perspective Kernel is not a distributed system but is availa.ble on VAX

clusters.

o Logical Aspects

(a) PCTE distinguishes process distribution and the data base distribution of

objects. Facilities exists that enable the user to control the distribution.

(b) Wi th PCTE, PACT and Eclipse, the distribution of objects is invisible to

the end-user.

(c) The logical model for distribution by Genos is based on the project view

from which projects are built. Within a single project, the project views

may be distributed over a number of systems.

(d) With ISTAR, contracts can be allocated to particular hosts with the data

associated with the contracts. A particular host may have a particular set

of workbenches to carry out its contracts.

(e) Perspective Kernel is not a distributed system but is available on VAX

clusters.

From the evaluation of current IPSEs according to the above criteria, a summary is

given in Table No 5.2.

I l l

EVALUATION Integrated Project Su }port Environments

C R I T E R I A E C L I P S E GENOS ISTAR PACT P C T E E . PERSP.K.

F L E X I B I L I T Y

1. Extensibility

for Native tools P C T E P C T E P C T E PTI

for Foreign tools Unix tools FTI or 'enc' 'envelope' P C T E P C T E Vax/Vms

for Data Base data struc. data struc.

2. Tailorability project project structuring tool project

control process contracts composition structure

data base workbench SCM data base data base

INTEGRATION

1. User I / F high uniform uniform uniform consistent uniform

level k coherent

2. Data Mgt. support data data data share

retrieval type type type data

data struc. data struc.

3. Activity Mgt. ? Yes standard tool like process

procedure composition Unix structure

DISTRIBUTION

1. Physical Asp. LAN LAN&WAN LAN k WAN LAN No

2. Logical Asp. invisible Yes contracts invisible invisible No

Table No 5.2: Summary of the current I P S E s ' Evaluation

5.5.3 Conclus ion

As described in the previous section (evaluation of IPSEs according to three criteria)

no IPSEs so far has approached the the ideal blend with flexibility and integration.

Furthermore, ECLIPSE uses MASCOT and LSDM methods which are not supported

by the European Space Agency's standards. GENOS uses no standard configuration

management tools and does not supports a particular specification and design method.

ISTAR is mainly dedicated to real-time systems with the use of CORE method for

specification and SDL for design.

Perspective Kernel is not a distributed system. PCTE Emeraude is very interesting

112

with the use of the European standard P C T E , but should use foreign tools that are

compatible with P C T E . None of these I P S E s supports reuse of components.

For these reasons, the aerospace industry had to build their own I P S E to develop the

software according to requirements of different projects.

5.6 IPSEs for Aerospace Systems

5.6.1 Introduct ion

In this section, an evaluation of I P S E s for aerospace applications is performed. The

I P S E s used for the software development of H E R M E S / C O L U M B U S and F R E E D O M

are integrating tools that are primarily commercial off-the-shelf.

5.6.2 H E R M E S / C O L U M B U S

The Hermes Software Development Environment (I I S D E) [27] and the Colombus Soft­

ware Development Environment (Columbus is the European contribution to the In­

ternational Space Station) both support methods and standards, allowing distributed

development and management of large, complex and critical Ada. software. The I I S D E

is dedicated to the development of the H E R M E S ' software (European Space Shuttle).

The European Space Agency has provided appropriate standards, recommendation and

infrastructure to ensure the successful and timely production of reliable software. These

consideration has has led to the requirement specification of the European Space Soft­

ware Development Environment (E S S D E) which for its life-cycle approach is based on

the well established E S A Software Engineering Standards (E S A PSS-05-0, Jan 1987).

The Columbus and Hermes projects [22G] have used these requirements as input to

their projects specific I P S E ' s and as a consequence many of the methods and tools are

similar.

Due to the project autonomy, two separate teams (a Columbus team and a Hermes one)

were established to produce the two I P S E ' s and although working to the same functional

113

requirements to individual projects requirements were not sufficiently detailed to enforce

commonality.

An evaluation has been made at ESTEC [226] of the first version of both IPSEs:

o all the commercial tools are different except for the requirement analysis and the

syntax editor.

o all the developed tools are different in concept or implementation

o both environments present good and not so good concepts

o choosing one of the IPSEs's as the ESSDE would mean giving up the good concepts

implemented by the other one

A combination of a the best concepts implemented in either IPSE will be used for the

ESSDE.

5.6.3 F R E E D O M

The Space Station Freedom Program has required the use of a common software en­

gineering environment for the development of all its operational software, both flight

and ground based. This environment, known as the Software Support Environment

(SEE) [108], is really a large collection of tools, rules and procedures from several

technologies. The SEE uses tools that primarily commercial-of-the-shelf, with limited

capabilities being provided by custom tools.

The generic SSE [203] is an ordered collection of tools, rules and procedures which may

be instantiated, or subsetted, to provide a wide range of software life cycle support

systems.

114

5 .6 .4 E v a l u a t i o n of A e r o s p a c e I P S E s

E V A L U A T I O N N A M E of Aerospace IPSEs

C R I T E R I A H E R M E S / C O L U M B U S F R E E D O M

F L E X I B I L I T Y

1. Extensibi l i ty

for Native tools encapsulation 7

for Foreign tools encapsulation ?

for Data Base Yes Yes

2. Tailora.bility Yes Yes

I N T E G R A T I O N

1. User I / F high level high level

2. Data Mgt . support retrieval support retrieval

object/sub-object object

3. A c t i v i t y M g t . Yes Yes

D I S T R I B U T I O N

1. Physical Asp. L A N & W A N L A N & W A N

2. Logical Asp. invisible invisible

T a b l e No 5.3: S u m m a r y of the A e r o s p a c e I P S E s ' E v a l u a t i o n

SEE and ESSDE are flexible and integrated environments, and a. good dis t r ibut ion is

provided.

SEE and ESSDE are bui l t w i th tools that are pr imar i ly commercial-off-the-shelf. There­

fore, i t is d i f f icul t to maintain traceability across the software life-cycle between require­

ments, specification, design and test components. For example, outputs f rom specifica­

tion are not compatible w i th inputs for design because the tools are designed to support

different methods.

These environments do not provide tool support for program comprehension w i t h error

localisation and impact analysis, which is essential for maintenance, neither is there

support for the costing of modifications to software.

These environments are not using standards for tools interface, thus i t wi l l be d i f f icu l t

115

to add foreign tools that wi l l be fu l ly integrated wi th in the environment.

5 .6 .5 C o n c l u s i o n

The 'construction' of an IPSE f r o m existing tools [226], well established development

concepts and a b i t of glue software has proven to be surprisingly d i f f i cu l t . By building

bot tom-up, a. universal mult i -project IPSE could not be realised. There is a need to

build these environments w i t h a. bot tom-up and a top-down approach.

5=7 Summary

In this chapter, an evaluation of current IPSEs for development has been achieved

and i t seems that they do not support maintenance in an efficient way. The IPSE for

the aerospace industry should support the development and maintenance of large and

high quali ty software; running over many years in different locations. According to the

requirements i n the aerospace industry, there is a need to address the requirements for

a software maintenance support environment.

116

Chapter 6

Requirements for a Software

M a int e nance u P port

E nviroement

6.1 Introduction

The previous chapters have discussed a method to perform software maintenance at

three levels, described tools to support the software maintenance process and presented

an evaluation of current IPSEs. As has been mentioned, these environments are ad­

dressed to development but do not fu l ly support maintenance.

This chapter specifies the requirements for a Software Maintenance Support Environ­

ment (SMSE) for Aerospace software.

The SMSE should be customisable and extensible and should be able to support the

maintenance of large to very large scale software. The SMSE should cover the f u l l range

of software maintenance activities described in the previous chapters. The SMSE should

support a software maintenance process w i t h sufficient precision and clari ty to foster

understanding, communication and effective support by means of tools. The toolset

should include tools supplied by the development environment and tools dedicated for

117

the maintenance phase.

The toolset should remain open-ended, extensible and should allow the addi t ion of new

tools through a standard Public Tool Interface. The SMSE should be flexible to accom­

modate change by permi t t ing tool in t roduct ion , removal, replacement, customisation,

extension, etc.

6.2 Data Base

The data base should act as a central repository for informat ion associated w i t h each

project throughout the project life cycle. The data base should be extensible and

configurable to allow extension and adaptation of the SMSE as a whole to individual

project requirements. The data base should store informat ion which allows management

reports to be generated.

The Data Base Management System should store and retrieve all the data object pro­

duced by the project and should support software configuration management by retain­

ing the currently approved versions of all controlled products.

6.3 Human Computer Interaction

The Human Computer Interaction (I I C I) facilities should be varied, flexible and mul t i -

windowed w i t h menu, mouse and command line.

The H C I facilities should be tailorable to maintenance needs. The H C I should help

and assist efficiently the maintenance staff dur ing the operational phase. The kind of

interface required may be different for the different types of user and different types of

activities.

Two aspects should be considered:

o surface aspect: interface design must enforce ergonomical concepts (e.g. colour,

screen object localisation, interaction mode, user background and task to be per­

i l s

formed)

o architecture: object-oriented approach is widely used s t ruc tur ing H C I items

6.4 Software Configuration Management

The SMSE should support software configuration management wi th the fol lowing ac­

t ivi t ies:

© software configuration identif ication

e software version control

© software change and configuration control

o software configuration status accounting

e software configuration audit

6.4.1 S o f t w a r e C o n f i g u r a t i o n I d e n t i f i c a t i o n

A software configuration i tem (SCI) is a 'manageable' software ent i ty w i t h i n a config­

uration e.g. requirement document, specification document, design document, source

code, data file, documentation, test procedure.

Software configuration identif ication should support:

• defini t ion of the different baselines and associated SCIs of a system

e identif icat ion of any change made to these components and baselines

• identif icat ion of the relationship between SCIs

» identif icat ion of the version of the tool that generated the SCI

6.4 .2 S o f t w a r e V e r s i o n C o n t r o l

Software version control should:

e support version control for SCI

119

o track the historical record of each SCI

o store relevant informat ion about each change performed on any SCI

o control mul t ip le versions of the SCIs

o ident i fy differences between two versions of a particular SCI including additions,

deletions and moves

o correct the documentation and highlight changes made in a documentation

6.4.3 S o f t w a r e C h a n g e a n d C o n f i g u r a t i o n C o n t r o l

Software configuration control should:

o allow the par t i t ioning of the software product in different geographical sites:

- reference site

- maintenance site

- operational sites

o store required informat ion to

- create and control a new SCI

- build and control a new release

- modi fy a SCI

o manage a l ink between problem reports and SCIs

o manage a link between change request forms and SCIs

o manage change control forms on-line

- use of standard format of the forms

- creation of the software problem report

- creation of the change request forms

- progress of change

- approval (signature)

- report of modificat ion

120

6.4.4 S o f t w a r e C o n f i g u r a t i o n S t a t u s A c c o u n t i n g

Software configurat ion status accounting should provide an administrat ive history of

the evolution of a software system by:

o report ing all configuration items including status of:

— all software problems

— all software documentation

— all software release

— all changes affecting the SCIs

and generating informat ion wi th statistics

e report ing the number of anomaly/modif ica t ion request per category, site, SCI

• providing list of known errors and omissions

e i den t i fy ing all SCIs potentially affected by a proposed change

• providing informat ion of all software problems before a new release of a software

product and the reasons for changes f rom one version to the next one

6.4 .5 S o f t w a r e C o n f i g u r a t i o n A u d i t

Software configuration audit should determines whether or not baselines meet their

requirements and whether correct procedures have been adhered to.

6.5 Program Comprehension

The SMSE should support program comprehension wi th static, dynamic, impact anal­

ysis and traceability tools. These tools should be interfaced wi th the Software Config­

uration Management facilities.

6.5.1 S t a t i c a n a l y s i s

The SMSE should support static analysis by providing:

121

language audit:

- conformance to project naming convention

- absence of duplicate names

- absence of non-standard language features

control flow analysis:

- absence of s tructural ly unreachable code

- absence of s tructural ly non-terminat ing loops

- absence of mult iple entries to loops

- conformance to recursion conventions

data use analysis:

- ini t ial isat ion of data before use

- use of aLl declared variables

- absence of redundant writes

informat ion flow analysis:

- the set of output variable

- the set of input variable

- the relationship between the above (which output variables may be affected

by a change in a given input variable)

symbolic execution (automated form of desk walkthrough in which execution of

the code is replaced by symbolic operations)

semantic analysis

complexity measurement, analysis:

- code metrics e.g. program size, control graph, call graph

- count of the independent logical paths through a procedure e.g. cyclomatic

metrics

- accessibility of a module, testability of a path, a system e.g. Mohanty 's metric

- amount of informat ion which flow in and out a procedure e.g. Henry and

Kafura 's metric

- counts of operands w i t h i n a code procedure e.g. Halstead's metric

cross reference and informat ion reported therein

122

6.5.2 D y n a m i c a n a l y s i s

The SMSE should support dynamic analysis by providing:

o test data generators for two types of testing:

— black box testing (funct ional technique) where there is no knowledge of the

internal operation of the component of software being tested and data is gen­

erated purely f rom the funct ional specification.

— white box testing (structural technique) where the internal operation of the

software is known and the da.ta. is generated in order to exercise the code and

determine what i t actually does.

e data flow generators that:

— generate data for error detection

— analyse the variables wi th respect of change of values and usage

— debugging of incorrect use of parameters

— generate the expected result

a test drivers that:

— execute the software using fdes of test data and record the output

— provide the stub (a dummy component or object used to simulate the be­

haviour of real component) required in top-down testing

e regression testing that:

— records the input and output of a test session (capture)

— reissues prerecorded inputs (replay)

— determines that the actual results of the current test session are the same as

those previous test session (compare)

• diagnosis w i t h :

— a sequential trace of the execution

— a record of changes to selected data

— an analysis of the above informat ion to provide more comprehensive reports

• coverage analysis including:

— code coverage

123

— system coverage

- interface coverage

o performance analysis

o test result analysis

6.5 .3 I m p a c t a n a l y s i s

The SMSE should support impact analysis.

The impact analysis tool should:

o evaluate change requests for potential impact on the system, documentation, hard­

ware, data structure and users

o utilise stabil i ty measurements and ripple effect analysis

o develop a. preliminary resource estimate and provide an accurate cost of the mod­

if icat ion

o document the scope of the requested change and update the change request

6.5 .4 T r a c e a b i l i t y

The SMSE should support traceability. The traceability too lk i t should provide:

o horizontal traceability, ('is implemented by') between SCIs related to different l ife

cycle phases (for example, links between design document and code document)

o vertical traceability, ('calls', 'uses', . . .) between SCIs related to the same l ife cycle

phases (for example, links between source code SCIs, dependency analysis)

o s t ructural traceability, ('is composed o f) between SCIs of same nature

o relational traceability, ('is described by' , . . .) between SCIs of different types

(B„<S Quality Assurance

The SMSE should support quali ty assurance.

124

The quali ty assurance tool should:

e manage a l ink between reviews and SCIs

o track the quali ty evolution of SCIs through the use of quali ty metrics

© give the current status of the product and conformance to qual i ty plan

e indicate the trends that can be expected to influence the fu ture status of the

product

e collect metrics about mainta inabi l i ty

« provide informat ion on stabil i ty of the SCIs e.g.:

— number of change request per SCIs

- measures of the impact of a change to single variable def ini t ion on the rest of

the program modules

6.7 Planning and Controlling maintenance

The SMSE should support planning and scheduling the maintenance process as de­

scribed in section 3.3.2.

6.8 Distribution

• P h y s i c a l d i s t r ibut ion

The SMSE should support Local Area Networks (L A N) and Wide Area Networks

(W A N) for inter site communication facilities.

• L o g i c a l d i s t r ibut ion

The SMSE should support the logical aspect of d is t r ibut ion (process, data base).

125

6.9 Others

6.9.1 R e u s e

The SMSE should support reuse of SCIs at different level of abstraction (e.g. specifica­

t ion , design, code, documentation . . .) . May unsolved research problems.

6.9 .2 R e v e r s e E n g i n e e r i n g

The SMSE should support reverse engineering. The reverse engineering tools should be

used for the identif icat ion or recovery of the software requirements and/or design.

6 .9 .3 S a f e t y C r i t i c a l S y s t e m s

The SMSE should provide specific support for the maintenance and the verification of

safety cr i t ical software and faul t tolerant software e.g. Fault Tree Analysis, Software

Replaceable U n i t concept, safety cri t ical software components.

6 .9 . 4 E n v i r o n m e n t s i m u l a t o r

The SMSE should provide an environment simulator. The environment simulator should

enable the maintainer to model the external environment of real-time software and then

simulate actual operating conditions dynamically.

6 .9 .5 D o c u m e n t a t i o n for M a i n t e n a n c e

The SMSE should provide documentation for maintenance. Documentation should

be produced dur ing the development phase according to the maintainer's needs and

should be completed by them dur ing the maintenance phase to complement the existing

documentation and to help their personal cognitive understanding. This document

should use hypertext technology easily to browse through the documentat ion.

126

6.9 .6 T r a i n i n g

The SMSE should provide t ra in ing facilities for each tool and for the environment.

6.9 .7 K n o w l e d g e T r a n s f e r

The SMSE should support knowledge transfer by recording knowledge acquisition on

maintainer's expertise through a. knowledge base. The maintenance knowledge should

be stored and w i l l s impl i fy the learning task for replacement personnel.

6.10 Summary

The SMSE is an environment that should support all software maintenance tasks f r o m

identif icat ion of modif icat ion to revalidation along w i t h software configuration manage­

ment and quality assurance. The SMSE is based on an open architecture that should

allow the addition of new tools, a data base that should act as a central repository,

and a H C I that, should be flexible and tailorable to maintenance needs. The SMSE is

supported by a. traceability too lk i t that should be interfaced wi th the SCM system and

the toolset.

The software maintenance process should be tailored to the organisation's needs and to

the SMSE.

127

Chapter 7

Conclusions and Further

Research

This chapter presents the conclusions of the work undertaken for the thesis, including

suggestions for applicable further research.

7.1 Conclusions

The research described in this thesis has achieved the objectives outlined in section 1.2

w i t h careful use of existing ideas to support maintenance, but wi thout radical change

in technology.

The work started w i t h the premise that software maintenance is most expensive phase

of the software life cycle, and that there is a lack of good maintenance practice as well as

environments for maintenance. I t is well known that software maintenance dominates

the high cost of software and an effective approach to reducing the maintenance cost

is to provide a software maintenance method wi th a software maintenance support

environment.

The software maintenance method has been defined as 'software maintenance best prac­

tice' based on an analytical approach of the current software maintenance process and

128

analysis of reported maintenance problems. This method has been addressed w i t h an

hierarchical view of the software maintenance process at three different level: organisa­

t ional , managerial and technical.

The organisational level has been addressed w i t h the view of software maintenance as

product support . The strategy to adopt and the identif icat ion of the market trend

for the maintenance act ivi ty has been defined. The need for the involvement of senior

management and effective communication in the company has been out l ined.

The management level has been addressed w i t h the provision of a maintenance plan

for the management and tools to monitor and control this act ivi ty. The management

of the maintenance department has been presented in a manner, such that , i f adopted

by a. maintenance organisation, that would increase the product iv i ty and mot ivat ion of

the maintenance staff.

The technical level has been addressed wi th a survey of software maintenance tasks

models and a proposition for a. software maintenance task model for Aerospace systems.

The need for software metrics applied to maintenance has been emphasised to faci l i tate

maintenance tasks and management control .

A survey of software maintenance tools has been presented, and i t has been emphasised

that there is a lack of tools and methods tha t support the whole software maintenance

process.

Current Integrated Project Support Environments have been evaluated according to

their f lexibi l i ty , integration and dis t r ibut ion , and the conclusion is that they do not

support maintenance in an efficient way.

The requirements for a Software Maintenance Support Environment has been specified

using the best software maintenance practice, the analysis of software maintenance tools

and the evaluation of current IPSEs.

129

7.2 Further Research

Points for consideration:

o This software maintenance best practice is based on an analytical approach of the

software maintenance process, and should be validated via. experimental approach

in the work environment.

o The software maintenance best practice has Been described w i t h the different CHV

ganisational, managerial and technical tasks dur ing the software maintenance pro­

cess, and therefore this model should be expressed in a more dynamic style wi th

the informat ion f low.

o The requirements for a Software Maintenance Support Environment should be

implemented in the real world in order to bui ld a real environment for maintenance

and some requirements should be used in industry to build IPSEs that address

the development and maintenance of software and can provide more maintainable

software.

o A plan should be elaborated on how to advise people to use this software mainte­

nance method and how to implement the ideas of the SMSE in a company.

o A transi t ion plan should be elaborated for the transfer f r o m the development phase

to the maintenance phase wi th a plan for Maintenance, for Qual i ty Assurance and

for Software Configurat ion Management.

o Research should be performed to f ind the interconnections between the software

development process and the software maintenance processand the evolutionary

aspects of the software maintenance process should be. analysed.

o Research should' be performed to develop a process model for the overall SMSE

w i t h the description of the environment's boundary wi th business using the process

model.

o Research should be performed on the H (' l w i t h the best method to display the

necessary informat ion required for the niaintainer wi th the surface and architecture

aspects.

o Research should be performed on how to estimate the cost of modif icat ion or of a

new release df the software.

130-

Research should be performed on recording the knowledge gained by the maintain-

ers during the software maintenance process. This knowledge can then be used by

other maintainers working in the same area or by the new maintainers to facilitate

the knowledge transfer.

Research should be performed on applying artificial intelligence techniques to the

software maintenance process with the development of an intelligent maintenance

assistant that can support the whole process with more automation.

131

Appendix A

oftware Maintenance Tool

Commercially Available

A . l Tools for Program Comprehension

A . 1 . 1 Code A n a l y s e r

(a) A C T

Tool : Analysis of Complexity Tool (ACT)

Category: Code analyser, code visualisation

Produced/Suppl ied by: McCabe & associates Inc., 5501 Twin Knolls Road,

suite 111, Columbia, Maryland 21045

Target Language: ADA, C, FORTRAN, PASCAL, BASIC, P L / I , ASSEM­

BLY (8086, 6502), COBOL

P l a t f o r m : runs I B M PCs, Sun, Apollo, HP, on DEC VAX workstations un­

der Unix, and on DEC VAX mainframes under VMS with Ultrix.

Descr ip t ion: ACT [165] is driven by and analyses source code, producing a

graphical representation of module structure, and also calculates the McCabe

cyclomatic complexity metric and generates the basis set of test paths that

should be exercised for each module within the source code.

This tool has been evaluated by the STSC.

132

(b) A d a M A T

Too l : AdaMAT

Category: Static code analyser

Produced /Suppl ied by: Dynamic Research Corporation, Andover, MA,

tel.- 508-475-9090

Target Language: ADA

P l a t f o r m : runs on DEC VAX, Rational

Cost: $5000-$24995

Descr ip t ion : AdaMAT [251] analyses Ada source code against more than

150 parameters. Parameters such as relative reliability, maintainability and

portability are all measured. Lower level parameters might target specific pro­

gramming practices. Other criteria measured include anomalies, modularity,

independence, self-descriptiveness, simplicity and clarity.

This tool has been evaluated by the STSC.

(c) A T V S

Tool : ATVS (Ada Test and Verification System)

Category: Static code analyser, coverage/Frequency analysis, performance

analysis

Produced /Suppl ied by: Janice Smith, General Research Corporation, Santa

Barbara, CA, tel: 805-964-7724

Target Language: ADA

P l a t f o r m : runs on DEC VAX

Descr ip t ion : ATVS static analysis [251] examines the brandling structure

of the program and identifies unreachable code, identifies logic errors such as

objects assigned a value and never used, and performs audits against project-

specific programming standards. ATVS dynamic analysis identifies unexe­

cuted code and aids modification of the test data to achieve complete test

coverage. A task analyser is also included.

This tool has been evaluated by the STSC.

(d) B A T T L E M A P

Too l : BATTLE MAP

Category: Code analyser, code visualisation

Produced/Suppl ied by: McCa.be & Associates Inc., 5501 Twin Knolls

133

http://McCa.be

Road, suite 111, Columbia, Maryland 2 L045

Target Language: ADA, C, FORTRAN, PASCAL, BASIC, P L / I , ASSEM­

BLY (8086, 6502), COBOL

P l a t f o r m : runs on PCs under MSDOS, on HP, on DEC VAX workstations

under Unix, and on DEC VAX mainframes under VMS with Ultrix.

Cost: $ 6500 for PCs, $21500 for the workstation version, and $ 29000 for a

16-user VAX mainframe version.

Descr ip t ion : This tool [165] displays the structure of any system or sub­

system graphically, using special symbols to indicate tlie complexity of each

piece of code in the design. Battlemap allows the user to productively reverse

engineer on large existing systems by providing a comprehensive, visual un­

derstanding of the entire program structure along with its quality attributes,

(e) E D S A

Tool : EDSA (Expert Dataflow and Static Analysis)

Category: Code analyser, code visualisation

Produced/Suppl ied by: Array Systems Computing, 5000 Dufferin Street,

Suite 200, Downsview, Ont. M3115T5, CANADA

Target Language: ADA

P l a t f o r m : runs on PCs under MSDOS, on Sun, Apollo, and DEC work­

stations under Unix, and on VAX mainframe under Unixand on DEC VAX

mainframes under VMS with Ultrix.

Cost: $ 2450 for PCs, $3250 for Sun, Apollo, and VAXstation workstation,

and $ 11000 to $22000 for VAX mainframes.

Descr ip t ion : This tool lets the user identify which structures he/she is inter­

ested in and then removes extraneous (intervening) code, thereby letting the

user see the big picture [180j. EDSA [265] provides three kind of facilities:

o It helps to browse through code following either the control flow or data

How rather than the order in which the code happens to be written,

o I t displays code with unimportant source lines elided; so that the user can

get a more global view of the program,

o It provides search management to make it easier to examine all possibilities

when browsing.

(f) F l i n t

Too l : Flint

Category: Static code analyser

P roduced /Suppl ied by: Pacific-Sierra Research, Los Angeles, CA, tel: 213-

820-2200

Target Language: FORTRAN

P l a t f o r m : runs on DEC VAX, ABM370, and any UNIX machine.

Descr ip t ion : Flint [251] is a lint-like utility supporting FORTRAN programs.

This includes types checking and function parameter checking not performed

by the FORTRAN compiler.

(g) F O R T R A N - l i n t

Tool : FORTRAN-lint

Category: Static code analyser

Produced /Suppl ied by: Information Processing Techniques, Inc., Palo Alto,

tel: 415-494-7500

Target Language: FORTRAN

P l a t f o r m : runs on DEC VAX and Data General MV

Cost: $3550 -$9450

Descr ip t ion : FORTRAN-lint [251]is a static analyser that detects coding

problems similar to what lint utilities do for C programs. Among the prob­

lems detected are parameter checking and type checking of variables. Other

checks include the use of variables before declaration and non-use of declared

variable.

(h) F - S C A N

Tool : F-SCAN

Category: Cross referencer, Diagram generator, Code analyser

Produced /Suppl ied by: Koso Inc., 114 Sansome St, Suite 1203, San Fran­

cisco CA 94104 or International Logic Corp.

Target Language: FORTRAN

Descr ip t ion: This tool provides structure charts, Call/Vcalled tables, Set/Used

tables, and diagrams of Common,

(i) ISAS

Tool : ISAS

135

Category: Cross-referencer, diagram generator, code analyser, source code

comparison

Produced /Suppl ied by: Singer Dalmo Victor Division, 6365 E. Tanque

Verde Road, Tucson AZ 85715 or System & Software Eng.

Target Language: FORTRAN, ASSEMBLER

Descr ip t ion : This tool reports and charts procedure hierarchy, data refer­

ences, control flow, system structure, etc.

(j) L i n t

Too l : Lint

Category: Static code analyser

Produced/Suppl ied by: UNIX vendors

Target Language: C

P l a t f o r m : runs on UNIX machine

Cost: Usually included in UNIX

Descr ip t ion : Lint [251] detects C code features that are likely to develop

into bugs, procedure non-portable code, or produce inefficient code. Lint also

performs a more complete type check than the C compiler. Lint detects un­

reachable code segments, loop errors, and parameter checking on function

calls,

(k) L i n t - P L U S

Tool : Lint-PLUS

Category: Static code analyser

Produced /Suppl ied by: Information Processing Techniques, Inc., Palo Alto,

CA, tel: 415-494-7500

Target Language: C

P l a t f o r m : runs on DEC/VAX, DATA General Nova, and Eclipse

Cost: $3550-$9450

Descr ip t ion : Lint-PLUS [251] is a lint utility that provides static code analy­

sis on C code. Lint-PLUS provides information on type checking and function

parameter checking. Other metrics include the conformance to standards and

portability. Lint-PLUS allows the user to vary the amount of metrics received.

(1) L O G I S C O P E

Too l : LOGISCOPE

136

Category: Automated Source Code Analyser (Complexity analysis, Test cov­

erage analysis)

P roduced /Suppl ied by: Verilog S.A., 150 rue Vauquelin, Toulouse 31081

Target Language: ADA, FORTRAN, ASSEMBLER, PASCAL, C, MOD-

ULA 2, COBOL

P l a t f o r m : DEC, I B M Mainframe, SUN workstation

Cost: Fr 100000

Descr ip t ion : LOGISCOPE [169, 251] visualises the internal logic structure of

each module of code, as well as the structural relationships of all the modules.

The results provided by the Complexity Analyser are:

o textual and quantitative: Halstead, McCa.be and Mohanty metrics;

o graphic and qualitative: control graphs, call graphs, criteria graphs and

Kiviat diagrams;

This tool ha.s been evaluated by the STSC.

) M A L P A S

Too l : MALPAS (Malvern Program Analysis Suite)

Category: Static code analyser

Produced /Suppl ied by: Rex, Thompson & Partners Limited, West Street,

Farnham, Surrey, GU9 7EQ, Tel: (44) 252 711414.

P l a t f o r m : VAX/VMS

Cost: Fr 150000

Descr ip t ion : This tool [250] is a. suite of software tools for the automatic,

static analysis of programs written in a variety of programming languages. Six

types of analysis may be performed:

© Control Flow Analyser: examines the topological structure of the software

and identifies: all possible starts and ends; unreachable code and dynamic

halt; the location of loops with their entry and possible and exit point and

reveals the high-level control structure of the software,

e Data Use Analyser: deals with the sequential reading and writing of data

and will identify unset and unused variables and incorrectly used used

variables.

137

http://McCa.be

o Information Flow Analyser: identifies the input variables on which each

output variable depends

o Partial Programmer: decompose the software into a set of sub-programs

prior to semantic analysis

o Semantic Analyser: provides formulae relating the initial and final states of

the variable. The results are represented as a set of disjoint input domain

conditions, together with the set of output variable result expressions for

each domain

o Compliance Analyser: is a variant of the semantic analyser which compares

the results of the analysis with a formal specification of what the software

is expected to do.

(n) M A T

Tool : MAT(Maintainability Analysis Tool)

Category: Static code analyser

Produced/Suppl ied by: Science Application International, Corp., Arling­

ton VA, tel: 703-979-5910

Target Language: FORTRAN

P l a t f o r m : runs on DEC/VAX, IBM, Apollo, Prime, HP, MAC's, PC's, Sun,

Unisys and others.

Descr ip t ion: MAT [251] is a static analyser tool for FORTRAN. MAT reads,

parses and analyses each FORTRAN source module. MAT provides infor­

mation on errors, transportability problems, discrepancies, and poor usages.

Information such as wrong data types and wrong number of arguments are

provides by M A T . MAT documents each module interface and generates tex­

tual call trees and cross-referencing lists. MAT identifies all multiply defined

names, circular calling of modules, and lists all callers of a module, M A T

provides maintainability statistics on each modules.

This tool has been evaluated by the STSC.

(o) P C - M E T R I C S - ; -

Tool : PC METRICS

Category: Code analyser, quality analyser "

P roduced /Supp l i ed by:" SET Laboratories, Inc., Portland OR, tel: 503-

289-4758 . / - r

Target Language: Ada, FORTRAN, ASSEMBLER, PASCAL, C, C+ + ,

MODULA 2, COBOL

P l a t f o r m : runs on UNIX systems

Cost: $199-$8500

Descr ip t ion : PC-METRICS [251] computes software science and cyclomatic

complexity metrics. Other measurements include module size, data frequence

span, coding and standards compliance. Still other metrics include the number

of unique operand (see also SMR).

This tool has been evaluated by the STSC.

R X V P 8 0

Tool : RXVP80

Category: Cross referencer, diagram generator, test coverage analyser , code

analyser, program documentation, Reformatter

P roduced /Suppl ied by: General Research Corp., The Software Workshop,

5383 Hoolister Avenue, Santa Barbara. CA 93111, tel: 805-964-7724

Target Language: FORTRAN

P l a t f o r m : runs on IBM PCs

Cost: $10000

Descr ip t ion : This tool [66] is an automated verification system that consists

of a set of tools that assist in all phases of software development. Many

program errors will be detected earlier in the software life cycle, resulting in

cost savings and more reliable, easier to maintain software.

RXVP80 (commercially available since 1980) includes:

• syntactical, structural, and statistical analysis to detect inconstancies in

program structure and in the use of variables

• source code instrumentation

• analysis of testing coverage

• comprehensive automatic documentation

This tool has been evaluated by the STSC.

Re f t ran

Too l : Reftran

Category: Code analyser, Program documentation, Cross referencer

139

Produced/Suppl ied by: William R. DeHaan

Target Language: FORTRAN

(r) V A X SCA

Tool : VAX Source Code Analyser

Category: Code analyser

Produced/Suppl ied by: DEC

Target Language: Multiple languages

Descr ip t ion: This tool provides facilities such as logic tracing, data flow

tracing, and consistency analysis as well as cross referencer.

140

.1.2 C o d e V i s u a l i s a t i o n

(a) B A T T L E M A P

Too l : BATTLE MAP

Category: Code analyser, code visualisation

Produced /Suppl ied by: McCabefc associates, Columbia MD, tel.- 800-638-

6316

Target Language: ADA, C, FORTRAN, PASCAL, BASIC, P L / I , ASSEM­

BLY (8086, 6502), COBOL

P l a t f o r m : runs on PCs under MSDOS, on HP, on DEC VAX workstations

under Unix, and on DEC VAX mainframes under VMS with Ultrix.

Cost: $ 6500 for PCs, $21500 for the workstation version, and $ 29000 for a

16-user VAX mainframe version.

Descr ip t ion : This tool [180] displays the structure of any system or subsys­

tem graphically, using special symbols to indicate the complexity of each piece

of code in the design.

(b) E D S A

Tool : EDSA (Expert Dataflow and Static Analysis)

Category: Code analyser, code visualisation

Produced /Suppl ied by: Array Systems Computing

Target Language: ADA

P l a t f o r m : runs on PCs under MSDOS, on Sun, Apollo, and DEC work­

stations under Unix, and on VAX mainframe under Unixand on DEC VAX

mainframes under VMS with Ultrix.

Cost: $ 2450 for PCs, $3250 for Sun, Apollo, and VAXstation workstation,

and $ 11000 to $22000 for VAX mainframes.

Descr ip t ion : This tool [180] lets the users identify which structures are in­

teresting and then removes extraneous (intervening) code , thereby letting the

users see the big picture.

(c) G R A S P / A D A

Too l : GRASP/ADA

Category: Code visualisation

Produced /Suppl ied by: James Cross I I , Auburn University

141

Target Language: ADA

P l a t f o r m : runs on Sun 4 workstation under SunOS 4.0.3 or later on X Win­

dows 11.7 or later.DEC VAX/VMS mainframes and workstations.

Cost: $ 50 distribution fee.

Descr ip t ion: This tool [180] builds graphical control-structure diagrams that

high-light the control paths in and among Ada tasks. It is a comprehension

tool tailored to a specific language.

(d) O B J E C T I V E - C Browser

Tool : OBJECTIVE-C Browser

Category: Code visualisation, code analyser

Produced/Suppl ied by: Stepstone

Target Language: C

P l a t f o r m : runs on Sun 3, 4 , and 386i, HP 9000, DEC VAX, and IBM RT

PC workstations using Unix.

Cost: $ 995

Descr ip t ion : OBJECTIVE-C Brovvser[180] uses a windowing approach that

displays hierarchical, functional, and inheritance information about code ob­

ject in C or Objective-C.

It provides 3 types of information source code:

o the contents,

o available cross-referencing data, and

o source code contents with respect to the inheritance hierarchy.

(e) S E E L A

Tool : SEELA

Category: Code visualisation, reverse engineering, source code document

generator

Produced /Suppl ied by: Tuval Software Industries, 520 South El Camino

REal, suite 700, San Mateo, CA 94402-1720, tel: 1-800-777-9996.

Target Language: ADA, C, FORTAN, PASCAL, COBOL, P L / M ,

P l a t f o r m : runs on DEC VAX/VMS mainframes and workstations.

Cost: $ 2000 on VAX stations

Descr ip t ion : This tool [180, 98] converts (using reverse engineering) code

into program design language and lets the users edit the structure chart ,

142

cut and paste to and from the code, and generate high-level documentation

describing the code structure. Thus, it gives and electronic path between code

and its corresponding design language,

(f) V I F O R

Too l : VIFOR

Category: Code visualisation

Produced /Supp l ied by: Software tools and technologies

Target Language: FORTRAN

P l a t f o r m : runs on DEC VAX station 2000 and Micro VAX IlPSs under Ultrix

and on Sun workstations under Sun News.

Cost: $ 1995

Descr ip t ion : This tool [180] has a graphical interface that let the users select,

move, and zoom into icones representing parts of the program. As such, i t gives

a graphical editing capability.

143

A . 1.3 Cross Refe rencer

(a) A D P L

Too l : ADPL

Category: Program documentation, Cross referencer

Produced /Suppl ied by: Advanced Computer Concepts

Target Language: PASCAL, C, FORTRAN

(b) A u t o r e f

Tool : Autoref

Category: Cross referencer

Produced/Suppl ied by: Siegel Software Service

Target Language: ASSEMBLER, COBOL

(c) B P A

Tool : Basic Program Analyser

(see section A.2.2).

(d) C I C S - O L F U

Tool : CICS-OLFU

Category: Cross referencer

Produced/Suppl ied by: MacKinney Systems, 2674-A South Highland Av­

enue, Lombard IL 60148

Target Language: Any

(e) Dossier Browse

Tool : Dossier Browse

Category: Program documentation, Cross referencer

Produced/Suppl ied by: Concept Computer

Target Language: Any

(f) F - S C A N

(see section A. 1.1).

(g) ISAS

(see section A.1.1).

(h) M A D / 3 0 0 0

Tool : MAD/3000

Category: Program documentation, Cross referencer

144

Produced /Suppl ied by: Related Computer Technology, 154 S. Main, Box

523, Keller TX 76248

Target Language: COBOL, FORTRAN, BASIC

(i) R e f t r a n

(see section A.1.1).

(j) S O F T O O L P r o g r a m m i n g Env i ronment

(see section A.3.1).

(k) Source P r i n t
(see section A.2.2).

145

A . 1.4 Source C o d e C o m p a r i s o n

(a) ISAS

(see section A. 1.1).

(b) Ma tchbook

Too l : Matchbook

Category: Source code comparison

Produced/Suppl ied by: Westinghouse Management Systems

Target Language: ASSEMBLER

(c) S/Compare

Tool : S/Compare

Category: Source code comparison

Produced/Suppl ied by: ALDON Computer Group

Target Language: C

(d) Text Compara tor

Tool : Text Comparator

Category: source code comparison

Produced/Suppl ied by: Dataware

Target Language: COBOL, ASSEMBLER,

A . 1 . 5 E x e c u t i o n M o n i t o r i n g / D e b u g g i n g

(a) C-Tracer

Tool : C-Tracer

Category: Execution monitoring/debugging

Produced /Suppl ied by: IPT Corp.

Target Language: C

Descr ip t ion: This tool provides a history of a program's execution by build­

ing a record of various program statements as they are executed.

(b) F B U G / 1 0 0 0

Tool : FBUG/1000

Category: Execution monitoring/debugging

Produced/Suppl ied by: Corporate Computer Systems Inc.

146

Target Language: FORTRAN

(c) Intertest/CICS

Tool: Intertest/CICS

Category: Execution monitoring/debugging

Produced/Supplied by: On-Line Software International, Inc., Executi

Drive, Fort Lee NJ 07024

Target Language: ASSEMBLER

(d) JSADebug-Assembler

Tool: JSADebug-Assembler

Category: Execution monitoring/debugging

Produced/Supplied by: Computer Consulting & Software

Target Language: ASSEMBLER

(e) Superbug

Tool: Superbug

Category: Execution monitoring/Debugging

Produced/Supplied by: Technology Consulting Corporation

Target Language: ASSEMBLER

(f) Trace

(see section A.3.1).

(g) Tracer

Tool: Tracer

Category: Execution monitoring/debugging

Produced/Supplied by: IPT Corp., Palo Alto CA, tel: 415-494-7500

Target Language: FORTRAN, ASSEMBLER

(h) XDebug

Tool: XDebug

Category: Execution monitoring/Debugging

Produced/Supplied by: Kolinar Corp.

Target Language: ASSEMBLER

(i) XPF/Assembler

(see section A.3.1).

147

A.2 Tools for Reverse Engineering

A.2.1 Restructurer

(a) SPAG

Tool: SPAG

Category: Restructure!-

Produced/Supplied by: OTG System Inc., Suite 300, P.O.BOX 5250, 308

Mulberry Street, Scranton PA 18505-5250 USA.

Target Language: FORTRAN

Part of the PRISM Toolkit

A . 2.2 Reformat ter

(a) BPA

Tool: Basic Program Analyser

Category: Cross referencer, Reformatter

Produced/Supplied by: Expert Systems

Target Language: BASIC

(b) Basic-Doc

Tool: Basic-Doc

Category: Reformatter

Produced/Supplied by: Applied Business Systems

Target Language: BASIC

(c) RXVP80

(see section A. 1.1)

(d) SEELA

(see section A.1.2).

(e) Source Print Tool: Source Print

Category: Cross referencer, Reformatter

Produced/Supplied by: Aldebaran Laboratories, or Powerline, Inc., 2531

Baker Street, San Francisco CA 94123 USA

Target Language: FORTRAN, COBOL, C, PASCAL, DBASE, MODULA 2

148

Description: This tool pages, indexes, and annotated with structure lines

source code.

.2.3 Reengineering

(a) BAL/SRW

Tool: Basic Assembler Language Software Re-engineering Workbench

i Category: Re-Engineering

Produced/Supplied by: Daniel Marks, Andersen Consulting, 33 West Mon­

roe Street, Chicago, Illinois 60603, tel: 312-507-6748.

Target Language: Assembly

Platform: SUN under UNIX, use of X-Windows.

Description: The BAL/SRW [133] is a set of software re-engineering tools to

help an analyst to recover the design of an assembly program. This is achieved

through a series of abstractions, which effectively coLlapse program function­

ality into progressively higher level concepts. The program is analysed and

its internal representation is created in the knowledge base. In order to learn

about the program logic the analyst can

• Search for programming patterns present in the program and replace them

with natural or formal language sentences in order to make the code more

understandable.

• Navigate through both the source code and control flow view of the pro­

gram.

• Simplify the program automatically by recognising control flow patterns,

identifying subroutines and unreachable sections of the code, and by hiding

selected control flow paths upon specified conditions.

• Simplify the program manually by substituting analyst defined comments

for program sections.

149

A.2.4 Reverse Engineering

(a) Reverse Engineering

Tool: Reverse Engineering ^

Category: reverse Engineering, Code analyser, Program documentation

Produced/Supplied by: Advanced Systems Technology Corp., 9111 Ed-

monston Road, suite 404, Greenbelt MD 20770 USA. •

Target Language: FORTRAN, C, ASSEMBLY

' Description: This tool translates source languages into a specifications lan­

guage (PSL/PSA).

(b) SEEL A

Tool: SEELA

Category: Code visualisation, reverse engineering, source code document

generator

Produced/Supplied by: Tuval Software Industries, 520 South El Camino

REal, suite 700, San Mateo, CA 94402-1720, tel: 1-800-777-9996.

Target Language: ADA, C, FORTAN, PASCAL, COBOL, PL/M,

Platform: runs on DEC VAX/VMS mainframes and workstations.

Cost: $ 2000 on VAX stations

Description: This tool [180] converts using reverse engineering code into

program design language and lets the users edit the structure chart , cut and

paste to and from the code, and generate high-level documentation describing

the code structure. Thus, it gives an electronic path between code and its

corresponding design language.

(c) Software Refinery

Tools: RE FIN E, DIALECT and INTERVISTA

Category: Reverse Engineering.

Produced/Supplied by: Lawrence Markosian, Reasoning Systems, Inc.,

3260 Hillview Avenue, Palo Alto, CA 94304, tel: 415-494-6201.

Cost: see each tool

Target Language: C, ADA, Fortran, Cobol, SQL.

Description: Software Refinery-is a family of prod ucts for building* auto^

mated software processing tools - Tools that take source code as input and/or

- 150 -"; ' >

produce source code as output. Software refinery includes three products:

REFINE, DIALECT, and INTERSTA.

(d) R E F I N E

Tool: REFINE

Category: Re-Engineering

Produced/Supplied by: Lawrence Markosian, Reasoning Systems, Inc.,

3260 Hillview Avenue, Palo Alto, CA 94304, tel: 415-494-6201.

Cost: $ 7900 on SUN-3 and $10700 on SPARC

Target Language: C, ADA, Fortran, Cobol, SQL.

Description: REFINE is a programming environment for building software

analysis and transformation tools. Its features a very high level executable

specification language, a specification language compiler, an object oriented

database, a customised editor interface, and tracing and debugging tools.

(e) D I A L E C T

Tools: DIALECT

Category: Re-Engineering

Produced/Supplied by: Lawrence Markosian, Reasoning Systems, Inc.,

3260 Hillview Avenue, Palo Alto, CA 94304, tel: 415-494-6201.

Cost: $ 3700 on SUN-3 and $4900 on SPARC

Target Language: C, ADA, Fortran, Cobol, SQL.

Description: DIALECT is a tool that generates programming language

parsers and printers from grammars. It includes a high level language for

specifying language, a specifying grammars and a grammar compiler.

(f) I N T E R V I S T A

Tools: INTERVISTA

Category: Reverse Engineering

Produced/Supplied by: Lawrence Markosian, Reasoning Systems, Inc.,

3260 Hillview Avenue, Palo Alto, CA 94304, tel: 415-494-6201.

Cost: $ 2300 on SUN-3 and $3100 on SPARC

Target Language: C, ADA, Fortran, Cobol, SQL.

Description: INTERVISTA is a toolkit for building graphical interfaces to

Software Refinery applications. It provides windows, diagrams, menus, and

hypertext.

151

(g) PRODOC

Tool: PRODOC re/NuSys Workbench

Category: Reverse Engineering

Produced/Supplied by: Scandura Intelligent Systems, 1249 Greentree Lane,

Narberth, PA 19072, U.S.A. (215.664.1207).

Target Language: PASCAL, C, ADA, COBOL, FORTRAN

Description: PRODOC [225] uses FLOWforms to represent systems at arbi­

trary levels of abstraction in a highly interactive visual environment. Among

other things:

o the use of FLOWforms helps eliminate representational inconsistencies and

awkward transitions between analysis and design,

o high level designs can be translated automatically into any of the languages

supported by PRODOC.

o existing source code can be reverse-engineered at roughly the speed of a
compiler

o PRODOC can convert from old to new environments with its ability to

automatically translate between pseudocode languages.

152

A.3 Tools for Testing

A.3.1 Test Coverage Monitors

(a) C C A

Tool: CCA (Code Coverage Analyser)

Category: Test coverage monitor

Produced/Supplied by: IIRB-Singer

Target Language: FORTRAN

(b) F U S

Tool: FUS

Category: Test coverage monitor

Produced/Supplied by: Digital Solutions

Target Language: FORTRAN

(c) I I T S

Tool: IITS (Integrated Test Tool System)

Category: Test coverage monitor, regression testing

Produced/Supplied by: Edouard Miller, Software Research, Inc., 625 Third

Street, San Fancisco CA 94107-1997

Target Language: ADA, C, FORTRAN, PASCAL, COBOL

Platform: runs on Unix, X Windows, MS-DOS, OS/2 systems.

Cost: $ 7400 for MSDOS and OS/2 systems, $ 32250 for Unix workstations.

Description: IITS [208] is a test coverage monitor and a regression testing

tools. It is an utility system that can be integrated with the output of a

programming environment to test and validate the results of the development

efforts. The test coverage analysis tool guides development of test suites, assess

testing progress, and aid error detection. The regression testing tool tests and

retests candidate systems' functionality.

(d) ISAS

Tool: ISAS

Category: Cross referencer, diagram generator, code analyser, source code

comparison

Produced/Supplied by: Singler Dal mo Victor Division, System & Soft-

153

ware Eng.

Target Language: FORTRAN, ASSEMBLER

Description: This tool reports and charts procedure hierarchy, data refer­

ences, control flow, system structures ...

(e) LOGISCOPE

(see section A. 1.1)

(f) RXVP8Q

(see section A. 1.1)

(g) SMARTS

Tool: SMARTS (Software Maintenance and Regression Test System)

Category: Test coverage monitor, regression test

Produced/Supplied by: Software Research Inc. 625 Third Street, San

Francisco, CA 94107-1997

Platform: PC or 386 machine under MS-DOS or XENIX.

Description: This tool with EXDIFF execute, evaluate and report on thou­

sands of tests automatically. Both interactive and batch tests are scripted

in easy to maintain test files. SMARTS and EXDIFF, plus CAPBAK (which

capture keystrokes), plus if necessary, a. 3270 emulation back end, forms a pow­

erful system of tools for planning, executing, logging, and analysing complex

repetitive test suites.

(h) SOFTOOL Programming Environment

Tool: Softool Programming Environment

Category: Cross referencer, Test coverage monitor

Produced/Supplied by: Softool Corp., 340 South Kellogg Ave, Goleta CA

93117

Target Language: FORTRAN, COBOL, C

(i) T C A T

Tool: TCAT

Category: Test coverage monitor

Produced/Supplied by: Software Research Inc. 625 Third Street, San

Francisco, CA 94107-1997

Target Language: ADA, FORTRAN, Pascal, COBOL, C

Platform: IBM-PC, Sun, AT&T, DEC/VAX, Apollo

154

Cost: $1400-821500

Description: This tool uses the source code to make the test suites more

complete than ever before. It measures test thoroughness in terms of logical

branchs, instead of statement coverage that common profilers use [251].

This tool has been evaluated by the STSC.

(j) Testing Instrumenters

Tool: Testing Instrumenters

Category: Test coverage monitor

Produced/Supplied by: Softool Corp., 340 South Kellogg Ave, Goleta CA

93117

Target Language: FORTRAN, COBOL, C

(k) Trace

Tool: Trace

Category: Execution monitoring/debugging, test coverage monitor/monitor

Produced/Supplied by: AK Inc.

Target Language: Any

(1) T V V T

Tool: TVVT

Category: Test coverage monitor

Produced/Supplied by: AMG Associates

Target Language: FORTRAN, JOVIAL

(m) XPF/Assembler

Tool: XPF/Assembler

Category: Execution monitoring/Debugging, Test coverage monitor

Produced/Supplied by: Boole & Babbage Inc., 510 Oakmead Parkway,

Sunnyvale CA 94086 or Phansophic Systems, Phansophic house, Nol, York

Road, UXbridge Middlesex UK8 1RN, UK

Platform: IBM

Target Language: ASSEMBLER

155

A.3.2 Regression Testing

(a) A U i O M A T O R qa

Tool: AUTOMATOR qa

Category: Regression Testing

Produced/Supplied by: Interactive Solution inc., Bogota, NJ, Tel:201-488-

3708 •

Plat for i t i : IBM-PCs

Target Language: Language independent

Cost: $5495

Description: AUTOMATOR qa [251] provides repetitive task automation.

It supports regression testing by the recording of scrips and also the writing of

scrips in a scripting language. Performance testing is provided by a function

that records the screen, keyboard and internal lock, thus providing execution

data. AUTOMATOR. qa has the ability to generate random tests given an

array of possible entries and combining them into new tests.

This tool has been evaluated by the STSC.

(b) Autolester

Tool: AutoTester

Category: Regression Testing

Produced/Supplied by: Software Recording Corp., Dallas, TX, Tel: 214-

368-1196

Platform: IBM-PCs

Target Language: Language independent

Cost: $30000 for 10 copies

Description:-AutoTester [251] is a capture^replay-comparator tool that is

capable of testing applications on PCs, minis, and mainframe computers. The

link is through asynchronoiis communication. It records tests and allows easy

editing and playback capabilities. Autotester supports a structure method

that promotes test modularisation and documentation. Procedures, (scrips)

may be used oyer and over again to test similar functions that occur at different

times during a test session. -

This tool has been evaluated by the STSC.,

156

(c) Bloodhound

Tool: Bloodhound

Category: Regression Testing

Produced/Supplied by: Goldbrick Software

Platform: IBM-PCs

Target Language: Language independent

Cost: $50 shareware

Description: Bloodhound [251] captures an unlimited number of keystrokes

and screens in text mode. Screen images can be automatically captured when­

ever the screen scrolls. Screens can also be captured at arbitrary points in the

user program. Tests can be run after changes to see if any regressions have

occurred.

This tool has been evaluated by the STSC.

(d) C A M O T E

Tool: CAMOTE (Computer Aided MOdule Testing and design Environment)

Category: Regression Testing, module design and test

Produced/Supplied by: T. Dogsa, University of Maribor, Faculty of Tech­

nical Sciences, Smetanova 17, YU-62000 MARIBOR.

Platform: VAX(VMS) Version 4.5

Description: CAMOTE [71] provides unit testing, program testing, test cov­

erage data, regression testing, decision-condition coverage monitoring, auto­

matic driver modules source generation, automatic collection of data needed

in reliability research projects.

(e) CapBak

Tool: CapBak

Category: Regression Testing

Produced/Supplied by: Software Research Inc.

Platform: IBM PC/XT/AT

Target Language: Language independent

Description: CapBak [251] captures keystroke sequences for automatic play­

back. CapBak includes screen-save capabilities, replay timing adjustments,

and facilities to edit captured keysave files. Dynamic playback programming

is provided by the use of IF and WHILE clauses in the keysave files.

157

This tool has been evaluated by the STSC.

(f) CARBONCopy

Tool: CARBONCopy

Category: Regression Testing

Produced/Supplied by: Clyde Digital Systems, Inc.

Platform: DEC/VAX, DEC/MicroVAX

Target Language: Language independent

Description: CARBONCopy [251] is a terminal I/O capture program. Ter­

minal keystrokes are recorded to a file where they can be replayed, edited or

printed. CARBONCopy provides regression testing support.

This tool has been evaluated by the STSC.

(g) Check*Mate

Tool: Check*Mate

Category: Regression Testing

Produced/Supplied by: Pilot Research Associates, Inc.

Platform: IBM-PC, DEC/VAX

Target Language: Language independent

Cost: $5750 first year

Description: Check*Mate [251] can perform individual tests of new functions

using keystrokes capture or manual coding depending on the complexity of

the test. By using keystroke capture, testing operations need to be performed

once; then they can be replayed to test the function again.

This tool has been evaluated by the STSC.

(h) DCATS

Tool: DCATS

Category: Regression Testing

Produced/Supplied by: System Design and Development Corp.

Platform: IBM mainframe, HP

Target Language: Language independent

Cost: $75000

Description: DCATS [251] is a capture-replay-comparator tool. It provides

a method of writing a test script and inputting the expected results in order to

record scripts. This script can then be executed and the results compared to

158

the expected results. Difference in actual and expected outcomes are reported.

This tool has been evaluated by the STSC.

(i) Evaluator

Tool: Evaluator

Category: Regression Testing

Produced/Supplied by: Cadre

Platform: IBM-PCs

Target Language: Language independent

Description: Evaluator [251] is a capture-replay tool. It has a record mode

where scripts are aurtomatically recorded. In replay or playback mode, Eval­

uator replays the recorded keystrokes from the recording session. Playback

mode can run unattended and save the results to files. In programming mode

scrips may be edited in the TEST Control Language (TCL).

This tool has been evaluated by the STSC.

(j) U T S

(see section A.3.1)

(k) SMARTS

(see section A.3.1)

(1) T R A P S

Tool: TRAPS

Category: Regression Testing

Produced/Supplied by: TravTech, Inc.

Platform: IBM mainframe, DEC/VAX, IBM-PCs

Target Language: Language independent

Description: TRAPS [251] is a menu-driven capture-replay tool. It allows

recording, editing and replay of test scripts.

This tool has been evaluated by the STSC.

(m) U A T L

Tool: UATL (Universal Ada Test Language)

Category: Regression testing

Produced/Supplied by: J. Ziegler, ITT Avionics, 390 Washington Avenue,

Nutley, NJ 07110-3603

Target Language: ADA

159

Platform: MicroVAX, IBM PC/AT compatible, HP 9000/serie 300 processor

Description: The UATL provides a consistency framework for testing com­

plex systems at all stages of the software/system development, production, and

maintenance cycle. It consists of a set of Ada packages that provide the user

with a complete complement of standardised reusable test function; including

an interactive menu driven test manager, on-line operator control displays,

real-time "closed loop", test data stimulus/response, test instrument drivers,

data recording [284].

(n) V A X DEC/Test Manager (T M)

Tool: VAX DEC/Test Manager (TM)

Category: Regression Testing

Produced/Supplied by: DEC

Platform: DEC/VAX

Target Language: Language independent

Cost: $4800424000

Description: VAX/Test Manager [251] automates the regression testing of

software. TM runs user-supplied tests, and the results are automatically com­

pared to their expected results. Regression testing assures that changes have

not affected the previous execution of the software. TM operates both in inter­

active and batch modes. It has a DEC windows interface which is consistent

with other window applications, making it easy to learn.

This tool has been evaluated by the STSC.

160

A.4 Tools for Maintenance Management

A.4.1 Software Configuration Management

(a) C C C

Tool: CCC (Change and Configuration Control)

Category: Software Configuration Management

Produced/Supplied by: S0FT00L/K3

Platform: VAX (VMS/ULTRIX), IBM (MVS/SP, MVS/XA, VM/CMS),

SUN(UNIX), HP9000(HP-UX) ...

Interface VAX: all environment including Ada.

Description: CCC offers facilities to manage all aspects of changes to any

machine readable units of information (code, executable, objects, shell scripts,

documents, JCL etc.) through well defined access controls, change identifica­

tion, control and audit procedures.

It provides Change tracking, change control, configuration control, access con­

trol, auditing, baseline creation, impact analysis, dependency reporting, can

be used to satisfy MIL-STD requirements.

(b) C H A N G E M A N

Tool: CHANGEMAN

Category: Software Configuration Management

Produced/Supplied by: SD-SCICON/SD Software Technology Centre

Platform: Micro VAX, VAX(VMS)

Description: CHANGEMAN is built on the Oracle relational database. It

provides configuration identification, change and change request control and

documentation, make facility, recording of build details, impact analysis and

reporting, change control authorisation and the review process, extensive re­

porting facilities, configuration audit, task allocation and project security fea­

tures, archiving and backup facilities, fully multi-user.

(c) C M A S

Tool: CMAS (Configuration Management Automation System)

Category: Software Configuration Management

Produced/Supplied by: BTG

161

Platform:

Description: CMAS is an application based on SOFTOOL'S CCC. It pro­

vides document production, cross referencing and status accounting.

(d) C M F

Tool: CMF (Configuration Management Facility)

Category: Software Configuration Management

Produced/Supplied by: LOGSYS (Advances Systems Ltd)

Platform: UNIX,VAX(VMS)

Description: It combines CMT and DST, complies with MIL-STD-490 and

automates the implementation of DoD-STD-2167.

CMF controls software, hardware and document changes and releases through­

out the system life cycle. It coordinates traditional configuration management

functions with comprehensive problem reporting and tracking, powerful release

management, and flexible template/form generation and support.

CMT(Configuration Management Toolkit) is an integrated set of tools for

controlling change and releases in system development, and a part of CMF.

It provides configuration manager integrity and different tools: verifier, con­

figuration control, system problem reporting, version description and build

specification.

DST(Documentation Support Toolkit) is an integrated set of documentation

support tools for producing and controlling documents, forms and templates.

(e) CMS

Tool: CMS (Code Management System)

Category: Software Configuration Management

Produced/Supplied by: DEC

Platform: Micro VAX, VAX(VMS)

Description: CMS is a library system that allows changes to text files to

be tracked, reporting when, why and by whom modification were made. It

provides library management and maintains audit trail.

It may also be integrated with other DEC/VAX products: MMS; VAX/LSE;

VAX/SCA; VAX/Test.

(f) B S E E

Tool: DSEE (Domain Software Engineering Environment)

162

Category: Software Configuration Management

Produced/Supplied by: Apollo Computer UK

Platform: Platform independent (Apollo and other workstations, PCs, mi­

nis, mainframes, embedded microprocessor systems).

Description: DSEE is one of the most sophisticated configuration tools based

on Unix. DSEE [138, 139] is a set of 4 management tools: history man­

ager, configuration manager, task manager and monitor manager. I t provides

storage, control and tracking of source code, concurrency control, audit trail

maintenance, system building, software release, automatic change notification

and support distributed environments.

(g) E N D E V O R

Tool: ENDEVOR(ENvironment for DEVelopment OpeRations)

Category: Software Configuration Management

Produced/Supplied by: BST(Business Software Technology)

Platform: IBM

Description: It provides inventory and library management, change control,

configuration management and release management.

(h) I S P W

Tool: ISPW

Category: Software Configuration Management

Produced/Supplied by: Benchmark Technologies Ltd

Platform: IBM(MVS)

Description: IPSW is an IPSE which provides project/work management,

tool/technology management, change control, standards, procedures and audit

compliance, source management, library management and production imple­

mentation,

(i) L I F E S P A N

Tool: LIFESPAN

Category: Software Configuration Management

Produced/Supplied by: YARD Software Systems Ltd

Platform: VAX(VMS)

Description: It provides configuration management, change control, quality

assurance and automatic notification of proposed change. It provides con-

163

trolled access to a software database, enabling computerised information to be

identified, arranged and re-used, easily and securely,

(j) L G S / C M F

TooI i .LCS/CMF (Library Control System/Change Management Facility)

Category; Software Configuration Management

Produced /S i ipp l ied by: IBM(TSO)

P l a t f o r m : VAX(VMS)

Descr ip t ion : LCS/CMF is composed of Panvalet(sdurce library) and Panexec

(object library),

(k) M Q S A I X

Tool : MOSAIX

Category: Software Configuration Management

Produced/Suppl ied by: G'EC Software Ltd.

P l a t f o r m : VAX(VMS)

Descr ip t ion: MOSAIX is an automated interactive database system with

configuration management, quality management. It guarantees consistency

among components and product composition definition.

(1) P C M S

Tool : PCMS(Product Configuration Management System)

Category: Software Configuration Management

Produced/Suppl ied by: SQL System International/Alcatel Engineering

Support Center

Plat f o r m : . VAX(VMS ,U LTRIX)

Descr ip t ion: PCMS is. an integrated development environment which pro­

vides configuration management,

(m) PCS

Too l : PCS(Project Control System)

Category: Software Configuration Management

Produced/Suppl ied by: Scicon Consultancy International

/ Platform:, . VAX : : -.. ; :V • L : ^ V r , •. 'J-^

Descr ip t ion: PCS is part of B APSE (Bates Programming Support Environ­

ment) and provides project control, documentation control and production,

•design'and build control of CORAL/MASCOT systems, and configuration

- 164 '

management,

(n) P V C S

Tool: PVCS

Category: Software Configuration Management

Produced/Supplied by: Polytron Corp., Beaverton OR, tel: 800-547-4000

/The Software Construction Company

Platform: PCs (MS-DOS. OS/2), VAX(VMS), MAcintosb(MPW), Sun(SunOS)

Description: PVCS records revisions and provides an history of revisions,

(o) S C C S

Tool: SCCS (Source Code Control System)

Category: Software Configuration Management

Produced/Supplied by: Supplied as part of UNIX

Platform: Various UNIX

Description: SCCS [211] provides change control, version control and main­

tains change history,

(p) S / C O M P A R E - H A R M O N I S E R

Tool: S/COMPARE-HARMONISER

Category: Software Configuration Management

Produced/Supplied by: ALDON Computer Group, Oakland CA, tel: 415-

839-3535

Platform: IBM(MVS), I B M System 38, HP3000

Description: S/COMPARE-HARMONISER identifies changes, documents

changes and integrates modifications into software.

(qj S D S

Tool: SDS

Category: Software Configuration Management

Produced/Supplied by: Software Science Ltd.

Platform: VAX(VMS), IBM(MVS/TSO)

Description: SDS is a. database tool for teams developing large systems. SDS

records attributes and references to items (but does not hold actual items),

assists configuring and change reports.

1G5

(r) S I B S

Tool : SIBS(Software Integration & Building System

Category: Software Configuration Management

Produced/Suppl ied by: Marconi Radar Systems

P l a t f o r m : GEC 4000 (OS4000)

Descr ip t ion : SIBS is a system building from given components and records

versions(components, tools),

(s) SourceTools

Tool : SourceTools

Category: Software Configuration Management

Produced/Suppl ied by: Real Time Product Ltd.

P l a t f o r m : VAX(VMS), PDP-11(RSX/RSTS), PCs(MSDOS)

Descr ip t ion : SOURCECON controls access to source files, M A K E rebuilds

systems, TEXCOM and SEDIT detects differences between source files and

build edit scripts. SourceTools is language independent,

(t) S V M

Tool : SVM

Category: Software Configuration Management

Produced/Suppl ied by: Semantics

P l a t f o r m : IBM PC

Descr ip t ion: SVM provides configuration management and version control,

(u) T A G S

Tool : TAGS (Technology for the Automatic Generation of Systems)

Category: Software Configuration Management

Produced/Suppl ied by: Teledyne Brown Engineering, San Diego CA, tel:

619-260-4487

Descr ip t ion : TAGS is a software documentation and program simulation

generator and document manager.

This tool has been evaluated by the STSC (see [252])

166

A.4 .2 P r o g r a m Synthesis

(a) M M S

Tool: MMS (Module Management System)

Category: Program synthesis

Produced/Supplied by: DEC

Platform: MicroVAX, VAX(VMS)

(b) Advantage Make

Tool: Advantage Make

Category: Program synthesis

Produced/Supplied by:

Platform: PCs

Description: Make Utility

(c) B S M - M a k e

Tool: BSM-Make

Category: Program synthesis

Produced/Supplied by:

Platform: PCs

Description: Make Utility

(d) M A K E

Tool: M A K E

Category: Program synthesis

Produced/Supplied by: Supplied as part of UNIX

Platform: Various UNIX

Description: The Make facility is based on the UNIX operating system. A

Makefile is a kind of command file and contains two different kinds of elements:

e elements that describe dependencies between building blocks

• commands that must be executed in order to make the program system.

A.4 .3 L i b r a r y Management

(a) Change Man

Tool: Change Man

167

Category: Library management, change management

Produced/Suppl ied by: SERENA Consulting/CCR Softserv

P l a t f o r m : IBM(MVS, MVS/XA, TSO/ISPF)

(b) Librarian

Tool : Librarian

Category: library management, change control

Produced/Suppl ied by: ADR(Applied Data Research)

P l a t f o r m : IBM(MVS/TSO,ISPF)

(c) P o l y L i b r a r i a n

Too l : PolyLibrarian

Gategory: library management

Produced/Suppl ied by: Polytron Corp.

P l a t f o r m : PCs (MS-DOS)

Descr ip t ion: PolyLibrarian manages object code libraries.

(d) V M L I B

Too l : VMLIB

Category: library management

Produced/Suppl ied by: Pansofic Systems

P l a t f o r m : IBM (VM/CMS)

.4.4 Change Management

(a) Change M a n

Tool : Change Man

Category: Software Configuration Management

Produced /Suppl ied by: SERENA Consulting/CCR Softserv

P l a t f o r m : IBM(MVS, MVS/XA, TSO/ISPF)

Descr ip t ion : Library management, change management

168

A.4 .5 C h a n g e C o n t r o l

(a) Librarian

Tool: Librarian

Category: library management and change control

Produced/Supplied by: ADR(Applied Data Research)

Platform: IBM(MVS/TSO,ISPF)

A.4 .6 Vers ion Contro l

(a) TexSys

Tool: TexSys

Category: Version Control

Produced/Supplied by:

Platform: PCs

(b) T U B

Tool: TLIB

Category: Version Control

Produced/Supplied by:

Platform: PCs

(c) T M S

Tool: TMS (Text Management System)

Category: Version Control

Produced/Supplied by: Marconi Radar Systems/GEC Computers

Platform: GEC 4000 (OS4000)

Description: TMS is a document version storage and access control.

169

.7 P r o d u c t M a n a g e m e n t

(a) S A B L I M E

Tool: SABLIME

Category: Product Administration System

Produced /Suppl ied by: Steve Cichinski, A T & T Bell Laboratories, 184 Lib­

erty Corner Road, Warren, NJ 07060, Room 4N-C01, tel: 908-580-4358.

P l a t f o r m : VAX line, SUN 3/4/SPARC, A T & T HP 9000-300/800, IBMS,

MOTOROLA 68030, PYRAMID 9825

Descr ip t ion: SABLIME is a comprehensive product administration system

that tracks changes to a product consisting of software, hardware, firmware,

and/or documents, from its origination, through maintenance, delivery, and

support. Its integrated Modification Request (MR) and Configuration Man­

agement capabilities make it a unique tool for managers and product develop­

ers alike (informations from A T & T) .

(b) R A - M E T R I C S

Too l : RA-METRICS

Category: Software Metric Repository

Produced/Suppl ied by: Howard Rubin Associates, Inc., Winterbottom

Lane, Pound Ridge, Ny 10576, tel: 914-833-3130.

Descr ip t ion: RA-METRICS supports all of the management reporting met­

rics and it reports: functional and technical quality, user satisfaction, defects

counts, CASE/Tool Usage, development/maintenance history, financial his­

tory and estimation accuracy.(from advertising)

(c) S M E

Too l : Software Metric Repository

Category: Software Metric Repository

Produced /Suppl ied by: Denver Metrics Group, tel: 303-360-9558, USA.

Target Language: Ada, Assembler, C, C+ + , Fortran, Basic, Modula-2,

Cobol

Descr ip t ion : The Software Metric Repository is a menu and mouse driven

database featuring a "point and Shot" user friendly interface. The database

incorporates the software metrics generated by PC-Metric (see section A.1.1)

170

as well as Functions Points and project data. The browse and reporting ca­

pabilities help the user to examine and analyse the raw data.

PC-Metric is a software metric generation package. I t analyses the source code

and computes numerous size and complexity metrics.

171

Appendix B

Software Maintenance

Prototypes and Research

Projects

.1 Prototypes for Program Comprehension

.1 .1 Code A n a l y s e r

(a) A E G I S

Tool : AEGIS

Category: Code analyser, dependency analyser

Used by: Computer Sciences Corporation

Target Language: ?, used to maintain very large Navy weapons control

system

Descr ip t ion: The method is to capture a large volume of data about the

components of the software in a data base that can be queried or from which

reports can be printed.

(b) A S A P

Tool : ASAP (Ada Static Source Code Analyser Program)

172

Category: Code analyser

Target Language: ADA

Description: This tool is an automated tool for static code analysis of pro­

gram written in the ADA programming language.

The purpose of this analysis is to collect and store information pertaining to

be analysed ADA compilation unit's size, complexity, usage of ADA language

constructs and features, and static interface with other ADA compilation units.

, (c) I S M M

Tool: ISMM: The Incremental Software Maintenance Manager

Category: Code analyser, incremental static analyser

Prototyped by: B. Ryder, Department of Computer Science, Rutgers Uni­

versity, New Brunswick, New Jersey 08903.

Target Language: C

Description: ISMM is a prototype software tool for incremental static anal­

ysis of C programs. The goal of ISMM is to demonstrate the feasibility and

praticability of using incremental static analysis to aid in the maintenance

phase of the software life cycle.

ISMM consists of two modules: FREND, a front end which parses the C source

code and convert i t into an annotated directed graph representation of system

calling structure, and BEND, a back end which performs both the incremental

and exhaustive analysis [221, 222].

(d) noname

Tool: noname

Category: Code analyser, dependency analyser

Prototyped by: I B M

Description: This prototype combines a data base to store the program with

a display "viewer" that allows a programmer to browse easily through it in

many ways to accumulate information for a maintenance task [49].

B.1 .2 P r o g r a m Unders tanding

(a) P U N S

Category: Program comprehension

173

Descr ip t ion : PUNS (Program Understanding Support Environment) [50]gives

multiple views of the program and a strategy for moving between views and

exploring views in depth. I t comprises two components, a repository and a

user interface.

(b) S C Q R E / R M

Category: Program comprehension

P r o t o t y p e d by: Eloy's Register of Shipping, U.K.

i Descr ip t ion : SCORE/RM [52] provides a mechanism by which a maintainer

can systematically work through the code and comprehend its purpose, pro­

duces a set f documentation to reduce future learning curves and modify the

code so that it becomes easier to maintain.

(c) noname

Category: Program comprehension

P ro to typed by: J. Sametinger, Institut fur Wirtsinforfnatik, University of

Linz, A-4040 Linz, Austria.

Imp lemen ta t ion : It was implemented with C-f-t- under UNIX on Sun Work­

station.

Target Language: C - f - f

Descr ip t ion : This prototype [224] helps programmers understand object-

oriented software systems written in C - f + . I t enables its users to easily browse

through the system based on the relations among its classes, files and even

identifiers.

B .1 .3 K n o w l e d g e . Based -System and M a i n t e n a n c e Ass i s t an t

(a) EPOS

Pro to type : EPOS(Expert System for Program and System Development)

Category: Expert System, Software Configuration Management

. - P ro to typed , b y f -

" P l a t f o r m :

Descr ip t ion : EPOS is a generic kernel environment providing a flexible in­

frastructure to support the evolution of production scale software system.' I t

has four level connected by interfaces:

174

o an X Window user interface

o EPOS kernel tools

o programming tools and activity manager

o a configuration management system

It utilises change orientated versioning based on functional changes , and man­

ages the software development process through knowledge based planning of

tools invocations. The product model is based on semantic data model similar

to the Adele product model. Smart builds are supported and it is language

and method independent.

(b) E S

Prototype: ES

Category: Expert System

Prototyped by: F. Cross

Description: F. Cross [64] described an E.S. approach to building an in­

formation/maintenance tool for an existing target system of both hardware

and software components. The purpose of tool is to help the user identify the

components they seek and to automate the identification of the remaining sup­

porting components required. The tool uses its rules rules-based knowledge

and the user selections to identify the desired components and their supporting

components.

(c) S O F T M

Prototype: SOFTM

Category: Expert System

Prototyped by: L.Pau and J.M. Negret

Description: L.Pau and J.M. Negret [190] described a software maintenance

knowledge based system called SOFTM which was designed for the following

purposes:

e to assist software programmers in the application code maintenance task,

e to generate and update automatically software correction documentation.

© to help the end user register, and possibly interpret, errors in successive

application code versions.

175

SOFTM relies on an unique ATN (Augmented Transition Network) based code

description, a diagnostic inference procedure based on pattern classification,

and on a maintenance log report generator. The system is able to a range of

programming languages provided that code descriptors can be extracted from

the code. SOFTM has 3 types of knowledge base:

o Facts about error types, error locations, diagnostic classes, and the envi­

ronment.

o Code independent rules that apply to the general software maintenance

task.

o Symbolic descriptors derived by rewriting, in predicate form, features of

programming languages provided by the compiler, the specification lan­

guage, or the data flow model.

(d) Main ta iner ' s Assistant

P ro to type : Maintainer's Assistant

Category: Expert System

P r o t o t y p e d by: University of Durham

Descr ip t ion: Calliss, Kalil , Munro and Ward [39] describe an intelligent,

knowledge approach to software maintenance by describing a tool that is in­

tended to help reduce the amount of time spent analysing code. They have

identified 3 types of knowledge:

o Maintenance Knowledge which is the knowledge about how the mainte­

nance programmers do their work and is elicited from expert maintainers.

This knowledge provides the bulk of a systems heuristic knowledge that

dedicate the weighting patterns on searches through the expert system,

o Program Plans divided into two different categories:

- General program plans: a small set of plans that show commonly occur­

ring activities in computer programs.

- Program class knowledge: a set of plans common to a particular type of

program.

o Program Specific Knowledge which is the internal representation of the

source code together with knowledge obtained from using static code anal­

ysis tools such as cross referencers, data flow analysers, call graph gener-

176

ator, etc.

(e) M A C S

Prototype: MACS (MAintenance Assistance Capability for Software)

Category: Maintenance Assistant

Prototyped by: ESPRIT Project

Description: The aim of this project [88] is to provide assistance to main-

tainers in maintaining medium to large scale of software applications.

The project is based on the fact that all the basic maintenance activities require

an understanding on the system. MACS presents two views of the system.

o a WHAT to describes the elements of the system

o a WHY to describe the design

MACS will also, with the exploitation of the tools being developed, guide the

maintainer (HOW) to do i t . Using knowledge based techniques, MACS will

develop a tool kit that will allow the user to analyse an existing system, and

capture information.

MACS is being designed so that it will be applicable to both new and existing

applications. The tool set will be customise for the domain of the software.

The initial tool set will address the C programming language, and graphic

interface software. These will be adapted to exploit HOOD software develop­

ment method documentation and data structures. Validation activities will

take place to verify the adaptability to other domains such as COBOL.

(f) M A R V E L

Prototype: MARVEL

Category: Maintenance assistant

Prototyped by:

Platform:

Description: MARVEL [120, 121, 122] is an intelligent assistant software

engineering environment that has a. certain understanding of systems being

developed and how to use tools to produce software, its key feature is op­

portunistic processing which means that MARVEL can undertake simple de­

velopment task automatically (it can detect when source modules change and

initiate the appropriate drivers to rederive objects).

177

(g) The Maintenance Assistant

Prototype: The Maintenance Assistant

Category: Maintenance assistant, dependencies analysis, reverse engineering,

program change analysis

Prototyped by: Norman Wilde, Department of Computer Science, Bldg.

79, University of West Florida, 11000 University Parkway, Pensacola, Florida

32514. or Software Engineering Research Center

Target Language: C

Descr ip t ion : The aim of this project [273]is to develop methodologies and

tools to aid in the complex tasks associated with making changes to software

systems. Three broad approaches are currently being explored:

o dependencies analysis which involves capturing the dependencies between

entities in the software system and the development of tools to present

and analyse these dependencies,

o reverse engineering which involves the identification or "recovery" of pro­

gram requirements and/or design specification that can help in under­

standing and and modifying i t .

o program change analysis which involves methods for analysing differences

between two versions of a program in order to understand a change that

has been made and detect possible maintenance induced errors.

(h) Nomame

Project: Noname

Category: Data flow analyser , maintenance assistant

Project by: Norman Wilde, Software Engineering Research Center

Descr ip t ion: On going effort [273] to develop strategies based on incremental

data flow analysis techniques that will:

o support management by providing information that can be used to guide in

the allocation of resources for testing and and other maintenance activities

o improve the effectiveness of testers by helping them to generate new tests

or select regression tests that will have a high likelyhood of detecting errors

and

178

o help programmers understand rapidly the consequences of change and thus

avoid making unexpected errors.

The Software Engineering Research Center is an Industry/University research

center, and the companies provide funding of $30000 per year to the center.

The objective of this project is not to produce polished commercial software

tool but rather to explore and test methodologies,

(i) R E D O

Prototype: REDO (Maintenance, Validation, and Documentation of Soft­

ware Systems)

Category: Software Maintenance Environment

Prototyped by: ESPRIT Project

Description: The aim of the REDO project [205] is to assist software engi­

neers in the maintenance, restructuring and validation of large software sys­

tems, and their transportation between different environments.

The project will provide a framework around which the engineers can work

and this will include both methods and tools. The approach will cover a

broad range of computer science based disciplines, from formal software de­

sign methods, to artificial intelligence techniques. The work will be structured

into program definition, domain specific prototype applications, research into

maintenance and validation, the application of knowledge bases, toolkit con­

struction, and integration and evaluation.

After 18 months two approaches to reverse enginnering have taken place

o the first relies on SQL database repository holding the data required for

the reverse engineering process,

o the second relies on fine grain object oriented repository with associated

schema descriptions

An intermediate language has been designed to connect with business appli­

cation languages. The user interface is regarded as having great importance.

179

B..2 Prototypes for Familt Localisation

B.2.1 Fault Detection.

(a) M e t r i c classification tree

P ro to type : Software metric classification tree help guide the maintenance of

large scale systems

Category: Fault detection, Fault localisation

P ro to typed by: Department of Information and Computer Science, Univer­

sity of California, Irvine, California 92717

P l a t f o r m : The classification tree generation tools are environment indepen­

dent.

Descr ip t ion : This study [230] proposes an automated method for generating

empirically-based models of error-prone software object- These models are in­

tended to help localise the "troublesome 20 percent" (the "80:20 rule" states

that approximately 20 % of a software system is responsible for 80% of its

errors). The proposed method uses a recursive algorithm to automatically

generate classification trees, whose nodes are rnulti-valued functions based on

software metrics. The proposed of the classification trees is to identify compo­

nents that are likely to be error prone or costly, so that developers can focus

their resources accordingly.

Feasibil i ty s tudy:

o 1st: 16 NASA projects (3000-112000 lines), (results 79,3% of the software

modules had high development effort or faults)

o 2nd Hughes maintenance environment to identify fault prone and change

prone components in a large scale system (more than 100000 lines).

(b) New f a u l t detect ion technique

Pro to type : Rethinking the taxonomy of Fault; Detection techniques.

Category: Fault detection * ' - / - •

Paper f r o m : M.Young, Depart, of Information and Computer Science, Uni­

versity of California, Irvine 92717

Descr ip t ion : The conventional classification of software fault detection tech­

niques by their operational characteristics (static ~vs. dynamic analysis) is

180

inadequate [283] as a basis for identifying useful relationship between tech­

niques. A more useful distinction is between techniques which sample the

space of possible executions, and techniques which fold the space.

.2.2 F a u l t / E r r o r Local i sat ion

(a) P E L A S

Prototype: PELAS (Program Error-Locating Assistant System)
r

Category: Error localisation

Prototyped by: Department of computer Science, Wayne State University,

Detroit, MI48202

Target language: Pascal

Description: This prototype [131, 132] is an error localisation assistant sys­

tem which guides a programmer during debugging of Pascal programs. The

system is interactive: it queries the programmer for the correctness of the

program behaviour and uses answers to focus the programer's attention on

an erroneous part of the program (it can localise a faulty statement). This

system uses the knowledge of program structure represented by the depen­

dence network used by the error locating reasoning mechanism to guide the

construction, evaluation and modification of hypothesis of possible causes of

the errors.

(b) P O L Y L I T H

Prototype: POLYLITH

Category: Module fault localisation

Description: A fault localisation capability has been incorporate into POLYLITH [102],

an environment that supports the interconnection of heterogeneous (multi-

language and possibly distributed) software modules. This capability origi­

nated from techniques developed in the context of diagnosis in general techni­

cal systems, and requires a knowledge base that describes both the structure

and intended behaviour of the system to be diagnosed.

The POLYLITH module interconnection language (MIL) provides the de­

scription of software interconnectivity (structure), which is enhanced in the

approach by attributes specifying the high level behaviour of the modules.

181

Furthermore, the POLYLITH software bus gives us transparent instrumen­

tation as the actual behaviour of the system under consideration. With this

information, i t is possible to determine a module or set of modules, that must

be faulty in order to explain the given observations.

(c) P R O U S T

Pro to type : PROUST

P ro to typed by: Johnson and Soloway

Category: Fault localisation

Descr ip t ion : PROUST [118] is a knowledge-based fault localisation system

designed to create a framework sufficient to catch all possible errors in small

programs. They also wanted the program to understand the nature of the

bugs, state i t , and suggest a form of solution. To accomplish these objectives,

the system requires that the program be totally and correctly specified. The

major limitations of this system is that i t is extremely difficult to form such

specifications even for small programs, and there is no way to guarantee the

specifications are corrects even after they have been stated.

(d) P T A

Pro to type : PTA

Category: Fault localisation

Descr ip t ion : PTA [42] is a Knowledge-Based Program Testing Assistant.

As programs are developed and tested , a user can request that the system

automatically store the test cases for future use. When a bug arises in feature

being tested , the system in coordination with the user can request that the

appropriate saved test cases be rerun automatically -either before the system

has been repaired to aid in identifying the problem or after the system has

been repaired to ensure its correctness. In conjunction with this capability,

the PTA heuristically modifies the corresponding test cases when the source

code is changed. This preserves the ability of the system to continue to use, if

possible, previous test cases to perform a type of automated regression testing

of the code .

(e) E r r o r localisation

S tudy: Error localisation during software maintenance: generating hierarchi­

cal system description from source code alone

182

Category: Fault localisation, data, bindings (measure of software interaction)

Study f r o m : R.Selby and V.Basili, Depart, of Information and Computer

Science, University of California, Irvine 92717 and University of Maryland

Desc r ip t ion : The purpose of this study [229] is to quantify ratios of coupling

among components and cohesion within them, and use them in the generation

of hierarchical system descriptions. The ability of the hierarchical descriptions

to localise errors by identifying error prone system structure is evaluated using

actual errors data. An analysis of variance model is used to characterise sub­

systems and individual routines that had either many/few errors or high/low

error correction effort.

183

B.3.1 Dependency Analysis

(a) Dependency Analysis , t o o l Set

Category: Dependency analysis

P ro to typed by: Norman Wilde, University of West Florida

Target ' Language: C

P l a t f o r m : runs on MSDOS PCs with 2 Mbytes of RAM and Unix-based

workstation.

Descr ip t ion: This tool is a dependency analyser and a tool for building

comprehension tools. The intent behind the tool is to provide a basis for

determining program dependencies (data, calling, functional and definitional),

so by creating your own application specific front-end, you can tailor-make

your own comprehension aid.

(b) I n t e rmodu la r Dependency

Category: Dependency analysis

W o r k by: Department of lnformatica e Sistemistica, University of Naples,

Via Claudio, 21 80125 Na.poli, Italy.

Target Language: Pascal

This paper outlines that actual and mainly potential intermodular dependen­

cies play in the maintenance phase of a software product. The problem is

discussed with reference to Pascal systems and it shows how reverse engineer­

ing and static code analysis enable the identification of the actual and potential

intermodular data flow relationship [47].

B.3.-2- Hippie'Effect-Analyser'

(a) Surgeon's Assistant

P ro to type : Surgeon's Assistant

Category: ripple effect analyser, maintenance aid

P ro to typed by : Keith Gallagher, Loyola .College in Maryland and the Uni­

versity of Mariland at Baltimore. ; - ± • .

Target Language: C

P l a t f o r m : runs on Sun workstation with Sun View under SunOS Version 4.

Desc r ip t ion : This tool slices up programs, extract pertinent information, and

displays data links and related characteristics so you can track the changes and

influence on targeted structures. It delivers semantic information and editing

guidance to help you formulate a maintenance solution with no undetected

link to unmodified code, thereby eliminating the need for regression testing.

185

B.4 "Management es

B.4 .1 Software Configuration"'Management"

.(a) A C T M

Pro to type : AGTM (Advanced Configuration Management Toolset)

Category: Configuration Management Toolset

P l a t f o r m : IBM
r

Descr ip t ion : A C M T [103] assists configuration management and project

management activities and supports SID (IBM Systems Integration Division)

's life cycle model orientation.

(b) A C M S

Pro to type : ACMS (Automated Configuration Management System)

Category: Software Configuration Management

Descr ip t ion: CMS [285] enhances manual techniques for project tracking

and change control. I t integrates the paperwork associated with configura-

tion management with the configuration control. Configuration management

procedures start when the required paperwork describing a problem, change

proposal or new function is entered into the system via standard forms on

the terminal. Change notices are prepared if approved are assigned to the

programmer.

(c) C L E M M A

Pro to type : CLEMMA

Category: Software Configuration Management

P l a t f o r m : UNIX env.

Descr ip t ion: CI.EM MA [209] implements the basic functions of identifica­

tion, analysis and change ••control on project configurations. I t manages a

library of components, which is composed of an object repository and a data

description repository. I t utilises relational database technology, based on ah

extended relational model of software development in which components have

an object-oriented representation. One main feature isit's exploitation of the

relational database information retrieval capabilities to: enable configurations

to be selected on the basis on both static and dynamic aggregates.

186

(d) C R U I S E

Prototype: CRUISE (Controlling Rigourously the Use of Interfaces in Soft­

ware Evolution)

Category: Software Configuration Management

Description: CRUISE [254] is based on interfaces hierarchies. It consists of

a representation scheme for software evolution, a MIL to express architectural

design information and attributes information for identification and retrieval,

a repository (the CRUISE Grid) to store design descriptions and an analytic

framework to estimate the impact of changes to design description.

(e) G D I S T

Prototype: GDIST(Global Distribution)

Category: Configuration Control System

Description: GDIST [26] is a distributed configuration control system that

adds simple access to the configuration control database (e.g. RCS, SCCS,

SPMS) from anywhere in the network. It also provides automatic and reliable

copying of updates, and can coordinate compilation on diverse hosts via a

'global-make' command which initiates locals 'Makes'. I t checks for errors,

monitors and audits and notifies affected users by E-mail.

(f) I N S C A P E

Prototype: INSCAPE

Category: IPSE, version control system

Prototyped by: D.E.Perry, A T & T Bell Laboratories, Murray Hi l l , NJ 97974.

Description: INSCAPE [194] is an Integrated Software Development Envi­

ronment for for building large software systems by large group of developers.

The version control system (INVARIANT) extends GANDALF's SVCE through

the incorporation of knowledge about the semantics of module interfaces , to

achieve a more flexible method of system composition than in other typed

systems. It also enables INVARIANT to distinguish between parallel versions

and provide a formalisation of the notions of version equivalence and compat­

ibility to the extent of providing the system builder with the concept of plug

compatibility.

(g) I P S E N

Prototype: IPSEN (Incremental Project Support ENvironment)

187

Category: Software Configuration Management

Descr ip t ion : IPSEN [146] is a support environment that integrates the

project management, control and development activities occurring during the

software life cycle. The architecture of a software system is expressed in terms

of modules and module interconnections using a particular system description

language. The system architecture are created and maintained by means of

integrated syntax-directed editors for the system description language and the

variant descriptions. Revision control is via a mechanism similar to the re­

vision trees used in RCS, which are created and maintained using a general

interactive revision editor. Configurations are built according to a given set

of variant attributes and revision time stamps, or through the use of explicit

variant/revision lists,

(h) Los Alamos H y b r i d Envi ronment

P ro to type : Los Alamos H y b r i d Env i ronment

Category: Software Configuration Management

Descr ip t ion: Los Alamos Hybrid Environment [61] is an integrated develop­

ment/configuration management system which is a Hybrid system combining

features of the VMS host operating system and elements of the Softool CCC

configuration management tool,

(i) N A V E

Pro to type : NAVE (Networked, Automated Versioning Environment)

Category: Software Configuration Management

Descr ip t ion : NAVE [275] is an environment that supports both a diverse

host machine environment and a diverse target machine environment. It's

key function is to provide the disciplines of configuration identification, con­

figuration control, status accounting and auditing, without a high degree of

administrative overhead,

(j) O D I N

P ro to type : ODIN System

Category: Software Configuration Management

Descr ip t ion : ODIN System [48] is an extensible object manager for software

development environment, which used Make as it's conceptual starting point.

I t consists of:

188

o a specification language for describing the objects to be managed and the

tools to produce them

o an object oriented request language which a user or tool can name a desired

object

o an interpreter that accepts the request and produces the object

It extends the standard UNIX hierarchical file structure by the addition of

user file types and operations, it deals with the information produced by

software tools by invoking the appropriate set of tools needed to generate the

objects that contain the data. The specification language has been designed to

allow the integration of any existing tool or set of tools into the ODIN system

without modification to the tools themselves, and can easily be extended to

accommodate new tools, the ODIN system does not have a specific form of

built-in version control, rather i t considers a version control tool to be just

another tool that can be specified in the ODIN specification language.

P A P I C S

Prototype: PAPICS (Product and Project Information Control System)

Category: Software Configuration Management

Platform: VMS

Description: PAPICS [67] is built on top of a VMS kernel and has access

to the tools of the OS through defined interfaces. It supports configuration

management and project management for a developing software system and

provides archive and help facilities. PAPICS provides facilities like: automatic

configuration assembly, independent further development for all version, dis­

crete handling of numerous versions and on-line access to all versions.

P R O D A T

Prototype: PRODAT

Category: Software Configuration Management

Description: PRODAT [15] is the database component of the PROSYT soft­

ware engineering environment. It provides concepts to create and manipulate

versions and configurations, and for incremental archiving of these compo­

nents. I t uses a procedural interface to tools and a graphical interface to users

instead of a query language.

189

(m) RCS

Pro to type : RCS (Revision Control System)

Category: Software Configuration Management

P ro to typed by: W. Tichy

Desc r ip t ion : RCS [260, 261] is a widely used source code control system

that assists in keeping software system consisting of many versions and con­

figurations well organised.

I (n) SERS

Pro to type : SERS (Software Engineering Release System)

Category: Software Configuration Management

P ro to typed by: GTE Communication Systems

P l a t f o r m : IBM 3084 (UTS), VAX/VMS

Descr ip t ion: SERS [206] is an interactive, menu driven configuration man­

agement system and supports configuration identification, change control, sta­

tus accounting and auditing of system components. Significantly, i t integrates

change administration with system building and demands that the change

itself actually drives the system.

It ensures integrity and completeness by tracing each problem from identifi­

cation to solution throughout the life cycle. I t has five functional roles: task

management, file management, configuration management, report manage­

ment and administration management,

(o) S H A P E

Pro to type : SHAPE

Category: Version Control System

Descr ip t ion : The Shape [160] toolkit consists of an object base for attributes

software objects, a dedicates version control system and the shape program

itself. SHAPE has adopted the best concepts of make, Adele and DSEE and

enhanced them with full access to the object base and support of configuration

rules. SHAPE offers more complete integration between source code control

and configuration control through its Attributed File Store. SHAPE operates

on objects in the object base rattier than on UNIX file system object as in

Make. W h a n invoked Shape searches the object base for objects, installs them

temporally as Unix files, evokes standard Unix tools on them and stores the

190

resulting derived objects in the object base,

(p) S I D S

Tool: SIDS (Self-Identifying Software)

Category: Software Configuration Management

Produced by: Honeywell Bull

Implemented in: all deliverables which includes source (typical source, JCL,

COBAL Copy libraries, Include Files etc.) objects and executable forms.

Description: SIDS [91] reduces problem analysis time by marking each

software change with a change identifier (transmittal number) as part of the

revision level information (e.g. source name, source protection notice, base

data, transmittal numbe, transmittal reason).

For source code the revision information resides in the source as comments

at the beginning of the module, and for objects and executable modules the

revision information is prefixed by keywords for ease of identification or ex­

traction. An automated configuration manager is used to manage the software

changes and marking,

(q) Smalltalk-80

Prototype: Smalltalk-80 Version Manager

Category: Source Code Version Management

Description: The code and version histories are stored in a hypertext database

management system. The system provides easy access to old versions of source

code. Composite source code items, such as Smalltalk class can be viewed ex­

actly as they appeared at an earlier time using a special browser, the Version

Browser. Additionally two versions of the same source code item may be

viewed simultaneously with their differences highlighted

191

B.4 .2 Inver se S o f t w a r e C o n f i g u r a t i o n M a n a g e m e n t

(a) PISCES

Pro to type : PISCES (Proforma Identification SCHEME for Configurations

of Existing Systems)

Category: Inverse Software Configuration Management

P ro to typed by: R. Kenning, University of Durham, UK.

Descr ip t ion : At Durham [129], an inverse software configuration manage-

ment has been identified as the process of bringing an existing software system

under configuration control. PISCES is a tool under development to help the

process of bringing an existing software system under configuration control.

PISCES identifies and documents the configurations of an existing system.

B.4 .3 P r o d u c t M a n a g e m e n t

(a) S C I M M

Pro to type : SCIMM (Software Change Information for Maintenance Man­

agement)

Category: Product Management

P ro to typed by: S.Cooper, University of Durham, England

P l a t f o r m :

Descr ip t ion : SCIMM [60] is a prototype system under development for stor­

age, retrieval and analysis of software change information. SCIMM collects and

stores information about requests for changes and changes made to software

systems, bit also tries to capture information about the process involved in

producing the change, including the diagnostics of the problem , and the de­

sign of the change. Cross referencing procedures based on a keyword system

for describing a change request and its subsequent diagnosis allow searches

to be made similar past changes. It also provides change metrics based on

a before/after system of program complexity measurement, about individual

changes and the system being maintained as a whole.

192

B o 5 Environment Prototypes

B . 5 . 1 P r o g r a m m i n g E n v i r o n m e n t

(a) A D E L E

Prototype: ADELE

Category: Programming Environment, Software Configuration Management

Prototyped by: J.Estublier, Laboratoire de Genie Informatique (IMAG),

Grenoble

Target Language: Independent

Platform: VAX/VMS, MS-DOS, UNIX

Description: ADELE [?, 79] has four main components:

o a program editor

o compiler and debugger

o a parametrised code generator

o a user interface and a program base

Components are identified by a quadruple (family name, variant id, version

id, revision number). The program base is essentially a database based M I L

of program information that is used to support a configuration management

system.

(b) A L S

Prototype: ALS (Ada Language System)

Category: Programming Environment

Description: ALS [12] supports the development of large scale Ada software

for real-time microprocessor-based applications.

(c) C O N M A N

Prototype: CONMAN

Category: Programming Environment, Software Configuration Management

Description: CONMAN consist of an object base and a set of tools to help

the programmer interactively construct and debug inconsistent systems. CON­

M A N automatically identifies and tracks 6 kinds of inconsistencies , without

requiring that the user remove them immediately. I t reduces the cost of re­

building a system after source code changes through the use of smarter re-

193

compilation, which useslhik consistency to determine which modules must be

rederived.

(d) Cronus

P ro to type : Cronus Distributed Operating System

Category: Software Development Environment, Software Configuration Man­

agement

Descr ip t ion: Cronus establishes a SDE for a distributed and heterogeneous

set of computers. Its features includes a source control system , a Bug report

manager to record organise and process reports of problems, and a configu­

ration management plan to control distribution of software to a varied set of

supported hardware/software systems [24].

(e) D A R W I N

Pro to type : DARWIN

Category: Programming Environment, Software Configuration Management

Descr ip t ion: DARWIN supports the notion of law-governed systems and

consensus based configuration binding. I t views the system as a collection

of attributed objects , grouped into classes to form an inheritance hierarchy.

Development and system evolution is managed by the passing of a message

between object according to rules, the law of the system, which define what

can be done to an object. Such a framework supports consensus based con­

figuration binding which takes into account all the constraints imposed by

managers, builders and users on the use of versions.

(f) D I F

Pro to type : DIF (Documents Integration Facility)

Category: Programming Environment, Software Configuration Management

Descr ip t ion: DIF [86] is a software hypertext system which when combined

with several software engineering tools provides ah environment for integrating

and managing the document and code produced during the software life cycle.

The NuMIL processing environment is used.to manage the design and evolu­

tion of software configurations, the NIVEZ system represents the descriptions

of configurations in a graphical.manner, and RCS is used for version control.

(g) G A N D A L F :

P rototype:

494

Category: Software Development Environment, Software Configuration Man­

agement

Desc r ip t ion : GANDALF [179, 94] is implemented as an extension to UNIX

and designed for projects that use Ada. I t consists of three main components:

o an Integrated Program Construction Facility including a syntax directed

editor and a syntax directed debugger

o a System Composition and Generation Facility providing a system genera­

tion facility based on system descriptions and consists of both Cooprider's

version control system and Tichy's Software Development Control Facility

o a Project Management Facility dealing which issues such as conflict avoid­

ance, access rights and documentation control.

N u M I L

P ro to type : NuMIL

Category: Programming Environment

P r o t o t y p e d by:

P l a t f o r m :

Descr ip t ion : The NuMIL environment [176] controls software development

and maintenance through system descriptions stored in the INGRES relational

database. The system consists of two central repositories of information: the

first holds processes NuMIL descriptions, and the second consists of all the

source files and revisions which are stored using RCS. I t uses the notion of

families to control incremental modification of systems and to provide feed­

back about effect of proposed changes to a system. Preconditions and post­

conditions are used to emphasizes behavioural aspects of a system. I t also

supports the notion of upward compatibility as a means of reducing the cost

of analysing the effect of alterations to system configuration.

195

B .5 .2 S o f t w a r e M a i n t e n a n c e E n v i r o n m e n t

(a) A . S . U .

P ro jec t : A.S.U.

Category: Software Maintenance Environment

P ro jec t by: Arizona State University

Descr ip t ion : The objective of this project [55] is the development of a prac­

tical software maintenance environment to support managerial and technical

• maintenance tasks which include:

o understanding software

o changing software

o tracing ripple effect

o retesting changed software

o documenting acquired knowledge

o planning and scheduling maintenance tasks

(b) G A L I L E O

Pro to type : GALILEO

Category: Software Maintenance Environment, Software Configuration Man­

agement

P ro to typed by: Rational Technology

Descr ip t ion: GALILEO [212] provides change control and configuration

management in a distributed, heterogeneous environment. I t is a client server

system and is based on the Ingres relational database. It offers change con­

trol facilities similar to those of SCCS, RCS and CMS, but augments change

management with methods for change distribution. The unit of change is the

change record which binds together new versions of elements that results from

modules changed for the same reason. It does not rigorously enforce the par­

allel development approach, but embodies a dynamic model of maintenance

which allows maintaiuers to build upon each others work, taking updates from

the master version before making changes. Integration testing of changes is

carried out at client sites which are selected to encompass the variety of dis­

similar hardware and operating systems supported.

196

(c) I S C M

Pro to type : ISCM

Category: Software Maintenance Environment, Software Configuration Man­

agement

P l a t f o r m :

Descr ip t ion : ISCM is integrated software maintenance environment for soft­

ware maintenance. The essential feature is bridging configuration management

and quality management. It consists of three major subsystems [7]:

o an Extended Configuration Management System (ECMS)

o a Problem Report Management and Inquiry System (PROMIS)

o a Reference Evaluator for Mode and Interface (REMIE)

which are all coordinate through a relational database management system.

Configuration management is based on the property of conformity, well formed-

ness and upward compatibility. CHILL is used to manage the resources of the

system such as type definitions and global names, and maintains change his­

tories and information and information regarding verification of changes.

(d) M I C R O S C O P E

Pro to type : MICROSCOPE

Category: Software Development/Maintenance Environment, program anal­

ysis system

Pro to typed by: HP Laboratories, P.O. Box 10490, Palo Alto CA 94303-

0971

Descr ip t ion : Microscope [4] is a knowledge-based tool to assist program­

mers in developing an understanding of large and complex programs. This

prototype provides static and dynamic analysis, execution monitoring and

assistance with program modification and bug location. Al l program informa­

tion, including source, documentation, execution histories, program analysis

result and Microscope's strategies for advising the programmer, are stored in

a central knowledge base [4].

197

Bibl iography

[1] R. Arnold, B. Blum and V. Rajlich, 1989, Br idge Technologies for Soft­

ware Maintenance, Proceedings of Conference on Software Maintenance, IEEE,

pp 230-231.

[2] A. Adam, J.P. Laurent, 1980, L A U R A , A System to Debug Student Pro­

grams, Artificial Intellingence Vol. 15,

pp 75-122.

[3] A. Alderson, M.F. Bott and M.E. Falla, 1986, The E C L I P S E Objec t Manage­

ment System, Software Engineering Journal, January, pp 240-246.

[4] J. Ambras and V. O'Day, 1987, M I C R O S C O P E : A P rog ram Analysis Sys­

t e m , Proceedings 20th International Conference on System Sciences, Hawaii,

pp 71-81.

[5] T. Anderson and P.A. Lee, 1981, Fault Tolerance: Pr inc ip le and Practice,

Prentice-Hall, pp 52-53.

[6] ANSI/IEEE Std 729., 1983, Software Engineering Standards.,

[7] M . Aoyama, Y. Hanai, and M . Suzuki, 1988, A n Integrated Software M a i n ­

tenance Env i ronment : b r idg ing conf igura t ion management and qua l i ty

management, Proceedings of Conference on Software Maintenance, IEEE, pp 40-

44.

[8] R.S. Arnold and D.A. Parker, 1982, The Dimensions o f Hea l thy Maintenance,

Proceedings 6th International Conference on Software Engineering, pp 10-27.

[9] R.S Arnold, 1989, Software Res t rur ing , Proceeding of the IEEE, Vol 77, No 4,

pp 607-616.

198

[10] R.S. Arnold, N.F. Schneidewind, and N. Zvegintzov, 1984, A Sof tware M a i n ­

tenance Workshop , Communication of the ACM, Vol 27, no 11, pp 1120-1121,

1158.

[11] D.J. Atkinson, M.L. James, 1990, Appl ica t ions o f A I fo r A u t o m a t e d M o n i ­

t o r i n g : The Sharp System, Proceedings AIAA/NASA.

[12] W. Babich, 1986, Software Conf igu ra t ion Management , Addison*Wesley, pp

162.

[13] V.R. Basili and H.D. Mills, 1982, Unders tand ing and D o c u m e n t i n g Pro­

grams, IEEE Transactions on Software Engineering, Vol 8, no 3, pp 270-283.

[14] V.R. Basili, January 1990, V i e w i n g Maintenance as Reuse-Oriented Soft­

ware Developement, IEEE Software, pp 19-25.

[15] P. Baumann and D. Kohler, 1988, A r c h i v i n g Versions and Conf igura t ions i n

the Database System for System Engineer ing Env i ronmen t , International

Workshop on Software Version and Configuration Control, pp 313-325.

[16] F.L. Bauer, 1976,.Programming as an Evo lu t iona ry Process, Lecture notes

in Computer Science, 46, Springer- Verlag.

[17] F.L. Bauer, 1979, P rogram Development by Stepwise Transformat ions the

P ro j ec t C I P , Lecture notes in Computer Science, 69, Springer-Verlag.

[18] L. Belady and M . Lehman, 1972, A n I n t r o d u c t i o n to G r o w t h Dynamics , Sta­

tistical Computer Performance Evaluation, W. Freiberger (Ed.), Academic Press,

pp 503-511.

[19] K . H . Bennett, B.J. Cornelius, M . Munro and D.J. Robson, 1988, Sof tware M a i n ­

tenance : A K e y Area For Research, University Computing, 10 (4), pp 184-

188.

[20] K . H . Bennett, 1989, Software Engineer ing Envi ronments : Research and

Pract ice, Ellis Horwood.

[21] K .H . Bennett, 1990, R E F O R M : Trans fo rming Code in to Specifications,

Proceedings 7 DP MA.

[22] K .H . Bennett, 1990, The Process o f Software Maintenance, to be published.

[23] K.H. Bennett, E. Younger, J. Estdale, I . Khabaza, M . Price and H. van Zuylen,

1990, Reverse Engineer ing Handbook , 2487-TN-WL-1027, Version No 0.3.

199

[24] P. Bicknell, 1988, Software Development and Conf igura t ion Management

in the Cronus D i s t r i b u t e d Opera t ing System, Proceedings of Conference on

Software Maintenance, IEEE, IEEE, pp 143-151

[25] M . Branch, M. Jackson and M . Laviollete, 1985, Software Maintenance M a n ­

agement, Proceedings Conference on Software Maintenance, pp 62-68.

[26] P.E. Black, 1988, G D I S T : A D i s t r i b u t e d Conf igu ra t ion C o n t r o l System,

International Workshop on Software Version and Configuration Control, pp 276-

' 284,

[27] A. Blanc and A. Mosnier, 1990, Hermes Avion ic , Proceedings AIAA/NASA.

[28] J.P. Blanquart, 1990, A d a Oriented Software Development Env i ronment

A N Example: The Hermes One, 1st Symposium in Aerospace; Barcelona.

[29] B.W. Boehm, 1973, Software and its Impac t : a Quanta t ive Assessment,

Damation, Vol 6, pp 48-59.

[30] B.W. Boehm, E. Horowitz (Ed.), Reading, Mass: Addison-Wesley., The H i g h

Cost o f Software, In Poetical Strategies for Developing Large Software Systems,

1975.

[31] B.W. Boehm, 1976, Software Engineering, IEEE Transactions on Computer,

25, (12), pp 1226-1224.

[32] B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. MacLeod and M.J. Merritt,

1978, Characterist ics o f Software Qual i ty , North-Holland Publishing Com­

pany.

[33] B.W. Boehm, 1981, Software Engineering Economics, Prentice-Hall, Engle-

wood Cliffs, N.J.

[34] B.W. Boehm, 1983, The Economics o f Software Maintenance, Proceedings

Software Maintenance Workshop, IEEE, pp 9-37.

[35] K . M . Broadley, A. Colbrook, M. Munro and D. Robson, 1989, Block S t ruc tu red

Cross References fo r Pascal and C, University Computing, 11 (3), pp 120-128.

[36] R. Brooks, 1983, Toward a Theory o f the Comprehension o f Compute r

Programs, International Journal on Man-Machine Studies, 18, pp 543-554.

[37] B. Bruegge, P. Hibbard, 1983, Generalized Path Expressions: A High-Leve l

Debugging Mechanism, The Journal of Systems and Software, VolS pp 265-276.

200

[38] F.W. Calliss, 1987, Problems w i t h A u t o m a t i c R e s t r u c t u r e s , SIGPLAN No­

tices, 23, pp 13-21.

[39] F.W. Calliss, S.D. Cooper, R.J. Kenning, and M. Munro, 1988, Notes o f the

Second Software Maintenance Workshop , Centre for Software Maintenance,

Durham, England.

[40] F.W. Calliss, M . Ward and M . Munro, 1989, T h e Ma in t a ino r ' s Assistant , Pro­

ceedings of Conference on Software Maintenance, IEEE, pp 307-315.

[41]! S. Cha, N . Leveson and T. Shimeall, 1988, Safety Ve r i f i c a t i on i n M u r p h y Us­

ing Fault Tree Analysis , Proceedings 10 th Conference on Software Engineering,

pp 377-386.

[42] D. Chapman, 1982, A P rog ram Test ing Assistant , Communication of the ACM,

pp 625-634.

[43] N . Chapin, 1985, Software Maintenance: A d i f ferent v iew, Proceedings of

Conference AFIPS, Vol 54, pp 509-513.

[44] N. Chapin, 1987, The Job o f Software Maintenance, Proceedings of Conference

on Software Maintenance, IEEE, IEEE, pp 4-12.

[45] S. Chen, K.G. Heisler, W.T. Tsai, X. Chen and E. Leung, 1990, A M o d e l f o r As­

sembly P rog ram Maintenance, Software Maintenance: Research and Practice,

Vol 2, p.3-32.

[46] E. Chikofsky and J. Cross I I , January, 1990, Reverse Engineer ing and Design

Recovery: a Taxomany, IEEE Software, Voll, Nol, pp 13-18.

[47] A. Cimitile, G.A. Di Lucca and P. Maresca, 1990, Maintenance and In te r ­

modula r Dependencies i n Pascal Env i ronmen t , Proceedings Conference on

Software Maintenance, pp 72-83.

[48] G.M. Clemm, 1988, The O D I N Specif icat ion Language, International Work­

shop on Software Version and Configuration Control, pp 144-158.

[49] L. Cleveland, 1988, A n Env i ronment fo r Unders tand ing Programs, Proceed­

ings Hawaii International Conference on System Science, pp 500-509.

[50] L. Cleveland, 1989, A n Programs Unders tanding Suppor t Env i ronment ,

IBM Syst. J. Vol 28 No 2. pp 324-344.

[51] E.S. Cohen and all, 1988, Version Management in Gypsy, ACM, pp 201-215.

[52] A. Golbrook, C. Smythe and A. Darlisbn, 1990, Data. A b s t r a c t i o n in a Soft­

ware Re-engineering Reference M o d e l , Proceedings Conference on Software

Maintenance, pp 2-11.

[53] J.S. Collofello and S.J. Bortman, 1986, A n Analysis o f the Technical In fo r ­

m a t i o n Necessary to P e r f o r m Effec t ive Software Maintenance , Proceedings.

Phoenix Conference Computer and Communication, Vol 54, pp 420-423

[54] J.S. Collofello and J.J. Buck, 1987, Software Qua l i ty Assurance f o r Ma in t e ­

nance, IEEE Software, pp 46-51.

[55] J. Collofello and M . Orn, 1988, A Pract ical Software Maintenance Envi ron­

ment , Proceedings of Conference on Software Maintenance, IEEE, pp 45-51.

[56] M.A. Colter, 1988, Strategies fo r Software Maintenance Management , Pro­

ceedings Conference on Software Maintenance, Chicago, Software Maintenance As­

sociation.

[57] M.A. Colter, 1988, The Business o f Software Maintenance, Second Software

Maintenance Workshop Notes, Centre for Software Maintenance, University of

Durham.

[58] R. Conradi, A. Lie, T . M . Didriksen, and E. Karlsson, 1989, Change Orienta ted

Versioning in a Software Engineering Database, ACM, Software Engineering

Notes, Vol 14, No 7, pp 56-65.

[59] L.L, Constantine, W,P. Stevens and G.J. Myers, 1974, S t ruc tu red Design, IBM

Systems Journal 2, .pp 115-139.

[60] S. Cooper and M. Munro, 1989, Software Change I n f o r m a t i o n fo r Ma in te ­

nance management, Technical Report 4/S0, Computer Science:, University of

Durham.

[61] G. Cort, 1985, The Los Alamos H y b r i d Envi ronment : ; A n Integrated De­

ve lopmen t /Conf igu ra t i on Management System, IEEE, pp 11-17.

[62] E. Cougar and S. Zawacki, 1980;,Motivating and Manag ing Compu te r Per--

sonr.el, John Wiley. ~. •'•

[63] J, Collofello and L. Cousins, 1987, Towards A u t o m a t i c Sof tware Fault Loca­

t i o n t h r o u g h Decision?to-Path",Analysis,' National Computer Conference,

202

[64] F. Cross, 1987, A n E x p e r t System approach to a Program's I n f o r m a ­

t i o n / M a i n t e n a n c e System, Proceedings of Conference on Software Mainte­

nance

[65] B. Curtis and S.B. Sheppard, 1979, Iden t i f i ca t ion and Va l ida t i on off Quan­

t i t a t i v e Measures o f the Psychology Complex i t y o f Software, Software

Management Research.

[66] C. Curtis and W. DeHaan, 1984, R X V P 8 Q - The Ve r i f i c a t i on and Va l ida t i on

/ System for F O R T R A N , Proceedings of Conference on Software Maintenance

[67] N. Demleitner, 1988, P A P I C S : A Pract ica l Approach to Conf igu ra t ion

Management , International Workshop on Software Version and Configuration

Control, pp 381-390.

[68] J.P. Denier and J. Estublier, 1988, Software Main tenance : a survey, In

Proceedings International Workshop on Software Engineering and its Applications,

Toulouse, pp 323-342.

[69] V. Dhar and M . Jarke, 1988, Dependency Di rec ted Reasoning and Learning

i n Systems Maintenance Suppor t , IEEE Transactions on Engineering, Vol 14,

No 2, pp 211-214.

[70] A.E. Di t r i , J.C. Shaw and W. Atkins, 1971, Manag ing the E D P f u n c t i o n ,

McGraw-Hill.

[71] T. Dogsa and I . Rozma, 1988, C A M O T E - C o m p u t e r A i d e d M o d u l e Test ing

and Design Env i ronment , Proceedings of Conference on Software Maintenance,

IEEE, pp 404-408.

[72] M . Dowson, & J. C. Wiledden, July 1985, A B r i e f Repor t on the In t e rna t iona l

Workshop on the Software Process and Software Envi ronments , ACM

Software Engineering Notes, Vol 10, No 3.

[73] M . Ducasse, 1986, O P I U M : A Sophisticated Trac t ing Too l f o r Pro log , Acte

Seminaire de programmation en logique, CNET Lannion Tregastel.

[74] M . Ducasse and A. Emde, 1988, A Review of A u t o m a t e d Debugging Sys­

tems: Knowledge , Strategies and Technique, Proceedings 10 th Conference

on Software Engineering, 162-171.

[75] B. Durin, J. Abadir, B. Mouton, 1990, Software Reuse, T h e Challenge o f The

90's in Software Development , Proceedings AIAA/NASA.

203

[76] M . Eisenstadt, 1985, Retrospective Zooming , A Knowledge Based Tracing

and Debugging Methodology For Logic P rog ramming , Procedings of the

9th IJCAI.

[77] ESA, 1991, Software Engineering Standards, PSS-05 Issue.

[78] ESA, 1990, European Space Software Development Env i ronmen t , Soft­

ware Requirements Document , WME/87-409 Issue 2.

[79] J. Estublier and N. Belkahtir, 1987, Experiences w i t h a Database o f Pro­

grams, In Proceedings of the Software Engineering Symposium on Practicle Soft­

ware Development Environment. ACM SIGPLAN Notices, Vol 22, No 1, pp 84-91.

[80] M . Evans, 1989, The Software Factory, John Wiley & Sons.

[81] M. Faden, 1987, Tools for Managing Change that D o n ' t Mess up the Sys­

tem, DEC USER, November, pp 44-47.

[82] R. Fairley, 1985, Software Engineering Concepts, McGraw Hill, NY.

[83] S. Feldman, 1979, M A K E - A Compute r P rog ram for M a i n t a i n i n g Com­

puter Programs, Software Practice and Experiences, No9.

[84] G. Ferrand, 1987, E r r o r Diagnosis in Logic P rog ramming , Journal of Logic

Programming, No 4, PP 177-198.

[85] S. Gamalel-Din and L. Osterweil, 1988, New perspectives on Software M a i n ­

tenance Processes, In Proceedings Conference on Software Maintenance, pp 14-

22.

[86] P.K. Garg and W. Scacchi, 1988, A Software H y p e r t e x t Env i ronmen t fo r

Conf igured Software Descript ions, International Workshop on Software Ver­

sion and Configuration Control, pp 326-343.

[87] J.R. Garman, 1990, Perspective on N A S A Software Development A p o l l o ,

Shut t le , Space Sta t ion, Proceedings AIAA/NASA.

[88] M . Georges, Sept 1989, The M A C S pro jec t , Proceedings 3rd Durham Workshop

on Software Maintenance.

[89] G.R. Gladden, 1982, Stop the Li fe Cycle , I Want to Get Off , ACM Software

Engineering Notes, 7, (2), pp 35-39.

[90] R.L. Glass, R.A. Noiseux, 1981, Software Maintenance Guidebook, Prentice-

Hall.

204

[91] L. Greene, 1988, Se l f - Iden t i fy ing Software, Proceedings of Conference on Soft­

ware Maintenance, IEEE, pp 126-131.

[92] M . Griffiths, 1976, P rog ram P r o d u c t i o n by Successive T rans fo rma t ion , Lec­

ture Notes in Computer Science, J)6.

[93] C. Gunn and D. Jolly, 1988, Commerc ia l Sof tware - Development versus

Maintenance, Proceedings Second Durham Workshop on Software Maintenance

[94] N. Haberman, 1986, G A N D A L F : Software Development Env i ronmen t ,
/
IEEE Transactions on Software Engineering, SE-12, pp 1117-1127.

[95] J. Hager, 1989, Developing Main ta inab le Systems: a f u l l l i fe-cycle ap­

proach, Proceedings Conference on Software Maintenance, pp 271-278.

[96] J. Hager, 1989, Software Cost Reduc t ion Me thods in Pract ice, IEEE Trans­

action on Software Engineering, Vol 15,No 12, pp 1638-1644.

[97] M . Harandi and J. Ning, 1988, P A T : A Knowledge-based P r o g r a m Analysis

Tool , Proceedings Conference on Software Maintenance, pp 312-318.

[98] J. Harba.nd, 1990,? S E E L A : In terac t ive Top-down P r o g r a m Displays, Pro­

ceedings Conference on Software Maintenance, pp 146.

[99] W. Harrison and K . I . Magel, 1981, A C o m p l e x i t y Measure Based on Nes t ing

Level, ACM SIGPLAN Notices, pp 63-74.

[100] M. J. Harrold, M . Sofia and R. Gupta, 1990, A Me thodo logy fo r C o n t r o l l i n g

the Size o f a Test Suite, Proceedings Conference on Software Maintenance,

pp 302-310.

[101] P. Hayes and J. Pepper, 1989, Towards A n In tegra ted Maintenance A d v i ­

sor, Hypertext '89 Procedings, pp 119-127.

[102] D. Hernandez and L. Kanal, 1989, M o d u l e Fault Local isa t ion i n a Sof tware

Toolbus Based System, Technical Report 20742, Computer Science, University

of Maryland.

[103] C.G. Home and R. Seeger, 1988, A n Advanced Conf igu ra t ion Management

Tool Set, Proceedings Conference on Software Maintenance, pp 229-234.

[104] R.S. Hornstein, 1990, D i s t r i b u t e d Decis ion-Making For Space Operat ions

A P rogrammat i c Perspective, Proceedings AIAA/NASA.

205

[105] E. Horowitz and R. Williamson, Aiigust 1986, SODOS: a Sof tware Docu­

menta t ion Env i ronnmen t : I t s Def in i t ions , IEEE Transaction on Software

Engineering, SE-12 (8), pp 849 859.

[106] E. Horowitz .and R. Williamson, November 1986, S Q D 0 S : a Sof tware Docu­

menta t ion Env i ronnmen t : I t s Use, IEEE Transaction on Software Engineer­

ing, SE-12 (11), pp 1076-i087.

[107] Hoskyns Ltd . , 1973, Impl ica t ions o f Us ing M o d u l a r P r o g r a m m i n g , Hoskyns

'Systems Research, London.

[108] N. Howes and G. Raines, 1987, T A V E R N S and the Space S ta t ion Software

Suppor t Env i ronment , Proceedings of the Ada-Europe International Conference

pp 46-58.

[109] W. Humphrey, 1989, Manag ing the Software Process, Addison-Wesley.

[110] ANSI/IEEE Standard 729, 1983, I E E E Standard Glossary o f Software En­

gineering Terminology, IEEE.

[I l l] IEEE, 1985., Conference on Software Maintenance-1985, Conference Pro­

ceedings.

[112] IEEE, 1987, Conference on Software Maintenance-1987, Conference Pro­

ceedings.

[113] IEEE, 1988, Conference on Software Maintenance-1988, Conference Pro­

ceedings.

[114] IEEE, 1989, Conference on Software Maintenance-1989, Conference Pw-

ceedings,

[115] IEEE, 1990j Conference on Software Maintenance-1990, Conference Pro­

ceedings.

[116] W.J. Johnson, E. Soloway, 1984, Intension-Based. Diagnosis o f Program­

ming Errors , Proceedings of the 3rd AAA ! Conference, \)p lQ2-lQ8.

[117] W.L. J oluisbn and E/ Soloway, 1985', PROU.ST - An- A u t o m a t i c Debugger f o r

Pascal Prograsr.s, BYTE\>\> 179-190. v: : :

[118] W,L. Johnson and- E. Soloway, 1985, P R O U S T Knowledge-Based .Program,

Unders tanding , IEEE Transactions on Software Engineering, Vol 11, No 3

pp 267-275 -

[119] K.H. Bennett & M . Colter (Eds.), Chichester, UK., Journa l o f Sof tware M a i n ­

tenance: Research and Practice, John Wiley Ltd, August 1989

[120] G. Kaiser and B. Feiler, 1987, A n Arch i t ec tu re fo r In te l l igent Assistance i n

Software Development , In Proceeding 9th International Conference on Software

Engineering, pp 180-188.

[121] G. Kaiser and D. Perry, 1987, Workspaces and Expe r imen ta l Databases:

au tomated suppor t f o r software maintenance and evo lu t ion , Proceedings

of Conference on Software Maintenance, IEEE, pp 108-114.

[122] G. Kaiser, B. Feiler and S. Popovitch, 1990, In te l l igent Assistance fo r Soft­

ware Developement and Maintenance, IEEE Software, January.

[123] D. Kafura and G.R. Reddy, 1987, The Use o f Sof tware C o m p l e x i t y Me t r i c s

in Software Maintenance, IEEE Transaction on Software Engineering, SE-13

(3), pp 303-310.

[124] V. Karakostas, 1990, M o d e l l i n g and Maintenance Sof tware Systems at

the Teleological Level , Software Maintenance: Research And Practice, Vol 2,

pp 47-59

[125] M. Kellner, 1988, M o d e l i n g Software Maintenance Process: analyt ic sum­

mary model , Proceedings of Conference on Software Maintenance, IEEE, pp 208-

285.

[126] M . Kellner and H. Rombach, 1989, Process-Focused M o d e l o f Software

Maintenance, Proceedings of Conference on Software Maintenance, IEEE, pp 81.

[127] M . Kellner, 1989, M o d e l i n g Software Maintenance Process, Proceedings of

Conference on Software Maintenance, IEEE, pp 81.

[128] M. Kellner, 1989, Non-Trad i t i ona l Perspectives on Software Maintenance,

Proceedings of Conference on Software Maintenance, IEEE, pp 220.

[129] R.J. Kenning and M . Munro, 1990, Unders tand ing the Conf igu ra t ion o f

Opera t iona l Systems, Proceedings Conference on Software Maintenance, pp 20-

29

[130] B. Kernighan and P. Plauger, 1978, The Elements o f Style, McGraw-Hill.

[131] B. Korel, 1988, P E L A S - P rog ram Er ro r -Loca t ing Assistant System, IEEE

Transaction on Software Engineering, SE-14 (9), pp 1253-1260.

207

[132] B. Korel and J. Laski, 1991, A l g o r i t h m i c Software Fault Local isat ion, Pw-

ceeding of the Twenty-Four Annual Hawaii International Conference on System

Science, pp 246-251.

[133] W. Kozaczynski, 1990, Basic Assembler Language Software Reengineering

Workbench , Proceedings Conference on Software Maintenance, pp 215.

[134] B. Labreuille, 1990, Overview o f the Software Replaceable U n i t Concept

and Mechanisms Supported by the Columbus Data Management Sys-

f tern, Proceedings AIAA/NASA.

[135] D.A. Lamb, 1988, Software Engineering: P lann ing fo r Change, Prentice-

Hall.

[136] P.J. Layzell and L. Macaulay, 1990, A n Invest igat ion in to Software M a i n ­

tenance - Perception and Practice, Proceedings of Conference of Software

Maintenance, pp 130-139.

[137] R.J. Leach, 1990, Software Met r i cs and Software Maintenance, Software

Maintenance: Research and Practice, Vol 2, pp 133-142.

[138] D.B. Leblang, 1984, Compute r A ided Software Engineering in

a D i s t r i b u t e d Works t a t i on Envi ronment , In Proceedings ACM SIG-

SOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel­

opment Environment, pp 104-112.

[139] D.B. Leblang, 1988, Increasing P r o d u c t i v i t y w i t h a paral lel Conf igura­

t i on Manager , International Workshop on Software Version and Configuration

Control, pp 104-112.

[140] M . M . Lehman and L.A. Belady, 1976, A M o d e l o f Large P rogram Develop­

ment , IBM Syst. J., 15, (3), pp 225-252.

[141] M . M . Lehman, 1980, Programs, L i fe Cycles, and Laws of Software Evolu­

t i o n , Proceedings IEEE, 19, Vol 68, No 9, pp 1060-1076.

[142] M . M . Lehman, 1984, P rogram Evolu t ion , Information Processing Manage­

ment, 20, pp 19-36.

[143] M. Lehman and L. Belady, 1985, P rogram Evo lu t i on : Processes o f Software

Change, Academic Press.

[144] P. Leluc and Y. Salomon, 1986, Enquete sur les Couts de Maintenance,

Genie Logiciel, Vol 5, pp 330-366.

208

[145] S. Letovsky, 1986, Cogni t ive Processes in P rog ram Comprehension, Em­

pirical Studies of Programmers, Ablex, Norwood, pp 80-96.

[146] C. Lewerentz, 1988, Var ian t and Revis ion C o n t r o l w i t h i n an Inc rementa l

P r o g r a m m i n g Env i ronment , International Workshop on Software Version and

Configuration Control, pp 426-429.

[147] J.A. Lewis and S.M. Henry, 1989, A Methodo logy fo r I n t e g r a t i n g . M a i n t a i n ­

a b i l i t y using Software Met r i c s , Proceedings Conference on Software Mainte-

'• nance, pp 32-39

[148] J.A. Lewis and S.M. Henry, 1990, On the Benefi ts and D i f f i cu l t i e s o f a

M a i n t e n a b i l i t y v ia Me t r i c s Methodo logy , Software Maintenance: Research

and Practice, Vol2, pp 113-131.

[149] B. Lientz and E. Swanson, 1976, T h e Dimensions o f Maintenance, 2nd Con­

ference on Software Engineering.

[150] B. Lientz and E. Swanson and G.E. Tompkins, 1978, Characterist ics o f A p p l i ­

ca t ion Software Maintenance, Communication of the ACM, 21, (6), pp 466-

471.

[151] B. Lientz and E. S wanson, 1980, Software Maintenance Management ,

Addison- Wesley.

[152] S. Linkman, L. Pickard, N. Ross, 1989, A Pra t ica l Procedure For I n t r o ­

ducing Da ta Col lect ion (w i t h example f r o m maintenance), In Sotware

Engineering for Large Software Systems, pp 281-303.

[153] D.C. Littman, J. Pinto, S. Levovsky and E. Soloway, 1986, M e n t a l Mode l s and

Software Maintenance, Empirical Studies of Programmers, E. Soloway and S.

Iyengar, Ablex, Norwood, pp 80-96.

[154] C.C. Liu, 1976, A Look at Software Maintenance, Datamation, 22, (11), pp

51-55.

[155] J.W. Llyod, 1986, Declarat ive E r r o r Diagnosis, Technical Report 86/3, De-

partement of Computer Science, University of Melbourne.

[156] C. Looi, P. Ross, 1987, A u t o m a t i c P rog ram Analysis fo r a Pro log I n t e l l i ­

gent T u t o r i n g System, Research Paper 307, DAI University of Eindinburgh.

[157] F.J. Lukey, 1980, Unders tanding and Debugging Programs, International

Journal on Man-Machine Studies, Vol 12, No2 pp 75-122.

209

[158] F.J. Lukey, 1989, Unders tanding and Debbugi t ig Programs, International

Journal bjr Man Machine Studies 1^ pp 202.

[159] J.R. Lyle and M . Weiser, 1987, A u t o m a t i c P rog ram B u g Loca t ion by Pro­

g r a m Slicing, Proceedings Secono(International Conference on Computers and

Application. -

[160] A. Mahler and A. Lampeii, 1988; A n In tegra ted Toolset f o r Engineering

Sof tware Cohfigurations,,Com7?iwncah'on of the ACM, pp 191-200.

[161] P.A. Mair, 1986, IPSE : State o f the A r t Repor t , NCC Ltd.

[162] D. Marcel, 1990, A S tudy o f the Impac t o f C - f - f on Software Maintenance,

Proceedings Conference on Software Maintenance, pp 63-69.

[163] J. Martin and C. McClure, 1983, Software Maintenance : T h e Problems

and its Solutions, Prentice-Hall.

[164] J.A. McCall, M.A. Herdon and W.M. Osborne, 1985, Sof tware Maintenance

Management , National Bureau Standards, NBS Special Publ. 500-129.

[165] T. McCABE, 1990, Analysis o f Complex i ty Tool (A C T) w i t h Ba t t l emap

(B A T) , Proceedings Conference on Software Maintenance, pp 147-149.

[166] C.L. McClure, 1981, Manag ing Software Development and Maintenance,

New York : Van Nostrand.

[167] D.D. McCracken and M.A. Jackson, 1982, L i f e Cycle Concept Considered

H a r m f u l , ACM Software Engineering Notes 7, (2), pp 29-32.

[168] J.R. McKee, 1984, Maintenance as a Func t ion o f Design, Proceedings of

Conference AFIPS, Vol 53, pp 187-193.

[169] J. Meekel and M . Viala, 1988, L O G I S C O P E : A Tool f o r Maintenance, Pro­

ceedings of Conference on Software Maintenance, IEEE, p p 328-334.

[170] J.C.- Miller and B.M. Strauss I I I , 1987, Impl ica t ions .of. A u t o m a t i c Restruc­

t u r i n g o f C O B O L , SIGPLAN Notices, 22, (6), pp 41-49, /

[171] R.J. Miaxa.,:J.A.iMusselman, J; A. Navarro, and B. Shneiderman, 1983, P rog ram

Inden ta t ion and CuniprehensiSnlity, Communication of: the ACM 26(H),

pp 861 867. : '/ V-

[172] M. Munro and F.VV. Calliss, 1987, Notes of.the. Firs t Software Maintenance

Workshop , Centre for Softuwe Maintenance, Durham, England.

[173] W . R . Murray, 1985, H e u r i s t i c and F o r m a l M e t h o d s in A u t o m a t i c P r o ­

g r a m Debugg ing , Proceeding of the 9th IJCAI, pp 15-19.

[174] G . J . Myers, 1979, T h e A r t of So f tware Tes t ing , New York: John Wiley.

[175] W . Myers, 1989, A l l o w P l e n t y of T i m e for L a r g e - S c a l e Sof tware , IEEE

Software, pp 92-99.

[176] K . Narayanaswamy. and W. Scacchi, 1987, M a i n t a i n i n g C o n f i g u r a t i o n of

E v o l v i n g So f tware S y s t e m s , IEEE Transaction on Software Engineering, SE-

' 13 (3), pp 324-334.

[177] J . Neighbors, 1984, T h e D r a c o A p p r o a c h to C o n s t r u c t i o n Sof tware f r o m

R e u s a b l e C o m p o n e n t s , IEEE Transaction on Software Engineering, SE 10, No

5.

[178] R . J . Martin and W . M . Osborne, 1983, G u i d a n c e on So f tware M a i n t e n a n c e ,

National Bureau Standards, NBS Special Publ. 500-106.

[179] D.S. Notkin, 1985, T h e G A N D H A L F P r o j e c t , Journal of Systems and Soft­

ware, Vol 5, No 2, P P 91-105.

[180] P. Oman, May 1990, M a i n t e n a n c e Tools , IEEE Software, pp 63.

[181] W. Osborne, 1987, B u i l d i n g a n d S u s t a i n i n g Sof tware M a i n t a i n a b i l i t y , Pro­

ceedings Conference on Software Maintenance, pp 14-23.

[182] L . Osterwiel and S. Gamalel-Din, 1988, N e w P e r s p e c t i v e on Sof tware M a i n ­

tenance Processes , Proceedings of Conference on Software Maintenance, IEEE,

pp 44-22.

[183] J . C . Palous, 1990, C o l u m b u s D a t a M a n a g e m e n t S y s t e m , Proceedings

AIAA/NASA.

[184] G . Parikh, 1982, T e c h n i q u e s of P r o g r a m a n d S y s t e m M a i n t e n a n c e ,

Winthrop Publishers.

[185] G . Parikh, 1982, S o m e T i p s , T e c h n i q u e s , a n d G u i d e l i n e s for P r o g r a m

a n d S y s t e m M a i n t e n a n c e , Techniques of Program and System Maintenance,

Winthrop Publishers, pp 65-70.

[186] G . Parikh and N. Zvegintzov, 1983, T u t o r i a l on Sof tware M a i n t e n a n c e , IEEE

Computer Society.

[187] G . Parikh, 1986, H a n d b o o k of Sof tware M a i n t e n a n c e , John Wiley & Sons.

211

[188] D. Parnas, 1972, O n the C r i t e r i a to be used in D e c o m p o s i n g S y s t e m s into

M o d u l e s , Communication of the ACM, 15(2), pp 1053-1058.

[189] B . H . Patkaw, December 1983, A F o u n d a t i o n for Sof tware M a i n t e n a n c e ,

MSc. Thesis, Department of Computer Science, University of Toronto.

[190] L . Pau and J . M . Negret, 1988, S O F T M : A Sof tware M a i n t e n a n c e E x p e r t

S y s t e m in P r o l o g , Proceedings Conference on Software Maintenance, pp 306-

311.

[191] L . M . Pereira, 1986, R a t i o n a l Debugging in L o g i c P r o g r a m m i n g , 3rd Logic

Programming Conference, London pp 203-210.

[192] D. Perkins, W . F . Truszkowski, 1990, L a u n c h i n g A I in N A S A G r o u n d Sys ­

tems, Proceedings AIAA/NASA.

[193] W . E . Perry and S. Perry, 1985, A p lan of A c t i o n for Sof tware M a i n t e n a n c e ,

Data Management, 23 (3).

[194] D . E . Perry, 1987, V e r s i o n C o n t r o l in the I N S C A P E E n v i r o n m e n t , In Pro­

ceedings 9th International Conference on Software Engineering, pp 142-149.

[195] D . E . Perry, 1989, T h e I N S C A P E E n v i r o n m e n t , Communication of the ACM,

pp 2-12.

[196] S .L . Pfleeger, 1987, Sof tware E n g i n e e r i n g : the produc t ion of qual i ty soft­

ware , Macmillan Publishing.

[197] S .L . Pfleeger, S.A. Bohner, 1990, A F r a m e w o r k F o r So f tware M a i n t e n a n c e

M e t r i c s , Proceedings of Conference on Software Maintenance, IEEE, pp 320-327.

[198] R.S . Pressman, 1987, Software E n g i n e e r i n g : A P r a c t i t i o n e r ' s A p p r o a c h ,

McGrawrHill, NY.

[199] R.S. Pressman, 1988, M a k i n g Sof tware E n g i n e e r i n g H a p p e n , Prentice Hall,

New Jersey.

[200] K . J . Pulford, 1989, T h e M a i n t e n a n c e of L a r g e , R e a l - T i m e E m b e d d e d Sys ­

tems f r o m the P e r s p e c t i v e of K n o w l e d g e E n g i n e e r i n g , In Software Engi­

neering For Large Softiuare Systems, pp 267-279.

[201] RADC-TR-86-197 , 1986, A u t o m a t e d L i f e C y c l e I m p a c t A n a l y s i s S y s t e m ,

Rome Air Development Center, Air Force Systems Command, Rome, NY.

212

[202] V. Rajl ich, 1990, V I F O R : V i s u a l I n t e r a c t i v e F O R T R A N , Proceedings Con­

ference on Software Maintenance.

[203] J . L . Raney, 1990, F Y 9 0 S ta tus R e p o r t O n S S E S y s t e m P r o j e c t A s V i e w e d

F r o m J u s t O u t s i d e T h e P r o j e c t , Proceedings AIAA/NASA.

[204] C . V . Ramanioorthy, A. Prakash, W. Tsai and Y.Usuda, 1984, So f tware E n g i ­

neering: P r o b l e m s and Perspec t ive s , Computer, Vol. 17, No 10, pp 191-209.

[205] T . Katsoulakis, Sept 1989, T h e R E D O P r o j e c t , Proceedings 3rd. Durham

Workshop on Software Maintenance.

[206] S. Reghabi and D. Wright, 1988, S E R S : Sof tware E n g i n e e r i n g R e l e a s e S y s ­

t e m , International Workshop on Software Version and Configuration Control,

pp 244-263.

[207] R . J . Reifer, 1979, T h e N a t u r e of Sof tware M a n a g e m e n t , Tutorial: Software

Management, IEE, pp 2-5.

[208] S. R.eisman, May 1990, M a n a g e m e n t and I n t e g r a t e d Tools , IEEE Software,

pp 75.

[209] H.S. Render and R . H . Campbell, 1988, C L E M M A - T h e Des ign of a P r a c t i ­

c a l C o n f i g u r a t i o n L i b r a r i a n , Proceedings Conference on Software Maintenance,

pp 222-228.

[210] D . J . Robson, B . J . Cornelius and M. Munio, 1988, A n A p p r o a c h to Soft­

w a r e M a i n t e n a n c e E d u c a t i o n , Centre for Software Maintenance, University

of Durham, UK.

[211] M. Rochkind, December, 1975, T h e S o u r c e C o d e C o n t r o l S y s t e m , IEEE

Transaction on Software Engineering, pp 364-370.

[212] R. Rohrback and C . Seiwald, 1988, G A L I L E O : A Sof tware M a i n t e n a n c e

E n v i r o n m e n t , International Workshop on Software Version and Configuration

Control, pp 265-275.

[213] H. Rombach, 1987, A C o n t r o l l e d E x p e r i m e n t on the I m p a c t of Sof tware

M a i n t e n a n c e S t r u c t u r e on M a i n t a i n a b i l i t y , IEEE Transaction on Software

Engineering,

[214] I I . Rombach and V . Basili, 1987, Q u a n t i t a t i v e A s s e s s m e n t of Sof tware

M a i n t e n a n c e , Proceedings of Conference on Software Maintenance, pp 133-143.

213

[215] 11. Ronibach. 1988, C a n we Explo i t"the R e l a t i o n s h i p between R e u s e a n d

M a i n t e n a n c e ? , P a n e l D i scus s ion , Proceedings of Conference on Software

Maintenance, IEEE, pp:-2-4,-.

[216] H . Rombach and B . Ulery, 1989, E s t a b l i s h i n g a Measuremenit B a s e d M a i n ­

t enance I m p r o v e m e n t P r o g r a m : lesson-learned in the S E L , Proceedings of

Conference on Software Maintenance, IEEE, pp 50-59.

[217] H. Rombach, 1989, A n E x p e r i m e n t a l P r o c e s s M o d e l i n g L a n g u a g e , Pro-
I

ceedings of Conference on Software Maintenance.

[218] H. Rombach, 1990, De s ign M e a s u r e m e n t : some leassons l earned , IEEE

Software, March, pp 17-24.

[219] K . Rubin, P. Jones and C . Mitchell, 1988, A S m a l l t a l k I m p l e m e n t a t i o n of a n

Intel l igent O p e r a t o r ' s Assoc ia te , Proceedings OOPSLA.

[220] G . R . Ruth, 1976, Inte l l igent P r o g r a m A n a l y s i s , Artificial Intelligence, Vol 7,

No 1, pp 65-85.

[221] B. Ryder, 1987, A n A p p l i c a t i o n of S t a t i c P r o g r a m A n a l y s i s to Sof tware

M a i n t e n a n c e , Proceedings of the Twentieth Annual Hawaii International Confer­

ence on System Science, pp 82-91.

[222] B . Ryder, 1989, I S M M : T h e I n c r e m e n t a l So f tware M a i n t e n a n c e M a n a g e r ,

Proceedings of Conference on Software Maintenance, IEEE, pp 142-165.

[223] G . Sal ton and M . J . McGil l , 1983, I n t r o d u c t i o n to M o d e r n I n f o r m a t i o n R e ­

tr i eva l , New York, NY: McGraw-Hill Book Company.

[224] J . . Sainetinger, 1990, A T o o l for the M a i n t e n a n c e o f C-f - - f on P r o g r a m s ,

Proceedings Conference on Software Maintenance, pp 54-59.

[225] J . M . Scandura, 1990, C o g n i t i v e A p p r o a c h to S y s t e m s E n g i n e e r i n g a n d

R e - E n g i n e e r i n g : I n t e g r a t i n g New. Des igns .with old S y s t e m s , Software

Maintenance : Research and' Practice, Vol. [2, pp 145-156. :

[226] A . J . Sell oi Her, 1990, T h e E u r o p e a n -Space' Sof tware : ' D e y e l o p m e n t E n y i r o n -

, - m e n i , Proceedings_ AlAA/NASA: .

[227] N.F . Sclineiclewind, 1987, T h e S t a t e o f Sof tware M a i n t e n a n c e , IEEE Trans-

actions' on. Software'Engineering, 113, (3), pp 303-310.

[228] R . L . Seldmeyer, W . B . Thompson, P . E . Johnson, 1983, K n o w l e d g e - b a s e d F a u l t

L o c a l i z a t i o n in Debugging , Proceeding of the ACM SIGSOFT/SIGPLAN Soft­

ware Engineering Symposium on High-level Debugging, Communication of the

ACM, pp 25-31.

[229] R. Selby and V. Basili, 1988, E r r o r L o c a l i z a t i o n d u r i n g So f tware M a i n ­

tenance: generat ing h i erarch ica l s y s t e m descr ipt ion f r o m source code

alone, Proceedings of Conference on Software Maintenance, IEEE, pp 192-197.

[23d] R. Selby and A. Porter, 1989, Sof tware M e t r ic C l a s s i f i c a t i o n T r e e help

guide the M a i n t e n a n c e of L a r g e Sca le S y s t e m s , Proceedings of Conference

on Software Maintenance, IEEE, pp 116-123.

[231] N. Shahmehri, M. Kamkar, and P. Fritzson, 1990, S e m i A u t o m a t i c B u g L o c a l ­

i zat ion in So f tware M a i n t e n a n c e , Proceedings Conference on Software Main­

tenance.

[232] D . G . Shapiro, 1981, Snif fer: A S y s t e m that U n d e r s t a n d s B u g s , AI Memo

638, MIT, AI Laboratory.

[233] E . Y . Shapiro, 1982, A l g o r i t h m i c P r o g r a m Debugg ing , PhD Dissertation,

Yale University, Technical report MCS8002447

[234] W . K . Sharpley, 1977, Sof tware M a i n t e n a n c e P l a n n i n g for E m b e d d e d

C o m p u t e r S y s t e m s , Proceedins IEEE COMPSAC 77, pp 520-526.

[235] S .C . Chang and C . McGowan, 1987, F u l l T e x t R e t r i e v a l in So f tware M a i n ­

tenance , Proceedings Conference on Software Maintenance, pp 53-57.

[236] B. Shneiderman and R. Mayer, 1979, S y n t a c t i c / S e m a n t i c I n t e r a c t i o n s in

P r o g r a m m i n g B e h a v i o u r : A M o d e l , International Journal on Computer and

Information Science, 8(3), pp 219-238.

[237] B. ShneidermaiL, P. Shafer, R. Simon, L . Weldon, 1986, D i s p l a y Strategies

for P r o g r a m B r o w s i n g : C o n c e p t s and a n E x p e r i m e n t , Conmputer science,

Technical Report Series, University of Maryland.

[238] A. Simon, J . L . Ducuing, 0 . Pasero and J .P . Denier, 1990, So f tware M a i n t e ­

nance G r o u n d S y s t e m s , International Symposium on the Management of Large

Software Projects in the Space Industry, pp 405-417.

215

[239] A. Simon, 1991, R e q u i r e m e n t s for a Sof tware M a i n t e n a n c e S u p p o r t E n v i ­

r o n m e n t , M.Sc. by Thesis, School of Engineering and Applied Science, University

of Durham.

[240] A. Simon, 1991, Tools for Sof tware M a i n t e n a n c e , Matra-Espace, Technical

Report.

[241] A. Simon, 1991, P r o t o t y p e s a n d R e s e a r c h P r o j e c t s on Sof tware M a i n t e ­

nance , Matra-Espace, Technical Report.

[242] I . Smith, 1987, Guide l ines for the M a i n t e n a n c e a n d M o d i f i c a t i o n of Safety

R e l a t e d C o m p u t e r S y s t e m s , European Workshop on Industrial Computer Sys­

tems.

[243] Software Maintenance News, 1986, G S A L a u n c h e s the P W B , September,

November and December 86.

[244] N. Zvegintzov (Ed .) , 1989, Sof tware M a i n t e n a n c e Tools , Software Mainte­

nance News.

[245] H. Sneed and J . Jandrasics, 1987, Sof tware R e c y c l i n g , Proceedings of Confer­

ence on Software Maintenance, IEEE, IEEE, pp 82-90.

[246] H. Sneed, 1988, Software R e n e w a l : a case s tudy , IEEE Software 1(3), pp

56-63.

[247] R . A . Snowdon, North Holland., C A D E S a n d Sof tware D e v e l o p m e n t , In Soft­

ware Engineering Environments, H. Huenke (Ed.) 1981.

[248] E . Soloway and W . L . Johnson, 1980, K n o w l e d g e based p r o g r a m u n d e r s t a n d ­

ing, IEEE Transactions on Software Engineering, SE-11 (3), pp 265-275.

[249] I . Sommerville, Second edition, 1985., Sof tware E n g i n e e r i n g , Addison- Wesley.

[250] D T I and N C C , 1987, T h e S T A R T S G u i d e , NCC

[251] S T S C , 1990, I n t e r n a l R e p o r t on Sof tware Tes t Tools , Software Technology

Support Center.

[252] S T S C , 1990, I n t e r n a l R e p o r t on Sof tware D o c u m e n t a t i o n Tools , Software

Technology Support Center.

[253] S T S C , 1990, I n t e r n a l R e p o r t on Sof tware R e q u i r e m e n t s Tools , Software

Technology Support Center.

216

[254] S. Subramanian, 1988, C R U I S E : U s i n g Inter face H i e r a r c h i e s to S u p p o r t

So f tware E v o l u t i o n , Proceedings of Conference on Software Maintenance, IEEE,

pp 132-142.

[255] W . Suydam, 1987, C A S E makes s tr ides toward A u t o m a t e d So f tware D e ­

ve lopment , Computer Design, pp 49-70.

[256] E . B . Swanson, 1976, T h e D i m e n s i o n of M a i n t e n a n c e , Proceedings 2nd Inter­

national Conference of Software Engineering, IEEE, pp 492-497.

[25,7] E . B . Swanson and C . M . Beath, 1990, D e p a r t m e n t a l i z a t i o n in So f tware D e ­

ve lopment a n d M a i n t e n a n c e , Communication of the ACM, Vol 33, No 6.

[258] H. Takahashi, E . Shibayama, 1985, P R E S E T - A Debugg ing E n v i r o n m e n t

for Pro log , Logic Programming Conference, Tokyo, pp 90-99.

[259] B . Terry and D. Lodgee, 1990, T e r m i n o l o g y for So f tware E n g i n e e r i n g E n v i ­

ronment a n d C o m p u t e r - A i d e d Sof tware E n g i n e e r i n g , Software Engineering

notes, Vol 15, No 2, pp 83-94.

[260] W . Tichy, 1982, D e s i g n , I m p l e m e n t a t i o n , a n d E v a l u a t i o n of a R e v i s i o n

C o n t r o l S y s t e m , Proceedings of the 6th International Conference on Software

Engineering, pp 58-67.

[261] W . Tichy, 1985, R C S - A S y s t e m for V e r s i o n C o n t r o l , Software Practice and

Experience, Vol 15, No 7, pp 637-654.

[262] C . Tully (E d .) , 1989, P r o c e e d i n g s of 4 t h . I n t e r n a t i o n a l So f tware P r o c e s s

W o r k s h o p , ACM Software Engineering Notes, Vol. 14, no. 4-

[263] R . J . Turver, 1989, Sof tware M a i n t e n a n c e : G e n e r a t i n g F r o n t E n d s for

C r o s s R e f e r e n c e r Tools , M.Sc. by Thesis, School of Engineering and Applied

Science, University of Durham.

[264] J . Valett and F . McGarry, 1989, A S u m m a r y of So f tware M e a s u r e m e n t

E x p e r i e n c e s in the Sof tware E n g i n e e r i n g L a b o r a t o r y , Journal of System

and Software, pp 136-147.

[265] L . Vanek and M. Culp, 1989, S t a t i c A n a l y s i s of P r o g r a m S o u r c e C o d e using

E D S A , Proceedings Conference on Software Maintenance, pp 192-199.

[266] Wake and J . Henry, 1988, A M o d e l B a s e d on Sof tware Q u a l i t y factors

w h i c h P r e d i c t s M a i n t a i n a b i l i t y , Proceeding Conference on Software Mainte­

nance, pp 382-387.

217

[267] M. Ward and M. Munro, 1988, Intel l igent P r o g r a m A n a l y s i s Tools

for M a i n t a i n i n g Sof tware , The 1988 UK IT Conference, University College

Swansea.

[268] M. Ward, 1988, T r a n s f o r m i n g a P r o g r a m into a Spec i f i cat ion , University

of Durham, Computer Science, Technical Report 88/1.

[269] R. Warden, 1988, R e - E n g i n e e r i n g for B u s i n e s s C h a n g e , Second Software

Maintenance Workshop Notes, Centre for Software Maintenance, University of

Durham.

[270] H. Wertz, 1982, Stereotyped P r o g r a m Debugg ing , International Journal on

Man-Machine Studies, Vol 16.

[271] N. Wilde and S. Thebaut, 1989, T h e M a i n t e n a n c e Ass i s tan t : w o r k in

progress , Journal of Systems and Software, No 9, pp 3-17.

[272] L . Weissman, 1976, Psycholog ica l C o m p l e x i t y of C o m p u t e r P r o g r a m s :

A n E x p e r i m e n t a l Methodology , SIGPLAN Notices, 9.

[273] N. Wilde and S. Thebaut, 1989, T h e M a i n t e n a n c e A s s i s t a n t w o r k in

P rog r e s s , Journal of System and Software, pp 3-18.

[274] A. Wingrove, 1986, T h e P r o b l e m of M a n a g i n g Sof tware P r o j e c t s , Software

Engineering Journal, Vol 1, pp 3-6.

[275] D. Wright, 1988, Conf igura t ion M a n a g e m e n t in a Heterogeneous E n v i ­

ronment , Proceedings of Conference on Software Maintenance.

[276] S. Y a u , J .S . Collofello a.nd T . MacGregor, 1978, R i p p l e Ef f ec t A n a l y s i s of

Sof tware M a i n t e n a n c e , Proceedings IEEE COMPSAC 78, pp 492-497.

[277] S.S. Yau and J .S . Collofello, 1979, S o m e s tabi l i ty M e a s u r e s for So f tware

M a i n t e n a n c e , Proceedings of the Computer Software and Applications Confer­

ence, IEEE, 1979 pp 674-679.

[278] S.S. Yau and J .S) Collofello, 1980, Some S tab i l i t y M e a s u r e s for Sof tware

M a i n t e n a n c e , IEEE Transaction Software Engineering, Vol 6, No 6, pp 545-552.

[279] S. Yau and J . Collofello, 1985, Des i g n S tab i l i t y M e a s u r e s for Sof tware

M a i n t e n a n c e , IEEE Transaction on Software Engineering, Vol SE-11, No 9,

pp 849-856.

218

[280] S. Yau and J . Tsai , 1987, K n o w l e d g e representat ion of Sof tware C o m p o ­

nent In terconnec t ion I n f o r m a t i o n for L a r g e Scale Sof tware Modi f i ca t ion ,

IEEE Transaction on Software Engineering, pp 355-361.

[281] S. Yau and S.-S. L i u , 1987, S o m e A p p r o a c h e s to L o g i c a l R i p p l e E f f e c t A n a l ­

ys is , Technical Report, SERC-TR-24-F, Software Engineering Research Center,

University of Florida.

[282] S. Yau, R. Nicholl, J . Tsa i and S. L i u , 1988, A n In tegrated L i f e C y c l e M o d e l

for Sof tware M a i n t e n a n c e , IEEE Transaction on Software Engineering. Vol

SE-14, No 8, pp 1128-1144.

[283] M. Young and R. Taylor, 1989, R e t h i n k i n g the T a x o n o m y of F a u l t De tec ­

t ion Techniques , Communication of the ACM, pp 53-61

[284] J . Ziegler, J . Grasso and L . Burgermeister, 1989, A n A d a based R e a l - T i m e

Closed- loop In tegrat ion a n d Regress ion Tes t Too l , Proceedings of Confer­

ence on Software Maintenance, IEEE, pp 81-88.

[285] S. Zucker and K . B . Christian, 1986, A u t o m a t e d Conf igura t ion M a n a g e m e n t

on a D o D Sate l l i te G r o u n d S y s t e m , IEEE Aerospace and Electronic Magazine,

pp 10-15.

219

