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Abstract 

Energetics and Nutrition of British and Icelandic Redshank (Tringa totanus) 
During the Non-breeding Season 

Paul Ian MitcheU 

Prolonged severe winter weather increases mortality in shorebirds wintering in 
Britain, with Redshank suffering much more than other species. I studied eco-
physiologjcal fectors which might affect the chances of survival of Redshank to 
determine v^ether British-breeding Redshank {T. t. totanus) and the larger Icelandic-
breeding Redshank (7. t. robusta) are equally affected. 

I examined the seasonal changes in body mass (BM), total lean mass (TLM) and mass 
of &t (FM) in wild and captive birds of both races in NE England, usmg total body 
electrical conductivity. I measured mass-specific standard metabohc rates in both 
races at tenq)eratures (Ta) between -5°C and 25°C using open-flow respirometry. By 
combining these with measurements of heat loss from heated taxidermic mounts of 
Redshank, I calculated the effects of air teiiq)erature, wind speed and solar radiation 
on maintenance metabolism (Hnaint) of each race. I also measured the conq>osition of 
carcasses of Redshank v^diich died on the Wash, SB England following prolonged 
severe weather in February 1991. 

I found that i) both races accumulated similar fax reserves during mid-winter as an 
insurance against in:q)ending bad weather and food shortages; i i ) robusta had a higher 
mass-specific basal metaboUc rate (BMR) and higher thermal conductivity (Kes); iii) 
severe weather mortality in Redshank in Britain coincided with time periods -when 
Mn^t in both races exceeded 2.5xBMR and daily mean temperatures were -2°C or 
below continuously over a period of 5 days; iv) there were no racial differences in 
foraging behaviour; v) both races died during severe weather as a result of starvation 
afl;er depleting almost all fat and similar amounts of protein reserves; vi) the reserves 
of robusta would sustain them without food for 0.5 days less than britannica ejq)Osed 
to the same weather conditions. 

The differences in BMR between the two races was discussed in terms of differences 
in breeding latitude and migratory lifestyle. The higher ¥ ^ of robusta was thought to 
result from the higher BMR, rather than a lower level of insulation provided by the 
plumage. During severe weather when food availability is reduced, I would predict 
that robusta, with their higher mass-specific Mnaint and larger body size, would find it 
more difficult to meet their daily energy requirements through food intake alone. 
Given that the energy obtained by robusta from fit and protein reserves would sustain 
them for shorter periods than those of britannica, I would predict that during periods 
of prolonged severe weather, the latter would have a greater chance of survival. 
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1.0 Introduction 

"On February 15th, during a short visit to the beach at Lowestoft, I found a 

Redshank (Tringa totanuSy) which had evidently sought shelter under the lee of a 

marram-tufted sand hilL During the night the snow had formed a drift around it, 

so that only it's head was visible. It was frozen stiff in an attitude of sleep." 

- F. C. Cook (1929); m: Witiierby & Jourdain (1929). 

1.1 Overview 

This thesis is concerned with the fectors wiiich may affect the mortality of two 

races of Redshank wdiich breed in Iceland and northern Britain respectively, whilst 

spending the non-breeding season together at Teesmouth in north-east England. 

It investigates the energetic demands inq)osed on the two races and their ability to 

meet them during prolonged severe winter weather v ^ c h inflicts the highest rate 

of mortality during the annual cycle of Redshank. In doing so, it considers the 

iii:q)Ucations of differences between the races fai breeding origin, body size and 

behaviour on their energetics, nutrition and ultimately, survival 

1.2 Severe weather mortality in Redshank and other shorebirds 

During their annual cycle, most shorebirds wintering m mid-northem latitudes 

experience a higher rate of mortality on the non-breeding grounds than on the 

breeding grounds or diuing migration (Evans, 1991). Mortality of birds due to 

severe winter weather has been documented many times during the twentieth 

century since the severe winter of 1916/17 (Jourdam & Witherby 1918a&b). 

However, accounts of this and other severe winters dming the first half of the 

century (1928/29: Witherby & Jourdain, 1929; 1939/40: Ticehurst, Witherby & 

Hawke, 1940; 1946/47: Ticehurst & Hartley, 1948) were based on isolated 



observations and anecdotal evidence from individuals such as F. C. Cook in 

Lowestoft, Suffolk in. 1929 (see quotation above). Hence, although it was evident 

that large numbers of birds died in some places during severe weather, there was 

no clear information on the extent of the mortaUty on a national scale, of the 

overall effect on population size and age structure, and on which species were 

most vulnerable. Following the severe winter of 1962/63, the coldest on record 

smce 1750, co-ordinated collection of information from British ornithologists 

ircproved greatly (Dobinson & Richards, 1964). During previous winters it was 

not clear whether the large mmibers of carcasses bemg found dming severe 

weather were merely results of more intense searches and greater awareness from 

observers. During the winter of 1962/63, however, several studies showed an 

increase in mortality rate, determined from coimts and recoveries of dead ringed 

birds, coi^pared to previous years (e.g. Boyd & Ogilvie, 1964; Beer & Boyd, 

1964; Beer, 1964). 

During the winters of 1982/83 - 1985/86 the Wader Study Group investigated the 

effect of severe weather on shorebird survival on British estuaries and ensured that 

constant search effort for carcasses was maintained throughout (Davidson & 

Clark, 1982). The results o f the study clearly demonstrated that winter mortality 

in shorebirds increased as a result of severe weather; for instance, along 86km of 

coastline, over 500 corpses were fovnd during each of the severe winters of 

1984/85 and 1985/86, con^ared to only 62 and 128 during the milder winters of 

1982/83 and 1983/84 respectively (Davidson & Clark, 1982, 1983a&b,1984, 

1985a&b; Clark & Davidson, 1986). The study also showed that some species 

were more susceptible to severe weather than others. Redshank made up 49% of 

the total numbers of corpses recovered in 1984/85, Dunlin {Calidris alba) 15% 

and Oystercatcher (Haematopus ostralegus) 11%. Redshank also predominated 

among the corpses found in 1985/86, making up 55%, although in both years the 

species formed a much smaller percentage (ca. 5%) of the total numbers of 



shorebirds at risk (Cranswick et ah, 1995). Studies conduaed during other years 

have also found Redshank to predominate amongst the corpses found during 

severe weather; for exanq)le, they constituted 52 % of shorebird and 24% of all 

waterfowl corpses foimd on The Wash, East Anglia, in 1962/63 (Pilcher, 1964) 

and 51% of a total of4,825 shorebird corpses found m south-east England in 

1990/91 (Clark et al, 1993). Redshank are tiierefore clearly likely to suffer 

heavier additional mortality as a result of severe winter weather than any other 

shorebird species. 

Severe weather events can have a very dramatic effect on Redshank nxunbers 

wmtering in a certain area. For instance, the 1,553 Redshank corpses recovered 

on The Wash in 1991 (an underestimate of the actual number which died smce 

some corpses will have been washed out to sea) represented 40% of a mean of 

3,900 present on the Wash in February dming the previous 4 years. Immediately 

afterwards, in March 1991, only 880 Redshank remained on the Wash, just 26% 

of a mean of 3,328 for March in the previous years (Clark et al, 1993). Although 

it is likely that some birds moved away from the area during the severe weather 

(Baillie, 1984), the numbers that had been killed in 1991 had a noticeable effect in 

the subsequent winter when all monthly maximum counts of Redshank were below 

mean monthly maxima for 1987-90. In addition, a greater proportion of first year 

birds wintered on the Wash in the winter of 1991/92, perhaps the result of a 

decrease in con^etition on the feeding grounds due to a much reduced wintering 

adult population, rather than from a sharp increase in breeding productivity in the 

summer of 1991 (Clark et al, 1993). 

It is imclear why Redshank suffer greater losses in severe weather than other 

species wdntering in the same areas. It is also unclear whether certain categories 

of Redshank are more susceptible than others. Some studies have atteicpted to 

investigate the presence of any sexual bias in Redshank mortahty during severe 



weather (Davidson & Clark, 1985b; Clark et ai, 1993), though lack of 

infonmtion on sex ratios in populations prior to the onset of severe weather 

have made such studies inconclusive. (The sex of Redshank can be determined 

only by gonad inspection outside the nesting season (Prater et al, 1977)). No 

studies have investigated whether Redshank from British and Icelandic breeding 

populations (see below), both of vdiich over-winter in Britain, are equally affected 

during severe weather. 

1.3 Breeding origins of Redshank wintering in Britain. 

Hale (1971) identified 3 races of Redshank in Eiuope; Tringa totanus totanus 

which breeds in mainland Europe, an Icelandic race T. totanus robusta and the 

British breeding population T. totanus britannica. There are sufficient biometric 

differences between robusta and totanus, the latter being smaller in body size, for 

these two races to be considered as subspecies, whereas britannica shows 

considerable overlap in biometry and is considered in evolutionary terms, to be a 

hybrid of the two sub-species. However, robusta does have significantly longer 

wings, tarsus-toe length and smaller bill length than britannica and can be 

distinguished on measurements usmg discrimanant fimction analysis (Simmiers et 

al., 1988). 

Hale (1973) used biometrics, actual ringing recoveries and computer-predicted 

ringing recoveries to determine the winter ranges of different breeding popxilations 

of Redshank from around the world. T. t. robusta winter chiefly in UK, Ireland, 

Netherlands, Denmark and Iceland; britannica move on average, no more than 

300km during the non-breeding season (Hale, 1973) and so tend to be restricted in 

winter to the UK where very few of the European subspecies totanus occur. 

However, small numbers of britannica do venture to the Netherlands, northem 



France and the north Iberian coast. These may be first-year birds vAnch. tend to 

move greater distances than adxihs during the winter (Hale, 1973). The British 

wintering population thus conq)rises robusta and britarmica on the east and west 

coast whilst the south coast tends to be dominated by britannica (Fumess & 

Baillie, 1981). 

A sample of around 1500 Redshank which died following severe weather on the 

Wash in 1991 contained proportionately more birds with longer wings than 

saiBqples of birds present at the same time in previous wmters (Clark ei ai, 1993). 

It is not clear, however, whether this apparent bias in casuahies in 1991 indicates a 

greater susceptibility of robusta to severe weather than of britannica. However, 

this does raise the question of differential survival during severe winter conditions 

between these two races of Redshank, smce differences in body size, breeding 

latitude and behaviour could lead to differences in energetic, nutritional and 

behavioiiral factors wdiich contribute to survival during severe weather and the 

non-breeding season as a vsdiole. 

1.4 Factors affecting survival of British and Icelandic Redshank during 

severe weather. 

1.4.1 Storage of Fat and Protein 

The primary form of energy storage in bhds is Upid in the form of triglycerides 

(Blem, 1976). Fat is stored in discrete depots subcutaneously and associated with 

the mesenteries and, for more immediate use, intercellularly in muscles and the 

liver. King & Murphy (1985) make the distinction between nutrient stores and 

nutrient reserves. Stores are not accxmiulated for immediate metabolic needs, but 

in anticipation of fiiture nutritional stress v ^ c h they define as v^en .."an animal's 

nutrient demands exceeds its nutrient ingestion, resulting in net catabolism in 

body tissues to the extent that one or more vital physiological Junctions are 

impaired". Nutrient reserves include those compunds which are stored phis any 



other tissues vMch are not primarily accumulated to insure agamst fixture 

nutritional stress, but can be catabolised to "forestall stress ". 

Most species of shorebhd exhibit marked seasonal variations in body mass 

attributable to the accmnulation and utilisation of fat and to a lesser extent, protein 

reserves (Scott et al., 1994). The greatest accumulation of nutrient reserves occur 

in shorebird species which breed at high northem latitudes but migrate to lower 

latitudes during the non-breeding season. Up to one third of the body mass of 

long distance migrants such as Knot (Calidris canutus), Sanderling (C. alba) and 

Dunlin is con:q)Osed of Hpid reserves to fiiel flight (Gudmundsson et al., 1990; 

Davidson & Evans, 1989). Premigratory increases in pectoral muscle proteio also 

occur, not only to provide increased flight power (Marsh, 1984) but also as 

protem stores to biiffer food shortages on the breeding grounds or to accelerate 

egg production (Davidson & Evans, 1990). 

Shorebirds wintering in mid-northern latitudes show substantial body mass 

increases in mid-winter (for review see: Scott et al., 1994; for tKsxaplQS see: 

Davidson, 1981a; Johnson, 1985, Scott, 1991). These mid-winter weight 

mcreases appear to be solely attributable to the accumulation of fax stores, with no 

hypertrophy of flight muscles taking place (Evans & Smith, 1975; Davidson, 1981; 

Scott, 1991). The greater the accimmlation of fat stores, the longer a shorebird 

will be able to survive when energy intake from food is exceeded by energy output 

during prolonged periods of poor feeding or severe weather. The larger Icelandic 

Redshank robusta may be able to carry a greater mass of fat than the smaller 

britannica. However, both races do not maximise the amount of fat they carry in 

mid-winter, since winter levels are always exceeded during premigratory fattening 

(Scott a/., 1994). 

Lima (1986) suggested that birds optimise their body mass in winter in response to 

trade-off between i) accumulatmg sufficient fat reserves for sustenance during 



periods of negative energy balance, and ii) incurring costs associated with being 

heavy (Witter & Cuthill, 1993), in partictilar the increased risk of predation 

(GOSIQI et al, 1995). I f so, fat should be accimiulated to reach apeak v̂ dien the 

chance of encountering a negative energy balance due to severe weather is 

greatest. Levels should then be allowed to &11 as the chance of severe weather 

decreases. Evidence for such a seasonal regulation of body mass according to 

Lima's optimisation model has been found in passerines (Evans, 1969; Rogers, 

1987, 1995) and in some shorebirds (Pienkowski, 1979; Davidson, 1982a). 

However, some authors attribute the observed mid-winter accumulation of fat and 

subsequent depletion to a change from good feeding conditions m autumn to 

poorer feeding accon^janied by higher thermogenic demands as winter progresses 

(Maron & Myers, 1985; Owen & Cook, 1977). 

Davidson (1982a) concluded that, unlike other shorebird species Redshank 

wintering along the east coast of Britam were unable to regulate mid-winter body 

mass or prevent its subsequent decline in late winter. Davidson suggested that 

cold autunm and early winter weather in eastern Britain reduced food availability 

to a point wiiere Redshank were imable to ingest enough food to both meet 

inunediate energy demands and to accimiulate fat stores widch would insure 

against fixture negative energy balances. Some studies (Beecrofl & Clark, 1985; 

Norman & Coffey, 1994; Scott, 1991; Scott et al, 1994; Swann & Etheridge, 

1989) have presented evidence which questions Davidson's conclusions. 

Though Scott (1991) presents some data on monthly body masses of the two 

races, no study has fiilly documented how body mass and fst and protein reserves 

in robusta and britannica vary diuing the winter or investigated vvdiether these are 

maintaiaed at internally regulated levels, or vary according to feeding conditions. 

It might be expected that the smaller britannica would require a lower food intake 

to meet its daily energy reqtiirements than the larger robusta, but the respective 

abilities of the two races to maintain a positive energy balance and accumulate fat 



reserves before mid-winter are highly dependant on the levels of energy expended 

by the two races under the same weather conditions (see below). 

The amount of time which both races could survive a sustained negative energy 

balance by using energy from reserves is largely dependant on the size of fat and 

to a lesser extent, protein reserves and the rate of energy expenditure. The rate at 

which energy is expended affects survival time by determining the rate at wbich 

reserves are used up. Higher rates of energy expenditure require larger masses of 

lean metabohcaDy active tissue to sustam them and birds die wdien the mass of lean 

tissue is no longer large enough to produce the required energy output. Hence, 

birds die with larger lean masses following periods of higher energy e?q)enditure 

(Piersma et al., In Press). Small shorebird species such as Dunlin and Turnstone 

(Arenaria interpres) which have higher mass-specfic metaboKc rates than larger 

species, die with proportionately larger fat and protein reserves remaining (Clark 

& Davidson, 1986). This may result from an inability to mobilise reserves fast 

enough to meet immediate energy requirements, hence hypothermia sets in whilst 

reserves remain unused (Davidson & Evans, 1982; Swennen & Duiven, 1985). 

Therefore, in order to conq)are potential survival times of robusta and 

britannica,it is important to consider not only the levels of fat and protein 

reserves, or the rate of energy expenditure of both races, but the proportion of 

these reserves that are used up prior to death. 

1.4.2 Rate of Energy Expenditure 

It is reasonable to expect differences between the two races in the rate of energy 

expended under the same thermal conditions and activity regimes, because of 

known effects of body size, breeding latitude and migratory behaviour on the 

energy expenditure of birds. Firstiy, basal metabolic rate (BMR) increases 



allometrically with body mass (Aschoff & Pohl, 1970; Lasiewski & Dawson, 1967; 

Kendeigh et al., 1977; Gavrilov & Dolnik, 1985), though shorebirds have a higher 

BMR for a given body mass than other non-passerines (Castro, 1987; Kersten & 

Piersma, 1987; Scott, 1991). Thermal conductance, a measure of the rate of heat 

loss, also increases allometrically with body size (Turner, 1988). Therefore, due 

to a larger body size and its effect on BMR and thermal conductivity, robusta 

would be e?q)ected to have a greater total energy e5q)enditure to mamtain body 

temperature under the same thermal conditions as britannica. 

Total energy expenditure is not just a consequence of body size. The metabohc 

output per imit mass of tissue (mass-specific BMR) may vary between races as a 

result of differences in migratory behaviour and breeding latitude. Kersten & 

Piersma (1987) explained the higher mass-specific BMR of shorebirds in general, 

con5)ared to other non-passerines, as an adaptation to an energetically expensive 

way of life (the 'Energetic Margm' hypothesis). They argued that a high mass-

specific energy output from the tissues of shorebirds would enhance their 

capabiUties to meet the energetic demands of long-distance migration or 

prolonged severe weather on tenq)erate wintering groimds. The Energetic Margin 

Hypothesis may be appUcable to the con:q)arison between the two races; m that 

robusta is migratory (flying about 1700km betweai Iceland and Eastern England), 

wMst britannica is almost non-migratory. 

Kendeigh & Blem (1974) and Kendeigh (1976) found that the existence 

metabolism (under standard conditions) of the North American House Sparrow 

{Passer domesticus) increased with increasing latitude of residence (between 9°N 

and 59°N) and hence, colder chmate. Weathers (1979) also found a latitudinal 

cline in avian mass-specific BMR, increasing in species resident at higher latitudes; 

possibly an adaptation to higher energy requirements for maintenance in the colder 

climates at higher latitudes. 



Icelandic Redshank T. t. robusta breed between 63°20'N and 66°30'N (also at 

62°N on the Faroe Islands) fiuther north than the breeding range of britannica, 

between 50°N and 58°36'N on the British mainland and at 60°50'N m the Shetland 

Isles. This latitudinal difference may be sufficient for robusta to have evolved a 

higher mass-specific BMR than the more southerly breeding britannica (cf 

Weathers, 1979). This of course depends on how stiong the selective pressures 

are on the breedmg grounds as compared to the non-breeding grounds. In terms 

of variation in body size and plmnage characteristics in Redshank worldwide, Hale 

(1971) argues that the stiongest correlations exist with the breeding origiti, 

whereas Sahnonsen (1954) concluded that, in hght of the migration patterns 

throughout the range of the Redshank in Eurasia, conditions on the non-breeding 

grounds exert the higher selective pressures. 

1.4.3 Food Intake 

During severe winter weather the chance of encountering a negative energy 

balance mcreases not only because energy demands for thermoregulation 

increase (see above), but because a reduction in prey availability may occur and 

result in a lower rate of intake of energy from food (e.g. Evans, 1976; Dugan et 

al., 1981; Pienkowski et al., 1984). It appears that robusta may be expected to 

have higher overall energy demands than britannica at least because of then 

larger body size (see above), and would therefore, need to obtam more food 

per day. As a consequence, robusta may be less able to balance their energy 

budget through feeding during severe weather or have less excess energy from 

food v ^ c h to convert into nutritional stores. Hence, the abiUty to meet energy 

demands through feeding at a particular time could have not only immediate 

survival imphcations, but also longer term consequences by affecting the ability 

to accimiulate sufficient 'insurance' of fat and protein. 
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1.5 Study Area and Wintering Redshank Population 

ITie Tees Estuary or Teesmoutii (54°37'N r i2 'W) in nortii-east England holds 

large nvmibers of shorebirds and wildfowl over winter and during spring and 

autumn migrations. The largest inter-tidal area m the estuary is Seal Sands (Figure 

1.1) which conq)rises 140 hectares of sand and mud. Seal Sands is inchided in the 

area which was designated as a National Nature Reserve by English Nature m 

1995 under the Wildlife and Countryside Act (1981). 

Teesmouth is nationally in:portant for Redshank, in that it regularly supports more 

than 1% of the population wintering m Britam. Nmnbers are highest in autumn, 

peaking in August and September when the Redshank are undergomg feather 

moult. Numbers then dechne and reach their lowest during mid-winter before 

increasing sharply in March and April (Figure 1.2) before most Redshank leave for 

their breeding grounds. Biometrics of Redshank wintering at Teesmouth indicate 

both Icelandic and British breeding to be present (see Chapt. 2). This is confirmed 

by ringing recoveries (summarised by R M . Ward & P. R Evans, impubL) which 

show Teesmouth Redshank to originate from breeding groimds throughout 

Iceland and the eastem half of northern Britain. Both robusta and britannica 

start to arrive in July (1 recovery each) and commence mouh at the same time 

(Mitchell et ai, 1996), contrary to previous suggestions that robusta moults later 

than britarmica (Fumess & BaiUie, 1981). Redshank com^lQtt mouh before the 

majority leave Teesmouth in late Autumn (Mitchell et al., 1996). Few bhds have 

been recovered outside the area during winter v^ch suggests that birds disperse 

inland or along the coast locally. Recoveries generally indicate high site fidelity 

between years, in adults at least. Recoveries of juveniles ringed at Teesmouth in 

autumn indicate a widespread multi-directional dispersal similar to that shown by 

Hale (1973). There are also a few recoveries of adults during spring when 

numbers at Teesmouth increase once more, suggestmg the return of 

11 
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locally wintering birds, though some spring birds do originate from the Wash (3 

ringed in Autumn) and Cheshire (1 winter recovery). 

1.6 Organisation of the thesis 

Chapter 2 presents changes in body mass and body con9)Osition of the two races 

during the non-breeding season. It also investigates whether body mass changes 

are internally regulated or are determined by food supply. 

Chapter 3 combines measurements of BMR and thermal conductivity of the two 

races with measurements of heat loss from heated taxidermic mounts to estimate 

and compare between races, the levels of energy expended for maintenance 

metabolism (Mmaint) xmder different weather conditions. Mmaint was then estimated 

for previous winters wiien severe weather had caused large-scale mortality in 

Redshank, in order to determine tmder v^at weather conditions Redshank are 

most likely to die. 

Chapter 4 coiBpares the foraging behaviour of both races, to investigate their 

abilities to meet their respective energy demands through feeding under different 

weather conditions. 

Chapter 5 examines the extent of catabolism of fat and protem reserves in both 

races prior to death during severe weather. Survival times were estimated for 

each race by incorporating information on rates of energy e?q)enditure and the 

levels of fet and protein available for assimilation into energy. 

Finally, Chapter 6 presents a general discussion on i) A\iiether mortality would be 

expected to be higher m one race than the other, given the evidence presented in 

chapters 2 to 5; and on ii) probable causes of the higher mortality in Redshank 

during severe weather compared to other shorebird species. 
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2.0 Seasonal Changes in Body Mass and Body Composition of 

Icelandic (J. t robusta) and British Redshank (J. t britannica) 

2.1 Introduction 

This chapter describes quantitative changes in body mass during the non-breeding 

season in wild and captive individuals of the two races of Redshank wintering at 

Teesmouth. The main aim of tiiis study was to determine vv îether the nutritional 

preparation for winter in terms of the accumulation of fax and protein stores is 

similar in both races of Redshank. 

Severe vmter weather conditions in northem latitudes can reduce food availability, 

sometimes to zero, and, combmed with increased energy demands for 

thermoregulation and foragmg, create a deficit in the energy budget of a 

homoeotherm The ability of an animal to survive periods during which energy 

intake from food is less than its energy requirements is positively correlated with its 

fat reserve (Dugan et al., 1981; Le Maho et al, 1981; Cherel et al, 1987). It has 

been suggested that shorebirds can regulate their body mass seasonally at optimal 

levels in accordance with seasonal variations in weather and food supply 

(Pienkowski et al., 1979; Swann & Etheridge, 1989; Scott et al, 1994) but that 

Redshank wintering on the east coast of Britain are imable to regulate their body 

mass (Davidson, 1982a). This chapter considers whether, in spite of Davidson's 

claim. Redshank at Teesmouth in NE England are capable of regulating body 

mass, by conaparing the seasonal body mass changes of captive Redshank with 

those in the wild. 

It was described in Section 1.4.1 how shorebirds wintering in Britain and other 

northem temperate regions exhibit a seasonal pattern of change in fat levels and 
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body mass. Fat stores are laid down between arriving on the wintering grounds 

and late December. This is followed by a relatively rapid declme in fat levels until 

the end of February, then by a pre-migratory increase in March, ^ r i l or May 

depending on species and timmg of migration. Redshank over-wintering in Britain 

appear to accumulate smaller fat stores in mid-winter than other species and also 

lose mass at a faster rate during February and March (Davidson, 1981a). It is 

unclear whether both races exhibit the same partem of body mass change since 

there are no studies on seasonal body mass change in Redshank which have 

distinguished between robusta and britannica. 

Since robusta are sigoificantiy larger in body size (Hale, 1971; Summers et al, 

1988) and are consistently heavier than britannica (Scott, 1991), the overall 

seasonal changes in body mass reported for Redshank (e.g. Davidson, 1982a; 

Johnson, 1985) could be greatiy affected by changes in the relative proportions of 

the two races in a population at any given time. No data were available on changes 

in race ratio throughout the winter in previous studies. 

Evidence for the internal regulation of body mass m shorebhds is based on 

correlations of body mass with ambient tenq)erature, in that heavier birds are foxmd 

at sites with lower winter tenqjeratures and therefore greater thermogenic costs 

and possibly lower food availability (Davidson, 1982a; Pienkowski e/a/., 1979; 

Scott, 1991). Davidson concluded that low mid-winter tenqjeratures prevented 

Redshank on the east coast of Britain from accimiulating sufficient fet to msure 

agamst subsequent severe weather. Swann & Etheridge (1989) showed, however, 

that dming December and January mean body masses of Redshank, Knot and 

Oystercatcher on the Moray Firth, Scotland, were higher at lower ambient 

terrq)eratures. Such evidence indicates a proximate response to tenq)erature at a 

given time (Rogers, 1995) and not necessarily a pre-programmed ultimate response 
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to predicted seasonal changes in ambient ten^erature as modelled by Lima (1986) 

and first demonstiated in Yellovvdtammers (Emberiza citrinella) by Evans (1969). 

Various smdies (Beecroft & Clark, 1986; Davidson, 1981; Davidson & Clark, 

1985b; Norman & Coffey, 1994; Pienkowski et al, 1979) show additional evidence 

for a proximate regulation of body mass by demonstiating that shorebirds 

(including Redshank) which have sustained large losses in body mass during 

prolonged severe weather can recover such losses v^^en conditions inq)rove. Body 

mass gams following severe weather have occurred in Redshank during January 

and February (Beecroft & Clark, 1986; Norman & Coffey, 1994), the time vkdien 

Davidson (1982a) had suggested that body mass coidd not be regulated. However, 

all observations of weight gain following severe weather have been based on the 

mean body mass of populations. This may increase following the selective death 

or emigration of lighter birds and not represent an increase in body mass of 

individuals. 

In order to determine directly vdiether east coast Redshank are capable of 

regulatmg body mass ia. an ultimate sense, I wiU compssQ seasonal changes in body 

mass of wild Redshank at Teesmouth with those of Redshank in captivity. Scott 

(1991) suggested that i f captive birds were given food ad libitum throughout the 

winter and ejq)erienced less harsh weather conditions, any significant seasonal 

changes in body mass should be due to internal regulation rather than extemal 

regulation by the environment, ff the seasonal nutritional changes of wild birds 

were to mirror those of captive birds, then they too must be capable of internally 

regulating body mass. Conversely, i f Redshank are prevented by environmental 

constraints from maintaining body mass in the wild, captive birds should be heavier 

than their vvdld conspecifics and not show a reduction in body mass during the 

second half of winter. Scott (1991) found that body mass of captive Redshank 

declined more slowly during January and February than in wild Redshank at 
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Teesmouth, leading to the conclusion that east-coast Redshank could not internally 

regulate body mass. However, the four Redshank in Scott's study were held only 

between November and February and not through to March vdien the body mass 

of Redshank on the east-coast of Britain falls to its lowest levels (Davidson, 1981a 

& 1982a; Johnson, 1985; Scott, 1991), hence an incoD:q)lete pattern of seasonal 

body mass change was presented by Scott. 

Whilst most studies (Pienkowski et ai, 1979; Davidson, 1982a) have assumed that 

body mass changes in shorebirds during winter result from changes only m &t 

stores, Davidson et al. (1986) demonstrated that protein is also stored and 

regulated, proxhnately at least. This raises the question of whether protein stores 

and fat stores are regulated separately at independently set levels, or whether 

overall body mass is being regulated. The way in which protein and lq)id stores are 

controlled to regulate body mass will be mvestigated m this study by comparing the 

levels of lq)ids and lean tissues of wild birds with those brought into captivity. 

. In Appendix n, I develop and test existing predictive formulae of Scott et al 

(1991) and Scott et al. (1994) utihsmg TOBEC to estimate total lean mass (TLM), 

and hence lq)id mass m Redshank. In my study TOBEC was eirployed to measure 

seasonal changes in T L M and lq)id stores in both races of Redshank at Teesmouth. 
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2.2 Methods 

2.2.1 Seasonal changes in body mass 

A total of 1,867 Redshank were caught by cannon-net and mist-net at Teesmouth 

between 1983 and 1995 and weighed to the nearest gram using a Pesola spring 

balance. Age was determined from plumage characteristics (Prater et al, 1977) 

with birds bemg identified as less than 1 year old (i.e. first years, Euring codes 3 

and 5) and greater than 1 year old (Le. aduhs, Eiuing codes 4 and 6). 

Measurements of wing-length (maximum chord) and tarsus-toe (tibiotarsus-

tarsometatarsus joint to end of flesh on longest digit) were taken to the nearest 

millimeter using a stopped rule and of bill-length to the nearest 0.1mm using 

vernier callipers. Al l four biometrics were taken on a total of 633 adults. The 

discriminant fimction of Summers et al (1988) which incorporates wing-length, 

bill-length and tarsus-toe was used to assign each bird to a race. The discriminant 

fimction assigns a probability P to an individual Redshank being robusta. Birds 

were assigned as robusta i f P> 0.7, and britannica i f P < 0.3. ff 0.7 > P > 0.3, no 

race was assigned. This was a sufficient buffer to substantially reduce the chance 

of mis-identification resulting from variation in accxiracy of measurement between 

observers (see Appendix I). A large majority of the measurements were taken by 

one person (R. M . Ward) which minimised the variability in accuracy of 

measurement and thus fijrther reduced the chance of mis-identification (Appendix 

I). Furthermore, the discrimant fimction did not appear to introduce any sexual 

bias into the san^le of Redshank whose race was predicted with a probabihty of 

greater than 0.7 (Appoidix I). 
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2.2.2 Size-adjustmentof body mass 

The body mass of each individual was adjusted for body size in order i) to control 

the mean body mass of the Teesmouth population for changes in the proportions of 

britannica and robusta and ii) to control for body size differences yAMSo. conpaiing 

body mass between the two races. Univariate biometrics are poor measures of 

overall body size in birds (Freeman & Jackson, 1990), therefore princq)al 

conq)onent analysis (PCA) was conducted on wing-laagth, bill-length and tarsus-

toe to produce a single 'body-size' fector (Rismg & Sommers, 1989; Freeman & 

Jackson, 1990; Bolton et al, 1991). Only one fector was extracted by the PCA 

with loadings of 0.71 for wing-length, 0.74 for bill-length and 0.78 for tarsus-toe. 

The model for the size &ctor is given in equation 2.1. 

S = (0.501 * wl) + (0.543 * bl) + (0.614 * tt) 2.1 

\̂ 4Iere S = body size, wl = wing-length, bl = bill-length, tt = tarsus-toe. 

S calculated for each individual was subtracted from the mean size &ctor ( S') of 

the 633 adults measured at Teesmouth between 1983/84-1994/95 to gjve an index 

of deviation in size Sd. (equation 2.2). 

Sd = S' - S 2.2 

where S' = 160.5. 

Body mass was regressed against S for the 633 adults caught at Teesmouth 
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(1983/84-1994/95) (equation 2.3). 

BM = (1.98 *S)-156.6 1̂  = 0.20 P< 0.0001 2.3 

The slope of equation 2.3 was then used to create the body mass adjustment tenn 

bm in equation 2.4. 

bm=1.98*Sd 2.4 

Size-adjusted body mass BM' was calctilated as: 

BM' = BM + bm 2.5 

2.2.3 Captive Redshank 

Eight Redshank were held in captivity between August 1992 and May 1993. Four 

birds were held continuously during this period (mdividuals W, Y, GW & R), 

whilst 2 were held from January 1993 onwards (L & N) and a further 2 from 

March 1993 (RW & G). Equal numbers ofrobusta and britannica were always 

maintained. They were held indoors in aviaries of 2.4m (I) x 1.2m x 1.2 under a 

simulated 'normal' day-length regime and ten^erature close to ambient. Food was 

provided ad libitum and consisted of commercial pelleted trout food and blow-fly 

larvae. Fresh water was constantly flowing through the aviaries and was readily 

available for bathing and drinking. 

Each of the captives was weighed to the nearest gram and its body conq)osition 

measured using TOBEC (see below) at least once every 2 weeks. The number of 

times an individual was weighed in a single month varied somewhat between 
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individuals and between months. This might have created bias in calculation of the 

monthly mean of the weights of aU the captives. To combat any bias, the group 

mean was calculated from the monthty averages of the size-adjusted body mass 

BM' of each individual captive. This procedure was apphed to other measures of 

body condition (see below). 

2.2.4 Measurement of Total Body Electrical Conductivity (TOBEC) 

TOBEC was measured using the EM-Scan (3420 Constitution Drive, Spring-field, 

Dhnois 62707, U.S.A.) SA-1 Small Animal Body Con5)osition Analyser. The 

TOBEC technique involves placing the animal in a measurement chamber vsdiich is 

surrounded by a solenoid. The animal acts as a conductor and alters the 

electromagnetic inductance of the coil vdiich is measured by changes in the phase 

relation of voltage and current in a high frequoicy (5 MHz) signal passed through 

the coil (Harker, 1973). Thus the change in inductance is proportional to the total 

electrical conductivity of the animal's body. The electrical conductivity of L5)ids is 

only around 4-5% of those of lean tissues, body fluid and bone (Pethig, 1979). 

Therefore, the primary contributor to the TOBEC will be the total lean mass 

(TLM). 

The SA-1 was used indoors to take TOBEC measurements of captive birds and 

also used on wild birds in the field when powered by a 12V accumulator via an 

Oerthng PC-01 converter to provide 240V, 50 cycles AC. In both cases, dry birds 

(see Scott et al, 1991) of assumed normal hydration (see Walsberg, 1988) and not 

wearing metal leg-rings (Scott et al., 1991) were restrained using a soft plastic 

cylindrical jacket with Velcro festenings before inserting each m turn, into the 

measurement chamber. TOBEC readmgs were taken with the chamber Qm^ty (E) 

and then with the bird in the chamber (S) and repeated 4 times. A reference 
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number ( R ) was taken before and afi;er each set of readings. The TOBEC index 

(I) was calculated according to equation 2.6. 

I = a*[(S-E)/R] 2.6 

\̂ diere a is a normalisation constant provided by EM-Scan and peculiar to each 

machine {a = 0.9883 in this case). The TOBEC readings are greatly affected by 

the horizontal position of the bird within the measurement chamber, whereas 

vertical position is not io^ortant (Scott et al, 1991). The strongest and most 

uniform part of the magnetic field generated by the solenoid of the SA-1 is halfway 

along the measurement chamber, hence some studies (Morton et al, 1991; Skagen 

etal, 1993;Meijer ê a/., 1994) maintamed each bird at the same position relative 

to the centre of the chamber. Howevra:, Scott et al. (1991) found that the 

optimum position along the measurement chamber varied slightly with the size and 

shape of the bird, v^ch might change during periods of e.g. fzX deposition. In my 

study Redshank were inserted into the chamber on a Perspex rule head first and 

keel down, until a maximum vahie for (S - E) was obtained. 

Predicted total lean mass PTLM was calculated from equation 2.7 which was 

derived using carcass analysis (see Appendix 11). 

PTLM = (0.288 * I) + 55.5 2.7 

Predicted mass of fax. PFM was calculated by subtracting PTLM from BM 

(equation 2.8). 

PFM = BM - PTLM 2.8 
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Both PTLM and PFM were calculated with a mean error of ±4.3g (95% CI=2.4g) 

which proved to be of sufficient resolution for the purposes of my study (see 

Appendix 11). 

2.2.5 Seasonal changes in body composition 

Between October 1992 and April 1995 the body con^osition of 275 adult 

Redshank was measured in the field using TOBEC. During catching, the birds 

were often shghtiy splashed with seawater and thus could not be introduced into 

the SA-1 immediately after capture since wet plumage increases TOBEC (Scott et 

al., 1991). It was also suspected that residual salt on the feathers of dry birds 

would cause an increase in TOBEC. However, experiments on captive birds which 

were immersed in artificial seawater (33 ppt Na CI solution) (and were wetter than 

would be e?q)ected after catching) showed that one hour's drying in a large hessian 

sack was sufficient to remove any effect of the salting on TOBEC. Hence in the 

field, all birds which had even slightiy wet plumage at capture were allowed to dry 

in hessian sacks or m hessian-lined keeping cages for at least 1 hour before 

measuring TOBEC. In contrast, TOBEC was measured mmiediately after capture 

in birds which were either caught dry in cannon nets or caught in mist nets. 

TOBEC measurements were not taken from birds held more than 3 hours after 

capture because they might have become slightly dehydrated (Davidson, 1984). 

To control for body size differences between individuals and between races, PFM 

was divided by TBM and e?q)ressed as a percentage to give a Ijpidi Lidex (LI). 

PTLM was size-adjusted in a manner similar to BM (section 2.2.2). PTLM was 

regressed (Equation 2.9) against the size-fector S derived from eqn. 2.1 for 275 

wild adult Redshank, and the slope was combined with Sa (see eqn. 2.2) to create 

an adjustment ptim (Equation 2.10) to each PTLM. 
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PTLM = (1.495 *S)-101.9 i^ = 0.27 P<0.05 2.9 

pthn= 1.495 *Sd 2.10 

Size-adjusted PTLM, PTLM* is therefore: 

P I L M = PTLM4pthn 2.11 

2.2.6 Comparison of body composition of wild and captive Redshank 

The stomachs, intestines, livers and complete pectoral muscle blocks (pectoralis 

major and supracoracoideus) were dissected from 7 captive Redshank and from 4 

Redshank which had been killed accidental]^ during cannon-netting. Two of the 

wild birds were killed on 11/8/93 and the others on 2/11/93 and all were sealed in 

plastic bags and frozen. Two of the captives were killed on 12/12/94, one on 

13/12/94, one on 25/12/95 and four on 5/5/95, after all had been kept for 2-3 

months. All organs were weighed immediately after dissection to the nearest mg 

on a torsion balance. Following dissection of the left pectoral muscle block, four 

skeletal measurements were taken to the nearest 0. Inmi using vernier calipers 

according to the methods of Piersma et al. (1984) in order to calculate a standard 

muscle volume SMV (Evans & Smith, 1975). The mass of one pectoral muscle 

block was then e?q)ressed as a proportion of the SMV to produce an index of 

muscle size independant of total body (skeletal) size. 
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Table 2.1: Definitions and abbreviations of terms of body composition 

Abreviation Definition 

BM Total body mass 

B M ' Size-adjusted total body mass 

TOBEC Total body electrical conductivity; or index of TOBEC produced 
by EM-Scan SAl Small Body Composition Analyser 

T L M Total lean (fat-free) mass 

PTLM Total lean mass predicted by the regression of TLM against 
TOBEC 

PTLM' Size-adjusted PTLM 

FM Lipid mass = BM - TLM 

P I M Predicted ̂ id mass = BM - PTLM 

L I Lipid Index = 100 * FMTBM 

PLI Predicted hpid mdex = 100 * PFM/BM 
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23 Results 

2.3.1 Seasonal changes in mean body mass of adult and first year Redshank 

at Teesmouth 

There was sufBcimt data on BM of wild adult and first year Redshank at 

Teesmouth from 1983-1995 to produce mean BM values for first and second 

halves (early and late) of each month (Figure 2.1). Adult Redshank were 

significantly heavier than first years (ANOVA Fi, 1863 = 104, P < 0.0001), but BM 

of both age groups varied significantly with month (ANOVA F21,1353 = 38.7, P < 

0.0001 for adults; F 2 i , 4 3 7 = 6.17, P<0.0001 for first years). 

Adult Redshank maintained constant BM during August and September before 

increasing from late October onwards. BM from late November through 

December was significantly greater than in the preceding months and in the 

subsequait period up imtil late March (Student-Newman-Keuls (SNK) Multq)le 

Range Test P < 0.05). Peak mean BM in December represented an increase of 

8.6% on the September mean. BM decreased through January, February and early 

March by 9.7% of the December mean, a significant drop (SNK Test P < 0.05). 

BM rose steeply and significant^ (SNK P < 0.05) in A^ril to 32% above the 

March mean by early May. 

Unlike adult Redshank, first years did not exhibit a significant mid-winter peak in 

BM, \vbich. ranained constant between late September and early February (SNK 

>0.05). The decline in BM during late February and March was also not 

significant (SNK>0.05). BM of first years showed a significant increase 

(SNK<0.05) through April and by early May was 24% higher than in late March. 
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23.2 Seasonal changes in mean body mass of races of adult Redshank at 

Teesmouth 

Around 77% of Redshank caught and measured in a given month could be 

assigned to a race at above the 70% level of probability (Figure 2.2a). Figure 2.2b 

shows the relative proportions of robusta and britannica as percentages of those 

birds which could be assigned to a race in each month. In August britannica 

predominated 7:3, but the proportion gradtially decreased through September and 

October; robusta predominated at around 6:4 between November and ApriL The 

association between month and the proportions of robusta and britannica was 

significant (x^6 = 73.1, P<0.001; see Table 2.2) 

These seasonal changes in the proportions of both races had inq)ortant iniphcations 

for interpretation of the overall pattern of monthfy mean BM in Aduh Redshank at 

Teesmouth. The mid-winter peak in Adult size-adjusted body mass BM'm 

December was only 5.2% above the September mean (Figure 2.3), (wiiereas it had 

been 8.6% in BM). Overall, however, there was no significant difference betweai 

fortnightly mean BM and BM' (Paired t-test t^ = 1.067, P > 0.05). Like BM, BM' 

also showed significant variation with month (ANOVA Fig, eie = 43.4 P<0.0001) 

and a pattern of change similar to BM (Figure 2.3). 

Figure 2.4 shows significant seasonal changes in mean monthly BM of robusta and 

britannica (ANOVA Fg, 155 = 14.5 P < 0.0001 for britannica; 'Fz,zm = 37.6 P < 

0.0001 for robusta). In all periods robusta were significantly heavier than 

britannica (ANOVA Fi,486 = 13.5, P < 0.0001), but their monthly mean BMs were 

significantly correlated (Spearman Rank Correlation rs, g = 0.813, P < 0.005). Hie 

BM of robusta in November was 7.8% above the September mean, which was in 

turn, significantly greater (SNK P < 0.05) than those in August, January and 
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Figure 2.2a: Proportions of robusta, britannica and Redslianl< of 
unlcnown race of those cauglit and measured at Teesmouth (1983/84-
94/95). 

g race unknown 
^ britannica 
S robusta 

NOV DEC 

Month 

APR 

Figure 2.2b: Proportions of robusta and britannica of those 
Redshank caught at Teesmouth (1983/84-94/95) that could be 
assigned to a race. 
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March when BM fell by 9.7% of the November mean. However, britannica did 

not show any significant mid-winter peak in BM and although BM fell in March by 

8.1% compared to December, this fall was not significant (SNK P > 0.05). In 

April both robusta and britannica showed significant (SNK P < 0.05) and 

substantial increases in BM, of 25.5% and 27.5% respectively above the March 

means. 

When the monthly mean BMs of the two races were adjusted for body size (Figure 

2.5), they were not significantly diEferent (ANOVA Fj, 435 = 0.658 P > 0.05), 

indicating that the relative seasonal gains and losses in BM otrobtista and 

britannica were similar. Variation in body size in the monthfy samples of 

britannica had a considerable effect on mean monthly BM, in that w^en the effect 

of size was removed, BM' not only showed significant variation with month 

(ANOVA Fg, 165 = 19.45, P < 0.0001) but exhibited a significant peak in BM' in 

December of 5.2% over the September mean (SNK P < 0.05). Also, the M in 

BM' in March of 9.3% (of the Deceniber mean) was significant (SNK P < 0.05). 

Variation in monthly mean BM' oi robusta (Figure 2.5) was also significant 

(ANOVA F8 , 304 = 37.6 P < 0.0001) and showed the same pattern of change as 

BM, though the peak in BM' in November was only 3.9% greater than the 

September mean. In April both robusta and britannica showed significant (SNK 

P < 0.05) and substantial increases in BM' of 23.6% and 25.9% respectively above 

the March means. 
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2.3.3 Seasonal changes in body mass of individual Redshank at Teesmouth 

Figures 2.6 and 2.7 show changes in BM of individual Redshank (n=17 for 

unknown race (Figure 2.6), n=15 for robusta, n=5 for britannica (both Figure 

2. 7)) caught and recaught once or twice between August and inchiding 1 April 

during the same non-breeding season at Teesmouth. In general, changes in BM of 

individuals paralleled changes in mean body mass of the population (Figures 2.1, 

2.3-2.5) irrespective of race (Figure 2.7). Figure 2.8 shows that individual 

Redshank recaptured after 1 ^ r i l (n=2 for unknown race, n=9 for robusta, n=3 

for britarmica), regardless of race, had substantially higher BMs conq)ared to 

earher in the same season. 

The rate of change of BM in individuals and the mean adult BM' for the 

Teesmouth population were conq)ared using the following procedure: the 

drSerence d: between an individual's BM at recapture and the monthfy mean BM' 

at the same time was con:q)ared with the difference di between individiial BM and 

mean BM' at first capture using the Wflicoxon paired sample test. A significant 

dijBference between di and dj would indicate a different rate of change in BM 

between an individual's and the population mean. However, the changes in mean 

BM' of the population were representative of individual changes oi robusta, 

britannica and birds of unknown race (Wilcoxon paired-san l̂e test Tg = 15.5, P 

> 0.05 for britarmica; T24= 120, P>0.05 for robusta; T19 = 72.5, P>0.05 for birds 

of imknown race). 

2.3.4 Comparison of seasonal changes in body mass of captive and wild 

Redshank 

The fortnightly means of the average BM' of each of the eight captive Redshank 
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from early August to late April were significantly correlated with fortnightly 

means BM' of wild Redshank at Teesmouth (Figure 2.9) (Spearman Rank 

Correlation is, 13 = 0.816, P < 0.001). There was also a significant correlation 

between the mean BM' of wild Redshank and of the four captives which were held 

continuously throughout this period (Spearman Rank Correlation rs, 13 = 0.620, P 

< 0.02). During the period from earfy November to late April there was no 

significant difference between the mean BM' of the captives and wild Redshank 

(Paired t-test tg = 2.063, P > 0.05 for 8 captives; tg = 1.524, P > 0.05 for 4 

captives). However, the means of BM' for the 4 captives held during the period 

from early August to late October were significantly less than those of the wild 

birds (Paired t-test U = 6.159, P<0.01). 

Figure 2.10 shows changes in fortnightly mean BM for each individual captive; 

individuals in figures 2.10a,b,e4i are robusta v^Mst the remainder are britanrdca. 

All but one of the four birds vMch. were kept from August through to May 

(Figure 2. lOa-d) showed seasonal variations in BM vMch were significantly 

correlated with mean fortnight^ BM' of wild Redshank at Teesmouth (Spearman 

Rank Correlation rs, 13 = 0.530, P < 0.05 for W; r̂ , u = 0.702, P < 0.01 for Y; rs, 13 

= 0.418, P>0.05 for GW; rs, 13 = 0.528, P < 0.05 for R). The relative increase in 

BM during the first part of winter was greater in the captives than in wild 

Redshank (Table 2.3), since BM of the captives was maintained at such a low 

level dming August and September. However, the decrease in BM in the captives 

in March relative to the mid-winter peak was conq)arable with that in wild 

Redshank at Teesmouth. All the captives, regardless of race, showed substantial 

increases in BM during April and May (Figure 2.10), though individuals W and L 

(both robusta) started to increase in BM during March (Figure 2.10a & e). The 

relative increases during this period were consistentfy lower in those captives 

wiich were kept from August to May (W, Y, GW, R) (Table 2.3). 
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Table 2.3: Relative seasonal changes in body mass (BM) and size-adjusted 

body mass (BM') of groups of wild Redshank at Teesmouth and 8 captive 

individuals (W, Y, L and G are robusta; GW, R, N and RW are britannica). 

fMid-winter 
increase % 

JLate-winter 
decrease % 

*Spring 
Increase % 

Wild mixed-race BM 8.6 9.7 32.0 

WUd mixed-race BM' 5.2 8.6 27.0 

robusta BM 7.8 9.7 25.5 

robusta BM' 3.9 8.1 23.6 

britannica BM 2.0 8.4 27.5 

britannica BM' 5.2 9.3 25.9 

Captive individuals 
BM: 

W 30.0 8.2 16.2 

Y 15.6 8.4 14.1 

GW 8.5 6.4 25.7 

R 21.3 1.2 7.4 

L - - 27.5 

N - - 25.8 

RW - - 32.0 

G - - 27.5 

t Difference between Septeniber mean and peak mean in November or December 
as a percentage of the former. 

% Difference between peak mean in November or December and March mean as a 
percentage of the former. 

* Difference between March mean and peak mean m y^ril or May as a percentage 
of the former. 
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2.3.5 Seasonal changes in body composition of Redshank at Teesmouth 

On 25 September and 25 October 1993 when birds were caught both dry and wet, 

there was no significant difference in TOBEC index I (T-test P>0.05) between the 

dry birds (n=5 on 25 September, n=4 on 25 October) and those caught on the 

same day A îiich were wet and then dried (n=18 on 25 September, n=24 on 25 

October). On both days, body mass of the 'wet' and 'dry' birds was not 

significantiy different (T-test P>0.05). 

Monthly mean F I L M of adult Redshank of mixed race (Figure 2.11) varied 

agnificantiy with month (ANOVA Fg, 243 = 7.327 P <0.0001) in that mean PTLM 

was significant^ greater in both August and April (147g and 143g respective^) 

than in the other months (SNK P < 0.05) in which mean PTLM varied non-

significantly between 132g and 13 7g. This was not attributable to the presence of 

larger birds during August and April, since PTLM' showed the same significant 

seasonal variation (Figure 2.11) (ANOVA F7,2i5 = 9.346 P < 0.0001; SNKP < 

0.05). 

Monthly mean PFM showed a significant mid-winter peak of 29g in November. 

Monthly mean PFMs from October through to February were significantfy higher 

than in August when the mean was only 8g (ANOVA Fg, 243 = 26.843 P <0.0001; 

SNK P< 0.05). The highest monthfy mean of41g was recorded in April The 

seasonal variation in PFM was not attributable to the presence of larger birds in 

mid-winter or April since mean predicted lq)id index (PLI see Table 2.1), as 

opposed to mass of fat, showed the same significant monthly variation (arcsine-

transformed ANOVA F8,24i = 27.941 P < 0.0001; SNK P <0.05) (Figure 2.12). 

PLI rose from 6% in August to 18% in November, then fell to 9% in March 

before rising to a peak of 25% in late ApiiL 
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PTLM was significantly greater in robusta than britamica (ANOVA Fi, 197 = 

6.519 P=0.011) (Figure 2.13) due to differences in body size since PTLM' did not 

vary significantly between races (ANOVA Fi, 192 = 0.715 P > 0.05) (Figure 2.14). 

hi both races mean monthly PTLM' was significantly greater in August and April 

than during mid-winter (ANOVA F7,123 = 6.315 P <0.0001 for robusta; F7, $7 = 

5.187 P = 0.0001 for britannica; SNK P < 0.05). Likewise, PLI did not vary 

significantly between races (arcsine-transformed ANOVA Fj, 195 = 0.223 P>0.05). 

Both races showed significant peaks (ANOVA F7,59 = 6.842 P < 0.0001 for 

britannica; Fg, 126 = 9.061 P< 0.0001 for robusta; SNK P < 0.05) in PLI in mid­

winter, of 17% in robusta in December and 19% in britannica in November, and 

in April when mean PLI late in the month reached 25% in robusta and 23% m 

britannica (Figure 2.15). 

Figures 2.16 and 2.17 show changes in PTLM and PLI respectively of 11 

individuals caught and then recaptured at Teesmouth during the same non-

breeding season (1992/93-1994/95). In general, individual changes in PTLM and 

PLI mirrored changes in the mean of the Teesmouth population (Figures 2.11-

2.15). The changes in PTLM and PLI of 9 individual robusta paralleled the 

changes in monthly mean PTLM' and PLI over the same period (Wilcoxon paired 

sample test T9 = 15, P > 0.05 for PTLM; T9 - 6.5, P>0.05 for PLI; see section 

2.3.3 for method of conq)arison used). 

2.3.6 Comparison of body composition of wild and captive Redshank. 

The seasonal variations in mean (Figure 2.18) and individual (Figure 2.19a-d) PLI 

and PTLM in the group of four captives kept between August and May paralleled 
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Figure 2.18: Means of monthly mean a) predicted total lean mass 
(PTLM) and b) predicted lipid index (PLI) of four captive Redshank 
(individuals W, Y, R, and GW). Error bars denote 2xSE. 
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the changes seen in the wild population at Teesmouth. However the monthly 

mean PTLM of the captives was significantly less than the monthly mean PTLM' 

of the wild bkds (Paired T-test tg = 15.194 P<0.001), v^ereas the monthly mean 

PLI was significantly greater in the captives (Wilcoxon paired sample test ^^ = 0, 

P<0.01). 

PTLM of individuals L , N, RW, and G dechned gradually whilst PLI mcreased 

following then entry into captivity (Figure 2.19e-h). Li 16 Redshank which were 

brought into captivity at various times between October and March (1992/93-

1994/95) PTLM (Figure 2.20b) had Men significantly (Paned T-test ti5=8.836 P 

< 0.001) and PLI (Figure 2.20c) had risen significantly (T-test of arcsine 

transformed PLI ti5 = 4.113 P < 0.001) afl:er approximately 1 month in captivity. 

The changes in PTLM and PLI of an individual during its first month of captivity 

was different to the changes in PTLM and PLI occuring wild birds during the 

same period. The difference di between an individual's PTLM and the wild mean 

PTLM' at the time of capture was compared with the difference da between an 

individual's PTLM and the wild mean F I L M ' 1 month later (see Scottet al., 

1994). d2 was significantly less or more negative than di (Wilcoxon paired san:q)le 

test Ti6 = 0, P < 0.001), indicatmg that the 16 captive mdividtials had lost 

significantly more lean mass than then wild con-specifics over the same period. A 

similar analysis of the 16 individual captives' PLI and wild mean PLI showed that 

diuing their first month in captivity, the captive individuals had increased their 

mass of fat significantly more than their wild conspecifics over the same period 

(Wilcoxon paned saiiq)le test Tis = 3, P < 0.001). Conversely, the change m BM 

of the 16 captives during their first month of captivity (Figure 2.20a) paralleled 

changes in monthly mean BM' of wild Redshank (Wilcoxon paired san:q)le test Tig 

= 43.5, P > 0.05). 
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Figure 2.20: Changes in a) body mass (BM), b) predicted total lean 
mass (PTLM) and c) predicted lipid index (PLI) of individual 
Redshank after approximately 1 month in captivity following capture 
at Teesmouth. Letters identify individuals. 
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Table 2.4: Comparison of organ size and mass in wild and captive 

Redshank. Values are means with standard errors in parentheses. 

captive (n=8) wild (n=4) t level of P 

fresh liver 2.952 8.699 3.86 <0.05 
mass (g) 

(0.238) (1.469) 

fresh pectoral 15.508 17.214 1.61 >0.05 
muscle mass 
(g) (0.997) (0.358) 

ffresh 0.279 0.3123 *1.50 >0.05 
standard 
muscle index (0.0139) (0.0142) 

fresh 3.052 5.510 4.57 < 0.001 
stomach 

(0.232) (0.625) 
mass (g) 

fresh 3.805 10.223 4.65 <0.05 
intestine 
mass (g) (0.916) (2.685) 

intestine 583 909 6.644 <0.001 
length (mm) 

(22.2) (55.17) 

^intestine 0.0066 0.0111 *4.11 <0.01 
thickness 
index (0.00057) (0.00095) 

* arcsine-transfonned data used in test 

t fresh mass of left pectoral muscle block / standard muscle volume 

J fresh intestine mass / intestine length 

35 



The reduction in lean mass -when birds entered captivity was attributable in part to 

a significant atrophy of the digestive system (see Table 2.4). Mean Kver mass of 8 

captives examined was one third of that in wild Redshank and mean stomach mass 

had halved. Mean mass of the intestine in the captives was less than half that of 

the wild birds, as a result not only of halving the length, but also of reducing the 

thickness. There was no significant diBFerence in mean pectoral muscle mass 

between wild and captive Redshank. 
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2.4 Discussion 

2.4.1 Body mass changes in wild Redshank during the non-breeding season 

Significant seasonal changes occurred in BM of both adult and first year Redshank 

at Teesmouth. However, first year BM was consistently 10-15g lower than that of 

aduks throughout the season and xuJike adults, first years did not show a peak 

BM in mid-winter. The lower BM of first years could have been due to smaller 

body size, since first years had significantly shorter wings (ANOVA Fi, 1392 = 

180.4, P<0.0001). Additionalfy, the lower BM and lack of a mid-winter peak in 

BM of first years may have resuked from an inability to accumulate sufficient M 

and protein stores because of less efficient feeding behaviour. Differences in 

foragmg behaviour related to age have been shown in other species (e.g. on 

Blackbirds Turdus merula see Desrochers, 1992; for review see Marchetti & 

Price, 1989) but have yet to be demonstrated in Redshank. Body composition 

was determined in few first year Redshank which made conq)arisons with adult 

body conq)osition inconclusive. However, the significantly lower BM of 5 first 

years (mean=135g SE=8.1g) compared to 6 adults (mean=164g SE=3.6g) caught 

on 25 October 1993 (T-test tg=3.72, P<0.01) was in part, due to a significantly 

lower PLI in the first years (mean = 4.7% SE=2.07 for first years; mean=16.1% 

SE=2.76 for adults, T-test t8=2.83, P<0.05). For the same sanq)le, PTLM of the 

first years (126g SE=5.2g) was lower than that of the adults (137.3g SE=2.8g; T-

test t8=2.13, P=0.065), though this may have resulted from the larger body size of 

the latter. 

The mid-winter peak of 165g (the mean BM of all aduh Redshank at Teesmouth 

irrespective of race) was comparable with findings of other studies on east coast 

estuaries, 164g (n=399) in the Moray Basin (Swann & Etheridge, 1989) and 166g 
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(n=187) on the Wash (Johnson, 1985). Fumess&Baillie (1981) suggested that 

m October and November, the proportions ofbritarmica and robusta on 11 

British east coast sites (including Findhom in the Moray Basin and The Wash) 

might be similar v^ch could account for the similarity in mid-winter peak BM in 

Redshank at Teesmouth, the Moray Basm and the Wash. However, the increase in 

mean BM (con^ared to September levels) at Teesmouth of 8.6% was lower than 

the 12.3% found in the Moray Basin and 13.6% on the Wash, attributable to lower 

mean BMs in September of 146g and 147g respectively compared to 152g at 

Teesmouth. This difference may have been due to a greater proportion of the 

smaller britannica being present in Autumn in the Moray Basm and the Wash than 

at Teesmouth. Certainly at Teesmouth, britarmica are more numerous m. August 

and September than in mid-winter whoa robusta predominated. 

The effect of seasonal changes in proportions of the two races on the mean BM of 

birds at a given site should be taken account of when covapsam% seasonal body 

mass changes between sites. In my study I adjusted the BM of each individual to 

that of a bird of a standard body size. In doing so, the means in September \̂ 4len 

britannica predominated increased but in mid-winter when robusta was more 

nimierous decreased, thus reducing the mid-winter increase to just 5.2%. The 

decline in BM firom December to March of 9.7% was little affected by biases m 

body size (8.6% dechne in BM'). Declines of 10.3% were recorded in the Moray 

Basm Redshank (Swann & Etheridge, 1989) and 13.8% on the Wash (Johnson, 

1985). 

Adjusting for body size was used to demonstrate that robusta and britartnica 

showed identical seasonal changes in BM relative to body size, despite robusta 

being significantly heavier. The only difference in the patterns of BM change was 

that robusta showed a peak in mean BM in November wMst britannica peaked in 
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December. The slight rise in mean BM oirobusta during February was possibly 

due to satq)le bias smce all the birds in the saxople were caught in the first two 

weeks of February 1994. The unexpectedly high BM could have been a proximate 

response to short-term weather conditions as observed by Swann & Etheridge 

(1989). 

Surprisingly both races exhibited large increases in BM during AI^TH Pre-

migratory increases woiild be e?cpected in robusta w^ch were about to exnbark on 

a 1600km flight to breeding grounds in Iceland, but not in britarmica which are 

usually thought to move no more than 300km from their breeding site (Hale, 

1973). However, this increase in BM ofbritanmca is not a result of larger sized 

birds arriving at Teesmouth since shnilar increases were shown in mean BM' and 

increases snnilar to the mean BM change were shown in 13 individuals (mchiding 

3 britannica) which were recaptured in April afl;er being caught earlier during the 

same winter. It might be argued that the birds identified as britannica were in feet 

robusta since most British-breeding Redshank should be on the breeding grounds 

by April However, identifying race usmg the discariminate fimction of Summers et 

al. (1988) with a 0.7 probability threshold (Appendix I) would not account for 21 

out of 105 Redshank caught in April being identified as britannica. Ahematively 

it could be that the age of the "britannicd" in April could have been nais-identified 

smce age determination in Redshank becomes progressive^ more difficult 

throughout the non-breeding season, as juvenile contour feathers are gradually 

replaced by adult plumage. I f this was so, the birds identified as adult britarmica 

could in feet have been first year robusta xvbich would have shorter wings than 

adults and therefore, greater chance of being mis-identified as britannica. 

However, the 3 britannica which were recaptured in April had been aged as adidts 

in the previous August (2 birds) and November when the determination of age in 

Redshank is not a problem Additionally, a fiirther 2 britannica caught in April 
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had been caught in previous years and were therefore definitely adults. 

Given the levels of fet accumulated by both races at Teesmouth in late April and 

early May, I used the model of Castiro & Myers (1989) to predict that the 

potential flight ranges of robusta and britannica (flymg at an airspeed of 65km/h) 

would be 2,285km and 2,026km respectively. Hence, even the birds identified in 

late i ^ r i l as britannica, are potentially capable of migrating to Iceland in a single 

flight. However, i f these 'britannica' did migrate to Iceland, they would have very 

low fax reserves, an L I of 2.1% compared to 5.3% in robusta wiiich made the 

same journey. 

Alternatively, the heavy britannica at Teesmouth in April could be fi:om breeding 

sites in northern Scotland, possibfy even as &r north as Shetland which would 

require around a 600km flight over water directly fi-om Teesmouth. Castro & 

Myers'(1989) model would predict that britannica leaving Teesmouth would 

arrive in Shetland afl;er a non-stop flight with a L I of 12.7%. This substantial &t 

reserve on arrival on the Shetland breeding grounds may be advantageous in the 

harsh climate xviuch. would also account for the later departure of these birds 

compared with more locally breeding Redshank. 

There has yet been no ringing recoveries of these heavy britannica from either 

Iceland or Shetland to prove or dispute the possibilities that these birds are 

northerly breeding britannica, perhaps headed for Shetland, or are infect robusta 

which migrate to Iceland. 

2.4.2 Control of body mass in Redshank 

The significant correlation between the seasonal changes in BM' of wild Redshank 
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and those of captive Redshank given \mlunited food demonstrates clearly that 

Redshank at Teesmouth have a preprogrammed seasonal pattem of variation in 

body mass. Since the main environmental variant ni captivity was daylength, it is 

highly likely that this controls the timing of seasonal body mass change in the wild, 

either directly or by synchronizmg an endogenous circannual clock. The feet that 

the captive birds were lighter during mid-winter than in Spring even wiien excess 

food was provided shows that they were maintaming optimum rather than 

maximum body mass during mid-winter. This demonstrates a trade-off between 

the advantages of carrying enough energy stores to provide for periods of negative 

energy balance and the costs of being heavy (Lima, 1986; Witter & Cuthill, 1993) 

m terms of greater energy expenditure for maintenance and locomotion as an 

individual increases in mass (Scott, 1991; Scott et al., 1996) and increased risk of 

predation (Gosler et al., 1995). On some estuaries Redshank populations can 

suffer substantial losses to avian predators (Cresswell & Whitfield, 1994). 

lacreasing mass has been shown to reduce manoeuvrabiUty in flight in Starlings 

(Stumus vulgaris) (Witter, Cuthill & Bonser, 1994) and Great tits (Parus major) 

have been shown to mamtain lower body masses when predation risk is high 

(Gosler a/., 1995). 

Food supply did not hmit body mass gain in the wild before mid-winter as 

suggested by some authors (Owen & Cook, 1977; Maron & Myers, 1985) since 

the mid-wmter peak BM was no less in wild Redshank than in captivity v^ere 

food was provided ad libitum. Furthermore, the rate of dechne in BM was similar 

m both wild and captive Redshank, refiitmg Davidson's (1982a) conclusions that 

Redshank on the east coast of Britain were unable to regulate body mass in late 

winter. Davidson's conclusions were based on the feet that peak mid-winter mean 

and February BM of Redshank populations on east coast Britam were lower than 

expected from a regression of mean BM against mean air ten:q)erature at sites on 
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the west and south coasts of Britain. Davidson's findings may have been 

confoimded by the fact that south coast populations hold greater proportion of 

britannica than on the east coast (Fiuness & Baillie, 1981). Therefore, warmer 

sites on the south coast will have lower mean BM as a result of a higher 

proportion oi britannica conq)ared to east coast sites and not necessarily as a 

result of south coast birds maintaing a low mid-winter peak BM in response to the 

warmer conditions. Consequently, mean BM' of Redshank at warmer south coast 

sites may infect be similar to the mean BM' of those at colder east coast sites. 

2.4.3 Body composition changes in Redshank during the non-breeding 

season 

Both races of Redshank at Teesmouth underwent similar seasonal changes in lean 

mass and lipid reserves, accumulating the same amounts of fet stores in mid-winter 

in relation to body size. Peak mid-winter mean PLI of around 18% was higher 

than the 13% recorded in Redshank at Teesmouth by Davidson (1982a), though 

his sample size was very smalL In PTLM there was no detectable decline during 

the second half of winter which might have resulted from the atrophy of pectoral 

muscles (Davidson, 1982a). San^le sizes analysed for body con:q)osition in my 

study were small between January and March since Redshank at Teesmouth 

became difficult to catch at this time of year smce they changed roost sites; those 

they used then were mostly inaccessible. 

The significant peaks in PTLM during August and April m captive and wild 

robitsta and britannica could have been due to hypertrophy of the gut to aid 

digestion to allow faster fettening, or of the pectoral muscles to aid migratory 

flight (Davidson & Evans, 1990; Evans et al., 1992; Piersma, 1990) from and to 

the breeding grounds respectively. Altematively, total blood volume may have 
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increased during primary moult to provide additional blood supply to the tracts of 

growing feathers, as found m Bullfinches (Pyrrhula pyrrhula) (Newton, 1968). 

An mcrease in blood volume would in effect, cause an increase in TLM even 

though no increase in the mass of lean tissue had taken place. Using TOBEC to 

monitor changes in PTLM wduch mvolve changes in blood volume may have a 

potential problem: the curve used to predict TLM from TOBEC indices (see 

Appendix 11) was based on the effect of changes in the lean mass of tissues on 

TOBEC; the effect of changes m blood vobme on TOBEC may be different. 

Further study is obviously required to iavestigate the vahdity of usmg equations 

derived from TOBEC measurements and carcass analysis of non-moulting birds, 

to determine PTLM in birds imdergoing primary moult 

The con^arison of organ masses of wild and captive Redshank demonstrated that 

Redshank are capable of significantly reducmg mass of tissue in the alimentary 

canal and the hver. The reduction m size of the stomach of captive Redshank 

con5)ared to those in the wild may be a response to the change m diet to softer 

food items (ie. trout-pellets and blow-fly larvae) m captivity. Piersma et al. 

(1993) demonstrated that Knot which were fed on trout-pellets in captivity had 

smaller, and thinner-walled stomachs than their wild conspecifics which fed 

predommantly on whole bivalve molluscs. The wild Knot required more muscular 

stomachs to be able to break-up the shells of the molluscs. Similarly, wild 

Redshank feed on harder, less easily digestible prey than those provided m 

captivity. For example, such as the small an^jhipod crustacean Corophium 

volutator which has a chitinous exoskeleton, and the small gastropod mollusc 

Hydrobia ulvae, both being swallowed whole (Goss-Custard & Jones, 1976; 

Goss-Custard et ai, 1977; Evans et al, 1977). Piersma et a/.(1993) also mferred 

that increased absorption of softer prey by the stomach, may reduce the amount of 

absorption performed by the intestine vdiich would explain the shortening and 
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thinning of the intestine of captive Redshank in my study. 

The reduction in liver mass during the first few weeks of captivity may have been 

a response to a reduction in total energy ejqienditure resulting firom lower levels of 

activity and lower maintenance costs in indoor aviaries. The lower rate of energy 

e)q)enditure m captivity would require less rapid turnover of glycogen and possibly 

protein by the livers of captive birds than their wild conspecifics. It appears 

therefore, that the Redshank in my study reduced the rate of glycogen and protein 

turnover by reducing hver mass. Captive Knot have also shown a similar 

reduction in liver mass (Piersma et a/., 1996; C. Selman unpubL data). Piersma et 

al. (1996) interpreted this abihty to vary the mass of certam organs as an 

adaptation to the highly variable metaboUc demands of migratory shorebirds. 

2.4.4 The control of fat and protein reserves 

Redshank which were brought into captivity appear to conq)ensate for the 

reductions in lean mass which occur as a result of atrophy of the gut and liver by 

accumulating proportionally more fat than conspecifics in the wild. It appears 

then, that Redshank are regulating total body mass at set levels throughout the 

year. It could be concluded that Redshank weigh themselves. The necessity to 

achieve high and possibly pre-set levels of body mass before departure on 

migration was shown in Knot (Evans, 1992) at the Bals^iord staging post in 

Norway; Knot which delayed departure fiom the staging post to the breeding 

groimds were significantly hghter than those which left. 
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3.0: Energy Expenditure 

3.1 Introduction 

In the previous chapter it was shown that both races of Redshank wintering in 

Britain accumulate sinoilar mass-specific levels of fat and protein reserves in winter 

and both races are equally capable of regulating these levels. It could be argued 

therefore, that both races are equally prepared ia nutritional terms for the energetic 

demands of the British winter. This would be a fair assm^ption i f both races had 

the same mass-specific energy demands during winter. Section 1.4 however, 

outlined several reasons why the mass-specific rate of energy ejq)enditure in 

britannica and robusta may not necessarily be the same. Therefore, the aims of 

this chapter are to determine firstty, wdiether basal metaboUc rate is similar in both 

races; secondly, whether the rates of heat loss and metabohc heat production in 

response to cold is similar in both races; and thirdly, how energy e)q)enditure in 

both races xmder standard conditions translates into energy expenditure in the field. 

In this chapter measurements of Standard Metabohc Rate (SMR) and of Standard 

Operative Tenq)erature ( T g s ) (see below) obtained usmg taxidermic mounts are 

combined to estimate maintenance metaboUsm (Mmaint) of both britarmica and 

robusta that woiild have been experienced during those periods of severe weather 

in the last 20 years. Such periods of severe weather have given rise to large scale 

mortality amongst wintering Redshank populations in Britam. I will determine 

whether Mmaint of the two races is similar during such periods or vdiether one race 

has a greater risk of mortality due to higher Mmamt- By conq)aring estimated levels 

of Mmaint e?q)erienced during periods v^ch were associated with Redshank 

mortality and those that were not, I will determine v̂ diich weather conditions are 

most likely to cause significant mortality. 
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3.1.1 Levels of energy expenditure in birds 

Piersma et al. (1991) and Piersma & Morrison (1994) suggested that the majority 

of variation in daily energy expenditure (DEE) of free-living birds is attributable to 

variation in maintenance metabolism (Mmamt), w^iich is ''BMR plus extra costs for 

thermoregulation at environmental temperatures below the thermoneutral zone' 

(Wiersma & Piersma, 1994). The amount of heat required to mamtain body 

temperature is determined by the thermal conductance of the animal which is "a 

measure of the ease of heat transfer from the body by radiation, conduction, 

convection and evaporation and is the reciprocal of insulation " (Bradley & 

Deavers, 1980). The rate of heat loss is a result of the combined effect of the 

thermal conductivity of the skin and plumage and the ten5)erature gradient 

between the core of the animal and the ambient environment. 

In the field, heat loss is influenced by the combined effect of air ten5)erature and 

wind speed. Whilst the effect of wind speed and ten:q)erature as lone variants is 

well understood (Scholander et al., 1950; Bakken, 1976; McArthur, 1991; Bakken 

& Lee, 1992) it is much more difficuh to quantify their combined effect on heat 

loss (Bakken, 1990; Bakken et al., 1991). Standard Operative Tenqjerature Tes is 

an 'environmental tenq)erature' which combines the effects of air ten:q)erature, 

wind speed and solar radiation (Bakken, 1980). Tes and hence Mmamt can be 

measured directly using heated taxidermic mo\mts (Bakken et al., 1981; Wiersma & 

Piersma, 1994). Each consists of a copper core which is heated to body 

tenq)erature Tb and covered by the intact skin and feathers of the species under 

study. Thus, the energy required to maintam the mount at Tb is proportional to the 

Tes experienced by the bhd under field conditions. The Mm^mt predicted by the 

heated mount method is the energy value which must be met by the bird in 

addition to any cost of activity. M n ^ t may be attained not only by assimilation of 

food; both the heat increment of feeding and thermogenesis from muscles during 

activity may also contribute to Mmaint • 
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The maximum sustained rate of energy ejq)enditure (for Mmamt and activity 

combined) of birds not on a migratory flight was thought to be 4 times BMR 

(Drent & Daan, 1980). Bryant & Tatner (1990) questioned that all taxonomic 

groups of birds have a maximum sustainable level of 4 times BMR, smce they 

found some passerines could sustain levels up to aroxmd 6 times BMR Bryant & 

Tatner (1990) foimd that sustained energy expenditure levels above 4 times BMR 

were associated with species which have an energetically expensive mode of 

foraging (e.g. Pied Kingfisher {Ceryle nidis), Dipper {Cinclm cinclus). Swallows 

and Martins (Hirundinae)). However several studies have found a maximum 

sustainable level of aroxmd 4 times BMR to exist in shorebirds (Piersma et ai, 

1991; Piersma & Morrison, 1994; Poot & Piersma, in Piersma, 1994). 

3.1.2 Energy expenditure in shorebirds during severe weather 

The energy expended by shorebirds during those periods of severe weather which 

significantly increase mortahty rates has never been quantified. It is unclear from 

the Uterature what combination of weather conditions are most likely to cause large 

scale mortaUty. Most reports refer to 'very low' tenq)eratures and 'prolonged 

freezing' (e.g. Jourdain & Witherby, 1918a&b; Ticehurst & Hartley, 1948; 

Dobinson & Richards, 1964; Davidson & Clark, 1985b). However, it is unclear 

exactiy how low temperatures must fall and for how long before birds start to die 

as a result of either starvation from an energy debt, or an inability to produce heat 

fast enough. Most reports are isolated and confined to a particularly severe year. 

They rarely coi^pare conditions during severe periods which have resuhed in 

mortahty and during periods which could be considered severe but did not 

significantly raise mortahty. 

For conservation purposes, the British Wildhfe and Countryside Act 1981 defines 

'severe weather' on a national basis (Le. Great Britain) when more than half of 26 

designated coastal stations report frozen ground (see Batten & Swift, 1982; 
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Stroud, 1992). However, severe weather resulting in mortality is often localised 

and therefore severity on a national scale may not necessarily be indicative of 

potentially lethal conditions at a single site. 

Dugan et al (1981) highhght the potential importance of stiong winds in 

interrupting food intake in some species, especially Grey Plover {Pluvialis 

squatarola). They and Beecroft & Clark (1986) also considered the effect of wind 

on heat loss and hence energy e?q)enditure. The use of heated mounts in this study 

for estimating Tes allows determination of the in:q>ortance of wind speed as a fector 

in causing large scale mortality in Redshank. 

Kirby (1995) is the only study in which energy ejq)enditure rather than low 

temperatures or freezing ground has been used to define the severity of conditions. 

He used the model of Wiersma & Piersma (1994) to estimate Mmamt for Knot. By 

exaniining regional and national weather data he identified certain periods of 

weather as severe on a regional or national level, namely those during which M ^ w 

exceeded 3.5xBMR, the supposed sustainable limit in Knot (Piersma et al., 1991). 

The definition of severity of weather based on energy ejq)enditure of Knot (Kirby, 

1995) may not necessarily be an appropriate 'bench-mark' to apply to other 

shorebird species, since Knot do not suffer losses during severe weather as high as 

some other species. In addition. Knot are "plump" in shape for their size and do 

not have long legs and therefore, may not ejqierience such strong windspeeds as 

longer-legged shorebirds. Redshank, however, consistentiy suffer the highest rates 

of mortahty during severe weather (see chapter 1). Therefore, a bench-mark level 

of weather severity based on the conditions which lead to a lethal energy debt in 

Redshank, will be more applicable to estimating the risk of mortality of all 

shorebird species diuing severe weather. 
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3.1.3 Estimation of Mmaint and Tes during past severe winters 

In order to determine •what weather conditions and what levels of energy 

ejq)enditure (in terms of M n ^ t ) lead to increased mortaUty in Redshank, it was 

necessary to covcspaiQ periods of high mortahty with those v̂ diere weather had no 

apparent effect. Some reports of mortahty during winter are based on recoveries 

of dead ringed birds, but more frequently arise from shoreline searches for 

carcasses. Unfortunately estimates of mortality rates from shoreline searches are 

subject to biases from searching effort, vMch tends to be greater \\4ien the 

perceived chance of mortality amongst shorebhds is greater (i.e. during periods of 

perceived severe weather). Therefore it is difficxJt to ascertain whether low 

nxmabers of recovered carcasses do in feet reflect low mortality or just a low search 

effort. Aware of this problem, the Wader Study Group (WSG) carried out an 

investigation on the effects of severe weather on waders during the winters of 

1982/3-1985/86 (Davidson & Clark, 1982,1983a&b, 1984, 1985aifeb; Clark & 

Davidson, 1986). The project consisted of systematic carcass searches around the 

coasts of Britain. There were periods in the winters of 1984/85 and 1985/86 

during which mortahty was higher than in the previous two winters (Clark & 

Davidson, 1986; Davidson & Clark, 1985b). It became clear during the study that 

lethal conditions and resultant mortality were localised. Mortahty during 'severe' 

periods in south-east England was not always accon:q)anied by notable mortality at 

Teesmouth in north-east England. Hence weather conditions and estimates of 

were con^ared between Teesmouth and the Wash (Lincohishhe/Norfolk). 

Additional con:q)arisons were made for winters during v^ch elevated mortality 

amongst Redshank (and other shorebhds) had been reported in detail in the 

Uterature (see below). 
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3.1.4 Background: a summary of Redshank mortality at Teesmouth and the 

Wash 

In January and February 1979 conditions were considered severe enough to impose 

a ban on wildfowling (Batten & Swift, 1982), though large-scale mortality of 

Redshank appeared to be restricted to Eastern Scotland (Baillie, 1980). 'Tew" 

corpses were foimd at Teesmouth (Davidson, 1982b), but ringing recoveries 

suggested an increase in mortaUty during these two severe months (Davidson, 

1982c). There is no record of large-scale mortality of Redshank on the Wash 

during the 1978/79 winter. 

Severe weather in December 1981 and January 1982 led to wildfowling bans in 

England from 22 December 1981 until 5 January 1982 and again from 13-25 

January 1982 (Evans, 1982; Stroud, 1992). A total of 99 Redshank corpses was 

reported from the Wash between 23 December and 5 January (Clark, 1982). 

Searches were sporadic and covered only 1.6km of the north-west shore and 7km 

of the east shore, and so the total number of Redshank which may have died could 

have represented a substantial proportion of the 2-3000 w^iich are normally present 

in mid-wdnter. Only 2 Redshank corpses were recovered at Teesmouth (Clark, 

1982), though ringing recoveries of bhds ringed at Teesmouth suggested an 

increase in mortality of Redshank during December 1981 and January 1982 

corcpared with the previous two winters (Davidson, 1982c). 

The WSG survey recorded only 3 Redshank corpses during 1982/83 winter 

(Davidson & Clark, 1983b) and 26 during 1983/84 (Davidson & Clark, 1984) 

along 80- 100km of coastline throughout Britain. La contrast, much larger niunbers 

of corpses were recovered during the two subsequent winters. In January 1985 

prolonged freezing and snow cover led to a wildfowling ban being iirposed in 

England from 16-29 January. There then followed a second period of severe 

weather in February when more corpses were recovered than during January. In 
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total around 240 Redshank corpses were recovered (Davidson & Clark, 1985a) 

with around 150 originating from just ITkms stretch of coastline on the Wash 

(Davidson & Clark, 1985b). Redshank corpses were recovered at Teesmouth only 

during February (Davidson & Clark, 1985b). During late February 1986, 261 

Redshank corpses were recovered from the Wash, but none from Teesmouth 

(Clark & Davidson, 1986). 

The most recent large scale mortaUty of Redshank (and other shorebird species) 

occiured in February 1991. A total of 1553 Redshank corpses were recovered 

from the Wash (Clark a/., 1993). The first rq)orts of corpses on the Wash 

were received on 16 February, but the state of corpses suggested that the bhds 

started dying around 10 February (Clark et al, 1993). At Teesmouth 70 Redshank 

corpses were recovered from 12-17 February 1991 (pers. conun. K M. Ward). 

3.2 Methods 

3.2.1 Measurement of Standard Metabolism: Open-flow Respirometry 

A total of 15 robusta and 15 britarmica were caught at Teesmouth and held in 

captivity under the conditions described in section 2.2.3 for periods of 1-18 months 

between October 1992 and March 1995. Birds were taken mto captivity only if 

racial identity had been assigned (using the discriminant fimction of Siunmers et al. 

(1988)) with a probabiUty of 0.9-1.0 so as to miiumise the chance of mis-

identification. In total 99 and 102 measurements of SMR were performed on 

britarmica and robusta respectively at ambient temperatures Ta of -5, -3, 0, 2, 5, 7, 

10, 12, 15, 17, 20, 22 and 25°C. Individuals were kept for a minmium of two 

weeks before any SMR measurements were taken to aUow for adjustment to their 

new surroundings. Body mass generally feU during the first few days of captivity. 

The acclimation period allowed body mass to stabilise and body con:q)osition to 
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adjust to the new feeding regime (see sections 2.3.6 & 2.4.3). Measmrements were 

made only between October and early April, on individuals which were not in 

moult or imdergoing substantial premigratory fattening. I have assumed that 

diuing this so called 'wdnter' period BMR scales with body mass within an 

individual by a constant fector. This is not an unreasonable assumption smce 

during winter, the mass of lean metabolically active tissue remained constant within 

captive individual Redshank, with changes in body mass attributable only to 

changes in the mass of fat (see chapter 2). Furthermore, Scott et al. (1996) 

demonstrated that changes in BMR are best e5q)lained by changes in total body 

mass in captive individual Redshank w îose body mass changes resulted only from 

changes in mass of &t. Measurements were performed on pairs of individuals 

consisting of one bird from each race ensuring that the results for either of the 

races were not seasonally biased. 

SMR determinations were made m the open-flow respirometer described by Scott 

et al. (1996). Birds were placed in a sealed darkened metabohc chamber 

measuring 24.5cm (height) x 21cm (diameter) which was kept at a constant 

ten^erature in a controlled ten:q)erature cabinet (LMS, Sevenoaks, Kent). 

MetaboUc heat production was measured by determinations of oxygen 

consumption using a paramagnetic analyser (OA/272 Taylor Servomex Ltd., 

Crowborough, Sussex) and CO2 production using an infrared analyser (Lira 300, 

Mine Safety Appliances CoToa^my, Pennsylvania, USA) in an open circuit system 

Dry air at T a (-5 to 25°C) was drawn through the chamber at a rate of 60 L/h. Gas 

analyses were performed on samples taken from the inlet and outiet gases via gas 

mass-flow controllers (3.6L/h for O2 and 48L/h for CO2). Both inlet and outiet 

gases were dried prior to measurement by passmg over columns of dried coarse 

mesh sihca geL CaUbration was performed before each days measurements using 

dry, oil-free gases of 100% N j and a certified mixtiu-e of 21% O2, 0.03% CO2 in 

N2 (SIP Analytical Ltd.). 
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Measurements were made during the day, since Scott (1991) found the BMR of 

Redshank to be no higher when measured during the day than during the night; in 

contrast to the situation in passerines, which have a lower BMR at night (Kendeigh 

et al., 1977). During measurements, a bird was removed from its cage at 09:00h 

GMT, weighed to the nearest gram usmg a Pesola spring-balance and then kept 

isolated and without food until being placed in the chamber at 1 l:00h. 

Measurements commenced at 14:00h after a period of at least 3 hours of 

accUmation to the metaboUc chamber and 5 horns festing. This period of festing 

was long enough to ensure that the bhds were in a post-absorptive state, ance R Q 

was around 0.7 (see Blaxter 1989) and further festing did not resuh in a lower 

metabohc rate (I. Scott unpubl. data). Measurements were taken over a period of 

Ih when the chamber was maintained at a constant Ta . Measurement were taken at 

3 different tenq)eratures in a single day, starting at the highest Ta and then 

decreasing by 5°C at a time. A pause of45-60min was taken between each 

measm:ement run to aUow the controUed temperature cabinet to stabiUse at the new 

T a (10-20min) and a fiuther 30min to aUow the bird to accUmate to the new Ta. 

During pauses, inlet gas concentrations were measured. 

Ehuing each run measurements were taken every minute over lOmin periods during 

which O2 consunq)tion and CO2 production were stabilised at a basal level The 

mean O2 and CO2 levels over these lOmin periods were converted to standard 

ten^erature and pressure (at 273°K and 1 atm) and used to calculate R Q (CO2 

production/02 consumption) and SMR (O2 consun:5)tion) expressed in W usmg an 

energy value of 20. IKJ per Utre O2 consumed, appropriate for an R Q of 0.7. 

Mass-specific SMR was calculated as SMR/BM^ °̂  ejq)ressed in mW/g; v^ere 1.02 

is the mass coefficient for BMR i.e. the slope of the relationsh^ between 

logioBMR and log^obody mass in Redshank (Scott et al., 1996). 

Although the birds could not be observed whilst in the chamber, activity was 

assumed to be negUgible once the birds had habituated to the chamber, based on 
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observations of birds in darkened keepmg boxes and since space was confined in 

the chamber. Posture wMst resting, vMch would affect their level of energy 

expenditure, was assumed to be the same in both races, based on observations of 

resting birds in the indoor aviaries. 

The rate at which SMR increases with decreasiQg ten^erature below the zone of 

thennoneutrahty has tiaditionally been described, following Scholander et ai 

(1950) as: 

SMR = K e s * ( T b - T a ) 3.1 

where Kes (measured in this study in W/°C or mW/g/°C depending on whether 

SMR is mass-specific) is termed the "wet" thermal conductance, TLC has 

traditionally been estimated from plots of SMR against Ta by forcing a line through 

points obviously below T k to cross the T a axis at Ta=Tb (e.g. Kersten & Piersma, 

1987; Wiersma & Piersma, 1994). However, McArthur (1990) argued tiiat 

en:5)irical evidence and thermodynamic theory show that the regression hne of 

SMR on T a actually intersects the T a axis (where SMR=0) at a value of Ta higher 

than Tb and equal to Tb+c where c is larger fai animals with better insulation. A 

more suitable method for estimating Tic which does not make the above 

assumption is the two-phase regression procedure (Nickerson et al., 1989; Yeager 

&Ultsch, 1989). Unfortunately two-phase regression proved inappropriate for the 

SMR - T a plots in this study since measurements had been taken at only a few 

temperatures m the thermoneutral zone. Kendeigh et al (1977) predicted that the 

Tic of a non-passerine of body mass 152g (the mean of those robusta on wdiich 

SMR determinations were performed) was 19°C and for britannica (mean BM of 

142g) was 19.2°C. Thus, when comparing the effects of tenq)erature on SMR of 

the two races at T a s below Tic only measurements taken below a T a of 10°C were 

used to ensure that the birds were in standard metabolism without the need to first 

estimate Tic for each race. In describing the effect of Ta on SMR equation 3.1 was 
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not used, to avoid assuming that Tg = Tt -when. SMR = 0. Kes was taken as the 

slope of the linear regression of SMR on T a : 

SMR = b - ( K « * T a ) 3.2 

3.2.2 Construction and Operation of Heated taxidermic mounts 

The construction and caUbration of the mounts were based on the procedures and 

equations given by Wiersma & Piersma (1994). A Redshank corpse was skinned 

and frozen. Subcutaneous fet was removed from the skin before freezing. Tbie biU 

was kept attached to the skin and the legs discarded. The heat-loss from the 

surface of the legs of shorebirds in the cold is neghgible due to a counter-current 

mechanism in the blood flow to the tissues in the legs. The frozen corpse was laid 

sideways on a bed of modelling clay so that half of the corpse was e>q)osed. After 

coating e?q}Osed surfeces of clay and flesh with petioleum jelly, plaster of Paris was 

poured over the corpse. Once the plaster had set, the clay was removed and fresh 

plaster was poured onto the remaining side. 

The plaster mould was used to make a cast of the skin-less Redshank in beeswax. 

Two lengths of 5mm diameter copper tubing, crimped closed at one end were 

heated and inserted in to the wax cast, running vertically and paraUel, from tte vent 

region of the posterior to just behind the nape of the neck. Both tubes opened at 

the posterior end and would house the heating element, thermocouple and 

thermistor. The wax cast was Ughtly sprayed with aerosol adhesive and then 

dusted in graphite powder vdrich creates an electrically conductive surfece during 

electrolysis. A 0.4mm coating of copper was electroplated onto the wax cast 

(which acted as the anode) using I M copper sulphate (Cu SO4 . 5H2O) and 0.75M 

sulphuric acid solution in a 4L bath drculated by a magnetic sturer, a copper 

cathode and a 7V DC (2 A) power supply. Once fijUy coated, a smaU hole was 

driUed in the middle of the ventral surfece of the copper shell, through vsiiich the 
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wax was drained by gently heating the cast and into which a wooden dowelhng 

stand was inserted. 

The inner surface of the defrosted skin was dusted with Borax powder before 

being put over the cast v̂ diich was first covered in heat-conducting paste. The bill 

was ghied into position and the opening in the skin sewn up with monofilament 

fishing line. 

The mount was heated by a central core, m the form of a heating element ittserted 

into the lower copper tube, rather than being incorporated in the copper shell as in 

other studies (Bakken, 1983; Wiersma & Piersma, 1994). This alternative heating 

system better simulates the way heat is dissq)ated in a live bird, from a centtal body 

core (represented by the heatmg element) through the blood vessels (copper shell) 

to the skin. The heating element was con:q)osed of two 1.3m lengths of Nickel-

Tungsten heater wire (0.12mm diameter and 11.2 ohms/m) with a Calchmi sah 

insulatory coating wound around a 1mm copper tube core and covered in a 

protective coating of epoxy resin (Araldite). The heater was powered by a 12V 

(14A) motorcycle battery. The tenq)erature of the mount Tm was measured by a 

platinum resistor thermocouple (PTIOO) inserted in the upper copper tube inside 

the mount and maintained by a temperature controller (DTC 410 Tcmpation Ltd., 

Reading, Berks.) at 41°C, the body tenq)erature Tb of Redshank. Vohage input V 

and Tn, (measured by a thermistor placed next to the PTIOO) were recorded every 

20s by an 8-bit datalogger (SQ32, Grant Instruments, Cambridge). The 

ten^erature controller produced an on-off power input to the heater, so that 

voltage readings were either around 12V (allowances were made for variations in 

voltage output by the battery) or OV. The mean of the voltage readings V^ was 

taken over a 1 hour period. V m / V equals the proportion of time ty that power 

was supphed to the heater. Therefore, the energy consun^tion of the motmt K^a 

(W) is, according to Wiersma & Piersma (1994): 
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H ^ = t v * V 2 / R ^ 3.3 

where R m is the total resistance of the heater wire (2* 1.3m* 11.2Q = 25Q). 

3.2.3 Calibration of heated taxidermic mounts 

The methods and equations used to calibrate the heat loss from a taxidermic momit 

against that from a Uve Redshank and the theoretical basis for them are similar to 

those of Wiersma & Piersma (1994). However, my methods differ in two main 

respects. The first concems the way in which the rate of heat loss of tbe mounts 

Kesm iti a standard environment relates to a that of a live bhd Kes • Bakken (1976) 

stated that the estimation of operative tenq)erature Tes should be based on a value 

of Kes which represents heat loss due to radiation, conduction and forced (rather 

than free) convection. Hence, during SMR measurements forced convective heat 

loss has been stimulated by a fen situated in the metaboUc chamber creating a 

standard wind (of Im/s in the experiments of Wiersma & Piersma (1994)). They 

assumed forced convective heat loss to be zero wlien the fen was switched off 

However, for this to be true, the air inside the chamber would need to be 

conqjletely still, which is not the case m a metabohc chamber through v^ch fresh 

air is constantiy being pimqjed. Figure 3.1 illustrates that heat loss of a taxidermic 

mount was sUghtly but significantly greater when air was drawn through the 

chamber at a rate of 1.5L/min (the same air flow as used by Wiersma & Piersma, 

1994) than when the chamber was con5)letely sealed. Therefore, my value for Kes 

was derived in the same way that Wiersma & Piersma (1994) obtained their value 

of K e (the rate of heat loss in a free-convection only environment). It is infect 

iaq)ossible to determine K e in Uve birds using open-flow respirometry. 

The second departure from Wiersma & Piersma's methodology was that I used 

mass-specific rates of heat loss for Kes and Kesm , Kes/g and Kesm/g respectively, 

measured as mW/°C/g rather than W/°C. Mass-specific values for K^s (i.e. Kes/g) 

aUow for variation in body mass both within and between the individual Redshank 
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for \^^iich SMR was determined. Since it was the aim of this study to estimate 

Mmaint ovcr pctiods of Several months vAiea body mass changes were taking placê  

it was irapoTtaiA to be able to aUow for the effect of body mass changes on Hnaim It • 

was measured in a standard environment by placing the mount in the same 

metaboUc chamber and exposed to the same tenq)erature and accUmation regime as 

used for the live birds. In conditions of forced convection (flow through chamber 

of l.OL/min) and below a T a of 20°C, K ^ ^ equaUed 0.074 W/°C (Figure 3.1). hi 

order to obtain a mass-specific temperature coefficient Kesm/g in mW/°C /g for the 

mount in standard conditions, Hm at each ten:5)erature was divided by 157, the 

mass in g of the Redshank used to make the mount. The precise mass value used 

was incidental and only needed to produce a value of Kesm/g of a similar magnitude 

to that of Uve Redshank, namely 0.47mW/C/g. This value did not increase over 

the period in which the mount was used, contrary to those of mounts used over a 

much longer period by Wiersma & Piersma (1994). The mass-specific heat loss of 

the mount Hn/g was adjusted to that of a standard mount Hsm/g with the same 

conductance as Uve Redshank of each race and core tenqierature of 41°C. 

Therefore K^m/g for a mount simulating the conductance of robusta was calculated 

as: 

H ^ g = 0.35*(41-(Tm-H^g / 0.47)) 3.4 

where 0.35 was the mass-specific temperatiu-e coefficient for robusta in standard 

conditions. Hsm/g for a mount simulating the conductance of britannica was 

calculated as: 

H ^ g = 0.30*(41-(T„-H^g / 0.47)) 3.5 

wdiere 0.30 was the mass-specific ten^erature coefficient for britannica in 

standard conditions. 
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During February, March and April 1995 Hsm/g was measured in a mount over 

periods of 1 hour when placed on a fixed site on Seal Sands mud flats -whciQ 

Redshank regularly feed. The mount was placed feeing into the wind. 

Simultaneous hourly mean measurements of wind speed u (in m/s at a height of 

10m) and air tenq)erature Ta (°C) were obtained fi-om a station at Graythorp 

(54°37'N 1°12'W) (suppUed by Hartlepool Environmental Heahh Authority) 2Km 

firom Seal Sands. Wiersma & Hersma (1994) incorporated direct houiiy 

measurements of Global Solar Radiation (W/m^) into their predictive model of 

M n ^ f However, in Britain such measurements are taken by only a few stations 

and no such stations were ^tuated near the sites being investigated m this study. A 

more commonly taken measurement is daily sunshine (measured in hrs). I 

estimated the daily total global solar radiation Rg (m W/m )̂ usmg values of total 

monthly global radiation (measured in Kcal/cmVmonth) in a cloudless sky at a 

latitude of 55°N given in Lide (1990): 

hourly Rg (Kcal/hr/m^) = (total monthly Rg*10 000 ) 

/(no. days * total dayhght hrs per month) 3.6 

daily total Rg (W/w?) = (1.163* hourly Rg)* daily sunshine hours 3.7 

where 1.163 is a conversion fector fi-om Kcal/hr/m^ to W/ m .̂ 

This estimate may be crude but gives an indication of the level of solar radiation 

experienced by the mount or live bird in the field. Radiative heat loss constitutes 

only 5% of the total heat lost through feathers (Walsberg, 1986); hence inq)recise 

measurements of Rg would not lead to large errors when formulating a model 

predicting total heat loss in the field. Values of daily sunshine hours (supplied by 

the Meteorological Office, Bracknell) were taken fi-om Tynemouth (55°rN, 

1°25'W) 49km firom Seal Sands but the nearest station to obtain such information. 
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My model relating Han/g (measured in mW/g) to measurements of u, Ta and Rg is of 

a similar form to that for (measured in W) given by Wiersma & Piersma 

(1994). 

H U g = (Kes/g + (K„ * uO) * (T„ - T,) - (K, * Rg) 3.8 

The coefficients y, Ku and Kr were detennined usmg non-linear iterative regression 

in SPSS. 

In order to relate the heat loss of a standard mount Hsm/g to the mass-specific 

maintenance metaboUsm Mmajnt/g of live birds it is necessary to calculate standard 

operative temperature Teg: 

Tes = 4 1 - ( H 3 ^ g / K e ^ g ) 3.9 

Tes combines all factors affecting heatloss and is thus a measure of environmental 

ten:q)erature. Maamt/g was determined by substituting Tes for Ta in equation 3.2. 

3.2.4. Estimation of M,„ai„t and analysis of meteorological data at Teesmouth 

and the Wash 

My aim was to obtain meteorological data which had been taken hourly so that 

daily total Mmaint could be estimated, rather than using daily means (Kirby, 1995) as 

these may underestimate daily M n ^ t , since ten^erature and wind speed can vary 

greatly over 24 hours. The periods examined were fi-om 1 November to 30 March 

for the winters 1978/79, 1981/82, 1984/85, 1985/86 and 1990/91 for both the 

Wash and Teesmouth; and additionally 1982/83 and 1983/84 at Teesmoutt. All 

ten^jerature and wind speed data were converted to units of °C and m/s 

respective^. 

For the 1990/91 winter at Teesmouth, homly mean wind speed (in m/s taken at 

10m) and air temperature (dry bulb in °C) were obtained fi^om Graythorp. Daily 

hours of sunshine were obtained fi-om Tynemouth. Mniamt/g and Tes were calculated 
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for each race during every hour usmg the models developed fi-om Graythorp 

weather data described in section 3.2.3. (referred to hereafter as the 'Graythorp 

Model'). Unfortunately no fiirther data were available firom Graythorp for the 

other winters studied at Teesmouth. Therefore, wind speed (in knots at 10m) and 

air temperature (dry bulb in °C) records firom the winters 1978/79 and 1981/82-

1985/86 were obtained firom the nearest available station at Newcastle Weather 

Centre (54°59'N 1°36'W) (suppUed by the Meteorological Office, Bracknell) 

50km from Seal Sands. A model was constructed to predict Mniaint/g and Tes at 

Teesmouth by incorporating wind speed and teir^jerature measurements fi-om 

Newcastle and sunshine hours fi-om Tynemouth, and simultaneous direct 

measurements of Mmaint/g and Tes usmg the heated mount on Seal Sands, following 

the derivations described in section 3.2.3. The predictive power of this 'Newcastle 

Model' was found to be sufficient to estimate Mmamt/g and Tes of both races of 

Redshank at Teesmouth during the winters 1978/79 and 1981/82-1985/86 (see 

section 3.3.2 below). 

In order to predict Mmakt/g and Tes of both races of Redshank on the Wash dining 

the winters 1978/79, 1981/82, 1984/85, 1985/86 and 1990/91, hourly mean wind 

speed (in knots at 10m) and hourly spot air tenq)erature (°C dry bulb) were 

obtained fi-om Coningsby (53°5'N 0°10'W) and daily sunshine hours firom 

Terrington St. Clement (52°45'N 0°17'E) (all data suppUed by the Met. Office, 

Bracknell). Coningsby is around 25km niland fi-om the north-west coast of the 

Wash yet only 6m above sea-level and records similar values of wind speed and air 

temperature to those taken simultaneously at Holbeach (52°3rN 0°5'E) (Figure 

3.2) situated just 2km fi-om the west coast of the Wash (only inconq)lete data was 

available fi-om Holbeach). Therefore Coningsby was an appropriate source of data 

indicative of conditions along the coast of the Wash. Additional justification for 

the use of met. data fi-om Coningsby comes fi-om the decision of the Nature 

Conservancy Council Working Group on setting up criteria for monitoring severe 
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Figure 3.2: Comparison of mean daily a) air temperatures and b) 
wind speeds recorded at Coningsby and Holbeach (Nov-IViar 
1990/91). Regression lines denote exact equivalence. 
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weather to include Coningsby (along with Tynemouth) as one of 26 coastal 

stations used to define the severity of coastal weather when applying wildfowling 

ban legislation (Stroud, 1992). 

The Graythoip model was appUed to wind speed and air temperature data from 

Coningsby and sunshine hours fi'om Tenington St. Clement to predict Mmakt/g arid 

Tes of Redshank on the Wash; assuming that (i) weather conditions were similar at 

Coningsby and Holbeach; and (ii) that the Holbeach weather station is situated 

with similar relevance to the mudflats of the Wash as Graythorp is to the mudflats 

of Seal Sands at Teesmouth. 

Additional data on 24-hour rainfall (mm), minimum daily grass tenqjerature (°C) 

and the daily (at 09:00) presence and depth (cm) of lying snow were obtained fi-om 

Tynemouth and Coningsby (Supphed by the Met. Office, Bracknell). 

Hourly predictions of Mn^mt/g measured in mW/g for each race at each site were 

converted into KJ/h for a Redshank of body mass equal to the mean body mass of 

the relevant race and month at Teesmouth (given in chapter 2). Values of homly 

Mmaint on cach day were summed to give daily maintenance metabohsm Mmaint/d • 

Several studies have suggested that Redshank that die following severe weather do 

so as a result of starvation rather than an inabihty to mobilise reserves &st enough 

(Davidson & Clark, 1985b; Beecroft & Clark, 1986; Clark & Davidson, 1986). I f 

Redshank were starving to death, then the duration as well as intensity of high 

energy demands woiild be an inqjortant factor in determining survival during 

severe weather. The period of 1 November to 30 March was divided into five day 

segments or pentads The cumulative Mmamt/d over the five days equalled the total 

maintenance metabolism per pentad Mmamtyip- Five days is a suitable time scale to 

use since it is long enough to be defined as 'prolonged' (voluntary wildfowling 

bans are in^osed after just 7 days of continuous freezing (Stroud, 1992)), but not 

too short to smooth over short periods of very high energy demand, such as that 
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on the Dutch Wadden Sea in January 1976 which led to mortaUty in 

Oystercatchers after less than 5 days of severe weather (Swennen & Duiven, 

1983). 

A critical minimum level of Mnjamt equal to 2.5 times BMR was used to indicate 

periods of energy ejqpenditure vsiiich could potentially lead to, at best, a reduction 

in fitness or, at worst, death. A threshold of 2.5 times BMR assumes a maximum 

sustainable energy expenditure of 4 times BMR (see section 3.1.1) and a net cost 

of activity of around 1.5 times BMR Speakman (1984) found the net cost of 

foraging in Redshank to be 0.7-0.9 times BMR If this foragmg cost is added to 

the cost of flying to and fi-om feeding areas or when avoiding predators (8-

12xBMR), it is not unreasonable to ejqpect an average daily net activity cost of 

1.5BMR, as foimd in breeding Turnstones (Piersma & Morrison, 1994). A 

threshold Mmaint value of 2.5 times BMR proved to be a realistic level since, a 

threshold of 2 times BMR would define most winters as severe, wdiereas i f 3 times 

BMR was used, no wioter would be defined as severe. This critical level of 

2.5xBMR equates to a M^^t/g of 15.8mW/g and 18.0mW/g; and a Tes of-16°C 

and - 15°C for britannica and robusta respectively. The equivalent values of 

Mnaint/d â d Mmaint>i) in KJ, taking into account monthly changes m BM of both 

races, are given in Table 3.1. 

3.3 Results and Discussion 

3.3.1 BMR and SMR of robusta and britannica 

In order to remove any bias in the mean value of BMR (measured at 20, 22 and 

25°C) of each race arising firom some individuals being measured more times than 

others, the mean BMR for each race was taken as the mean of the average BMR of 

mdividuals. Mean BMR was 1.19W (SE=0.057) in robusta (n=14) with a mean 
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mass of 15Ig (SE=5.3) and I.OIW (SE=0.073) in britarmica (n=14) with a mean 

mass of 144g (SE=4.0). Due to large variances neither body mass (ŝ =392 for 

robusta and ŝ =228 for britannicd) or B M R (ŝ =0.046 for robusta and ŝ =0.076 

for britannica) were significantly greater in robusta. However, the mean mass-

specific B M R for robusta of 7.2mW/g (SE=0.031) was significantly greater (T-

test t 26=2.26 P<0.05) than the 6.3mW/g (±0.038) for britarmica. 

Table 3 . 1 : Critical values for total Maintenance Metabolism per day 

(Mmairt/d) and per 5-day pentad (Mmamt/p) assuming an upper threshold of 2 .5 

times BMR and according to changes in mean monthly body mass. 

Month Mmaint/d (KJ) Mmaint/d (KJ) Mmafait/p (KJ) Mmaint/p (KJ) 

(Pentad nos.) britannica robusta britannica robusta 
NOV 207 256 1034 1281 
( 1 - 6 ) 

DEC 210 253 1048 1266 
( 7 - 1 2 ) 

JAN 201 241 1007 1204 
( 1 3 - 1 9 ) 

FEB 196 242 980 1211 
( 2 0 - 2 4 ) 

MAR 192 231 960 1157 
( 2 5 - 3 0 ) 
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Figure 3.3 and 3.4 show for both races, the changes in mean S M R (W) and mean 

mass-specific S M R (mW/g) respectively with Tg. T. t. robusta appear to have both 

higher S M R and mass-specific S M R than britannica at all values of Tg . In order 

to determine whether this was solely a resuk of a higher B M R in robusta or was 

also due to a greater thermal conductivity; Kes, Kes/g and intercepts of SMR/Tg and 

mass-specific S M R / Ta curves were calculated for values of Ta between 10°C and 

-5°C for each individual (Figures 3.5 & 3.6) to remove any bias resulting from 

S M R determinations being performed over a greater range of tetDperatures in some 

individuals than others. The mean of individual SMR ' s (Figures 3.5) and mass-

specific S M R ' s (Figures 3.6) were significantly higher for robusta at all vahies of 

Ta between -5°C and 10°C, since the mean intercept of individual regression lines 

was significantly greater (T-test t25=2.709 P<0.02 for S M R ; t25=2.668 P<0.02 for 

mass-specific S M R ) . The means of individual Kes of each race were not 

significantly diJBFerent. However, the mean of individual was significantly 

higher m robusta (T-test t25=5.191 P<0.001). 

3.3.2 Calibration of heated mount 

Figure 3.1 shows that Hm below 20°C was significantly higher (Paired T-test tg 

=5.372 P<0.001) with pun5)ed airflow through the metabolic chamber, under 

conditions similar to those m v^ch S M R was determined m live birds than with no 

air-flow through the chamber. Table 3.2 shows the estimates for Ku, and y 

obtained by iterative non-hnear regression which would be inserted into equation 

3.8 to estimate Han/g in robusta and britannica from measurements of wind speed 

u, ten:q)erature Ta and solar radiation R g . Mmaint/g(niW/g) predicted by the 

Graythorp and Newcastle models (incorporating measurements of u, Tgand Rg 

taken at Graythorp and Newcastle weather stations respectively) were not 

significantly different fi-om simultaneous direct measurements of Mmakt/g taken 

fi-om 
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Figure 3.5: The relationship between standard metabolic rate (SMR) 
and Temperature (Ta) of individual a) britannica and b) robusta. 
Dashed lines denote the mean of individual trends. 

a) britannica: SMR = 1.76-0.049Ia 
as 

b) robusta: SMR := 2.18-O.OGOJa 

Ta(cfe9q 



Figure 3.6: The relationship between mass-specific standard 
metabolic rate (SMR) and Temperature (Ta) of Individual a) britannica 
and b) robusta. Dashed lines denote the mean of Individual trends. 

a) britannica: y = 10.98 - 0.30Ia 

£10 + 

10 

Ta(dB9q 

b) robusta: y = 12.76 - 0.35Ta 
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Table 3.2: Conductance parameters of robusta and britannica calculated 

from measurements of energy consumptio Hm of a heated taxidermic mount 

on Seal Sands mudflat, Teesmouth and of meteorological variables 

(temperature Ta, wind speed u, solar radiation Rg) taken from weather 

stations at Graythorpe and Newcastle using iterative nonlinear regression 

according to equation 3.8. Standard errors of estimates are in brackets. The 

regression was based on 51 hourly periods over which measurements were 

taken. 

K, K, y r̂  

(mW/°C/g) (mW/°C) (mW/°C) 

Graythorpe 0.30 0.038 0.000040 0.78 0.65 

britannica (0.032) (0.0089) (0.000160) (0.126) 

robusta 0.35 0.050 0.000052 0.78 0.65 

(0.098) (0.0117) (0.000211) (0.126) 

Newcastle 0.30 0.074 -0.00016 0.43 0.52 

britannica (0.032) (0.0136) (0.00019) (0.103) 

robusta 0.35 0.091 -0.00020 0.43 0.52 

(0.098) (0.0168) (0.00024) (0.103) 
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the heated momit at Seal Sands (paired T-test tso = 0.023 P>0.05 for britannica, 

tso = 0.014 P>0.05 for robusta predicted by the Graythorp model; paired tso = 

0.0056 P>0.05 for britannica, tso = 0.0048 P>0.05 for robusta predicted by the 

Newcastle model). Hence, there was no significant difference between values of 

Mniaint/g predicted by the Graythorp and Newcastle models for both races (Figure 

3.7: paired T-test tso^. 0.989 P>0.05 for britannica; tso = 0.987 P>0.05 for 

robusta). 

3.3.3 Maintenance metabolism during severe winter weather 

^pendix m contains graphical representations of maintenance metabolism per 

pentad (Mmaint/i) ) for both races, Tes ah temperature and wind speed for each of 

the 30 pentads between between 1 November and 31 March within each of the 

winters examined (see section 3.2.4) at Teesmouth and the Wash. Periods of 

mortahty are indicated as the pentads dming which increases in mortality of 

Redshank were noted in the literature, usually by the recovery of large numbers of 

corpses (see section 3.1.4). This period was difficult to define at Teesmouth 

diuing the 1978/79 and 1981/82 winters since no large-scale recoveries of corpses 

were made, though mortahty increased at some times during January 1979, 

February 1979, December 1981 and January 1982 (Davidson, 1982c). 

It is clear from the presentations in Appendix m that during those pentads m vsiich 

mortality of Redshank occxured, Mj^^xip was higher than 2.5xBMR. A clear 

exarcple of how an increase in Mjosmu^ above 2.5 xBMR led to increased mortality 

was shown on the Wash in 1984/85 when M^^xj^ exceeded 2.5xBMR only during 

those pentads w^iich were associated with increased mortality. The largest 

recovery of corpses of that winter occurred during February 1985 which held 

pentad 21 (9-13 February) in v^ch Mmaint^. rose to 1556KJ in robusta and 1246KJ 

in britannica. During the same pentad mortality at Teesmouth comcided with 

Mnjainui, (of 1387KJ in robusta and 1112KJ in britannica) rising above 2.5xBMR 
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Figure 3.7: Maintenance metabolism (M,„aint) of a) britannica and b) 
robusta predicted by models incorporating weather data from 
Newcastle Weather Centre and Graythorp weather station. 
Regression lines denote exact equivalence. 

a) britannica (R-squared = 0.68) 
17 

3 
I 16 
E 
" l i s 

14 
0) 

"§13 

0) 

(0 

z 
10 + 

10 11 12 13 14 15 16 17 

b) robusta (R-squared = 0.68) 

3 
I 19 
E 
""l8 

174 

« 16 
o 

S 15 + 

I 14 + 

I 13 + 
12 

12 13 14 15 16 17 18 

Qa/thGmeMxiBi MmttbriNcj 

19 23 



for only the second tkne that winter. It is also significant that mcreased mortality 

was recorded on the Wash but not at Teesmouth during pentads 13-17 (31 

December - 23 January) when M.jo2Mjp either equalled or exceeded 2.5xBMR on the 

Wash but rose above 2.5xBMR only during pentad 17 at Teesmouth. 

However, mortality amongst Redshank did not always increase significantly wien 

Mniaint Tosc abovc vdiat was considered sustainable, .^pendix HE clearly shows 

that there were many occasions dming the winters examined when Mn^mt/i) 

exceeded 2.5xBMR but no notable increase m mortality was recorded. For 

example, during the 1982/83 and 1983/84 winters at Teesmouth, when no increase 

in mortaHty was evident (Davidson & Clark, 1983b & 1984), Mjo^M/p exceeded 

2.5xBMR in robusta and britannica m 7 and 6 pentads respectively during both 

winters. Even within the same winter, the levels of Mmamt "which were associated 

with elevated mortality, were sometimes equalled or exceeded at other times when 

no notable rise m mortaUty occurred. This was most evident during 1985/86 on 

the Wash when the period of observed mortality vAach enconq)assed pentads 21-

24 (9-28 February)(Davidson & Clark, 1986), was preceded by 9 successive 

pentads (24 December-8 February) during which Mmainti) exceeded 2.5xBMR for 

both races and no mortality was evident. 

The weather associated with the non-lethal but apparently energy demanding 

period of pentads 12-20 1985/86 consisted of high winds (mean wind speed per 

pentad of 4-9m/s) but mean tenqDeratures which remamed above zero during all 

but two pentads (-0.5°C and -0.2°C in pentad 12 and 20 respectively). The period 

in which mortahty occurred comcided with mean pentad teroperatures dropping 

well below zero (mean temperatures of-2.6°C, 0. TC, -2.7°C and -0.9°C during 

pentads 21-24 respectively). 

This association between mortaUty m Redshank and prolonged sub-zero air 

tenqjeratures (indicated by sub-zero pentad mean tenq)erature) was consistent 
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during all the winters examined. There was also a lack of association between 

mortality and prolonged periods of high windspeeds vMch could potentially create 

high values of Mn,amt- Figure 3.8 conq)ares mean windspeeds and air teiuperatures 

of lethal and sub-lethal severe pentads (severe defined as wiien M^^j^ exceeds 

2.5xBMR and lethal pentads being those associated with mortality) on the Wash 

during the winters 1981/82, 84/85, 85/86 and 90/91. There is ahnost a clear 

separation in figure 3.9 between pentads which coincided with mortality and those 

which did not. The latter generally had mean ten:q)eratures above zero and mean 

windspeeds above 5m/s, wMst the 'lethal' pentads consisted of sub-zero mean 

tenqjeratures and a wider range of low to high wind speeds. 

It appears therefore, that the occurrence of severe weather mortality in Redshank 

was consistent with high levels of Mmamt resulting fi-om a lowering of Tes as a 

result of sub-zero air temperatures rather than solely fi-om the large chilling effect 

of high winds. In actual feet, the potentially lethal chiUing effect of high winds in 

producing very low values of Tes was not fiilly realised, suggesting that the 

Redshank were able to reduce their exposure to very high winds. The methods by 

which they could do this will be discussed later. 

Since sub-zero air temperatures are well correlated with Redshank mortality, the 

intensity of fireezLng should be a good indicator and predictor of mortality. One 

measure of fi-eezrag intensity is the Hellman number, \̂ diich is the sum of all 

tenq)eratures below 0°C over a particular period. The Helhnan number is often 

calculated firom daily mean tercperatures and apphed to periods of several months 

to defme and compare the severity of different wiaters (e.g. Ridgill & Fox, 1990). 

However, my study was concerned more with detennitung what level of air 

temperature would lead to mortality on a day-to-day basis. This was achieved by 

studying the period of mortality in February 1991, the only period for yMdi there 

was accurate information on \̂ dien the birds started dyiag. Figure 3.9 shows that, 

on the Wash, Redshank started dying 5 days after the daily mean air temperature 
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fell below 0°C and vsdien the Hellman number (in this case, the cumulative sum of 

consecutive daily mean sub-zero teirq)eratures) reached -10.6°C. At Teesmouth 

Redshank started dying 7 days after daily mean air tenq)erature remained below 

0°C, at a HeUman Number of-9.3°C. 

If the numbers of corpses recovered were to be used as a measure of the severity 

of the eflFect of weather conditions on Redshank mortality, weather conditions 

during February 1991 would be considered the most severe of those winters 

included in this study. If this were true, the Helhnan nimiber would be predicted 

not to exceed around -10°C during any other pentad. However, Figure 3.10 shows 

clearly that all periods dtuing wiiich mortality was known to occur contain at least 

one pentad with a Hellman number of over -9°C, with one notable exception, 

Teesmouth 1984/85. During pentad 21 (8-12 February) vMch was associated with 

mortaUty at Teesmouth, the Hellman number was only -3.4°C. An e)q)lanation may 

be that this pentad had the highest mean wind speed of 5.9m/s of all the pentads 

with a non-zero Hellman number. The Hellman number could also Qxphm 

observed differences in mortahty between the Wash and Teesmouth, particularly 

during 1985/86. 

What is clear from Figure 3.10 and from Appendix HI is that the period in 

February 1991 was not the most severe in terms of energy demand or weather 

conditions. Yet February 1991 resulted in the greatest mortality in Redshank 

con^ared to the other winters in this study, according to reported carcass 

recoveries. For instance, in pentad 15 (9-13 January) in 1982, Teesmouth and the 

Wash had HeUman numbers of-23.5°C and -21°C respectively (Figure 3.10e), yet 

on the Wash high numbers of Reddiank corpses were found, vdiereas only two 

were found at Teesmouth. 

Likewise, during 1978/79 at both Teesmouth and the Wash levels of Mnuint of both 

races reached levels expected to cause substantial mortaUty given the values of 
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Figure 3.10: Hellman number of each pentad during the winters of a) 
1990/91, b) 1985/86, c) 1984/85, d) 1982/83 & 1983/84 (Teesmouth 
only), e) 1981/82 and f) 1978/79 at Teesmouth and the Wash. 
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Mmaint associated with mortahty in subsequent years (Appendix HI). The high 

levels of Mmaint during 1978/79 resulted in part firom very high winds, but these 

were often acconq)anied by freezing temperatures, as shown by the high Hellman 

niunbers in Figure 3. lOf 

3.4 General Discussion 

3.4.1 BMRandSMR 

The significant difference between the mass-specific BMR of 6.3mW/g ia 

britarmica and 7.2mW/g in robusta has two possible ejq)lanations: 

i) During their annual cycle the Icelandic Redshank robusta require the highest 

rates of metabolic output fi-om their tissues during their migrations (1600km 

between Iceland and Britain), but are imable to aher the mass-specific output from 

their tissues and so must maintain a high mass-specific BMR throughout the year 

as an adaptation to their migrations (cf 'Energetic Margin' hypothesis of Kersten 

& Piersma,1987). British Redshank move much shorter distances (at most 300km 

[Hale, 1973]) and would therefore not require as high an output from each gram of 

their muscles as their Icelandic conspecifics. 

ii) Both races of Redshank have evolved a level of mass-specific BMR which is an 

adaptation to the rate of energy ejq)ended for thermoregulation in the respective 

climates on their different breeding grounds (cf Weathers, 1979). 

The 'energetic margin' hypothesis (Kersten & Piersma, 1987) assumes that birds 

are not capable of altering the metabolic output per gram from metabolically active 

tissues on a seasonal basis. There is conflicting evidence supporting and refiiting 

the notion that birds cannot alter their mass-specific metabolic rate. In support, 

Knot over-wintering ID west Afiica had lower BMR's than their conspecifics in 
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northern Europe, correlated with a lower total lean mass (taken as equivalent to 

the mass of metaboUcally active tissue) rather than a lower ou^ut per gram from 

the tissues (Piersma et ai, 1996). Conversely, Scott et al. (1996) found that the 

BMR of individual Redshank was cortelated with the mass of fat being carried 

vdien lean mass remained constant, suggesting that the metaboUc output of lean 

tissues was changing since the output from cellular M is very low (Scott & Evans, 

1992). Evans et al. (1992) found a higher density of mitochondria in the flight 

muscles of SanderUng and Dunlin sanqjled during long-distance migration than 

during winter, suggestmg an increase in mass-specific metaboUc output of muscles 

associated v\dth migration. Marsh (1981) however, demonstrated that the aerobic 

capacity of muscles (as measured by concentration of Citrate Synthase, an enzyme 

of the Citric Acid Cycle) in the Gray Catbkd {Dumetella carolinemis) remained 

constant during premigratoty hypertrophy of flight muscles and Dreidzic et al. 

(1993) produced smnlar findings from a study of Semq)almated Sandpq)ers 

{Calidris pusilla) undergoing premigratory muscle hypertrophy and fettening. 

However, Dreidzic et al. also found an increase in the rate of fetty add oxidation 

which would probably cause an increase m the mass-specific oxygen consunq)tion 

of the muscles. 

The altematrve explanation for higher mass-specific BMR in robusta, is based on 

work by Weathers (1979) wdio found that the mass-specific basal metaboUc rates 

of different species of bird were positively correlated with breeding latitude. 

Weathers explained this latitudinal trend in mass-specific BMR by adaptation to 

cUmate, with species at higher latitudes and in colder climates having a higher 

output per gram from their tissues in preparation for periods of high energy 

demand for thermoregulation. At lower latitudes in warm cUmates, high mass-

specific rates of metaboUc heat production may lead to excessive water loss and be 

detrimental to survival. Hudson & Kimzey (1966) demonstrated that within a 

species, the House Sparrow mass-specific BMR was higher in populations resident 
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at higher latitudes in North America. However, robusta are migratory and 

therefore, an adaptation to the climate on the breeding grounds would be retained 

only if conditions on the wintering grounds were not counter-selective. 

The essence of Weathers' theory is that for a given Hnaint a bird with a higher 

BMR would be metabohsmg at a relatively (ie. Mmaint expressed as a multqjle of 

BMR) lower rate than a bird of the same mass but with a lower BMR Even 

though robusta had a higher mass-specific BMR than britannica, the former also 

had a higher thermal conductivity Kgs/g (in mW/°C/g) and hence a higher mass-

specific Mmaint than ia britannica. Hence, for a given value of Tĝ , the ratio of 

Mmaint to BMR is y : 1 in britarmica but only (y+0.04) : 1 in robusta. Thus the 

energy expenditure for maintenance imder the same thermal environment, relative 

to the basal output of tissues, is ahnost the same in both races. It is surprising that 

the apparent advantage of a higher BMR in robusta was cancelled out by a higher 

thermal conductivity. 

Though the vahies for Kesof-0.049W/T and -0.060W/°C of britannica and 

robusta respectively were not significantly different, they were 1.20 and 1.43 

times greater than the values predicted by Kendeigh et al. (1977) (of -0.041 and-

0.042W/°C respectively) for non-passerines of equivalent body masses. This 

con^ares with 1.14 times the predicted Kesin Oystercatcher, 1.30-1.42 times in 

Turnstone and Grey Plover (Kersten & Piersma, 1987) and 1.18 times in Knot 

(Wiersma & Piersma, 1994). 

The difference in Kes/g between the two races would initially suggest that the skin 

and feathers of robusta had poorer msulation or lower thermal resistance than 

those of britannica. However, by extrapolating the regression lines of mass-

specific SMR on Ta (at -5°C < Ta ^ 10°C), of both races, back to vahies of SMR 

equal to i) their respective mass-specific BMRs and ii) zero, it can be seen from 

Figure 3.11 that the values of Ta at each intercept are similar for both races. The 
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hnes intersect i) the Unes for mass-specific BMR of each race at Ta = 15.6°C and 

15.9°C (theoretical Tic), and ii) the line SMR = 0 at Ta = 36.6 and 36.5 for 

britarmica and robusta respectively. The in:5)Hcations of the sioailarity between 

races of these two intercept points is two-fold. Firstly, the thermal resistance and 

hence, insulation of the skin and plumage of both races must be similar (Kendeigh 

et al., 1977; McArthur, 1991). Secondly, since mass-specific BMR was higher in 

robusta, the rate of heat loss represented by Kes/g, would also have to be higher. 

The thermodynamic equations of McArthur (1991) predict that if BMR is higher in 

one group, but that Tc and the intercept of the Ta axis (and therefore thermal 

resistance) are all equal, then the total heat loss per vmt of surface area below 

thermal neutraUty would also be higher. 

McArthur (1991) predicted that the SMR/Ta regression Ime should intercept the Ta 

axis (at SMR=0) at a value of Ta greater than Tb, in contrast to my study in which 

the opposite occurred, given that the body temperature of both races was around 

41°C. McArthur's predictions were based on regression hnes calculated over a 

range of Ta with Tic as the upper hmit, \̂ 4lereas in my study, the highest value of Ta 

in the regression was 10°C, somewiiat lower than the Tc of either race. It may be 

that the SMR of both races increased more rapidly with decreasmg Ta at colder 

temperatures than at tenoperatures closer to T^, ie. that the SMR/Ta regression 

would not be linear over the whole range of Ta, as a result of a reduction in the 

themxal resistance of insulating layers of tissue and feathers. Indeed, McArthiu-

(1991) argued that even when the relationshq) between SMR and Ta is linear below 

Tie, the thermal resistance may not necessarily remain constant. McArthur 

discusses evidence that suggests insulation may be reduced in increasingly cold 

temperatures since shivering can reduce thermal resistance of body tissue by up to 

65%. Body movement also can reduce surface resistance of mammalian coats and 

disrupt the surfece boundary layer. 
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The notion that the insulation by skin and feathers of the two races are indeed 

similar could be investigated en^irically by measuring feather mass (Piersma et al., 

1995) or feather size (Summers et al, 1992); however both these characters are 

difficult to control for body size. A more objective but less smplt method would 

be to measure heat flow through the skin and pltmiage usmg a heated plate/heat 

sink method as used by Walsberg (1988a). 

It is therefore imclear whether the racial differences in BMR and SMR of 

Redshank fotmd during the present study can be explained by either the 'energetic 

margin hypothesis' (Kersten & Piersma, 1987) or by breeding latitude (cf 

Weathers, 1979). A coiiq)arison of BMR and SMR m different non-migratory 

populations of Redshank which breed at different latitudes would he^ to 

determine which of these hypotheses best e?q)lains racial differences in metaboUc 

rate in Redshank. 

3.4.2 Energy expenditure and contributory factors during severe winter 

weather 

It was clear from this study that large scale mortality in Redshank in Britain during 

winter occurred in part at least, as a result of mamtenance metabolism costs 

exceeding a level of 2.5 times BMR This threshold level was based on two 

assumptions: i) that D E E does not exceed 4xBMR without incurring a fitness cost 

(Drent & Daan, 1980); and ii) the net cost of activity is around 1.5xBMR (Piersma 

& Morrison, 1994; Speakman, 1984). This threshold level appears to have been 

appropriate, indicating that yi-^asam in Redshank rarely exceeds 2.5xBMR This 

contrasts with Kirbys (1995) findmgs when usmg an Mmaint threshold of 

3.5xBMR (assuming a limit on DEE of 5xBMR) for defining the severity of the 

effects of weather on Knots. It may be that Redshank are not able to mamtain. 
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relatively, such a high level of energy e?q)enditure as other shorebird species and 

are therefore more likely to die diuing periods of high energy demand. 

The inoprecision of the estimated start time of severe weather mortaUty events 

made it difficult to ascertain what conditions on a daily basis caused increased 

mortaUty m Redshank. However by groupmg days mto pentads and incorporating 

a degree of longevity as well as mtensity mto measurements of M„jaijjt, wind speed 

and tenq)erature, it became clear that periods of prolonged sub zero tenq)eratures 

were most influential in increasing Redshank mortality. A threshold Hellman 

number of -10°C per pentad or an average daily teroperature of at least -2°C 

maintamed for at least 5 days was consistent with mortality events. Indeed at such 

tenq)eratures, the average wind speed would need to be only l-2m/s to make 

^maint ^f robusta exceed 2.5xBMR and 2-3m/s for britarmica to do likewise 

(Figures 3.12 & 3.13). Mean daily windspeed rarely fell below 2m/s. However, 

the wind speed measured at 10m above ground was not what was actually 

experienced by the Redshank, in terms of its effect on and M ^ ^ f Redshank 

appear to be able to reduce the potentially high chilling effect of high winds by 

avoidance. Roosting in sheltered positions, in vegetation or in tight flocks can 

significantly reduce the effective wind speed (Whitiock, 1979; Wiersma & Piersma, 

1994). Grey Plover are able to reduce the effect of wind wMst roosting, yet 

suffer high mortality only during severe weather events which mchided high winds 

as well as low tenperatures such as in 1978/79 and 1985/86 (Davidson, 1982b; 

Clark & Davidson, 1986). Grey Plover are greatly affected by high winds wMst 

feeding, since the open mud-flats on which they feed provide littie sheher, so that 

not only is wind-chiU high, but food intake is significantiy reduced (Dugan et a/., 

1981). Redshank, however are more versatile in their feeding behaviour and are 

able to switch from feeding on exposed mud-flats to feeding in more sheltered 

areas such as creeks or amongst saltmarsh vegetation or on pastures inland. This 

ability to e?q)loit less e)q)Osed feeding habitats is obviously crucial to Redshank and 
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Figure 3.12: The effect of air temperature and wind speed (m/s) on 
mass^pecif ic maintenance metabolism of a) britannica and b) 
robusta on the Wash predicted fi'om weather data at Coningsby 
using the Graythorp model. 
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10 

Dotted line indicates a maximum sustainable maintenance metabolism of 
2.5xBMR. 
Daily global solar radiation is taken as 1000 W/m^. 



Figure 3.13: The effect of air temperature and wind speed (m/s) on 
mass-specific maintenance metabolism of a) britannica and b) 
robusta at Teesmouth predicted from weather data at Newcastle 
using the Newcastle model. 
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other long-legged shorebirds in avoiding potentially lethal levels of Mmajnt during 

strong winds (Davidson, 1981). 

The number of Redshank corpses recovered from the Wash in February 1991 were 

much greater than in previous 'severe' years during vdiich conditions were in fact 

more demanding in terms of Mmajm reqtiirements. Clark et al. (1993) suggested 

that the timung of severe weather in relation to the tidal cycle could be crucial to 

the survival of shorebirds. They pointed out that during some years (including 

1991), the period of severe weather which was associated with mortality coincided 

with high tides occurring dvuing the middle of the day. Hence the majority of 

inter-tidal feeding areas were only exposed during darkness hours and may have 

lead to reduced food intake. However, Clark et al. (1993) did not show any 

consistent association between mortahty events and the occurrence of high tides 

during dayhght hours. 

The scale of all mortality events which have occurred in shorebird populations has 

been assessed on the basis of the numbers of corpses which were recovered from 

the shoreline. A multitude of fectors other than the number of birds actually dying, 

could affect how many corpses are found. For example, in February 1991, there 

may have been an increase in the awareness amongst observers of the effects of 

cold weather on shorebirds and hence, in the intensity and extent to vMch areas of 

shore were searched. The length of shoreline searched and the effort expended on 

the Wash during 1984/85 and 1985/86 were similar due to their inchision in the 

WSG severe weather project. More corpses were recovered on the Wash in 

1985/86 which could reflect the greater mtensity of sub-zero tenq)eratures in 

February 1986 (i.e larger Hellman numbers: Figure 3.10) compared to February 

1985. The number of corpses recovered in 1981/82, though apparently more 

severe in terms of freezmg temperatures (Figure 3.10) was less than during the 

subsequent 'severe' winters. This could be ejq)lained by the short length of 

coasthne searched in 1981/82 and the sporadic nature of the search. 
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The low numbers of Redshank corpses recovered at Teesmouth during 1984/85-

85/86 in conq)arison to the large number in 1991 could be explained by the lower 

severity of weather conditions and energy demand diuing these two winters. 

However, such e>q)lanations could not be used to account for the lack of corpses 

recovered during both 1978/79 and 1981/82. It may be the case that on the Wash, 

i f a large proportion and hence a large number of the Wash population of 

Redshank die, the number of corpses found will depend almost entirely on search 

effort, whereas at Teesmouth other factors come mto play. The majority of the 

main feeding grounds and roost sites of Redshank have restricted pubHc access 

(due to requirements of industry) so that most corpses have to be found during 

planned searches and not by casual observers as on the Wash. Secondly, the 

timing of the searches at Teesmouth woiild seem to be crucial since there appears 

to be a high degree of scavenging and removal of corpses by both avian and 

mammalifln predators/scavengers. For example all of the 70 Redshank corpses 

found in 1991 had been scavenged to some degree (pers. comm R M. Ward). An 

experiment using 25 feral pigeon carcasses revealed that all were removed from 

above the high spring tide mark at Teesmouth within 13 days of being placed there; 

3 had already been scavenged within the first 2 hours (pers. obs.). 

Whilst the estimation of mortality rates by ringing recoveries removes some of the 

problems associated with carcass searches, the latter is still a crucial exercise in 

estimating the start of a mortality event and for recovering carcasses for analyses 

of body composition, sex, age etc. 
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4.0 Foraging Behaviour 

4.1 Introduction 

This chapter discusses whether both races of Redshank are equally capable of 

meeting their energy requirements at any given time through feeding, given that i) 

robusta have larger daily energy requirements per gram of body mass for 

maintenance (Chapter 3); and ii) both races accumulate the same energy reserves in 

mid-winter in terms of £it (as a percentage of body mass) and protein (corrected 

for body size) (Chapter 2). The in:q)Hcation is that robusta would be e?q)ected to 

require a higher rate of intake of energy from food per gram of body mass. This 

may be achieved by: i) taking more prey per unit time, ii) taking larger and/or 

more energetically profitable prey items, iii) feeding for longer periods in each day. 

4.1.1 Prey intake rate 

The rate of food intake of Redshank has been shown to be dependant on the 

density of prey available (Goss-Custard, 1977c). Prey availability can in turn be 

affected by weather conditions and other environmental &ctors such as tidal 

movements (see Evans, 1976 for review). For exaiqple, at low air ten:q)eratures 

invertebrates tend to burrow deeper to more stable and wanner conditions and 

therefore may be less accessable to foraging waders. Foraging may be directly 

aflfected by weather as in the case of Grey Plovers whose foraging was hindered by 

buffeting during high winds (Dugan a/., 1981). I investigated whether the effect 

of weather (Le. air tenq)eratures and wind speeds)on foraging was similar in both 

races. 

4.1.2 Prey choice 

Monitoring prey choice and prey size proved difficult since the majority of prey 

items taken were small and imgjossible to identify or quantify when taken. Based 
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on other studies o f Redshank diets (Goss-Custard & Jones, 1976; Goss-Custard et 

al., 1977; Evans et al., 1979) and of recent surveys of Seal Sands macro-

invertebrate fauna (Evansgf al., 1996), small prey were assumed to be either small 

worms, the bmrowing an:q)hqpod Corophium volutator or the gastropod mollusc 

Hydrobia ulvae. Overall food and energy intake could therefore not be measured 

in the present study by direct observation. However, large worms (e.g. Nereis 

diversicolor) were more conspicuous when taken and their frequency in the diet of 

robusta and britarmica was conqjared. The intake of worms by Redshank at 

Teesmouth is low but increases with greater energy demands (^pendix IV; see 

also Goss-Custard, 1969). Large worms appear to be a v i a b l e energy 

supplement when energy requirements are high. Worm mtake may therefore be 

important in providing for the greater maintenance requirements of robusta. 

Other methods of quantifying energy mtake were deemed inq)ractical, m that: i) 

analysis of gut contents would require the sacrificing of large numbers of bnds in 

order to coirpare the seasonl food nitake of the two races; ii) pellets could have 

been used to quantify diet (Goss-Custard & Jones, 1976) but the racial origin of 

the Redshank which produced them could not be determmed. 

4.1.3 Duration of feeding 

Goss-Custard (1969) and Speakman (1984) suggested that Redshank in winter 

would have to feed both diumally and noctumally to achieve sufBcient energy 

intake to satisfy their demands. In Appendix IV, I suggest that ia Redshank there 

may be a trade-ofif between the amoimt of energy obtained from feeding in a given 

time and the amount of energy ejq)ended in doing so and consequently, the time 

spent feeding may get less as energy demands for maintenance increase. 

Therefore, robusta may not satisfy their greater maintenance costs singly by 

feeding for longer than britannica. Hence this study aims to covts^dne the seasonal 
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pattern o f daily feeding duration of each race with that of the -whole Teesmouth 

Redshank population (mixed race) described in Appendix IV. 

4.2 Methods 

4.2.1 Study Area 

Observations of foraging behaviour were made at Seal Sands mudflats at 

Teesmouth in north-east England from October to March during the winters of 

1993/94 and 1994/95. Observations were confined to Redshank feeding in an area 

of Seal Sands called Scalloped Mud (see Figure 4.1) vMch consists of medium to 

sofr muds and remains e7q)osed for 2-3 hours each side of low water. Observations 

were made from a 5m high slag wall along the southem edge of Scalloped mud. 

4.2.2 Determination of race in the field 

In order to identify the race of Redshank wiien observed m the field. Redshank 

were caught and colour-marked according to race using unique individual coloured 

ring combinations (n = 107 for robusta; n = 60 for britannica), leg flag 

combinations (n = 60 for robusta; n = 25 for britannica), and dye-marldng 

combinations of contour feathers with picric add (n = 22 for robusta; n = 11 for 

britannica). 

Unfortunately, despite large numbers of birds being marked according to race, only 

small numbers o f Redshank of known race were observed on any one day. This 

resulted from a large proportion of the birds marked in spring and autunm (when 

they were most easily caught) moving away from Seal Sands during nrid-winter 

wdien numbers o f Redshank were lowest. Those marked birds which did remain 

during winter were dispersed over the wdiole of Seal Sands when feeding, wiiich 
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Figure 4.1: Seal Sands mud-fiats showing Scalloped Mud where 

Redshank were observed foraging. • Invertebrate sampling 

positions (Evans, Ward & Mercer, 1996); X position of heated 

taxidermic mount. 
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fiirther Ihmted the number of known race ̂ c h could be observed feeding on 

Scalloped Mud. 

4.23 Foraging Behaviour Observations 

Observations of foraging behaviour of individual Redshank were made usmg a 20-

60x 70mm zoom telescope from a vehicle vMch served as a mobile'hide'. 

Observations were confined to a period of 2h each side of LW during Spring tides 

(Le. those tides with low water levels less than 1.3m OD) and were made on 2 days 

during each Spring tide every month, giving a total of 4 observation days per 

month. 

Observations were confined to indivhials foraging on open mud with a pace-peck 

motion and not with a scything side-to-side motion of the bill employed in water or 

very soft mud. The nvunbers of pecks and paces made by a foraging individual 

during each observation period were recorded on audio tape using a dictaphone. A 

'peck' was defined as an attempt to take a prey item by probmg or touching the 

surface of the sediment with the bilL Foraging rate was caressed by three 

parameters: 

. Pecking Rate - the number of pecks made per minute. 

. Pacing Rate - the number of paces taken per minute. 

. Paces per Peck - pacing rate divided by pecking rate. 

For the purposes of the present study, the measurement of foragmg rates was 

thought to be sufficient to give an index of feeding effort and food intake for a 

large number of indivmals throughout the winter season. Redshank react to visual 

cues during daylight vAiea making a peck or probe into the substrate. A peck can 

therefore be a genuine attempt to capture prey in response to the perceived 
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prescence of a prey item Pecking rate is therefore an indicator of both prey 

density and feeding effort, though it is an over-estimate of food intake since not all 

pecks wil l be successfiiL Pacing rate and the number of paces per peck are 

indicators of prey density smce the number of paces taken per minute (Le. area of 

mud covered) is known to increase when prey is more sparsefy distributed or less 

available (Goss-Custard, 1970; Speakman, 1983). 

Additional behaviour was recorded and categorised as follows: i) Handling (Le. 

mampulating a larger food item before swallowing), ii) Standing, iii) Roosting (Le 

standing or atting with eyes closed or head tucked under wing), iv) Preening, v) 

Vigilant (Le alert posture with head held high, or head-bobbing, or crouched close 

to ground), and vi) Flight. 

Individuals were observed for 5 minutes which proved to be the optimum 

observation time for mmimismg the standard eiror of mean pecking and padng 

rates (measured in pecks and paces per mmutes) of a group of 6 individuals 

observed during February 1993 (Figure 4.2). Tnne not spent peckmg, pacing or 

handling prey was not inchxded in the observation time. Observations taken over 

periods of less than 5 minutes were rejected from fiuther anafyses. 

It was antic5)ated that the foraging behaviour of first year Redshank would differ 

from adults smce the latter were significantly heavier throughout the winter (see 

chapter 2). Also, juveniles of many other bird species forage less efi&cientiy than 

adults (e.g. see review: Marchetti & Price, 1989; Blackbird Turdus merula: 

Desrochers, 1992). Therefore, mdividuals wdiich had juvenile-type plumage, 

characterised mainly by the patterns on tertials (Prater et al, 1977) were not 

selected for observation. Cresswell & Whitfield (1994) demonstrated that age 

could be determined in the field by this method, even at distances of over 50m 

Pliimage differences between adult and first year Redshank become progressively 

less discemable throughout the winter; but the error resulting from the accidental 
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inclusion of occasional first years in the san:q}le of birds observed was thought to 

be very small since few juveniles are present in winter at Teesmouth (Chapter 2). 

4.2.4 Comparing diet composition of britannica and robusta 

The Redshank in the present study fed predominantly on small prey items (<lmm). 

la prehminary studies it proved in:q)ossible to see consistently when a small prey 

item was taken by watching for a swallowing action (as was used in other studies 

at distances of up to 50m [e.g. Goss-Custard, 1969; Speakman, 1984]), but it has 

also proved dif&cuh in other studies (e.g. Goss-Custard & Jones, 1976). 

Identification and quantification of prey items taken by observation of foraging 

Redshank was confined to larger items such as worms, bivalve molluscs and crabs. 

The numbers of large items seen to be taken have been shown, through gut 

analysis, to closely correspond with the numbers actua% eaten (Goss-Custard, 

1969). 

Worms proved to be by far the most common large prey taken (see below). 

Because of the small numbers of individual Redshank of known race observed on 

any one day, convential statistical techniques were inappropriate to determine 

whether one race was taking more or less worms that the other. An ahematrve 

method was to determine whether the number of individuals of each race taking 

worms on a particular day deviated significantly from \vhat would be expected 

from the proportions of all Redshank which were observed taking or not taking 

worms (see Appmdix IV). This method is described by the exsaxsple below: 

On 6 March 1995 a total o f 13 Redshank were observed, 10 birds took at least 1 

worm in 5 minutes, 3 birds took 0 worms. Therefore, the probability P^ that a bird 

from this sanq)le will have taken a worm is 0.77, whilst the probability PQ that a 

bird will not have taken a worm is 0.23. Of the 13 Redshank observed, 4 were 

known to be robusta and 3 were britannica; all had taken at least 1 worm Hie 

probability of achieving the observation for each race based on the obervations 
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from the whole sample is equal to : ( PQ )"" * (Pi ) ^ A\liere no is the number of 

birds of each race which had not taken worms and n^ the number vMch had. 

Therefore, the probability of observing 4 robtista \^4lich had all taken worms is 

equal to: (0.23)0 * (0.77)4 = o.352; and 3 britannica is (0.23)° * (0.77)3 = 0.457. 

Since the probabilities calculated for of each race was greater than 0.05, the 

number of birds of each race taking worms was not significantly different from that 

day, as presented in Appendix IV. 

However, i f all 3 britarmica observed on 6 March 1995 had not taken any worms 

but the rest of the birds observed had, the probability of this outcome would be 

(0.23)̂  = 0.012. It would th^efore be concluded that britarmica differed 

significantfy from the other birds observed, in that they did not take any worms. 

This technique considers only whether a bird fed on worms or did not, and does 

not consider the number of worms taken by an individual The numbers taken in 

each S minute observation on a given day did not appear to follow either a poisson 

or normal distribution and thus, no realistic probabilities could be assigned to a 

particular number of worms taken; hence the binomial approach was used. The act 

of taking a worm appeared to be good indicator of an increase in preference for 

large prey coirpared with other times, given that on some days no indiviuals were 

observed to take worms, whilst on other days the majority of birds did so. 

4.2.5 The effect of weather on foraging behaviour 

Foraging rates were compated with measurements of windspeed and air 

ten^erature taken simultaneously with observations. Measurements of mean 

hourfy windspeed (in m/s at 10m) and mean hourly air tenq)erature (°C) were taken 

at Graythorp (data supphed by Hartlepool Borough Council) 2km from Seal 

Sands. 
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4.3 Results & Discussion 

4.3.1 Foraging behaviour and race 

In order to compare pecking rate, padng rate and paces per peck between robusta 

(n=32 in 93/94; n=26 m 94/95) and britannica (n=41 m 93/94; n=33 m 94/95), the 

vahxe of each parameter for a particular individual was subtiacted from the relevant 

mean value for all Redshank on the same day (mchiding those of unknown race) 

given in Appendix IV: Figure 1. There were no significant differences between 

races within both 1993/94 and 1994/95 in the deviations between individual and 

mean foraging parameters, which did not also deviate significantly from zero 

(Table 4.1). 

43.2 Seasonal changes in foraging behaviour 

In both races, pecking rate was significantiy higher in 1993/94 than 1994/95, whilst 

the number of paces per peck was significantly lower in 1993/94 (Table 4.2). 

Pacing rate oibritannica was significantly higher in 1994/95, though not 

significantiy so in robusta (Table 4.2). 

Despite both races showing apparent daify variation in pecking rate (Figure 4.3), 

pacing rate (Figure 4.4) and paces per peck (Figure 4.5), this variation was not 

significant (Kruskal WalHs test P>0.05). The lack of significance in daily variation 

in foraging was probabfy due to large individual variation coupled with small 

sample sizes, since daily variation was significant VAMSD. all birds (including those of 

imknown race) were considered (see Appendix IV). The daily variation in pecking 

rates, pacing rates and paces per peck of of each race did appear to mirtor those 

shown by all birds in Appendix IV. Indeed the daily median of at least one 

foragmg parameter of each race in each winter was significantly cortelated with the 
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Table 4.1: Comparison of mean differences between individual and 

population mean pecking rates, pacing rates and paces per peck of robusta 

and britannica Redshank during a) 1993/94 and b) 1994/95 

a) 1993/94 

robusta (n=32) 

mean ± 95%CI 

britannica (n=40) 

mean ± 95%CI tdf 

pecking rate -1.4±3.9 0.4±1.8 0.39444 ns 

pacing rate -0.7±5.7 -0.7±3.5 -0.0170 ns 

paces per peck -0.01±0.27 -0.011O.14 0.0246 ns 

b) 1994/95 

robusta (n=26) 

mean ± 95%CI 

britannica (n=33) 

mean ± 95%CI tdf 

pecking rate 2.1±2.2 0.0±1.9 1.4557 ns 

pacing rate -0.2±3.9 -1.3±3.7 0.4257 ns 

paces per peck -0.45±0.65 0.03±0.44 -1.2657 ns 
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Table 4.2: Kruskal-Wallis test statistics (x'l) of variation due to year (Le. 

1993/94 or 1994/95) in pecking rate, pacing rate and paces per peck of 

robusta and britannica Redshank 

britannica robusta 

Pecking rate 29 4*** 28.7*** 

Pacing rate 11.7** 2.4 ns 

Paces per peck 28.7*** 22.0*** 

ns not significant Le. P>0.05 

** significance level of P<0.001 

*** significance level of P<0.0001 
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Figure 4.3: Changes in pecking rate of robusta and britannica 
Redshank with day number during the winters of a) 1993/94 and b) 
1994/95. (Day number 1 = 1 Jan 1993 or 1 Jan 1994 for the 1993/94 
and 1994/95 winters respectively). 
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Figure 4.4: Changes in pacing rate of robusta and britannica 
Redshank with day number during the winters of a) 1993/94 and b) 
1994/95. (Day number 1 = IJan 1993 or 1 Jan 1994 for the 1993/94 
and 1994/95 winters respectively). 
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Figure 4.5: Changes in paces per peck of robusta and britannica 
Redshank with day number during the winters of a) 1993/94 and b) 
1994/95. (Day number 1 = 1 Jan 1993 or 1 Jan 1994 for the 1993/94 
and 1994/95 winters respectively). 
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daily mean of that parameter for all birds taken from Appendix IV (see Table 4.3 

for correlation statistics). 

In 1993/94 britannica showed significant monthly variation in both pecking rate 

and paces per peck (Kruskal-Wallis test %5=l 1.8, P<0.05 for pecking rate; x s = 

13.7, P<0.05 for paces per peck) but robusta did not. 

4^3 The effect of ambient temperature and windspeed on foraging 

behaviour 

Pecking rates, pacing rates and numbers of paces per peck were conq)ared to mean 

hourly air tenq)erature and wind speed at the time each observation was made. 

During the 1994/95 winter the pecking rate ofbritemnica was positively correlated 

with air teisperature but negatively correlated with wind speed and, since pacing 

rate was not correlated with windspeed, paces per peck rose significantly with 

windspeed (Table 4.4a). During 1994/95 the foraging behaviour of robusta was 

not correlated with air tenq)erature, though pecking rate of robusta was negatively 

correlated with with wind speed (Table 4.4b). 

The effects of air temperature and wiadspeed on the foraging of britaimica and 

robusta were consistent with those described in i^pendix FV for all the Redshank 

observed (including those of unknown race). The lack of significant correlation of 

air teirperature with pacing rate and paces per peck of britannica, in contrast to 

the significant negative correlations shown by all birds (Appendix IV), was 

probably due to a small sample size (n=33 in britannica conqjared to n=184 for all 

Redshank) smce the sign of rg was the same in both groups. This was also true for 

robusta (n=26) for which no significant correlation was shown between air 

ten^erature and any foraging rate parameter. 
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Table 4^: Spearman rank correlation coefficients r, between daily median 

foraging parameters of a) robusta and b) britannica and daily mean foraging 

parameters of all Redshank shown in Appendix IV. 

a) robusta 

pecking rate pacing rate paces per peck 

1993/94 (n=7) 0.714 ns 0.893 * 0.652 ns 

1994/95 (n=8) 0.935 ** 0.423 ns 0.750 * 

b) britannica 

pecking rate pacing rate paces per peck 

1993/94 (n=13) 0.623 * 0.762 ** 0.787 ** 

1994/95 (n=10) 0.469 ns 0.380 ns 0.676 * 

ns not significant ie. P>0.05 

* significance level of P<0.05 

** significance level of P<0.005 
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Table 4.4: Spearman rank correlation coefficients r̂  between foraging 

parameters and measurements of air temperature and wind speed taken at 

the time of foraging observations during the winter (Oct-Mar) of 1994/95 for 

a) robusta and b) britannica Redshank, 

a) robusta (n=26) 

air temperature wind speed 

Pecking Rate 

Pacing Rate 

Paces per Peck 

0.041 ns 

-0.076 ns 

-0.002 ns 

-0.579 ** 

-0.371 ns 

0.286 ns 

b) britannica (n=33) 

air temperature wind speed 

Pecking Rate 

Pacing Rate 

Paces per Peck 

0.344 * 

-0.134 ns 

-0.330 ns 

-0.385 * 

0.271 ns 

0.386 * 

ns 
* 

** 

not significant Le. P>0.05 

significance level of P<0.05 

significance level of P<0.01 
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The eflFects of weather on foraging behaviour in Redshank during the 1994/95 

winter were consistent with existing theories on how weather can affect foraging 

behaviour, either directly or mdirectfy by altering prey density. The reduced 

pecking rate at low ten^eratures would indicate a lower detectabiUty or availability 

of prey due to reduced activity of prey near the surface of the sediment (Goss-

Custard, 1969; Evans, 1976; Pienkowski, 1983; Speakman, 1984). Consequently, 

searching effort (in terms of paces per peck) was greater at lower temperatures as 

the density of available prey decreased (Goss-Custard, 1970; Speakman, 1983). 

The reduced pacing and pecking rates observed at higher windspeeds on the open 

mudfats of Scalloped Mud confirm Davidson's (1981) suspicion that high winds 

hinder Redshank foraging, as shown m other long-legged shorebirds (Smith, 1975; 

Dagmetai, 1981). Buffettmg by high winds clearly interrupted the pacing 

rhythm of foraging Redshank and hence, reduced the area searched per unit time. 

The reduced area of mud searched may have caused the reduced peckmg rate at 

high windspeeds because fewer prey were encountered. Additionally, high winds 

may have impaired the ability of the Redshank to detect visual cues indicating the 

prescence of prey; or may have enhanced drying of the surface of the sediment, 

possibly reducing prey activity (Evans, 1976). 

In contrast to the 1994/95 winter, fora^g behaviour of robusta and britannica 

during the 1993/94 winter was not significantly correlated with either air 

ten^erature or wind speed. The lack of significant correlations in both races 

during 1993/94 was unlikely to result solely from small sanq)le sizes since when all 

birds were considered in Appendix IV, the only significant (negative) correlation 

was between pacing rate and air tenq)erature. 

The lack of correlation between foraging behaviour and weather conditions dtuing 

1993/94 coiiq)ared to 1994/95, might have been explained by differences between 

the two winters in the conditions on the days that foraging observations were 

made. It may have been that the majority of observation days in 1993/94 had 
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milder (ie. higher air temperatures and lower wind speeds) and less varied weather 

conditions than those in 1994/95. Therefore in 1993/94, pecking rate for exanq>le, 

could be maintained at a higher and more constant level; hence no correlation 

between pecking rate and weather conditions would exist. However, these 

explanations can be dismissed, since overall, there was no significant difference 

between air tenq)erature or wind speed during each observation in the two winters 

(Table 4.5). 

4.3.4 Prey density and foraging behaviour 

A more likely e?q)lanation for the differences in foraging behaviour of both races 

during the two winters is that prey density was higher during 1993/94. Figure 4.6 

shows data taken from Evans et al. (1996) on densities of Corophium volutator 

measured from sediment cores taken in spring and autumn from 10 saixphng 

stations on Scalloped Mud. The large variation m densities between sanq)hng 

stations makes statistical conqjarisons between sampling periods difficult. 

However, Figure 4.6 clearly shows a marked and consistent decrease in densities of 

Corophium at aU sanq)Ung stations between autumn 1993 and autumn 1994. Most 

intertidal benthos reproduces in summer and is therefore most abundant in autumn. 

Densities oi Corophium fell from a maximum of4775m' in autumn 1993 to no 

more than 99m' in autumn 1994 and were equally low in spring 1995. Goss-

Custard (1977a) foimd that at high densities, Corophium was the preferred prey of 

Redshank. However, at densities of less than 300m', intake of Corophium 

decreased sharply and alternative prey were sought. Thus, the decrease in pecking 

rate and increase in paces per peck of both races in 1994/95 was probably caused 

by a marked reduction in the density of their preferred prey. It also appears that at 

high densities of Corophium, foraging rate is independant of prey behaviour under 

the range of weather conditions covered by this study. This 
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milder (Le. higher air tenq>eratures and lower wind speeds) and less varied weather 

conditions than those in 1994/95. Therefore in 1993/94, peckmg rate for example, 

could be maintained at a higher and more constant level; hence no correlation 

between pecking rate and weather conditions would exist. However, these 

e7q)lanations can be dismissed, since overall, there was no significant difference 

between air tenq)erature or wind speed during each observation in the two winters 

(Table 4.5). 

4.3.4 Prey density and foraging behaviour 

A more likely explanation for the differences in foraging behaviotir of both races 

during the two winters is that prey density was higher during 1993/94. Figure 4.6 

shows data taken from Evans, Ward & Mercer (1996) on densities ofCorophium 

volutator measured from sediment cores taken in spring and autumn from 10 

san:q)ling stations on Scalloped Mud. The large variation in densities between 

san[q)]ing stations makes statistical con:q)arisons between saixpling periods 

difiBlcult. However, Figure 4.6 clearly shows a marked and consistent decrease in 

densities of Corophium at all saiiq)]ing stations between autumn 1993 and autumn 

1994. Most intertidal benthos reproduces in sunnner and is therefore most 

abundant m autumn. Densities of Corophium fell from a maxhnum of4775m"^ in 

autumn 1993 to no more than 99m'̂  in autumn 1994 and were equally low in 

spring 1995. Goss-Custard (1977a) found that at high densities, Corophium was 

the preferred prey of Redshank However, at densities of less than 300m"̂ , intake 

of Corophium decreased sharpfy and ahemative prey were sought. Thus, the 

decrease in pecking rate and increase in paces per peck of both races in 1994/95 

was probably caused by a marked reduction in the density of their preferred prey. 

It also appears that at high densities ofCorophium, foraging rate is independant of 

prey behaviour under the range of weather conditions covered by this study. This 
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Table 4.5: Mean (in bold), S£ (in parentheses), minimum and maximum air 

temperature, windspeed and M^̂ ĵ t during 5 minute foraging observation 

periods in 1993/94 (n=223) and 1994/95 (n=184). 

1993/94 1994/95 t 

Air temperature (°C) 6.3 (0.28) 6.4 (0.33) -0.20 ns 

-2.6-14.1 -5.2-15.7 

Wind speed (m/s) 4.2(0.13) 3.8 (0.12) [U=18876 ns] 

1.0-9.0 0.5-7.1 
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is not an unreasonable conclusion since Goss-Custard (1977a) found that intake 

rate of Corophium (under sunilar tenq)erature conditions ie mud ten^erature >6° 

C) was similar over a wide range of densities (around 300-5000+m'2) at different 

sites. 

The substantial decline hi the densities of Corophium on Scalloped Mud may also 

have been accoiiq)anied by a decline in the density of the gastropod Hydrobia 

ulvae. Between autumn 1993 and autumn 1994, the densities of Hydrobia either 

decreased or remahied below 99m"̂  at 7 oiit of 10 samphng sites and the maxinnim 

density fell from 11,837 to 7,460m'̂  (Figure 4.7). Goss-Custard (1977a) found 

that in areas where Corophium was absent, few small prey items (including 

Hydrobia) were taken; worms and other large items were taken instead. It appears 

therefore, that the density of Hydrobia would be relatively imuiportant in affecting 

foraging behaviour, though proving this was beyond the scope of this study. The 

role of worms in the diet of Redshank at Seal Sands is discussed m Appendix IV. 

4.3.5 Numbers of larger prey items taken 

For each day in both winters on \ ^ c h individuals of both races were observed, 

there was no significant difference (P>0.05) between the number of birds within a 

particular race and the number in the san:q)le as a whole taking worms (see section 

4.2.4). 

4.3.6 Time Spent Foraging 

The individuals \\duch made up the Redshank flock at Seal Sands numbered 

between 120 and 620 m 1993/94 and 140 and 750 in 1994/95, and were 

synchronous in their activities. Whilst the majority were foraging, less than 10% 

were preening, roosting or standing. During the day (when this study was 

conducted) the majority of birds were foraging from at least 2 hoiirs before MLWS 
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until between 2h and 4h 24min (1993/94) or between 2h 6mni and 4h 13mni 

(1994/95) after Low Water. There was no apparent difference between each of the 

two races and Redshank as a w^ole, in the way time was apportioned to separate 

activities. At any one time, the proportions of the individuals of a particular race 

assigned to a particular activity were not different from the proportion of the flock 

as a whole performing the same activity. 

4.4 General Discussion 

4.4.1 Racial differences in foraging 

During this study, both races appear to have been equalfy capable of meeting their 

respective energy demands through foragmg. Despite having a greater energy 

demand per unit body mass, robusta maintained a similar rate of foraging (v^iiich 

inferred a similar rate of intake) and foraged for similar penods to britannica. The 

robusta did not increase their energy intake by taking more energy-rich large 

worms. However, smce small prey items {Corophium and Hydrobia) 

predominated in the diet, robusta might in fact have been selecting the larger size 

classes of prey such as Corophium and Hydrobia, though proving this was beyond 

the confines of this study. 

Observations during this study did not take place during prolonged periods of sub­

zero temqperatures, viiiich were shown in Chapter 3 to seriously inqjair the ability of 

Redshank to maintain an energy balance. It may be that dming such periods, 

robusta wotild have to increase their energy intake by making much more obvious 

changes in their foraging behaviour than cotild be detected during the mild 

conditions under wiiich this study was conducted. 

96 



4.4.2 Consequences of changes in foraging behaviour on body mass 

It might be expected that the lower pecking rate and consequentfy lower intake of 

small prey of both robusta and britannica va. 1994/95 may have reduced their 

abihty to regulate their body mass throughout the winter as described in chapter 2, 

and hence led to lower body masses than m the previous winter. Despite small 

san^le sizes in 1994/95 Figure 4.8 shows that during Novaniber 1994 size-

adjusted body mass BM' of robusta was in &ct significantly higher than diuing 

November 1993.(t3o=3.551 P<0.01). Mean November BM' of britannica also 

appeared to be higher in 1994 than in 1993, but was not significantly so. 

November BM' of robusta was not significantly different from that of britannica 

during both 1993 and 1994. 

A possible explanation of higher body mass in November 1994 (when prey density 

was apparently lower than in the previous November) is that Redshank in 1994 

were responding to the low density of Corophium by building vcp more fet stores in 

early winter as insurance against unpredictable food intake during the rest of the 

winter. This e7q>lanation follows Lima's (1986) model vMdiy predicted that birds 

faced with less predictable food supply during winter would accumulate more 

insurance than those with more predictable food sources given that predation 

risk was the same in both cases. Certainly, the differences between the foraging 

responses of robusta and britannica, and of Redshank as a whole (Appendix IV) 

to weather during 1993/94 and 1994/95 suggest that food intake and the ability to 

satisfy energy demand was less predictable in 1994/95. Due to insufficient data it 

is unclear whether the insurance fat accumulated in November 1994 was sufficient 

to maintain 'normal' body mass later in that winter. 
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5.0 Mobilisation of body reserves during severe weather 

5.1 Introduction 

The aim of this chapter is to determine the extent to \̂ ûch body reserves of 

robusta and britannica are mobilised prior to death following periods of severe 

weather. In doing so, I will determine the most likely cause of death (ie. i) 

starvation, or ii) an inability to mobilise reserves &st enough to meet immediate 

energy demands) in each race following severe weather. By combining information 

on levels of fiit and protem reserves by the two races at death with levels of 

reserves carried during 'normal' winter weather (Chapter 2), it wiH be possible to 

determine the amount of reserves that are actualfy available for mobilisation when 

energy intake from food is insufficient to satisfy high energy demands for 

maintenance during severe weather. Hence, by combining knowledge of the 

energy available in reserve and the levels of energy expenditure (Chapter 3), one 

can estimate the e?q)ected survival times of each race, assuming that all energy is 

being derived from body reserves. The expected survival times of each race will 

give an indication of their potential to survive through periods when maintenance 

costs are high and energy intake from food is hkely to be relatively low. 

This chapter will present mformation on the body con:q)osition of both races of 

Redshank v\4iich died on the Wash following severe weather in February 1991. 

Unusually for such events the time at wtolch mortality began is known with 

reasonable confidence, around 10 February given the state of corpses w4uch were 

first found on 17 February (Clark et al., 1993). The time at which mortality started 

during February 1991 is more definite at Teesmouth, where the first Redshank 

corpses were recovered on 12 February (pers. comm R M. Ward). Therefore, the 

energy expenditure prior to death at Teesmouth and the Wash was modelled using 

the predictive models for formulated m Chapter 3. By con5)aring between 

races, the proportion of total energy expenditiure prior to death wtoch was suppUed 
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by the catabohsm of body reserves and by the assimilation of food, it is hoped to 

determine which race is more vulnerable during severe weather. 

5.2 Methods 

5.2.1 Carcass Analysis 

Those corpses wdiich were analysed during this study were collected from the 

Wash shoreline at Terrington, Thomham and the eastem Wash on 16 and 17 

February 1991. On the day of collection, each intact corpse was aged according to 

plumage characteristics (Prater et al, 1977) and sexed by dissection. 

Measurements were taken of wing-length (maximum chord) to 1mm using a 

stopped rule, bill-length to 0.1mm using vernier callipers and tarsus-toe to 1mm 

using a stopped rule (see Clark et al, 1993). The discriminate fimction formula of 

Summers et al. (1988) was apphed to measurements of wing-length, bill-length and 

tarsus-toe in order to predict racial origm. The corpses were then deep-frozen 

together. 

In June 1994, a sanq)le of Redshank corpses were obtamed by permission from N. 

A. Clark and J. A. Clark of the British Trust for Ornithology. The corpses were 

partially defrosted to enable the separation of each corpse which was then 

individually sealed in polythene bags and re-frozen. 

A total of 59 carcasses were destructively analysed, of which 31 were identified as 

robusta (16 females and 15 males) and 28 as britannica (13 females and 15 

males). Each corpse was defrosted and then weighed to the nearest mg on a 

torsion balance. The liver and left pectoral muscle block (consisting of pectoralis 

major and supracoracoideus) were dissected out and weighed to the nearest mg. 

Four skeletal measurements of the area of attachment were taken to 0. Inmi usmg 

vernier callipers as shown in Piersma et al. (1984) to estimate the 
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by the catabolism of body reserves and by the asshnilation of food, it is hoped to 

determine wiiich race is more vulnerable during severe weather. 

5.2 Methods 
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plumage characteristics (Prater et al., 1977) and sexed by dissection. 
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partially defrosted to enable the separation of each corpse vAdch was then 

individualfy sealed in polythene bags and re-frozen. 

A total of 59 carcasses were destructively analysed, of wiiich 31 were identified as 

robusta (16 females and 15 males) and 28 as britannica (13 females and 15 

males). Each corpse was defrosted and then weighed to the nearest mg on a 

torsion balance. The liver and left pectoral muscle block (consisting ofpectoralis 

major and supracoracoideus) were dissected out and weighed to the nearest mg. 

Four skeletal measurements of the area of attachment were taken to 0.1mm using 

vernier callipers as shown m Piersma, Davidson & Evans (1984) to estimate the 
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standard muscle volume SMV. SMV is an estimation of the space in the thorax 

which could potentially be occupied by the pectoral muscles and is used to 

standardise measurements of muscle mass (see below). 

The dissected carcass, pectoral muscle and hver were dried to constant mass at 

4 0 ^ in a vacumn oven. Storage hpids (triglycerides), were extracted from the 

dissected carcass, pectoral muscle and liver using a Sohxlet extractor and 

petroleum ether as a solvent. The liver and pectoral muscle were ground in a 

pestle & mortar prior to extraction. The fat-free carcass, pectoral muscle and liver 

were dried to constant mass at 40°C in a vacuum oven. 

Table 5.1 lists abbreviations and definitions of parameters of body conq)osttion 

used in this study. 

Body size S was calculated for each carcass from equation 2.1 (Section 2.2.2) 

incoiporating measurements of wing-length, bill-length and tarsus-toe. BM, 

TDBM TLM and TLDM of each carcass were adjusted for body size ia a similar 

way to that used to adjust BM and PTLM of live wild Redshank in Sections 2.2.2 

and 2.2.5 respectively. Hie regressions of BM, IDBM, TLM and TLDM with S 

are given below in equations 5.1-5.4. 

BM = (S * 1.34) - 113.8 n = 58 = 0.16 P<0.002 5.1 

TDBM = (S * 0.58) - 58.7 n = 59R^ = 0.21 P<0.001 5.2 

TLM = (S * 1.38) - 122.1 n = 52 R' = 0.24 P<0.001 5.3 

TTDM = (S * 0.44) - 37.9 n = 52R^ = 0.37 P<0.0001 5.4 

The regressions in equations 5.1-5.4 are based on all carcasses smce there was no 

significant difference between the slopes or intercepts of each regression when 

carcasses of the two races were treated separately (MANOVA P>0.05). The slope 
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Table 5.1: Abbreviations and definitions of body composition parameters 

Abbreviation Definition 

BM total body mass 

TDBM total diy body mass 

TLDM total lean (after lq)id extraction) dry mass 

FM mass of total extractable fat = (TDBM - TLDM) 

T L M total lean mass = (TBM - TFM) 

L I Lipid Index = ((TFM/TBM)*100) 

D L I dry lq)id index = ((TFM/TDBM)* 100) 

WATER percentage water content = ((TBM-TDBM/TLM)*100) 

MUSLDM lean dry mass of one pectoral muscle block 

SMV standard muscle volume 

SMI standard muscle index = (MUSLDM/SMV) 

M I muscle index = ((2*MUSLDM)/1LM)*100) 

LIVLDM lean dry mass of liver 

U V I liver index = ((LIVLDM/TLDM)* 100) 

MUSLI muscle hpid index = (mass of extractable lipid of one pectoral 
muscle block)/(lean mass of one pectoral muscle block) 

L I V I I liver hpid index = (mass of extractable l^id of liver)/(lean mass of 
liver) 

101 



of each of equations 5.1-5.4 were then used to create the adjustment terms bm, 

tdbm, tlm and tldm respectively in equations 5.5-5.8: 

bm=1.34*Sd 5.5 

tdbm = 0.58 *Sd 5.6 

thn=1.38*Sd 5.7 

tldm = 0.44 *Sd 5.8 

vdiere Sd = S' - S; wdiere S' = 160.5 vdiich was the mean value of S in 633 wild 

aduh Redshank at Teesmouth (see section 2.2.2). 

Size-adjusted body mass BM'd, dry body mass TDBM'd, total lean mass TLM'd 

and total lean dry mass TLDM'd at death were calculated as: 

BM'd = BM + bm 5.9 

TDBM'd = TDBM + tdbm 5.10 

TLM'd = TLM+ thn 5.11 

ITDM'd = TLDM + tldm 5.12 

Therefore, the size-adjusted mass of fet at death FM'd was calculated as: 

EM'd = TDBM'd - TLDM'd 5.13 

5.2.2 Estimation of the size of available reserves 

Mean size-adjusted body mass BM' and total lean mass FILM' (predicted using 

TOBEC) of live wild robusta and britannica at Teesmouth during January (taken 

jfrom Chapter 2) were used as estimates of'normal' body mass BM '̂  and lean 
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mass P T L M ' n of both races of equal size S = 160.5, prior to the onset of severe 

weather at the beginning of February 1991. The mass of fet FM'n of a Redshank 

of each race and of S=160.5, was calculated as BMminus PTLM'n. The mass of 

fat reserve available for catabolism FM'R in Redshank of each race of S=160.5 was 

calculated as: 

F M ' R = F M ; - F M ' d 5.14 

The mass of protein available for catabolism L D M 'R in Redshank of each race of 

S=160.5 was calculated as: 

LDM'R = P L D M ; - TLDM'd 5.15 

where PLDM'n is an estimation of lean dry mass of live Redshank of S= 160.5 prior 

to the onset of severe weather in February 1991, calculated as : 

PLDM'n = 0.33 * P T L M ; 5.16 

vilhsie 0.33 is the proportion of lean dry mass to fresh lean mass of Redshank ia 

'normal' condition (L Scott, unpubL data), Le. 67% of lean mass is water. 

The total amount of energy Eres available for assnnilation of fat and protem 

reserves in a Redshank of either race of S=160.5 was calculated as: 

E,es = (17.99 * L D M R) + (39.33 * FM'R) 5.17 

v^ere 17.99 and 39.33 are the energy vahies in KJ/g of proteia and fat respectively 

(Schmidt-Nielsen, 1984). 

5.2.3 Estimation of Survival time 

The period of 6 - 14 February 1991 was, for the purposes of this study, considered 

to have been severe and necessitated the use of body reserves to supplement the 
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energy intake from feeding. The period of 6 -14 February 1991 was defined as 

severe because on each day, the daily total ^ ^ ^ t of each race exceeded 2.5xBMR 

(see Chapter 3) and mean daity air tenq)eratuie was below OT. The length of time 

T (days) for v^ îich a Redshank of either race could survive on the energy 

assimilated from fat and protein reserves alone was calculated as: 

T = Etot/E«s 5.18 

v^ere Etotis the total daily energy e?q)enditure in KJ, estimated by adding an 

activity cost of l.SxBMR to estimated daily MnBmt-(see chapter 3) for a Redshank 

of BM'= 152. Ig and of BM' = 156.2g, the mean values for britcmnica and robusta 

respectively during January at Teesmouth (Chapter 2). 

5.3 Results 

53.1 Body composition at death 

Table 5.2 shows a comparison of all body con:q)osition parameters at death 

between robusta and britannica. BM, TDBM, TLM and I I D M were all 

significantly greater in robusta corpses. However, robusta were significantly 

larger in body size S and the size-adjusted parameters BM'd, TDBM'd, TLM'd 

and TIDM'd were not significantly different between the two races. 

The pectoral imiscles had almost halved in size conq)ared to presumed typical 

measurements of SMI and M I of 0.176(±0.49) and 4.2%(±0.6) respectively taken 

from Redshank during a 'mild' February at Teesmouth by Davidson (1981a). 

Despite having the same total fresh and dry lean masses -whea. adjusted for body 

size, the mass of pectoral muscle relative to body size (measured by SMI and MI) 

was significantfy larger in corpses of britannica (Table 5.2). Tbe differaices in 

SMI and MI were purely racial, since neither SMI or MI was significantly 
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Table 5.2: Composition of corpses of robusta and britannica collected from 

the Wash following severe weather in February 1991. * indicates t-test was 

performed on arcsine-transformed percentages 

robusta britannica 

tdf P mean±95%CI n mean±95%CI n tdf P 

B M g 107.9±5.9 30 97.9±4.5 28 2.7556 0.008 

TDBMg 37.3±2.3 31 32.6±1.3 28 3.5457 0.001 

T L M g 104.3±5.4 26 95.9±4.3 26 2.5O50 0.016 

TLDMg 34.7±1.1 26 31.5±1.2 26 4.0450 <0.001 

WATER % 66.4±1.3 26 67.1±0.9 26 0.8650* 0.394 

FMg 0.81±0.15 26 1.01±0.24 26 1.4650 0.150 

L I % 0.79±0.15 26 1.01±0.20 26 I.8I50* 0.076 

D U % 2.29±0.41 26 3.01±0.59 26 1.9850* 0.053 

MUSLDMg 1.258±0.114 28 1.344±0.104 28 1.1457 0.261 

s m 0.072±0.007 28 0.086±0.008 28 2.5257 0.015 

M I % 2.37±0.24 26 2.78±0.25 26 2.5250* 0.015 

LIVLDMg 0.492±0.045 26 0.461±0.049 26 0.9756 0.334 

L I V I % 1.41±0.12 26 1.45±0.15 28 O.4I50* 0.680 

MUSLI % 1.21±0.54 28 1.09±0.34 28 0.2857* 0.782 

L I V L I % 2.99±0.19 28 3.39±0.41 28 1.7541* 0.093 

S 164.6±1.0 28 158.1±1.2 28 8.3657 0.001 

BM'd g 102.6±5.9 28 101.2±3.8 28 O.4OO56 0.693 

TDBM'd g 35.0±2.2 28 34.0±1.2 28 0.7245 0.462 

TLM'd g 98.6±5.1 26 99.6±3.7 26 -0.3250 0.748 

TLDM'd g 32.9±1.0 26 32.6±1.1 26 0.3150 0.758 

0.23±0.20 26 1.38±0.24 26 7.3O50 <0.001 
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correlated with S within each race. The lean mass of liver and LIVIN were snnflar 

in corpses of both races. 

Fat reserves were almost coropletely depleted, with around Ig or 1% (LI) 

remaining in both races. L I and DLI were slightly higher in britannica corpses, 

tbough not significantly so (Table 2.2). The relative amounts of &t in pectoral 

muscle (MUSLI) and Kver (LIVLI) were similar in both races. However, for a bird 

of size S=160.5, the mass of frit remaining at death FM'^ was significantly larger in 

britannica. Absolute and relative ht levels were similar in both male and female 

robusta; however, Table 5.3 shows significant differences in fat levels in corpses of 

male and female britannica. Female britannica died with sigmficantly higher FM, 

L I , DLI and MUSLI than male britannica These differences in hpid levels 

between ntiale and female britannica appeared to result from females being larger 

in body size than males, since, even thou^ there was no significant difference in S 

between the sexes, FM'<j was not significantly larger in females. Fat content of the 

liver (LIVLI) of britannica was similar in both sexes. 

5.3.2 Estimated survival time 

Table 5.4 shows how an individual of each race but of equal body size had very 

similar energy reserves to mobilise during periods of negative energy balance in 

February 1991. However, the lower Mmamt of britannica meant that it could 

survive purely on its fet and protein reserves for half a day longer than robusta at 

both the Wash and TeesmoutL 
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Table 5.3: Parameters of body size and lipid content in corpses of male and 

female britannica collected from the Wash in February 1991. 

female male tdf P 

mean±95% 
CI 

n mean±95% CI n 

S 158.7±1.3 13 157.5±2.1 15 -1.0926 (0.285) 

FMg 1.26±0.19 . 13 0.75±0.09 15 2.4224 0.024 

L I % 1.22±0.16 13 0.80±0.08 15 2.2824* 0.032 

F M „ 1.51±0.40 13 1.25±0.28 15 0.3024 (0.242) 

D U % 3.62±0.45 13 2.39±0.27 15 2.2l24* 0.037 

MUSLI % 1.47±0.33 13 0.75±0.06 15 2.9926* 0.006 

L I V L I % 3.58±0.30 13 3.24±0.27 15 0.9628* (0.348) 

t-test performed on arcsine-transformed percentages 
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Table 5.4: Estimated enei^ reserves and survival time of robusta and 

britannica adjusted to an equal body size 8=160.5. 

britannica robusta 

PLDM'n 45.3g 44.4g 

PTLM'd 32.6g 32.9g 

LDM'R 12.7g 17.5g 

228KJ 207KJ 

19.0g 17.7g 

FM'd 1.4g 0.2g 

FM'R 17.6g 17.5g 

692KJ 688KJ 

Eres 921KJ 895KJ 

Mean dailŷ  Etot on the 
Wash 

357KJ/d 424KJ/d 

Estimated survival time T 
on the Wash 

2.6days 2.1days 

Mean daily Etot at 
Teesmouth 

341KJ/d 405KJ/d 

Estimated survival time T 
at Teesmouth 

2.7days 2.2days 
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5.4 Discussion 

5.4.1 Body composition at death 

Both races died with around 1% (LI) of extractable fet remaining at death, vMch is 

consistent with other studies of Redshank (Davidson & Evans, 1982) and of other 

species (e.g. Marcstrom & Mascher, 1978 on Lapwing (Vanellus vanellus) and 

Oystercatcher; Piersma et ai. In Press on Knot and Oystercatcher) in v^ch the 

corq)osition of birds which had died follownig severe weather was analysed. The 

femanung 1% of fet at death has been tenned 'structural lq)id' by some authors 

(e.g. Davidson & Evans, 1982; Piersma et ai, In Press) wiich would imply that 

this residual fat is con:̂ )osed of phospho]q)ids rather than storage lq)ids (Le. 

triglycerides). However, the studies mentioned above all used petroleum ether as 

an extraction solvent which only removes triglycerides and not phospholq)ids 

(Blem, 1990). It is therefore inaccurate to describe the residual 1% of extractable 

fat as 'structural', since it is actual^ storage li|}id which could not be mobilised. 

The extensive use of breast muscle and other lean tissue by Redshank of both races 

is consistent with other studies, in which the birds analysed were believed to have 

died of starvation (Marcstrom & Mascher, 1978; Visser, 1978; Davidson & Evans, 

1982; Davidson & Clark, 1985b; Clark & Davidson, 1986; Piersma etal, In 

Press), rather than an iaability to mobilise reserves fast enough to satisfy immediate 

energy demands (Davidson & Clark, 1985b). The fact that both races had almost 

depleted their fat reserves and substantially used protein reserves is consistent with 

what would be expected in fasting birds which mobilise available lipid reserves 

before catabolismg protein (Le Maho, 1983; Cherel & Le Maho, 1985). The 

utilisation of pectoral muscle protehx indicated that both races had reached a point 

whereby further catabolism of proteia would be structurally damaging. It appears 

from my conQ)arison of body con5)osition in wild and captive Redshank (Chapter 
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2) that protein in the liver and alimentary canal can be catabohsed more readily and 

with less fitness costs than muscle protein. 

Both races of Redshank died with the same amoimts of lean tissue relative to body 

size, though slightly more fat and proportionately larger pectoral muscles remained 

in britannica. Hersma et al. (In Press) demonstrated that individuals within a 

species of shorebird (Knot, Dunlin and Oystercatcher) \̂ Mch appeared to have 

higher overall energy demands prior to death from starvation, died with a hi^er 

mass of lean tissues. Likewise, Davidson & Evans (1982) found that Redshank 

which died following severely low tenq>eratures in Montrose, Scotland ia January 

1982 had consistently hi^er BM, TLM, M I and significantly higher L I than 

Redshank which died following slightly warmer but windier conditions in 1979 on 

the Ythan Estuary. Piersma et al. (In Press) reasoned that birds died when the 

overall energy output from the metabolically active lean tissues was lower than that 

required for maintenance. They argued that therefore, individuals wiiich needed to 

produce large amounts of energy for 'iArasM. required a larger lean mass to do so 

and therefore died with a larger lean mass than individiials with the same output 

per gram of tissue but a lower demand for Mnian,t- ^ W study, robusta had a 

higher Mjoaj^t than britannica before dying in February 1991 (Table 5.4) but the 

output from the tissues (ie. mass-specific BMR) of robusta was also higher 

(Chapter 3) by the same amount (Le. at a particular 1^, Mnjajm of each race 

amounts to the same multq>le of their respective BMR's: Chapter 3). Therefore, 

individual robusta and britannica of the same body size could satisfy their 

respective demands for Mn^n,t with the same mass of lean tissue and consequently 

died of starvation with the same mass of lean tissue remaining. 

The significantly larger SMI and FM'^ in britannica at death may have been due to 

a difference in physiology betweai the two races, in that more storage lq)id and 

proportionately more pectoral muscle protein were available for mobilisation in 

britannica. Altematively, smce britannica could survive for longer on their 
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reserves, the majority of britannica -winch died may have done so after conditions 

which required sUghtly more energy for M^i„t. Indeed, mean daily air 

tenq)eratures were lowest at the end of the severe period (Figure 5.1). 

5.4.2 Implications of survival time of robusta and britannica 

Both robusta and britannica had similar sized energy reserves to draw from during 

the severe weather in February 1991, but daily energy e?q)enditure was higher in 

robusta which therefore needed to assimilate more energy from food con^ared to 

britannica which could survive on their reserves alone for half a day longer. It 

would appear then, that robusta were under-insured ni terms of the amounts of fet 

and proteia which were accumulated in winter. Piersma et al. (In Press) found that 

northerly wintering Knot were under-iasured conq>ared to Knot wiatering in west 

Africa, since although the latter carried smaller reserves, they could survive on 

them alone for longer since costs of ^^aint were much lower. Both these instances 

of apparent under-iasurance lend additional siq)port for the thioldng that increasiag 

body mass in mid-winter has a cost (Witter & Cuthill, 1993) and consequentfy that 

the costs are traded-off against the potential advantages of canyiag iasurance 

reserves (Lima, 1986). 

Estimated survival times when satisfying mean daily energy costs only by the 

mobilisation of reserves between 6-14 February 1991 were 2.6-2.7 days for 

britannica and 2.1-2.2 days for robusta. Since the earUest day that Redshank 

started to die was probably 10 February on the Wash and certainly 12 February at 

Teesmouth, at least 1.4-3.4 (britannica) and 2.1-4.1 (robusta) days worth of the 

total energy requirements up until death must have been satisfied by the 

assimilation of food. Table 5.5. illustrates that the energy required from food per 

day during 6-14 February 1991 at Teesmouth was up to 80% and 76% of Etot in 

robusta and britannica respectivefy during 'mild' conditions in February 1983 and 
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1984. Sub-zero ten:q)eratures during February 1991 (Figure 5.1 and Table 5.5) 

must have had a detrimental effect on food intake (see Chapter 4) at Teesmouth. 

Even lower teiiq)eratures and higher wind speeds (Figure 5.1 and Table 5.5) 

probably fiuther reduced food intake on the Wash diuing February 1991 and may 

have been responsible for the apparently earUer start of mortality on the Wash 

compaied to Teesmouth. At both sites during February 1991 robusta had to 

obtain a higher percentage of'normal' Etot from food than britannica, in addition 

to requiring absolutely more en^gy from food assimilation. 

To conclude, during severe weather in February 1991 robusta had higher overall 

energy demands than britannica, and was able to survive for shorter periods by the 

mobilisation of fet and protem reserves. Under conditions v^ere food availability 

and intake was likely to be significantly reduced, robusta needed to assimilate more 

energy from food than britannica. Even though both races were present in the 

birds which died, I predict that robusta were over-represented in those Redshank 

which died since they were under-insured by body reserves and therefore had a 

greater reliance on energy assimilated from food \\4ien food intake was probably 

severely restricted. It is unfortunate that the overall racial composition of 

Redshank that died during periods of severe weather has not been determined 
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Table 5.5: Mean daily air temperature and windspeed and #enei^ required 

from food per day during February 1991 compared to temperature, wind 

speed and *total daily energy requirement at Teesmouth during February 

1983 and 1984 when no large-scale mortality occurred. Percentages in 

parentheses equal energy required from food as a percentage of daily energy 

requirements in February 1983 and 1984. 

britannica robusta 

Period 

mean daily 
energy 

requirements 
KJ/d 

mean daily 
energy 

requirements 
KJ/d 

daily mean 
air temp. 

"C 

daily mean 
wind speed 

mJs 

Feb 1983 311* 379* 2.6 4.3 
Teesmouth 

Feb 1984 314* 383* 3.8 5.1 
Teesmouth 

6-11 Feb 91 194# 264# -1.3 4.8 
Teesmouth 

(62%) (69%) 

6-14 Feb 91 238# 305# -L6 4.0 
Teesmouth 

(76%) (80%) 

6-9 Feb 91 143# 221# -2.3 6.3 
The Wash 

(46%) (58%) 

6-11 Feb 91 218# 292# -2.0 6.3 
The Wash 

(70%) (77%) 

6-14 Feb 91 255# 324# -2.4 5.0 
The Wash 

(82%) (85%) 
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Figure 5.1: Daily mean and minimum air temperature and daily mean 
and maximum wind speed at a) The Wash and b) Teesmouth between 
6-14th February 1991. 
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6.0 General Discussion 

6.1 Why do Redshank suffer the highest mortality amongst British 

wintering shorebirds during severe weather? 

A clear distinction between Redshank and other species of shorebirds wintering in 

Britain is that Redshank exhibit much smaller increases in body mass from autumn 

to mid-winter. For instance. Grey Plover, Sanderling and Ringed Plover 

(Charadrius hiaticula) over-wintering at Teesmouth mcreased their body masses 

by 16%, 17% and 19% respectively above autumn levels (Davidson, 1981; Scott, 

1991). In contrast. Redshank at Teesmouth during my study increased body mass 

by only 8.6% on average, an over-estimate of the increase in individual birds since 

the proportion of robusta increased between autumn and mid-winter. When body 

mass was controlled for body size, the mid-winter increase in BM was only 5.2%. 

Both races showed a similarly small mid-winter increase in BM. 

However, the shallow peak in body mass did not indicate a similarly low 

accumulation of fat during mid-winter, smce the peak LI s of robusta and 

britannica were 18% and 17% respectively. These vahies comqpare with LI s of 

22% in both SanderUng and Grey Plover at Teesmouth (Scott, 1991), 16% in 

Dunlin on the Wash (Pienkowski et al., 1979) and 4.7% in Purple Sandpq)ers from 

east-coast Britain (Summers et al., 1992). Table 6.1 relates the maximum fat 

levels of these species to their BMRs to estimate the tnne over -winch, a species' 

BMR could be sustamed by energy assimilated from fat reserves alone. Grey 

Plover are better insured than both races of Redshank, in that energy from their fat 

reserves could sustain BMR for 14days, compaied with 10.4 and 11 days for 

robusta and britannica respectively. Sanderling, despite their higher LI, are less 

well insured (Le. 9.5days) because of a higher mass-specific BMR than Redshank. 

The low LI of 4.7% of Purple SaQdpq)ers could sustain BMR for only 2 days, 

representing a very low level of insurance against a negative energy balance during 
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severe winter weather. Since both races of Redshank appear to be relatively well 

insured in terms of fet reserves (in relation to their BMR) compared to otter 

species, wiiy do Redshank show much higher rates of mortaUty diiring severe 

weather than these same species? 

One explanation may be that Redshank are less well insulated than other shorebird 

species. Table 6.2 con^ares Kes values for britannica and robusta with those of 

Turnstone, Grey Plover and Oystercatcher, taken from Kersten & Piersma (1987). 

The ratios of predicted Kes (calculated from the equation of Kendeigh etal. (1977) 

for a non-passerine of the same mass) to actual Kes, of both races was no higher 

than those of the other 3 species (Table 6.2). Therefore, poor insulation is not 

responsible for the high mortality rate of Redshank. 

A more Hkely e?q}lanation is the diet of Redshank and the effect of severe weather 

on it. To illustrate this argument, consider the Purple Sandpq)er, wiiich has the 

most northerly wiatering range of western Palearctic shorebirds, does not show 

high rates of mortaUty associated with severe weather, yet, stores httle mid-winter 

fat and consequently, is poorly insured in relation to energy expenditure (Table 

6.1). However, Purple Sandpipers may not be poorly insured in relation to the 

predictabihty of their food supply and hence the chance of being unable to meet 

energy demands through feeding (cf Lima, 1986). Amongst other items. Purple 

Sandpipers feed on Uttorinid snails and mussel {Mytilus edulis) spat vsdiich inhabit 

rocky intertidal areas and whose availabihty is less affected by severe weather. 

Hence, Purple Sandpipers do not need to msure against poor feeding conditions 

because they are rarely encountered (Summers et al, 1992). Therefore, do 

Redshank behave according to Lima's (1986) optimisation hypothesis, and store 

more insurance fat than other species because their food intake is more Ukely to be 

reduced in severe weather? 
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Table 6.2: Comparison of thermal conductivity Kes of the two races of 

Redshank and other shorebird species. 

Species MeanBM 
(g) 

Actual K«s 
(W/»C) 

*Predicted 
K«(W/«>C) 

Actual K«s / 
Predicted 

K« 

^robusta 151 -0.060 -0.042 1.43 

^britannica 144 -0.049 -0.041 1.20 

Turnstone: 

Individual A 118 -0.048 -0.037 1.30 

Individual B 117 -0.053 -0.036 1.47 

^Grey Plover: 

Individual A 169 -0.064 -0.045 1.42 

Lidividual B 258 -0.078 -0.058 1.34 

Individual C 286 -0.085 -0.062 L37 

^Oystercatcher: 

Individual A 540 -0.103 -0.090 L14 

).5886 

* Kes predicted by allometric equation of Kenda^ et al. (1977) for non-

passerines in winter Le. Kes = -0.0022 * BM°^ 

' Present study; ̂  Kersten & Piersma (1987) 
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The preferred prey of Redshanks feeding on intertidal mudflats consists mainly of 

small prey, namely Corophium and Hydrobia and some larger worms such as 

Nereis (Chapter 4; see also Goss-Custard, Jones & Newbery, 1977; Goss-Custard 

et al, 1989). In contrast, other large shorebirds such as Grey Plover and Bar-

tailed Godwit feed mainly on larger prey consisting of for exajaople, large 

polychaetes and bivalves (e.g. Macoma, Scrobicularia) (e.g. Goss-Custard, Jones 

& Newbery, 1977; Goss-Custard e/a/., 1989). Grey Plover and Bar-tailed 

Godwit therefore require fax fewer prey items to achieve the same energy intake 

rate as Redshank. In &ct Pienkowski (1973) found that Redshank wintering at 

Teesmouth, fed for 90-95% of the tidal cycle, \̂ 4iereas Grey Plover and Bar-tailed 

Godwit fed for only 60-75% of each cycle. It appears then that the choice of prey 

by Redshank means that theh rate of energy intake is much slower than other 

species and thus require longer periods of feeding to meet their daily energy 

requirements. A reduction in the availability of prey during severe weather is more 

likely to lead to a negative energy balance in Redshank A\duch have less scope to 

increase their feeding time to achieve the required energy intake, than species such 

as Grey Plover and Bar-tailed Godwit (with a higher energy intake rate) wiich 

have more scope to increase their feeding time. 

Why then do Redshank not a) feed on energetically more profitable prey, or b) 

accumulate more mid-winter &t so that they could survive a negative energy 

balance for longer periods? Goss-Custard (1977a) argued that despite taking 

longer to handle large worms, the net energy to be gained by Redshank feeding on 

them is higher than when taking smaller prey. Appendix IV discusses the possible 

reasons why Redshank do not feed on more wonns, such as a reduction in 

vigilance whilst feeding, or that the taste of worms is disagreeable to Reddiank. 

Regarding point (b). Redshank are not constrained by food availabihty in 

accumulating &t stores between autumn and mid-winter, since captive birds gĥ en 

food ad libitum achieved the same mid-winter levels of BM as wild birds at 
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Teesmouth (Chapter 2). Furthermore, wild Redshank in November were heavier 

during the 1994/95 winter -when densities of prey were lower than in the previous 

winter when densities were much higher (Chapter 4). The chance of severe 

weather reducing the availability of prey below a threshold vMch would allow 

energy ou^ut to be balanced by food intake was therefore greater in 1994/95. Fat 

storing in Redshank has evolved to set levels in mid-winter controlled in part, by 

probability of encountering a negative energy balance later in the winter (cf Lima, 

1986). 

The reason wdiy these regulated levels are not higher is due to both predation risk 

and then foraging behaviour. Gosler et al. (1995) demonstrated that Great Tits 

are Ughter when predation risk is higher. However as yet, there is no evidence to 

show a similar effect of predation risk on other species. Redshank certainty 

experience predation risk w^ch is greater on some estuaries than others. For 

instance, Cresswefl & Whitfield (1994) found raptor predation to have a significant 

impact on Redshank numbers wintering on the Tyninghame estuary in south-east 

Scotland. At Teesmouth, from casual observation and carcass searches it appears 

that although raptors are present throughout the winter, the level of predation on 

Redshank is much less than at Tyninghame. 

Redshank are opportunistic in their feeding behaviour; for example, they often feed 

away from exposed mudflats, either in tidal creeks, or inland on fields or 

freshwater habitats. By doing so, they may be able to exploit areas of tenq)orarily 

greater prey availability, but perhaps more iiiq)ortant]y, are able to avoid ejq)osure 

to high winds vsiiich substantially increase heat loss. During very low tenq)eratures 

which cannot be avoided by behavioural strategies. Redshank may be forced to 

feed on exposed mudflats since other areas such as fields may be frozen or cheeks 

may be blocked with ice (Pilcher, 1964). Therefore, by having to feed in ejq)osed 

areas with low prey availability. Redshank quickly reach a negative energy balance 

wdiich often leads to death. Why then have Red^ank not evolved to cope better 
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with these occasional severe periods of low temperatures? Severe conditions 

wiiich lead to increased mortality in Redshank only occur sporadically, about every 

5 years and are usually locaUsed in their effects. The selective effect of severe 

weather mortality is therefore not constant and is rarely widespread. It appears 

that the genetic variation in wintering populations of Redshank prior to the large 

scale mortality events, returns during intervening periods of'normal' winters. The 

ability to regenerate genetic variation in Redshank populations is probably aided by 

the following factors: i) a large proportion of Redshank breed in their first year; ii) 

Redshank are short-lived (around 5 years) compsaed to other shorebirds, iii) 

wintering populations are composed of individuals originating from different 

breeding populations and thus, the efects of localised severe weather mortahty 

would be diluted on the breeding grounds. 

6.2 Is the chance of mortality during severe weather greater in robusta 

than britannica? 

The evidence from my study suggest that the answer to this question is in fact, 

"yes". In order to confirm this prediction, fixture studies of living Redshank on 

British estuaries during both mild and severe winter weather, and of Redshank 

which have died during severe periods, should distinguish between the two races. 

Clark et al. (1993) found that the mean wing-length of Redshank which died on 

the Wash following severe weather m 1991 was longer than that of live Redshank 

measured in previous 'mild' years, suggesting that robusta were over-represented 

in those birds vdiich died. However, without data on racial proportions of the 

population before severe weather and of the corpses found afterwards, the 

differential effect of severe weather on the survival of two races of Redshank can 

only be surmised and not proven at present. My study predicted that robusta had 

a greater chance of dying in severe weather because i) robusta are under-insured 

i.e. fat reserves make up the same proportion of total body mass as in britarmica, 

but would allow a shorter period of survival without food, since ii) robusta have a 
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higher rate of energy expenditure resulting from a significantly higher mass-specific 

BMR and thermal conductivity (i.e. Kes). 

At high levels of total expenditure, a higher mass-specific BMR would be 

advantageous smce tissues would be metabolising at lower rates (considered as a 

multiple of BMR) than in animals with the same total energy e5q)enditure but lower 

mass-specific BMK Hence, the higher mass-specific BMR of robusta could be 

argued to be an adaptation to higher rates of energy expenditure resultmg from 

either a) breeding at a higher latitude (cf Weathers, 1979) or b) undergoing long­

distance migration between breeding and non-breeding grounds (cf Kersten & 

Piersma, 1987). However, any advantage obtained by robusta over britannica by 

having a higher mass-specific BMR, appears to have been ofiset by the higher 

thermal conductivity of robusta. It appeared that the higher thermal conductivity 

of robusta was a result of their larger mass-specific heat production, rather than 

less well insulated plumage. Further investigation on the thermal properties of the 

plumage of the two races is required (see Walsberg (1988a) for possible methods). 

Despite larger energy demands, there appeared to be no difference in foraging 

behaviour between the two races, in terms of either foraging duration or diet 

choice. The resolution of the protocol used may, not however, have been 

sufficient to identify differences associated with race when there was clearly a large 

amount of variation in foraging behaviour between individuals. 

My study has shown significant differences m the ecophysiology of two races of 

the same species wintering in the same area which have significant impUcations for 

the survival and ecology of the two races. This study therefore highhghts the need 

for studies of other shorebird species to concentrate not only on a species level, 

but to consider the possible influences of differences hfestyles and breeding or 

wintering origins of different populations which are present within the same study 

area. 
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APPENDIX I 

Examination of the use of discriminant function analysis to 

distinguish between races of Redshank 

Introduction 

In order to test the robustness of the discriminant fimction of Summers et al. (1988) 

and its appUcability to my study, biometric data taken fi:om Redshank ringed and then 

recaptured at Teesmouth (1983-1995) were examined to determine the degree of 

variation in measurements between workers and its effect on racial identification. The 

possibility of sexual bias in the birds which could be classi&ed or not classified by the 

discriminant fimction was investigated in a saiq>le of Redshank of known sex wdiich 

died following severe weather on the Wash in 1991. 

Discriminant fimction analysis has been used widely for the identification of sex in 

birds wiiich show no sexual dimorphian in plumage or appearance, but differ in size 

(e.g. Fox al, 1981; Granadehro, 1993; Hamer & Fumess, 1991; Soloviev & 

Tomkovich, 1995). In these studies the discriminant fimction determined identity on a 

bmomial basis, Le. a bird was either male or female. However, mis-classification can 

arise due to variability amongst workers taking the measurements vî uch are used in 

the discriminant function (Hamer & Fumess, 1991). Some studies (Green, 1982; 

Maron & Myers, 1984; Wood, 1987) appfied probabiUties to obtaimng a particular 

disciimuiant score for a female or male bird. likewise, the discriminant function 

derived by Summers et al. (1988) and used in my study, assigns a probability to its 

prediction i.e. a bird has a 0.0-1.0 probability of being of Icelandic origin (robusta). 

Therefore, it is possible to create an error margjn for the predictions; for example, in 

my study only those birds with a probability of 0.7-1.0 of being Icelandic (robusta) 

were classified as Icelandic, whilst those with probabiUties of 0.0-0.3 were classified 

as British (britannica); birds with probabiUties of 0.4-0.6 were not assigned to a 
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particular race. It was hoped that these strict criteria were suf&cient to prevent birds 

being assigned to the wrong race as a result of variation between measurers. 

The Icelandic race robusta is larger in overall body size than britannica and hence, 

the former has significantly longer wings and tarsus-toe, but has a shorter bill (Hale, 

1971; Sxunmers et al., 1988). In addition, within each race, females are larger than 

males (Hale, 1971) which creates a good deal of overlap in the size of biometrics of 

the two races. It could therefore be argued that the discriminant fimction (with a 

probability threshold of 0.7) can only classify those individuals at either end of a size 

cUne; ie. the majority of Redshank classified as britannica may be the smaller males, 

wMst the majority of birds classified as robusta may be the larger females. 

Methods 

Effect of variability in measurements 

Biometric data were examined firom 1,470 captures and recaptures of aduh Redshank 

ringed at Teesmouth between 1983 and 1995. Wing-length (maximum chord) and 

tarsus-toe were measured to the nearest 1mm using a stopped rule; bill-length was 

measured to the nearest 0.1mm usmg vernier call5)ers. Diflferences in wing-length, 

bill-length and tarsus-toe length of individuals between capture and recapture were 

calculated. The identity of the measurer was assigned only to a group of ringers (ie. 

Durham University or Tees K G . ) until August 1992 when firom then on, individual 

measurers were identified. Paired t-tests were performed on biometrics taken fi:om 

the same bird but by different workers (it was assumed that a different person had 

taken the measurements unless specified). From 1992 onwards, most measurements 

were taken by one individual (R. M. Ward). Paired t-tests were performed to 

determine the extent of variation between measurements taken by RMW alone and to 

determine the extent of any bias in measurements when con^ared to those taken by 
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other workers. All wing-lengths were corrected for seasonal wear (Simmers et al, 

1988) and no wing-lengths were used vkiiich had been taken from birds \\iiich were 

moidting their outer 2 primaries. It was assumed that no natural seasonal variation 

existed in lengths of bill and tarsus-toe since all the birds used in these analyses were 

fiilly grown adults. 

Where all 3 biometrics had been taken, the birds were assigned a probability of being 

Icelandic (0-1) using the discriminant fimction of Summers et al (1988) and assigned 

to a race accordingly (see above). 

Sexual bias 

Male and female Redshank do not exhibit any external morphological differences 

\̂ dlich could be used to distinguish them and hence sex can be determined only by the 

dissection of dead birds. A sanq)le of Redshank corpses taken from The Wash, south­

east England following severe weather in February 1991 (siq)pHed by N. A. & J. A. 

Clark, British Trust for Ornithology, Thetford) provided the rare opportunity of being 

able to investigate the presence of sexual bias in the discriminant fimction. 

Measurements of wing-length, bill-length and tarsus-toe were taken using the same 

techniques as above on 121 corpses of aduh Redshank Each measuremait was taken 

by the same person (P. L. Ireland: wing-length and tarsus-toe; S. Bitwhistie-Baker: 

bill-length). Racial origin was predicted usmg the discriminant fimction of Summers 

et al (1988) Sex was determined by dissection. 

Results 

Effect of variability of measurements 

The mean diflferences in the three biometrics between different measurers are given in 

Table 1. Overall, differences between measurers were significant for all three 
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biometrics (Table 1). This was also true for repeated measurements made by the 

same person (Table 2). In both cases, the greatest mean difference was in wing-

length. However, -whea the absolute differences are expressed as a percentage of the 

population median for the particular measurement, bill-length siiows the greatest 

difference both between and within measurers (Table 1 & 2). The mean absolute 

difference betwera repeated measurements was less when a single measurer was 

involved than i f different people took the measurements (Tables 1 & 2); however, 

only tarsus-toe measurements showed a significant reduction (T-test tio6=19.52, 

P<0.001). 

Overall, measurements made by RMW of wing-length and bill-length were 

significantly greater than those taken by other people (Table 3). Failure to straighten 

the wing con^letely vAnen attetcpting to measure the maximum length is a common 

feature amongst bird-ringers. 

This variation amongst and within measurers resulted in only 3 (7%) out of 46 birds 

changing racial identity betweai capture and recapture. 12 (26%) birds were either 

originally assigned to a race and then, as a result of variation in measurements, were 

unable to be assigned to a race (ie. 0.3<P<0.7), or vice-versa. The remaining 31 

(67%) birds retained their original racial identity when recaptured. 

Sexual Bias 

Table 4 shows that in the sample of corpses taken from the Wash, for both robusta 

and britannica, females had significantly longer wings than males; though both sexes 

had similar bill-lengths and tarsus-toe measurements. 

There was no significant association between sex and the racial group in wtoch birds 

were classified Le. britannica, robusta or unknown (x^2 = 1.285, P>0.05; Table 5). 

Therefore, the sex ratio in each racial group did not deviate significantly from that of 

the whole saisqple in which males predominated 1.3 : 1. 
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Table 1. Mean difference (mm) in measurement of bill-length, wing-length and 

tarsus-toe in adult Redshank made by two different measurers (the sî n of the 

difference was ignored). The percentage in brackets is the mean difference as a 

percentage of the population median (wing-Iength=171nun, bill-length=41mm, 

tarsus-toe=85). ' 

Wii^-iength BiU-length Tarsus-toe 
mean (mm) 2.1(1.2%) 1.03(2.5%) 1.0(1.2%) 
s.d. 1.53 0.86 1.11 
n 92 123 53 
T 11.34 13.29 6.83 
P - level <0.001 <0.001 <0.001 

Table 2. Mean difference (mm) in measurement of bill-length, wing-length and 

tarsus-toe in adult Redshank made twice by the same measurer (RMW) (the 

s^n of the difference was ignored). The percentage in brackets is the mean 

difference as a percentage of the population median (wing-Iength=171mm, bill-

Iength=41nun, tarsus-toe=85). 

Wing-length BiU-length Tarsus-toe 
mean 1.8(1.1%) 0.86(2.1%) 0.6(0.7%) 
s.d. 1.29 0.74 0.67 
n 16 14 26 
T 5.426 4.348 4.680 
P - level <0.001 <0.001 <0.001 
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Table 3. Mean difference (mm) in measurement of bill-length, wing-length and 

tarsus-toe in adult Redshank between RMW and other measurers (the sign of 

the difference was retained). 

Wing-length BiU-length Tarsus-toe 
mean 1.1 0.58 0.2 
s.d. 2.51 1.17 1.45 
n 31 52 30 
T 2.503 3.57 0.866 
P - level <0.05 <0.001 >0.05 
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Table 4: Comparison of wii^-Iength, bill-length and tarsus -toe between male 

and female a) robusta and b) britannica from a sample of corpses from The 

Wash in 1991. Values given are means with standard errors in parentheses. 

a) robusta 

male (n=28) female (n=31) tdf 

wing-length (mm) 175.2 

(0.54) 

178.0 

(0.60) 

3.3957** 

bill-length (mm) 41.1 

(0.32) 

41.4 

(0.26) 

O.9O57 ns 

tarsus-toe (mm) 86.9 

(0.56) 

86.3 

(0.35) 

0.8857 ns 

b) britannica 

male (n=27) female (n=13) tdf 

wing-length (mm) 166.6 

(0.80) 

169.3 

(0.55) 

2.7738 * 

bill-length (mm) 42.4 

(0.28) 

42.7 

(0.39) 

0.5538 ns 

tarsus-toe (mm) 82.7 

(0.48) 

83.5 

(0.56) 

0.5638 ns 

ns not significant * significant with a probability level of P<0.05 

** significant with a probabiUty level of P<0.01 
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Table 5: Chi-square contingency table of sex and racial origm of Redshank 

corpses from The Wash in February 1991 (x̂ z = 3.55, P>0.05) Value in 

parentheses equals (O - E)^ / E 

male female 

robusta 0=28 E=33 

(0.76) 

0=31 E=26 

(0.96) 

59 

britannica 0=27 E=23 

(0.70) 

0=13 E=17 

(0.94) 

40 

unknown 0=13 E=12 

(0.08) 

0=8 E=9 

(0.11) 

21 

68 52 120 
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Discussion 

Effect of variability in measurements 

This study, like other studies (eg. Barret et al, 1989 ) shows that measurements of 

body structures in birds are not precisely repeatable. This results in the observed 

variation between measurers and also uien measuronents are repeated by the same 

person. BiU length appears to be the most variable and does not come close to the 

precision of 0.1mm at vMcSa. it siiould be measured usmg vernier capers. Tarsus-toe 

length appears to be the most repeatable in that the mean absolute error between 

measurers is onfy 1mm, wiiich could be attributed to the precision with which this 

measurement is taken (normally 1mm). Furthermore, tarsus-toe length ejduTiited no 

bias attributable to the mdrvidual measurer used in this study. 

Although significant, the variation in measurements between measurers was small in 

absolute terms and had surprisingly littie effect on the prediction of racial identity. It 

appears that the range of probabilities chosen for this study over which no race is 

assigned is a sufficient buffer to prevent variation in measiu:ements mis-classifying the 

race of a Redshank. Since in my study, mean physiological parameters of the two 

races are being compared, the potential errors resulting from mis-classification of one 

or two indiviuals are minimal. 

In general, vsiien using discriminate fimctions to identify race, sex, age etc., errors in 

classification resulting from lack of repeatability in measurements can be reduced by 

using measurements taken by as few observers as possible or ideally by the person 

whose measurements were used to formulate the discriminant fimction (Hamer & 

Fumess, 1991). 

Sexual Bias 

I f the discrimant fimction was classifying individuals based purety on size then those 

predicted to be robusta woiild contain proportionally more females con ĵared to the 
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sanple as a whole wiiich was not the case. Likewise, males were not over-

represented in the group predicted to be britannica. It appears then that the 

discriminant fimction was discriminating on shape (Le. the size of each measurement 

in relation to each other) rather than overaU body size alone. 
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APPENDIX n 

Validation of the use of Total Body Electrical Conductivity 

(TOBEC) for estimating total lean mass and mass of fat in live 

Redshank 

Introduction 

In this study I develop and test existing predictive formulae of Scott et ct/. (1991) 

and Scott et al. (1994) utiUsing TOBEC to estmiate total lean mass (TLM) and 

hence, Upid mass (FM) in Redshank. 

Previous studies of nutrient stores and reserves in shorebirds (e.g. Evans & Smith 

1975, Davidson, 1981a, 1982a) have obtained measures of lean mass and fat levels 

usmg solvent extraction of l^ids. Destructive methods of nutritional analysis of 

birds have major limitations. They are e7q)ensive and time consuming and both 

legislative and logistical restrictions associated with taking birds from the wild 

result in smaU sample sizes (Blem, 1990). In addition, ethical questions arise when 

kilUng sartq)les of bkds which eventually produce small sanq)le sizes and often 

mconchxsive results. The use of non-destmctive methods of analysis alleviate most 

of these restrictions and have the added advantage of being able to follow the 

changes in nutritional condition of individuals through time. 

Techniques for the non-destructive analysis of nutrient reserves in birds can be 

divided into those which measure mass of fax and those which measure the total 

lean mass. The traditional and most widely used method to measure mass of fat in 
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birds is "fet-scoring" of visible subcutaneous deposits (e.g. Helms & Drury, 1960; 

Kaiser, 1993). Whilst fat scoring can give meaningfiil estimates of average fat-

loading in groups or populations, its precision is not adequate to monitor fet-level 

changes in individuals (Scott et al., 1995). Formulae based on several skeletal 

measurements (e.g. wing-length, bill-length) have been used to predict the total 

lean mass (TLM) of shorebirds (e.g.Davidson, 1983) and hence, by deduction from 

body mass, mass of fat. However, these formulae take into account variation in 

TLM attributable only to body size and not that vMch. can occur within a smgle 

individual due to season. Castro & Myers (1990) foimd that the apphcation of 

formulae predicting mass of &t in Sanderling Calidris alba from body mass and 

external morphology had to be restricted to the population from vdiich the 

formulae were derived. They found that for a particular body size TLM differed 

between populations from different locations. Even i f such formulae are restricted 

to specific date periods and to single populations (Davidson, 1983) they are still 

ineffective i f TLM deviates from 'normal' levels due to stochastic events such as 

severe weather (e.g. Beecroft & Clark, 1986). 

Another method of estimating TLM m a live bird is from its Total Body Electrical 

Conductivity (TOBEC). TOBEC is highly correlated with TLM (Walsberg, 1988; 

Castro et al, 1990; Roby, 1991; Scotte? al, 1991; Skagen et al, 1993) and has 

been shown to be a reliable predictor of TLM (Roby, 1991; Scott et al., 1991; 

Skagen et al, 1993). The relations!)^ between TOBEC measurements and actual 

TLM must be determined by sacrificing a small sample of individuals of a given 

species irmnediately after measurement of their TOBECs and later obtaining their 

TLM by destructive analysis. Predictive models derived from single species give 

more accurate estimates of TLM than those obtained from inter-specific models 

(Scott etal, 1991). The methods en5)loyed by different studies for caUbrating 

TOBEC have been highly variable and will be discussed later. 
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By subtracting from total body mass the TLM estiinated from the TOBEC index, a 

prediaed total lipid mass PFM can be estimated (Castro et al, 1990; Roby, 1991; 

Scott et al, 1991; Scott et al., 1994,1995). The same absohite error is attached to 

PFM as to the predicted total lean mass PTLM, but it usually represents a greater 

proportion of the actual lipid mass since TLM usually exceeds fet mass (Morton et 

al., 1991). The most recent studies (Skagen etai, 1993; Conway etal, 1994; 

Meijer et al., 1994) employing TOBEC to estimate ]q)id mass have predicted lq)id 

mass directly from muhiqple regressions with TOBEC as an independent variable 

alongside body size measures. 

Methods 

In order to obtain estimates of TLM from TOBEC, measurements of TLM 

obtained from carcass analysis must be regressed against TOBEC indices to 

produce a predictive model Scott et al (1991) demonstrated that intraspedfic 

models are better predictors than interspecific ones. It was mtended to add to and 

test the model of Scott et al (1994) based on 6 wild and 2 captive Redshank. The 

methods of carcass analysis outlined below closely follow those used by Scott et 

al (1991, 1994). 

The TOBEC indices of 7 Redshank which had been held m captivity for between 2 

and 3 months were measured (see section 2.2.4) immediately before they were 

killed by cervical dislocation. Three birds were weighed, sealed in polythene bags 

and frozen, v^Mst the remaining five were dissected mrmediately after death. The 

body cavity was opened from the fiircular region to the pelvic girdle to aid drying. 

The left pectoral muscle block (pectoralis major and supracoracoideus), liver. 
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stomach and intestine were dissected out after as much subcutaneous hpid as 

possible had been removed. Hie organs and dissected carcass were weighed to the 

nearest mg on a torsion balance. The masses of each organ and the carcass were 

added together to obtain total body mass (BM). The purpose of the dissection 

(vMch. was not performed by Scott et al. 1991, 1994) was to connate organ 

masses of captive birds with those of wild birds (see chapter 2). The carcass and 

organs were dried to constant mass in a vacuum oven at 40° C and added together 

to give total dry body mass (TDBM). Once dry, the organs were placed back 

inside the body cavity and lq)id was extracted from the whole carcass using Sohxlet 

apparatus and chloroform as a solvent. Afier all hpid had been extracted, the 

carcasses were dried to constant mass to give the total lean dry mass (TLDM). 

TLDM was subtracted from TDBM to give the mass ofhpid (FM). FM was 

subtracted from BM to give total lean mass (TLM). A summary of measurements 

and their abbreviations is given in Table 1. The three corpses wiich were frozen 

immediately after death, were defrosted later, the body cavity opened from the 

fiu-cular region to the pelvic girdle (no organs were removed) and then analysed as 

above. 

Linear regression and second order polynomial models were fitted to plots of I I M 

and TOBEC index (I), the independent variable, to give estimates of total lean 

mass, PTLMi and PTLM2 respectively. The strength of these models in predicting 

total lean mass from TOBEC measurements was tested using cross-vahdation 

(Skagen et al., 1993). This technique involved removing an individual from the 

predictive model, estimating the lean mass of the same mdividual using the new 

models, and then comparing PTLMi and PTLM2 with the actual TLM. Tbie 

procedure was then repeated for each individual used in the calibration. PTLMi 

and PTLM2 were deducted from BM to derive the estimates of lipid mass, PFMi 

and PEM2. In order to produce an estimate of ]q)id mass PFM3 with an error 

independent of that associated with predicting TLM, a multq)le regression was 
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Table 1: Definitions and abbreviations of terms of body composition 

Abbreviation Definition 

BM Total body mass 

TOBEC Total body electrical conductivity 

I Index of TOBEC produced by EM-Scan SAl Small Body 
Conq)osttion Analyser 

T L M Total lean or &t-free mass 

PTLMi Total lean mass predicted by the hnear regression of TLM widi I 
(equation 1) 

PTLM2 Total lean mass predicted by the second order pofynomial of TLM 
with I (equation 2) 

FM Ijpid mass = BM - TLM 

PFMi = BM-PTLMi 

PFM2 = BM-PTLM2 

PFMs Ijpid mass predicted by the multq}le regresssion of BM and 
TOBEC (equation 2.3) 
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used with FM as the dependant variable and BM and TOBEC index (I) as 

independent variables (Morton et al. 1991) by forced entry (James & McCulloch, 

1990). Cross-validation was used to calculate the error associated with PFM3. 

Results 

One bird from the sanjple taken from Scott et a/. (1991) had a significant lev^age 

on regression equations of I and TLM and was thus removed from the data used to 

formulate calibration equations for TOBEC (Skagen et al, 1993). 

The linear (Figure 1) and second-order polynomial models generated to predict 

TLM from I are shown below in equations 1 and 2 respectively. 

PTLMi = 0.288 * 1 + 55.5 r2 = 0.87 

P1LM2 = 0.207* I - 0.00018 *F +64.2 r2 = 0.87 2 

Muhq)le regression of independant variables BM and I yielded the following 

predictive model for ]q)id mass PFM3: 

PFM3 = 0.947 * BM - 0.276 * I - 50.7 r̂  = 0.88 3 

Cross-validation yielded mean errors of 4.3g for PTLMi and 4.7g for PTLM2 ^ 

representing 3.5%, 3.8% of actual TLM respectively; and likewise, 4.3g for PFMi 

and 4.7g for PFM2, and 4.9g for PFM3, representing 23.6%, 25.7% and 24.8% of 

actual FM respectively (Table 2). The absolute error of estimation was not 

proportional to the actual TLM or PFM being predicted (Figure 2). Since mean 

errors were lowest for PTLMi and PFMi, they were used as estimates of TLM 

and FM in Chapter 2 and were referred to as PTLM and PFM respectively. 
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Figure 2: The error of predicting a) total lean mass (I.e. difference 
between TLM and PTLMi) and b) lipid mass (I.e. difference between 
PFMi and FM) compared to the actual quantity of TLM and FM being 
estimated. 
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Discussion 

Calibration and validation of TOBEC for estimating total lean mass 

The smallest range and mean of error in estimating PTLM was achieved using a 

hnear regression of TLM and TOBEC with the latter as the dependent variable. 

Before the removal of one of the data points taken from Scott et a/. (1991) the 

relationship between TLM and TOBEC was a second order polynomial, the 

curvature of v^iiich was created by this single data point vMc\y had a TOBEC of 

440 and a TLM of 149g. The resultant polynomial model appeared imrealistic 

since it reached an asynqjtote at 150g and PTLM started to decline at 1=460. A 

Redshank with a TLM of 150g certainly does not represent the iq)per size limit for 

\^ilich the SA-1 can operate, since Roby (1991) found a significant positive 

relationship to exist between I and TLM in Northem Bobvdiites (Colinus 

virginiarms) wdiich had a lean mass ranging from 160-260g. Whilst the 

interspecific relationship betwen TLM and I is curvilinear (Walsberg, 1988; Scott 

et al., 1991), intraspecifically, the relationship between TLM and I is better 

explained by a linear relationsh^ (Scott et <ar/., 1991; Roby, 1991; Meijer et al, 

1994). Table 3 shows how the slopes of hnear models of TLM and I are steeper in 

species with lower TLMs. Since the relationship between TLM and 1 does not 

appear to level off within a species at high values of TLM, the difierence in slopes 

between species is probably a result of diflFerences in body shape as well as size. 

Removing the anomalous Redshank data point was therefore vahd, since 

incorporating it produced an unrealistic model in Ught of the known relationslups 

between TLM and I in other species of bird of both smaller and larger TLM than 

Redshank. The high vahie of I of the point removed may have been due to the bird 

having wet pliunage, or a high body tenqjerature resulting from capture stress, or 

moving excessively in the chamber (Scott et al., 1991). 
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It is difl&cult to compaie the accuracy of the model in this study with that of others, 

since the methods used to test the accuracy of predictive models of TLM and 

TOBEC in other studies is highly variable. Scott et al. (1991) predicted TLM in 

five Starlings from a hnear model derived from 15 other individuals with a mean 

error of 0.9g over a range of TLM of 65-85g. This truly independent form of 

testing of predictive models should be the ideal method of determining errors 

associated with the prediction. Quoting r̂  values or using inverse regression 

procedures to attach confidence intervals to predictive models (Castro et al., 1990; 

Roby, 1991; Kaiser, 1993; Meijer a/., 1994) does not actually test the predictive 

accuracy of the models (Morton, 1991; Skagen et al., 1993) but merely describes 

how closely the data used to create the model fit the model (Perdeck, 1985). 

However, using an independent san:q)le to test the accmacy of the model requires 

the sacrifice of even more birds. This may not always be possible due to logistical, 

legislative or ethical constraints. The cross-vahdation technique used in this and 

other studies (Skagen et al., 1993; Conway et al., 1994) incorporates a degree of 

independence into the test without increasing the number of birds sacrificed. 

Skagen et al. (1993) used cross-vahdation to test the estimation of PTLM by intra-

specific models of TLM and TOBEC (dependent variable) of Semi-pahnated 

Sandpq)ers (TLM of20-24g) and White-runiped Sandpq)ers {Calidris Juscicollis) 

(TLM of 3 l-40g) and found mean errors to be 3.3% ± 0.42%(SE) and 3.5% ± 

0.52%(SE) respectively of the TLM being estimated. E?q)ressing errors as 

percentages of the quantity being estimated is often used to quantify the relativity 

of error of prediction (Morton et al., 1991; Scott et al., 1991; Skagen et al, 1993; 

Conway a/., 1994). However, the usefidness of ejq)ressing errors as percentage 

is questionable and potentially misleading. A mean absohite error in estimating 

TLM of for exan:q)le 5g would equate to a 10% error in a bird of 50g, but only a 

5% error in a lOOg bird. This would suggest that in 
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larger birds the error of prediction is smaller, vMch. is misleading since the absohite 

error was the same. In my study the absolute error of prediction did not correlate 

with the quantity being predicted (Figure 2). Errors are more indicative of the 

accuracy of the apphcation of a predictive model i f they are e?q)ressed in absohite 

terms and in the context of the range over vMch parameters such as TLM are 

bemg estimated. I f the error exceeds the range over which TLM will change either 

between individuals or within individuals (depending on the conq)arisons being 

made), then the resolution of the model obviously is not fine enough. 

Skagen et al (1993) obtained mean absohite errors in estimating TLM of 0.71g ± 

0.826g(95% CI) m Semi-pahnated Sandpq)ers (TLM of20-24g) and 1.32g ± 

1.939g in White-run5)ed Sandpq>CTS (TLM of 31-40g), vMch expressed as 

percentages of the range of TLM being predicted (4g and 9g respectively) equates 

to 18% ± 20% and 15% ± 21.5%. The resohition of the model used in my study to 

estimate TLM over a range of TLM of 97-142g was 9.6% ± 5.6%(95% CI) 

(absolute mean error 4.3 Ig ± 2.5 Ig). The resolution of this model was sufficient 

for the purposes for which I used it. For example, the mean reduction in PTLM 

within individual Redshank after being brought into captivity was 16.9g vMch &r 

exceeds any error vAsich would have been attributable to the resolution of the 

predictive model The potential effect of prediction errors on estimation of 

changes in TLM (and FM and LI) m individuals was reduced ia my study by 

coirparing the within-individual changes of groups of individuals usmg paired 

parametric or non-parametric t-tests. Likewise, the effect of error on 

deteimmation of seasonal changes in TLM (and FM and LI) was reduced by 

comparing the means of groups of individuals at different times. In fiiture studies, 

the use of TOBEC should be evaluated in the context of the questions which it is 

being used to answer. 

During the formulation of models of PTLM in this study, TLM was quoted as the 

dependant variable and TOBEC as the indq)endent in accordance with Walsberg 
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(1988) and Scott et al. (1991, 1994). Conversely, other studies (e.g. Castro et al., 

1990; Roby, 1991; Meijer et al., 1994; Skagen et al., 1993) assumed the error in 

measuring TOBEC to be greater than that in determming TLM from destructive 

analysis and had therefore used TLM as the independant variable However, I have 

found measurements of TOBEC using the SA-1 to be highly lepeatahk, both 

within and between observers, and nothing in the literature contradicts these 

observations. Therefore, smce error arising from measurement of TOBEC is 

neghgible ( in dry birds of normal hydration and not wearing British or European 

metal rings) and TLM is to be the variable predicted, TLM should be used as the 

dependant variable in regressions with TOBEC (Zar, 1984). 

The errors arismg from diff^ent q>proaches to destructive anafysis of carcasses are 

highlighted by Skagen et al. (1993) vAio tested predictive equations of TLM and 

TOBEC derived by Castro et al. (1990)(based on 8 spedes including those used by 

Skagen et al.) and Scott et al. (1991) (based on Dunhn of similar H M to those 

used by Skagen et al.) on Semi-palmated Sandpq)ers and White-runq)ed 

Sandpq>ers. Errors incurred were high, wiuch was partly due to the different ways 

in which fkt was extracted. Scott et al. (1991) used chloroform vMst Skagen et 

al. (1993) and subsequent studies have used petroleum ether; Castro et al. (1990) 

used a mixture of the two. Pet. ether extracts only trigfycerides (storage Hpiis) 

whilst chloroform removes all lipids inchiding phospholq)ids (structural ̂ ids) as 

well as some non-lq)id con[q>ounds (Dobush et al., 1985; Blem, 1991). Hence both 

solvents have their drawbacks vsiien used for cahbrating with TOBEC indices, 

since TOBEC is affected only by lean mass which will be over-estimated by 

petroleum ether extraction but under-estimated by chloroform extraction. I f 

carcass analysis is being used to test the predictive accuracy of models derived 

from other studies, it is iii5)ortant that the extraction technique is the same as that 

used to create the predictive model Another source of error in estimating TLM by 

destructive analysis is the ten:q)erature at vMcb. the carcasses are dried. This is 

156 



generally 60-70°C in normal oven, which could be considered too high since more 

volatile lipids will evaporate creating an overestimate of TLM (Blem, 1991). In 

the absence of freeze-drying, which is not ideal because it does not remove all 

water, carcasses in my study and in Scott et al (1991) were vacuumhdried at 40°C, 

which prevents evaporation of %ids. 

Meijer et al (1994) compared them model relating TOBEC to TLM for Starhngs 

with the intra-spedfic model of Scott et al (1991) and despite san:q)le sizes bemg 

similar (n=14 and 15 respectively), found r̂  = 0.56 for the Meijer model whereas 

r^= 0.96 for the Scott model Hiis difference in strength of the relationshq) 

between TLM and TOBEC c^uld have resulted from the methodological 

differences in carcass analysis described above. Additionally, TOBEC was 

measured by Meijer et al (1994) on birds which were anaesthetised. This was 

probabfy responsible for the lower elevation of their curve coinpared to that of 

Scott et al (1991) smce a lowering of body tenq)erature, vMch. would occur under 

general anaesthetic, reduces TOBEC for a given lean mass (Scott et al, 1991). 

There is no need to anaesthetise birds before measuring TOBEC since highly 

repeatable and rapid measurements can be taken from birds which are harmlessly 

restrained in some sort of jacket wiiich retains them in a standard position. 

Calibration and validation of TOBEC for estimating lipid mass 

There has been much debate on the indirect use of TOBEC to estimate lipid mass 

m birds. Early studies (Castro et al, 1990; Roby, 1991; Scott et al, 1991) 

suggested deriving lq)id mass by the deduction of PTLM (derived using regression 

models relating TOBEC to TLM) from BM (measured by weighing). However, 

subsequent studies (Morton et al, 1991; Skagen et al, 1993) pointed out that the 

absolute error in deriving PTLM and PFM is the same but is usually a greater 

proportion of the FM being estimated since TLM usually exceeds FM. Hiey 

recommended the use of multiple regressions to estimate FM from BM and 
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TOBEC since the error associated with predictmg FM is independent of that 

associated with predicting TLM. 

In my study, estimation of FM by subtraction of PTLM from BM gave smaller 

errors than a multiple regression model with I and BM as independent variables. In 

the group of Redshank on wiiich estimates of FM were calculated, FM ranged 

from 11.6-64.4g, over vAdch. a mean absolute error of 4.31g ± 2.5Ig (95% CI) had 

a resolution of 8.1% ± 4.7% (Le. mean absohite error [FM - PFM] as a percentage 

of the range of FM being estimated). This level of resolution was sufficient vŝ en 

for example, compaimg monthly mean PFM of Redshank throu^out the non-

breeding season \\dien mean monthly PFM ranged between 8g and 47g (see 

Chapter 2). The mean change in PFM within individual Redshank brought into 

captivity was 12.4g. Therefore it can be concluded that the resolution of the 

predictive model of PFM developed in this study was sufficient for the context in 

which it was being used and the way in which the data has been interpreted 

statistical^ was robust enough to prevent errors of prediction interfering with the 

final interpretation of results. 

Whereas multiple regression proved less effective at determining PFM in my study, 

other studies have used the technique to incorporate BM, TOBEC and various 

body size measurements to predict FM (Skagen et al., 1993; Conway et al., 1994; 

Meijer et al., 1994). They used stepwise multiple regression to extract 

independent variables according to their contribution to overall variance in FM. 

Conway et al. (1994) concluded that TOBEC was not usefiil for estibcoating FM 

since it did not improve significantfy the multiple regression model of FM based on 

BM, a fax score index and various body measurements. The use of stepwise 

multiple regression using supposedly independent variables wiiich are not actually 

independent (e.g. body mass, TOBEC, wing-length, tail lengtiii etc. which are all 

inter-correlated) has been deemed inappropriate by James & McCulloch (1990). In 

a review of multivariate analysis in ecology they conchided that they "'could not 
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find a single application of multiple regression to recommend as a good example " 

and warned that stepwise multq)le regression could not necessarify produce the 

best fitting or realistic model and could not be used consistently to extract the most 

in[q)oitant and influential variables. Therefore, the predictive models of FM in 

Skagen et al (1993), Conway et al (1994) and Meijer et al (1994) should be used 

with caution, particularly that of Meger et al (1994), A ^ c h was not tested by 

cross-validation techniques. 
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APPENDIX 3 

ENERGY EXPENDrrURE AND WEATHER CONDITIONS AT 
TEESMOUTH AND THE WASH 

K E Y TO UPPER GRAPH; 

Bars: 
fightly 
stq)pled 

grey -

Total maintenance metabolism Moamt (KJ) per pentad 
(see section 3.2.4) ofrobusta 
Total MoBirt ofbritannica 

Lines: 
dotted -

plain -
bold -

Maxmmm sustainable level of Mnan , oirobusta (see 
section 3.2 .4) 
Maximum sustainable level of Maamt of britannica 
Mean daily standard operative tenq)erature T.s 

K E Y TO LOWER GRAPH: 

Bars: 
dark - mean daily wind speed (m/s) 

TnayimiiTn daily wind speed (m/s) 

Lines: 
plain -
dotted 

mean air temperature (°C) 
mmimtim air tenperature (°C) 

Double arrows: indicate pentads vMch were associated with large-scale 
mortality of Redshank. 
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Figure A1: Teesmouth 1990/91 
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Figure A2: Teesmouth 1985/86 
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Figure A3: Teesmouth 1984/85 
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Figure A4: Teesmoutli 1983/84 
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Figure A5: Teesmouth 1982/83 
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Figure A6: Teesmouth 1981/82 
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Figure A7: Teesmouth 1978/79 
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Figure A8: The Wash 1990/91 
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Figure A9: The Wash 1985/86 
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Figure A10: The Wash 1984/85 
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Figure A11: The Wash 1981/82 
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Figure A12: The Wash 1978/79 
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APPENDIX rV 

Interactions between Redshank foraging behaviour, prey density, 

weather and energy demands 

Introduction 

Aims 

This Appendix presents data from observations of ̂  Redshank (iachiding those of 

unknown race) at Teesmouth and against wiiich, observations of robusta and 

britcamica were conq)ared in Chapter 3, in terms of a) seasonal changes in 

foraging rate parameters (ie. pecking rate, padng rate and paces per peck); b) the 

effects of ambient air tenq)erature and wind speed on foraging rates; and c) the 

intake of large worms. It also summarizes studies of how Redshank respond to 

changes in energy demand for maintenance (Le. Hnaint) in terms of foraging rate, 

foraging time and intake of large worms. 

Foraging and energy demands 

Most studies of foraging shorebirds (e.g. Dugan, 1981; Goss-Custard, 1969; 

Henkowski, 1983; Smith, 1975) have considered changes in food intake as 

j&mctions of ambient weather conditions and prey density. Goss-Ciistard (1977b) 

and Speakman (1983) showed that Redshank maximised their rate of energy intake 

from their preferred prey by concentrating feeding in areas of the highest prey 

densities. Redshank feeding on Nereis optimised their rate of energy intake by 

taking only large worms wien large worms were abundant in relation to smaller 

size-classes (Goss-Custard, 1977d&e). Speakman (1984) conchided that in wmter 

Redshank do not maximise the rate of net energy gain in relation to the energy 

available from the prey present, confirmmg Goss-Custard's (1977a) finding that 
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Redshank prefer Corophium over Nereis despite the potential energy gain bemg 

much greater in the latter. 

Speakman (1984) conq)ared instantaneous rates of energy intake and energy 

e7q)enditure vdiilst feeding. However, it may be that Redshank are regulating their 

food intake according to cumulative energy demands over several days. Redshank 

carry sufficient &t and protem reserves in winter to sustain them without food for 

several days (Chapter 5) and hence, on very cold days, they have the capability to 

supplement energy intake from food by drawing on reserves. These reserves will 

have to be replenished when conditions inoprove. Therefore food intake may be 

high on mild days following severe weather even though immediate energy 

demands are in feet low. My study examined how cumulative daily IWLaint 

(predicted from heat loss of heated taxidomic mounts) affects foraging behaviour. 

Methods 

Foraging Behaviour 

As e?q>lained in Chapter 4, food intake could not be measured directly. Instead, 

the foraging rates in terms of rates of pacing and pecking at cues were measured 

and used as an indication of food intake. The observations took place between 

October and March during the winters of 1993/94 and 1994/95. The methods 

enq)loyed to measure foraging rates are outlined in section 4.2.3. 

The effect of weather and energy demand on foraging behaviour 

Feeding rates were covagaitd. with measurements of windspeed and air 

ten:5)erature and with estimates of Maintenance Metabolism Mnamt • 

Measurements of mean hourfy windspeed (in m/s at 10m) and mean hourly air 

ten:q)erature (°C) were taken at Graythorp (data supplied by Hartlepool Borough 
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Council), 2km from Seal Sands. Details of daify sunshine hours were obtained 

from Tynemouth weather station (data suppUed by the Meteorological OfGice) and 

converted into values of global solar radiation (see section 3.2.3). These 

meteorological data were incorporated into the Graythoip model for estimating 

Mnamt derived in Chapter 3 usmg heated taxidermic mounts of Redshank The 

model used for estimating Maaintis that for robusta rather than britannica, but this 

choice is inconsequential shice the effects of tenq)erature, wind speed and solar 

radiation are similar in the models of both races. 

Flock time-budgets 

During one observation day of each set of Spring tides, approximately hourfy scans 

were made of Seal Sands from a single observation position, counting the number 

of Redshank which were either feeding, roosting, standing, preening or flying. 

More frequent counts were made between 2 and 6 hours after mean low water 

spring (MLWS) to determine wdien the majority of the Redshank feeding on Seal 

Sands had stopped feeding, i f at all, with the approach of high water and the 

submergence of the mudflats. The median time at vM.(ii the Redshank stopped 

feeding was defined as when more than half of the Redshank feeding on Seal Sands 

were either roosting, standing or preening, or had left the area to roost elsewhere. 

When birds did leave Seal Sands, they could often be seen heading for known roost 

srtes and their presence was later confirmed by visits to these sites. Nearby fields 

and other known feeding sites were also checked for the presence of feeding 

Redshank, to check that the birds \̂ 4iich had left Seal Sands were not feeding 

elsewhere. 
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Results 

Seasonal changes in foraging behaviour 

Figure 1 shows variation in pecking rate, pacing rate and paces per peck, both 

within and between each of the two winters studied. Pecking rate was significantly 

higher in 1993/94 (Kruskal-WalKs test = 142.7, P<0.0001) and both pacing rate 

and paces per peck were significantly lower (Kruskal-Wallis test x i =62.5, 

P<0.0001 for pacing rate; x^ = 139.2, P<0.0001 for paces per peck) in 1993/94 

(n=223) than in 1994/95 (n=184). These inter-year differences were found in both 

races and were associated with a marked dechne in the abundance of the preferred 

prey Corophium in 1994/95 (see section 4.3.3). 

Within each winter there was significant variation in peckmg rate, pacing rate and 

paces per peck with day number(Kruskal-Wa]lis test, see Table 1 for test statistics). 

In 93/94 pecking rate was higher and both pacing rate and paces per peck were 

lower in mid-winter than during October, earfy November and late March (Figure 

1). In. 94/95 however, the converse occurred (Figure 1). 

The eff̂ ect of ambient temperature and windspeed, and immediate energy 

demands (Mmamt) on foraging behaviour 

Pecking rates, pacing rates and numbers of paces per peck were con^ared to mean 

hourly air ten:q)erature and wind speed and estimated (in mW/g) at the time 

each observation was made. During the 1994/95 winter. Redshank showed a slight 

but significant reduction in pecking rate with increasmg Mn.w (Figure 2a; Table 2 

shows Spearman rank correlation statistics). They also foraged less efficiently, in 

that the number of paces per peck, a measure of energy expended in foraging, 

increased sigmficantly with mcreasmg Mjomx. (Table 2 & Figure 2b). 
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Figure 1: Changes in a) pecking rate, b) pacing rate and c) paces per 
pecl< with day number during the winters of 1993/94 and 1994/95. 
(Day number 1 = 1 Jan 1993 or 1 Jan 1994 for the 1993/94 and 1994/95 
winters respectively). 
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c) Paces per peck 
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Figure 2: The effect of M„aM whilst feeding on a) pecking rate and b) 
paces per peck during the 1994/95 winter. 
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Table 1: Test statistics of Kruskal-Wallis test of the variation in foraging 

behaviour between days within the winters (Oct-Mar) of 1993/94 and 

1994/95. 

2 2 
X 21 X 21 

1993/94 1994/95 

Pecking Rate 87.7*** 39.5 ** 

Pacing Rate 61.7*** 

Paces per Peck 74 Q*** 35.0 * 

* significance level of P<0.05 

** significance level of P<0.01 

*** significance level of P<0.0001 
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Table 2: Spearman rank correlation coefficients r̂  for correlations of feeding 

behaviour of Redshank (n=184) with measurements of air temperature, vtind 

speed and maintenance metabolism Mmamt taken at the time of foraging 

observation during the winter (Oct-Mar) of 1994/95. 

air temperature wind speed 

Pecking Rate 

Pacing Rate 

Paces per Peck 

0.208 ** 

-0.1«6 * 

-0.233 ** 

-0.163 * 

-0.226 ** 

0.032 ns 

-0.234 ** 

0.036 ns 

0.192 ** 

ns 

* 

** 

*** 

not significant 

significance level of P<0.05 

significance level of P<0.01 

significance level of P<0.001 
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The reduced foraging efficiency at times of high M^naint resulted fi-om the combined 

effect of low ambient air tenq)eratures and high windspeeds wWlst foraging 

(Figures 3 & 4). Pecking rate decreased significantly with decreasing air 

ten:q>erature (Figure 3a & Table 2), whilst the number of paces per peck mcreased 

significantly with decreasmg temperature (Figure 3b & Table 2). Both peckmg 

rate and pacing rate decreased significantly with increasing windq)eed (Figure 4 & 

Table 2). 

In contrast to the 1994/95 winter, Redshank foraging behaviour during the 

1993/94 v^ter appeared to be independent of ambient ten:q>erature, wind speed 

and Mas^ whilst foraging. Both pecking rate and paces per peck were not 

significantly correlated with either tenqjerature, wind speed or Mmamt- However, 

pacmg rate increased significantly with falling air ten^erature (Spearman Rank 

Correlation rs= -0.167 P<0.05), though not with wind speed or Mn 

The effects of tenq)eratiu'e and windspeed found in the total Redshank population 

at Seal Sands were mirrored by both races and the causes of these effects are 

discussed in section 4.3.2. 

The effect of energy demand (M,„au,t) and temperature on preceeding days on 

foraging behaviour 

Significant correlations were found in both winters betweea foraging behaviour 

and the levels of cumulative daily M^,^, wiiich the birds experienced over the 

previous 1-5 days (Tables 3 &4). However, the correlations in 1994/95 were in 

the opposite direction to those of the previous winter, hi 1993/94 (Table 3), 

pecking rate was positively correlated with cumulative daily Mmant (Figure 5a) and, 

since pacing rate showed no correlation, the number of paces per peck decreased 

with increasmg daily Maĵ int (Figure 6a). In 1993/94, pecking rate was also 

negatively correlated with cumulative hourly air temperataie over 4 and 5 days 

(Table 5). Paces per peck was not significantly correlated with cumulative 

179 



Table 3: Spearman rank correlation coefficients r̂  of correlations of pecking 

and paces per peck of Redshank (n=223) during 1993/94 with cumulative 

maintenance metabolism M,^t over one to Hve days before the feeding 

observation was made. 

Number of days Pecking Rate Paces per Peck 

1 0.286*** -0.228** 

2 0.185 ** -0.143 * 

3 0.223 ** -0.179** 

4 0.244*** -0.177 ** 

5 0.281*** -0.223 ** 

ns 

* 

** 

*** 

not significant 

significance level of P<0.05 

significance level of P<0.01 

significance level of P<0.001 
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Table 4: Spearman rank correlation coefficients r̂  of correlations of pecking 

rate and paces per peck of Redshank (n=184) during 1994/95 with cumulative 

maintenance metabolism M,„aint over one to five days before the feeding 

observation was made. 

Number of days Pecking Rate Paces per Peck 

1 -0.306*** 0.257*** 

2 -0.276*** 0.237 ** 

3 -0.301*** 0.228 ** 

4 -0.271*** 0.206 ** 

5 -0.270*** 0.189 * 

ns 

** 

not significant 

significance level of P<0.05 

significance level of P<0.01 

significance level of P<0.001 
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Table 5: Spearman rank correlation coefficients r, of correlations of pecking 

rate and paces per peck of Redshank (n=223) during 1993/94 with cumulative 

hourly air temperature over one to five days before the feeding observation 

was made. 

Number of days Pecking Rate Paces per Peck 

1 -0.088 ns -0.016 ns 

2 -0.103 ns 0.037 ns 

3 -0.123 ns 0.059 ns 

4 -0.201 ** 0.124 ns 

5 -0.199 ** 0.117ns 

ns not significant 

** significance level of P<0.01 
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Figure 3: The effect of air temperature whilst feeding on a) pecking 
rate and b) paces per peck during the 1994/95 winter. 
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Figure 4: The effect of wind speed whilst feeding on a) pecking rate 
and b) pacing rate during the 1994795 winter. 
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Figure 5: The effect of total daily IVLaint one day before feeding 
observation on pecking rate during the winters of a) 1993/94 and b) 
1994/95. 
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tenoperature, though is was positive and increased as temperature was accumulated 

over more days (Table 5). 

In contrast, during 1994/95 pecking rate was negatively correlated with daily 

Mjoaa. (Figure 5b; Table 4) whilst the number of paces per peck was positively 

correlated with daily Hnamt (Figure 6b; Table 4). The correlation between pecking 

rate and cumulative hotirly air ten:q)erature was positive and significant over 1-5 

days before foraging was observed (Table 6). Paces per peck was significantly 

negatively correlated with cumulative hourfy ah: tenq)erature over 1-5 days (Table 

6). 

Numbers of larger prey items taken 

On the wiiole, few large items featured in the diet of Redshank at Seal Sands 

during either of the two winters studied. Of those large items seen to be taken, 

worms predominated. During 1993/94 only 1 bird out of223 was seen taking a 

large item other than a worm, a small crab (Carcimis maenus). During 1994/95, 

out of 184 bkds observed, 2 birds were seen taking single bivalve molluscs, a thnd 

took 2 bivakes and a fourth took a small crab. 

The maximum number of worms taken by a single indKiual in 5 minutes of 

observation was 6 in both winters. However, significantly more worms were taken 

per bhd m 5 minutes duimg 1994/95 (mean=0.27 SE=0.068) than in 1993/94 

(mean=1.09 SE=0.235) (Kruskal WalHs ANOVA x^ = 8.99 P<0.01). 

During 1994/95 the mean number of worms taken per 5 minutes per bird increased 

as winter progressed (Figure 7a) and was significantly positively correlated with 

day number (Spearman rank rs=0.61 P<0.05), wdiere day number equalled 1 on 1 

January 1993. In 1993/94 the number of worms taken was not correlated with day 

nmnber since worms were present in the diet only in mid-winter and almost absent 

at other times. This seasonal pattem of taking worms in 1993/94 was associated 
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Table 6: Spearman rank correlation coefficients rs of correlations of pecking 

rate and paces per peck of Redshank (n=184) during 1994/95 with cumulative 

hourly air temperature over one to five days before the feeding observation 

was made. 

Number of days Pecking Rate Paces per Peck 

1 0.341*** -0.277*** 

2 0.319*** -0.250 ** 

3 0.283*** -0.223 ** 

4 0.323*** -0.254 ** 

5 0.323*** -0.258*** 

** significance level of P<0.01 

*** significance level of P<0.001 
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with a significant coirelation between the mean number of worms taken per bird 

and cumulative daily Mj^^j^ (Table 7). This correlation became stronger as daily 

Mniaint was accumukted over more days and was significant only afl;er 4 and 5 days 

(Table 7; Figure 7b). In contrast, during 1994/95 the number of worms taken may 

have decreased with cumulative daily Hnamt (Figure 7b) though was significant 

with a probability of only 0.055 (Table 7) even after 5 days. 

Time Spent Foraging 

The individuals vMch. made yxp the Redshank flock at Seal Sands numbered 

between 120 and 620 in 1993/94 and between 140 and 750 in 1994/95, and were 

well synchronized in then activities. When the majority were foraging, less than 

10% were preening, roosting or standing. During the day (\vhea this study was 

conducted) the majority of birds were foraging from at least 2 hours before MLWS 

until between 2h and 4h 24min in 1993/94 and between 2h 6min and 4h 13min 

after Low Water in 1994/95. The time at wdiich the flock stopped feeding 

(measured in minutes after M L W S ) was negatively correlated in both years with 

the daily Mn,̂ ttfae day before foraging was observed (Figure 8) (Spearman Rank 

correlation i^u = -0-643 m 1993/94, rs,i3 = -0.693 in 1994/95, P<0.05). Ihe 

relationshq) between foragmg time and Mnamt was the same (MANOVA P>0.05) in 

each winter studied. The Redshank at Seal Sands were, therefore, spending less 

time foraging dming the day when cumulative energy demands for Mmaint were 

high. 

Discussion 

Foraging Rates 

In 1993/94 when densities of Corophium were high, behaviour appeared to be less 

dependant on immediate conditions, but more dependant on longer -term 
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Table 7: Spearman rank correlation coefGcients r̂  for correlations between 

the daily mean number of worms taken per bird in a 5 minute period and 

daily MQiaj^t accumulated over 1-5 days before the observation was made, 

during 1993/94 (n=14) and 1994/95 (n=21). 

No. days 1993/94 1994/95 

1 0.347 ns -0.337 ns 

2 0.354 ns -0.086 ns 

3 0.414 ns -0.013 ns 

4 0.459 * -0.293 ns 

5 0.441 * -0.524 t 

P < 0.05 

P = 0.055 
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Figure 7: Variation in the mean number of worms taken per bird in 5 
minutes with a) day number and b) Cumulative daily Mmapn 5 days 
before observation. 
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cumulative energy demands. It could be argued that periods of h i ^ Hnaint 

coincided with high windspeeds but warm tenq)eratures during vviiich prey 

availability was still relatively high and, therefore, so was pecking rate. However, 

pecking rate was negatively correlated with cumulative hourly tenq)eratures, 

significantly so over 4 and 5 days, suggesting that pecking rate did increase even 

when temperatures (and in turn, prey availability) were low. It is unlikely that the 

number of cues to vAuch Redshank could respond were increasmg as ten5)erature 

decreased, since all existing evidence (e.g. Goss-Custard, 1969; Pienkowski, 1984; 

Speakman, 1984) suggests otherwise. It could be that in 1993/4, during periods of 

high Hnaint , Redshank were pecking at cues that they would otherwise have 

ignored under more favourable conditions, wiien a greater number of positive cues 

(Le. those indicating a greater chance of successfiilly encountering a prey item) 

woiild be present. It could be that although Redshank always aim to maximise 

food intake by feeding in areas of highest prey availability and/or density (Goss-

Custard, 1977c; Speakman, 1983), they do so by optimising pecking rate and the 

energy expeadod vA&i atteiq)ting to feed. It is reasonable to suggest that 

Redshank choose to respond to some cues, yet ignore others and not merely peck 

at everything they see, since Goss-Custard (1977d&e) demonstrated that Redshank 

are capable of choosmg different sizes of prey according to an optimal foraging 

strategy. For Redshank to optimise pecking rate, there would have to be a cost 

associated with pecking for prey. Speakman (1984) found that the energy 

expended by Redshank vMst peckmg and probing was 1.9 and 2.0 times BMR 

respectively, whilst searching behaviour (i.e. walking at a speed of 30m/s) incurred 

a cost of only 1.7 times BMR. 

In 1994/95 when Corophium densities were low, pecking rate decreased with 

increasing cumulative Mmakt and cumulative air ten^erattire, as well as with 

increasing air temperatiu-e whilst feeding. During this year, the frequency of cues 

from Corophium would have been much less than during the previous winter and 
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thus. Redshank may have had to noaxiimse peckmg rate throughout the season in 

order to achieve the high rate of food mtake. Hence, there was less scope within 

the foraging capabilities of Redshank at low prey densities to maintain a high rate 

of prey intake when prey availability was fiirther reduced by cold tenq)eratures. 

So, as conditions became colder and more energy demanding, the number of 

sur&ce cues decreased. Since Redshank were pecking at the majority of cues 

encountered, peckmg rate consequently went down. Hence at low prey densities 

during 1994/95, pecking rate was more reliant on ambient conditions wdulst 

foraging, in contrast to the previous winter wiien higher prey densities allowed a 

wider scope of foraging responses to achieve a high rate of food intake. 

Intake of large worms 

The increase in the number of worms taken in 1994/95 may have been due to an 

increase in densitty of worms (Goss-Custard, 1977a). Indeed densities of the most 

common large polychaete worm on Seal Sands Nereis diversicolor, did increase 

between autumn 1993 and autunm 1994 in 8 out of 10 cores taken from Scalloped 
2 2 

Mud, with the maximum density increasmg from 2288m" m 1993 to 4078m' m 

1994, as shown in Figure 9 (data taken from Evans et ai, 1996). Despite high 

densities oiNereis, Goss-Custard (1977a&c) suggested that Redshank mcrease 

their intake of worms only when absolute densities of Corophium are low. It is 

unlikely that the low intake of worms in 1993/94 was the result of densities of 

Nereis being too low to support a sufficient intake, smce Goss-Custard (1977a) 

recorded individual intake rates of 1-4 worms per minute (20-80 times greater than 

at Seal Sands in 1993/94) at sites where A'ergw density exceeded 200m'̂  and 

Corophium was absent. On the Ythan Estuary where the Corophium density was 

comparable to that on Seal Sands in 1993/94 and Nereis density was up to around 

lOOOm'̂ , worm intake rate was around 0.2 per minute (Goss-Custard, 1970), only 

4 times that at Seal Sands in 1993/94. Therefore, the increased mtake of worms in 

1994/95 appears to be a result of reduced Corophium density, rather than an 
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increase in worm density which might also have explained an increase in worm 

ingestion rate (Goss-Custard, 1977c). 

The findings during 1993/94 confirm Goss-Custard's (1969) suggestion that 

Redshank feed more on worms during low tenq)eratures in response to a higher 

energy demand. The apparent negative correlation in 1994/95 between worm 

intake rate on Seal Sands and Mn^int suggested that worm availability was limiting 

in this winter during periods of high energy demand. However, there was no 

correlation in either winter between worm intake and mean air tenq)erature, 

minimum air tenq)erature, mean windspeed or maximum windspeed on the day of 

feeding. There was, however, an apparent positive correlation in 1994/95 between 

the mean number of worms taken per bird and the mean air tenq)erature on the day 

before (Spearman rank correlation = 0.513 P=0.061). ITie significant increase in 

worm intake rate throughout the winter of 1994/95 may have been a response to 

the depletion of other prey such as Corophium and Hydrobia, wMch. were less 

abundant than Nereis at the start of the winter. 

Costs associated with feeding on large worms? 

Goss-Custard (1977a) noted that Redshank feeding predominantiy on Corophium 

could greatly increase their energy intake rate by taking more larger, energetically 

profitable prey such as Nereis vsWch they appeared to ignore, even at high 

densities. The present study found that Redshank fed on large worms only during 

periods of high energy demand or when Corophium was relatively scarce (see also 

Goss-Custard, 1969, 1977a,b&c). These findings would suggest that feeding on 

worms is more costly than feeding on small prey items. Certainly, the handling 

time associated witii large worms is much greater than with small prey wiiich are 

swallowed almost inmiediately. During the present study, handling time for worms 

varied between 2 and 31 seconds. However, despite the lower rate of intake of 
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worms, Goss-Custard (1977a) argued that the energy obtained from feeding on 

worms far out-weighed the energetic costs associated with doing so. 

An ahemative explanation is that feeding on worms reqtiires the head of the bird to 

be lowered for longer and may reduce the level of vigilance towards potential 

predators. Alternatively or additional^, it may be that worms like Nereis taste 

unpleasant to Redshank which therefore avoid them unless the need for rapid 

intake of energy is great. 

To feed or not feed 

Goss-Custard (1969) suggested that Redshank would have to feed almost 'round 

the clock' to fiilfil their energy requirements during winter. However, the present 

study foimd that Redshank at Seal Sands fed for shorter times during more 

energetically demanding periods. It would appear that the costs of IV^aint 

associated with foragmg on exposed mudflats may exceed after a certain time the 

energy to be gained from fiirther intake of food, though no direct proof is 

available. 

The relationship between time spent foraging during da>dight hours and Hnaim was 

identical in both 1993/94 and 1994/95, despite totally different feeding conditions 

between winters. A similar relationship in both winters would exist only i f the 

energy gained from a particular time spent foraging was the same. It would appear 

then that by increasing their preference for worms in 1994/95 they were able to 

equal the energy intake of 1993/94 over the same time period. It seems therefore, 

that energy accrued from taking more worms in 1994/95 was sufficient to 

conq)ensate for the loss in energy intake from smaller prey. 
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Summary 

Redshank maximise the numbers of prey taken per minute (Goss-Custard, 1977b, 

Speakman, 1983) but do not maximise the rate of energy intake by preferring 

Corophium to the energetically more profitable Nereis (Goss-Custard, 1977a; 

Speakman 1984). My study has shown that t h ^ do not necessarify achieve a 

TnavimnTn rate of prey intake by maintaining a maximal rate of foraging. At high 

prey denaties they had the scope to increase forapag rate to maintain maximum 

prey intake even when conditions reduced prey availability. When densities of their 

preferred prey, Corophhan, were low there was less scope for Redshank to 

increase foraging rate to miaintain a maximum prey intake. Hence, at low densities 

of Corophium, energy intake was supplemented by an increased intake of larger 

worms. 
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