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Abstract

A microarray analysis was used to examine the effect of combinations of water
activity (ay; 0.995-0.90) and temperature (20-42°C) on the activation of aflatoxin
biosynthetic genes (30 genes) in A. flavus grown on a conducive YES medium. The
relative expression of 10 key genes (aflF, aflD, aflE, aflM, aflO, aflP, aflQ, afl X, aflR,
aflS in the biosynthetic pathway were examined in relation to different
environmental factors and phenotypic aflatoxin B; (AFB;1) production. This data, plus
data on relative growth rates, and AFB; production under different a, x temperature
conditions, were used to develop a mixed-growth-associated product formation
model. The gene expression data was normalised and then used as a linear
combination of the data for all 10 genes and combined with the physical model. This
was used to relate gene expression to a, and temperature conditions to predict AFB;

production. The relationship between the observed AFB; production provided a good



linear regression fit to the predicted production based in the model. The model was
then validated by examining data sets outside the model fitting conditions used (37,
40°C and different a, levels). The relationship between structural genes (aflD, aflM)
in the biosynthetic pathway and the regulatory genes (aflS aflJ) was examined in
relation to a, and temperature by developing ternary diagrams of relative expression.
These findings are important in developing a more integrated systems approach by
combining gene expression, ecophysiological influences, and growth data to predict
mycotoxin production. This could help in developing a more targeted approach to
develop prevention strategies to control such carcinogenic natural metabolites which
are prevaent in many staple food products. The model could aso be used to predict

the impact of climate change on toxin production.

1 1. INTRODUCTION

Aflatoxins are produced by Aspergillus section Flavi group species and are thought to
be one of the most cancerous natural substances known. Economically and
biologically the most important fungal species able to produce aflatoxins are A. flavus
and A. parasiticus (Bhatnagar et al. 2002). The aflatoxin biosynthesis gene cluster of
A. parasiticus has been completely elucidated (Yu et al., 2002; Yu et al. 20044).
Indeed a whole genome microarray of A. flavus has been used to study the regulation
of aflatoxin biosynthesis genes (O'Brian et al., 2007). Generdly, the aflatoxin
biosynthesis genes of A. flavus and A. parasiticus are highly homologous and the
order of the genes within the cluster have been shown to be the same (Yu et al.,
1995). A. flavus strains produce only aflatoxin B, and B, while A. parasiticus produce
aflatoxins By, B, G, and G, (Vaamonde et al. 2003; Giorni et al. 2007).

The biosynthesis of mycotoxins is strongly dependent on growth conditions
such as substrate composition (Luchese & Harrigan 1993) or physical factors
including pH, water activity, temperature or modified atmospheres (Ellis et al. 1993;
Molina & Gianuzzi 2002; Sanchis & Magan 2004; Ribeiro et al. 2006; Giorni €t al.
2008). Water activity (ay) is a measure of the amount of freely available water in a
substrate for microbial growth and is related to pure water, which has a a, of 1.00 or
100% equilibrium relative humidity. This a, is related to the total moisture content of
a specific substrate by a moisture sorption curve (Magan 2007). Depending on the

particular combination of external growth parameters the biosynthesis of aflatoxin can



either be completely inhibited, or the pathway fully activated. Knowledge about these
relationships enables an assessment of which parameter combinations can control
aflatoxin  biosynthesis and which are conducive to phenotypic aflatoxin
contamination. For example, a mathematical model which delineated the relationship
between pH, propionic acid concentration and temperature on aflatoxin biosynthesis
by A. parasiticus was described by Molina & Giannuzzi (2002). However, with the
exception of this data at the phenotypic level, very little information is available on
the influence of abiotic factors on the regulation of the aflatoxin biosynthesis genes.
Sweeney et al. (2000) developed a reverse transcription polymerase chain reaction to
analyse the expression of the aflR and ord1 genes of the aflatoxin pathway in relation
to various nutritional media. Price et al. (2005) used a whole genome microarray
approach to analyse the influence of substrate composition and pH on the activation
of aflatoxin biosynthesis genes. O’'Brian et al. (2007) using the whole genomic
microarray, demonstrated that conducive and non-conducive temperatures affected
functioning of the genes, with transcript levels of aflR and aflR protein present at
lower concentrations at 37 than at 35°C for astrain of A. flavus.

Using a mycotoxin microarray with sub-arrays for specific mycotoxins,
developed by Schmidt-Heydt & Geisen (2007), the impact of key environmental
factors (ay, temperature) were shown to significantly affect the aflatoxin gene
clusters. Theratio of the key regulatory genes (aflR and afl S[=AflJ]) was important in
encoding the enzymes in the biosynthetic pathway of both A. flavus and A. parasiticus
(Schmidt-Heydt et al. 2009; 2010). Other studies have also demonstrated the impact
that such environmental factors may have, especially marginal stress conditions, on
gene cluster expression and phenotypic toxin production for a number of species
(Schmidt-Heydt et al. 2008). Recently, Schmidt-Heydt et al. (2011) showed that for
Fusarium culmorum and Fusarium graminearum it is possible to integrate such
microarray data on relative TRI gene expression under different environmental
conditions, growth and deoxynivalenol (DON) production and develop models which
can be used to predict DON concentrations for the first time. No such integrated
systems approach has been attempted for A. flavus.

In A. flavus the clustered pathway genes have been detailed, and in some cases
new gene names have been recently given (Yu et al. 20044, b). Some of the key genes
in the aflatoxin biosynthesis include aflF (old name: norB), aflD (nor-1) and aflE

(norA) which encode a dehydrogenase and two reductases which convert norsolorinic



acid to averantin; aflM (=ver-1) is a dehydrogenase which converts versicolorin A to
demethylsterigmatocystin; aflaO (=omtB) is a O-methyltransferase | or O-
methyltransferase B which is involved in the conversion of demethylsterigmatocystin
to sterigmatocystin and dihydro-demethyl sterigmostocystin to
dihydrosterigmatocystin; aflP (=omtA) is an O-methyltransferase A or Il which
converts  sterigmatocystin ¢ to  O-methylsterigmatocystin - as  well  as
demethylsterigmatocystin to dihydro-O-methylsterigmatocystin; other genes such as
aflQ (=ordA) and afl X (=ordB) have been shown to be involved in the fina part of the
biosynthetic pathway, as oxidoreductase-P450 monooxygenase and monoxygenase
oxidase. The two key regulatory genes which are important in transcription activation
are aflR which isinvolved in both aflatoxin and sterigmatocystin production and aflS
(=aflJd) whichisinvolved in the regulation of aflatoxin.

We have utilised the mycotoxin microarray sub-array for the aflatoxin genes
as a tool for examining the changes that interacting environmental factors may have
on the relative expression of A. flavus gene clusters, as well as effects on growth and
phenotypic aflatoxin production. The objectives of this study were to (a) examine the
effect of a, x temperature conditions on growth, aflatoxin B, (AFB;) and relative
expression of 10 key genes (aflD, aflE, aflF, aflM, aflN, aflP, aflQ, aflX; and the
regulatory genes aflR and aflS) in the biosynthetic pathway using the mycotoxin gene
microarray; (b) to quantify the amounts of AFB; produced under these interacting
conditions; (c) to mathematically model the relationship between expression of these
genes, environmental factors, growth and AFB; production; (d) to validate the model
with data sets outside the range of the model and (e) to examine the possible ternary
interactions and relationships between some genes in the early part (afl D, aflM) of the
biosynthetic pathway and key regulatory genes (aflR, aflS in relation to a,,

temperature and AFB; production.

2. MATERIALSAND METHODS

2.1 Fungal strain used

The A. flavus strain (NRRL 3357) was previously used in molecular ecology studies
(Schmidt-Heydt et al. 2009). This was kindly provided by Dr. D. Bhathagar, USDA,
New Orleans, USA. It was stored at 4°C and sub-cultured on a 2% maize meal agar
when required. It has a known aflatoxin B; (AFB1) production capacity (Schmidt-
Heydt et al. 2009).



2.2 Growth studies
These were carried out with a conducive YES medium (20 g Yeast extract, 150 g
sucrose, 1 g MgS047H20, 1 L). The agar medium was modified with glycerol to
adjust the water availability to 0.99, 0.95, 0.90 and 0.85 a,. The modification was
done by first modifying the water with glycerol (46.1, 230, 506, 782 g |™ respectively)
and then substituting this mixture as if adding water. The advantage of using glycerol
is its stability over the experimental temperature range for modifying a,. The
accuracy of the modifications was confirmed using an Aqualab 3TE instrument
(Decagon, Pullman, WA, USA) and found to be within £0.005 of the target a,.

Spores from a 7 days old culture grown at 25°C were dislodged with a sterile
loop and placed in 10 ml sterile water + 0.05% Tween 20, a surfactant, in a 25 ml
Universal bottle. The spores were counted and a 10° spores ml™ concentration
prepared. The 9 cm Petri plates containing media treatments were all over-laid with
sterile 8.5 cm cellophane discs (P400, Cannings Ltd, Bristol, UK) and then centrally
inoculated with a5 ul spore suspension. Replicates (5 per treatment) were incubated
at 20, 25, 30, 35 for model design and temperatures outside the model boundaries: 37,
40 and 42°C were use to validate the model. Growth was measured daily by taking
two diametric measurements at right angles to each other for a period of 9 days.
Previous kinetics studies suggested that this was an optimum time under some
conditions for gene expression using RT-PCR (Schmidt-Heydt et al. 2008). At the end
of this period the whole colony biomass was scraped from the cellophane surface into

Eppendorf tubes and frozen at -80°C.

2.3 Isolation of RNA from samples

To perform microarray experiments RNA was isolated using the RNAeasy Plant Mini
kit (Qiagen, Hilden, Germany). An amount of 1 g of the mycelium was ground with a
mortar and pestle in liquid nitrogen. Two hundred and fifty mg of the resulting
powder was used for isolation of total RNA. The powder was suspended in 750 pl
lysis buffer, mixed with 7.5 pl B-mercaptoethanol and 100 glass beads with a diameter
of 1 mm (B. Braun Biotech International GmbH, Melsungen, Germany) in a 2 ml
RNase free micro reaction tube. The extracts were mixed thoroughly and incubated
for 15 min at 55 °C and 42 kHz in an S10H ultrasonic bath (EIma, Singen, Germany).



All further procedures were essentially the same as suggested by the manufacturer of
the kit.

2.4 Microarray experiments

cDNA synthesis and labelling were performed using the Micromax Direct Labeling
kit (Perkin EImer Life And Analytical Sciences, Inc. Boston, USA). For this purpose
an amount of 50 pug of the DNase | treated total RNA was used according to the
specifications of the kit. After cDNA synthesis and labelling, the cDNA was purified
with the QiaQuick Min Elute kit (Qiagen, Hilden, Germany). The labelled and
purified cDNA was brought to dryness in a vacuum concentrator (Speed Vac, Savant
Instruments, Farmingdale, USA), re-suspended in 60 pul hybridization buffer
(Scienion, Berlin, Germany), heated for 2 min. at 95 °C, placed on ice to prevent
strand rearrangement and hybridized for 18 h at 42°C to the microarray by using an
automatic hybridization station (Perkin Elmer, Boston, USA). After hybridization the
array was scanned with a confocal laser system (Scanarray lite, Perkin Elmer) at a
resolution of 5 um. The analysis of the results was performed using the Scanarray
software (Perkin Elmer, Boston, USA). The results were normalized using the Lowess
algorithm (locally weighted scatter plot smoothing) together with subtraction of the
background signal. As a control, the constitutively expressed -tubulin gene was used.

2.5 Aflatoxin analyses
2.5.1 Derivatisation procedure. Agar plugs (4-5 plugs, approx. 0.5 g) were cut out of
the agar medium across the 9 cm Petri plates. These were placed into 2 ml Eppendorf
tubes and weighed. Aflatoxins were extracted by adding 1 ml chloroform and shaking
for 1 hour. The biomass was discarded after centrifugation and the chloroform was
evaporated to dryness. The residue was derivatised (AOAC, 2000) using the
following method:
1. 200 pl HPLC hexane were added to the residue in a2 ml Eppendorf tube.
2. 50 pl TFA (Triflouroacetic acid) was added and vortexed for 30 seconds;
Eppendorf tubes were left for 5 minutes
950 ul water: acetonitrile (9:1) was added
4. Eppendorf tubes were vortexed for 30 seconds.
5. They were left for 10 minutes for separation of the layers. The upper layer was

discarded. The extracts were filtered through Nylon 13 mm, 0.2 um filter



(SMI- Lab Hut LTD, UK) directly into amber HPLC vials (Jaytee Biosciences
LTD, UK).

2.5.2 Sample analysis. Sample extracts were analyzed by HPLC using a Waters 600
E system controller, 470 fluorescence detector (Millipore Waters, Corporation
Massachusetts USA) (Aexc 360 nm; Aem 440 nm) and a Cyg column (Phenomenex Luna
ODS2 150 x 4.6 mm, 5 pm) al under control Waters Millennium® software. The
analysis was performed at a flow rate of 1 ml min™ of the mobile phase (30 %
Methanol: 60 % Water: 10 % Acetonitrile) and the run time was 25 minutes. A 200 pl
stock solution of an aflatoxin mixed standard in methanol (Supelco, Bellefonte, PA,
USA), containing 200 ng B1, 60 ng B,, 200 ng G; and 60 ng G;, was dried under
nitrogen gas and derivatised as for samples. Four concentrations (AFB1; 50-200 ng
ml™) were prepared for HPLC injection to make a standard curve (r>=0.9999). The
limit of detection for AFB; using HPLC was 0.8 ng g™* medium.

2.6 Data analysis and model devel opment

This study has used a mixed-growth-associated product formation model (Shuler and
Kargi, 2007), which takes account of both specific growth rate and metabolite
accumulation. This includes the fact that product formation is a combination of
growth rate and the specific rate of product formation which is given by Eq. 1. This
has been previously used for production of compounds such as xanthan gum and a

range of secondary metabolites of pharmaceutical interest.

2.7 Generation of ternary contour surfaces of interactions between gene expression
and environmental factors, and on aflatoxin B; production

In order to plot the ternary contour surfaces of the genetic expression a standardised
signa from the microarray was calculated as follows for a, and for temperature to
relate the relative abundance of mRNA of the structural genes (e.g. aflD, aflM) to the
regulatory genes (aflR, aflS):

¢ )




( + + )’ ( + + )’ ( + + )

Where the standardised value = actual value — minimum value/maximum value —
minimum value.

For AFB; production the model is:
( ( )

( + + )’ ( + + )’ ( + + )

3. RESULTS

3.1 Effect of environmental factors on growth and aflatoxin B; production by a strain
of A. flavus

Figure 1a shows the effect of interacting conditions of a, and temperature on growth
of the A. flavus strain used in this study. This shows that optimum was at 0.99 a, and
30-35°C, with good growth at 0.95 a, and 25-40°C. At the driest conditions
examined, 0.85 a,, growth only occurred at 30-37°C.

Figure 1b shows the effect of these parameters on AFB; production. This
shows a very different pattern from that for growth. Very little, if any AFB; was
produced at 40°C, except at 0.95 a,. It isinteresting to note that at sub-optimal growth
conditions, AFB; production occurred at 20-37°C with often higher production at
0.99-0.98 a,. These data sets were used in conjunction with the relative gene
expression of the 10 genes encoding for enzymes involved in the biosynthesis of
AFB; for modelling their relationship.

3.2. Modelling the relationship between environmental factors, gene expression and

aflatoxin B, production.

We have used a mixed-growth-associated product formation model, with specific rate
of product formation given by the following equation (Shuler and Kargi, 2007)



O =+ f8 (Eq. 1)
Where gp is the total amount of aflatoxin B; produced; o and B are constants of
aflatoxin B; production associated with primary and secondary metabolism and [ is

the specific growth rate.

The specific rate of product formation is proportional to the total biomass and the rate

of product formation.

1dP

= 4r (Eq. 2)
% X dt

The rate of product formation for a growth associated product is related to the initia
biomass (X,) and the specific growth rate (1) and the time (t)

Thus combining Eg. 1 and Eq. 2.

dP
o = (ot PX (Ea3)
dP

o X,e" (Eq. 4)

The rate of microbia growth is characterized by the specific growth rate, defined as

RS (Eq. 5)

After integration form from t=0 to t (days) and X(0)=Xg to X(t)=X

X=Xt  X,=Xet (Eq. 6)

Substituting Eg. 6 and 3

% = (ot + B) X" (Ea.7)



A temperature-dependent rate coefficient for growth represented by Arrhenius's

empirical equation is given by:

_Ea

p=er (Eq. 8)

Where E, is the activation energy and R is the universal constant of the gases (8.31
10 Jmol-K) and T is the absolute temperature (K). If we assume that the rate of
production is affected directly by fungal growth rate and activation energy.

Ea

dP -
o =@+ B)Xet e (Eq.9)

Based on previous experiments (data not shown) it was observed that the activation

energy could be adjusted as a quadratic function

E.=ha, (Eq. 10)
Thus
ha,
& (au+ )X e (Eq. 11)
ha,
[ dP = (op+ p)Xe ™ [ e'ct (Eq. 12)

After integration

P= (a + %jxoeb;w (e -1) (Eq. 13)

For assessing the relationship between physiological and thermodynamic conditions

and AFB; production and the expression of the gene clusters involved in toxin
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production the physical model was combined with the gene expression data as a linear
combination. The generic cluster can be described as alinear function:

[0]= a,aflD + a,aflR + a,aflS + a,aflE +aaflM + a,aflO + a,aflP + a,aflQ
azaflX + a,,aflF
(Ea. 14)

where & to &y are the parameter estimates from the linear combination of the
expression of genes so that [g] represents the sum of the effect of the individual genes
expressed under specific conditions. The final model which considers a,, temperature,

growth rate and gene expression on the regulation of AFB; is given by:
_baw
P:[g]x(a +ﬁ]x0e /T (e 1) (Eg. 15)
u

where P is the AFB; production ( ) and bl, a, and p are parameter estimates
from the model and p was calculated based on a period of 9 days growth and the
assumption that growth occurs in cylindrical fungal hypha extension with a constant

radius simplified as follows:

=1In = — (Eq. 16)

:ln —_ :ln _X :ln
X

Where X; and X; are final and initia biomass, mx and m are initia and final fungal
mass, Vs and v; are the initial and final fungal road volume, r 4 is the Aspergillus flavus
hyphal radius and L; and L; are the radial growth and p is the fungal density.

Table 1 shows the actual mean data (n=3) for AFB; production and that predicted by
the model in relation to different combinations of temperature and a,, the gene
expression data, and the relative mean growth rate.

Table 2 shows the ANOVA for the fit of the model and the regressed coefficients and
the corrected totals. This suggests that the model showed a good fit to the data and
was statistically significant. Table 3 shows the overall estimates and the dependence
for the main areas that are related to the model. All the parameters are statistically
significant at p<0.01. The modé fit for the observed vs. the predicted effects on AFB;
production (g ¢g*) gave a good correlation between the parameters (r>=0.9495;
residual sguare difference R,=0.0440). The model was used to construct contour
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maps of the relationship between environmental factors, growth and AFB; production
(Figure 2 a, b). This shows that optimum growth was at about 27°C and 0.98 a,. The
marginal conditions for growth were in the region <0.90 a, and temperatures <20°C
and >35°C. For AFB; production optimum conditions were at 0.98-0.99 a, and 25-
33°C.

3.3. Validation of the model

The model was subsequently tested to examine whether it could be used at
temperatures of 37 and 40°C at different a, levels. These conditions were not
originally included in the model because of the limited data at these conditions. Table
4 shows the effect on growth rate, and on the observed and predicted AFB;
production under these conditions. At 37°C and 0.90, 0.95 and 0.99 a, the model
predicted dlightly higher AFB; production than was actually observed. The
divergence between the predicted and observed at 0.95 to 0.99 a, increased from 30%
to 56% at this temperature. At 40°C and 0.90 a, there was very slow growth but no
AFB; produced. Thiswas similar to the predicted value.

3.3. Ternary relationships between gene expression, environmental factors and

aflatoxin B; production.

By using a standardised signal from the microarray data set for some of the key
structural and regulatory genes it was possible to examine the relative relationship
between the activity of either aflD or aflM and the two regulatory genes aflR and aflS
a the same time in ternary diagrams in relation to a,, temperature and AFB;
production. Figure 3 shows the effect of a, and temperature on the relative gene
expression (standardised) of the genes aflD, aflS and aflR. These were calculated
using the relative fractions (f) of the three individual genes as shown below:

1.37 + 0.840 + 0.982

(Eq. 17)

and for temperature:
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QY

= 55.69

25.49 19.13
* C + =+ OF D)

(Eq. 18)

As the a, increased, the expression of aflD was reduced. The regulatory genes aflR
and aflS were less sensitive to water availability. From the model these genes have a
similar sensitivity to a,. For temperature, the genes aflD and aflR expression were
inversely related to this parameter. As the temperature was increased the expression
of aflD and aflR was reduced and that of aflS increased. The model shows higher co-
efficients of aflD and aflR suggesting that a slight change in temperature causes a
large change in expression of these genes.

Similar ternary diagrams were constructed for the interaction between aflM
and the regulatory genes aflR and afl S (Figure 4). The relative fraction (f) of the three
genes was calculated in relation to a, and temperature:

For a, thiswas:

0.97 C ) + 0.876 C ) + 0.991 C )
(Eg. 19)

and for temperature:

T(°C) =

47.95 C ) + 30.52 C ) +17.53 . )
(Eg. 20)

The effect of interactions between aflM, aflS and aflR showed that with more
available water (e.g. 0.98 a,) there was a higher expression of the genes aflM and aflS
(Figure 5a). In contrast, under drier conditions, there was a higher aflR signal. There

was an inverse proportional effect of temperature on the expression of aflM and aflR.

13



Thus the higher the temperature, the lower aflR and higher aflM gene signal (Figure
5b). The expression of aflSwas similar across a wide spectrum of temperatures.

Figure 5 shows the relative expression of (a) aflD, aflR and aflS and (b) aflM,
aflR and aflSin relation to AFB; production. The relationships were calculated based
on:

aflatoxin B production (ugg )

= 3.66 —0.802

( + + ) ( + + )

+ 191 C n n )

(Eq. 21)
and for aflM and the regulatory genes:
aflatoxin B production (ugg )

= 3.21 C n n ) —0.63 C n n )

+ 1.85 C n n )
(Eq. 22)

4 DISCUSSION

This study has examined the relationship between growth of A. flavus and the impact
that environmental factors can have on key structural and regulatory genes and the
impact that this will have on AFB; production. This has shown that temperature and
water availability have a profound effect on both gene expression of key biosynthetic
genes as well as significantly affecting the phenotypic production of the toxic
secondary metabolite actually quantified analytically.

The data has shown that while growth can occur over a wider range of
temperatures x a, levels, AFB; production is over a narrower range of conditions.

Thus optimum conditions for growth of this strain of A. flavus were 30-35°C and 0.99
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aw, With marginal conditions at 15 and 40°C at 0.99 a,,. For AFB; production optimum
conditions were 25-30°C at 0.99 a, and this changed to 30-35°C at 0.95 a,. While few
previous studies have considered interactions between environmental conditions,
Sanchis and Magan (2004) did integrate data based on growth and AFB; production
on different nutritional matrices and this showed that optimum a, and temperatures on
groundnuts were: 0.94 a, and 34°C for growth and 0.99 a, and 32°C for AFB;
production. More recently, an Italian isolate of A. flavus from maize was shown to
have a wide temperature tolerance range for growth (15-45°C) but much narrower for
AFB; (20-35°C) production (Giorni et al. 2011).

In the present study expression data were available for the whole aflatoxin
gene cluster. However, we decided to use 8 key biosynthetic genes and the two
regulatory genes which were relevant to the biosynthesis of AFB; (Yu et al. 2002;
Georgianna and Payne 2009). This showed that both temperature and a, influenced
their relative expression. Schmidt-Heydt et al. (2009, 2010) showed that the ratio of
the regulatory genes aflR and afl S may be important, as alow ratio under certain a, X
temperature levels resulted in low AFB; production while higher ratios resulted in
significantly higher toxin production in both A. flavus and A. parasiticus. Because of
this we examined the relative activity of two genes (aflD, aflM) present in the early
part of the biosynthetic pathway with the regulatory genes in relation to changesin a,
and temperature. This showed that there was some relationship which was influenced
by both temperature and water stress.

O'Brian et al. (2007) analysed the influence of elevated temperature on
aflatoxin gene expression. They found by microarray analysis a differentia
expression of certain genes at 28 °C, which was conducive, compared to 37 °C which
was repressive, for aflatoxin biosynthesis in their strain of A. flavus. However, in
agreement with the data presented here, transcript levels of both aflR and afl S did not
change significantly between these temperatures.

It is necessary to also consider this study in the context of what might happen
when biotic variables are included. Thus, the interaction with ripening maize kernels,
especially where plant physiological and nutritional effects may be important, also
needs to be considered (Georgianna & Payne, 2009). Some relevance from the present
study can be inferred from the changes in a, of maize kernels in ripening maize cobs.
At the early dough stage the moisture content (m.c.) is about 40% (=0.99 a,) with no
water stress effects, this decreases to 30-35% m.c. (= 0.95 a,) at the mid-dough stage
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and to 20-25% (0.90-0.85 a,) at full maturity over a period of about 4-6 weeks
(Brooking, 1990). This will influence infection and colonisation by A. flavus.
Recently, Giorni et al. (2011) showed that the nutritional media made from maize
kernels at different ripening stages had little effect on growth of A. flavus and AFB;
production. This suggests that a, X temperature stresses may play an important rolein
influencing both gene expression and aflatoxin contamination in the fungus/plant
interface during this period. This may further influence the interaction with other
mycobiota which colonise the ripening maize cobs during these critical phases of
plant development.

Oxidative stress may also be an important factor asit has been shown that this
can stimulate aflatoxin production (Reverberi et al. 2008). For example, antioxidants
such as gdlic acid found in wanuts were found to inhibit several aflatoxin
biosynthetic pathway genes including aflD and aflM (Mahoney and Molyneux 2004).
Kim et al. (2008) showed that caffeic acid down regulated most of the aflatoxin
biosynthetic genes. These studies suggest that several oxidative stress genes such as
catalases, super oxidase dismutases and MAPKinase genes may be required to
overcome such stress. These effects may be further influenced by environmental
parameters which may add another layer of complexity to attempts to model the
system.

Recently Abdel-Hadi et al. (2010) suggested that relative expression of aflD
was an important indicator of colonisation under different environmental regimes.
They were able to develop a contour map in relation to a, and to time of colonisation
of groundnuts. While the expression of aflD was not found to be directly correlated
with populations of A. flavus (CFUs) isolated from stored groundnuts its activity
showed some pattern in relation to the relative amount of water stress imposed.

Very few attempts have been made to try and integrate molecular expression
data under different environmental stresses with phenotypic secondary metabolite
data to develop predictive models. Schmidt-Heydt et al. (2011) used a polynomial
model to examine the relationship between ecophysiological factors, growth and
deoxynivaenol production by strains of Fusarium culmorum and F. graminearum for
the first time. This suggested that it was possible to use quantitative PCR data for
specific genes (e.g. TRI5, TRI6) under different environmental conditions to predict
DON production using contour maps. However, validation was not possible using this
model. The present study has used a mixed growth model to try and relate the relative
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expression of 10 biosynthetic genes under different interacting environmental factors
to growth and AFB; production. This made it possible to use this approach to develop
a predictive model which gave a good relationship between the observed and
predicted AFB; production. Contour maps could be developed to show the
relationship between a, x temperature on AFB; production. It aso enabled the
inclusion of the gene expression data for 10 genes as a linear function to relate this to
growth and toxin production under a range of interacting stress conditions. Validation
of the mixed growth model was possible under conditions which were not included in
the model development. Thus the effect of slight changes in temperature to 35°C and
40°C at different water stress levels could be examined. The model gave a better fit
under some conditions, but deviated markedly under very wet conditions, which are
conducive to growth. The approach could be a powerful tool in examining the impact
that climate change factors, including elevated temperature conditions, water stress
and elevated CO, have on growth, gene expression and potential for toxin production
(Magan et al. 2011).

The development of ternary diagrams to examine the relationship between
structural and regulatory genes in relation to environmental conditions and toxin
production has not been studied in detail previously. This has shown that the relative
expression of aflD or aflM to that of aflR and aflSis important, and is related to and
influenced by both a, and temperature. The fact that aflS expression remains
relatively consistent across a range of interacting environmental conditions suggests
that this is a key regulatory gene in the biosynthetic pathway for aflatoxin
biosynthesis. The relative expression of sugar transporter genes (nadA, hxtA, glcA,
sugR) may aso be important, especially under water stress conditions where
utilisation of aternative carbon sources can be important. It has been shown that this
cluster of genes is important in A. parasiticus and may be related to the aflatoxin
biosynthetic gene cluster (Yu et al. 2000). This approach may enable the links
between different genes to be examined in order to better understand how they impact
on the phenotypic production of aflatoxins.

We believe that the effective integration of molecular, ecophysiological and
secondary metabolite data sets could be critical in predicting the relative risk of
mycotoxin contamination under different biotic and abiotic stress scenarios which

could have an impact on both food quality and security (Magan et al. 2011).
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Table 1. Experimental data and model estimation for aflatoxin B ; at different temperatures,
water activity and observed cluster gene expression for the 10 genes and the effect on growth
rate.

Aflatoxin B; (ug

Tem n+S.E. ah

p- afl afl afl afl afl afl ad afl afl (cm day Observed

°C) ay D R aflSE M O P IQ X F b Predicted
0. 188 18 206 69 49 334 15 19 19 14 0.406%0.

20 Q9 7 97 45 40 82 1 71 18 37 04 002 1.703 1.701
0. 147 40 220 36 18 169 13 17 29 13 0.127+0.

25 9 2 63 7 54 10 6 99 05 03 01 000 0.354 0.336
0. 24 178 27 28 26 32 24 35 0.580x0.

25 95 217 1 5 8 8 237 9 5 3 4 003 0.857 0.859
0. 89 133 62 55 115 54 56 65 58 0.572+0.

25 99 505 0 5 8 3 5 8 6 9 9 002 3.289 3.289

0. 136 11 175 19 15 155 16 17 38 11 0.187%0.

30 9 2 87 1 86 69 4 56 57 95 60 003 0.541  0.509
0. 18 132 36 51 39 34 34 30 0.577%0.

30 95 315 6 3 3 6 390 1 0 6 3 000 1.641 1.637
0. 28 36 42 50 19 35 23 0.679%0.

30 99 266 6 793 9 9 1 9 3 4 2 004 2.788 2.786
0. 134 33 113 17 14 143 12 10 15 12 0.205*0.

35 9 4 89 4 41 18 6 41 70 05 55 001 0.000 0.006
0. 25 21 33 25 15 18 21 0.588+0.

35 95 203 9 141 2 7 248 3 9 0] 6 004 1.678 1.677
0. 31 29 23 26 23 32 23 0.687+0.

35 99 400 3 312 5 8 282 9 0 6 3 000 1.881 1.881
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Table 2. Analysis of variance of the devel oped model

SS DF MS F-value p-value
Regression 92.26 14 6.59 63.90 0.0000
Residual 144 14 0.10
Total 93.71 28
Corrected Total 30.07 27
Regression vs. Corrected Total 92.26 14 6.59 591 0.0000

SS= Sum of squares, DF= Degrees of freedom, MS= Mean squares
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Table 3. The estimates and the dependence on the main areas that are related to the model.

All the parameters are statistically significant at p<0.01.

Parameter |Estimate p-level
Gene cluster for aflatoxin|a; (aflD) 0.4874464 0.00
biosynthesis a(aflR)  |-0.5495745 0.00
as(aflS  |-0.0168165 0.00
as(aflE)  |-0.0785165 0.00
as(aflM)  |0.2303169 0.00
a(afl0)  |0.2979484 0.00
a;(aflP)  |0.155606 0.00
ag(aflQ)  |-2.527789 0.00
a(aflX)  [1.90013 0.00
ap(aflF)  0.4844927 0.00
Mixed-growth-associated product |a 0.1963598 0.00
formation B -0.0048802 0.00
Initial inoculum Xo 0.0027675 0.00
Arrhenius's coefficient b, -401.0787 0.00
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Table 4. Model validation outside the regions in which the model was devel oped

Factors Condition
Temperature (°C) 37 37 37 40
Water activity (ay) 0.90 0.95 0.99 0.9
Growth rate (cm day™) 0.29 0.59 0.42 0.14
Observed aflatoxin  3.96+0.20 2.68+0.14  2.42+0.16 0.00
production (pg™)
Predicted aflatoxin

4.90+0.00 3.75+£0.18 3.78£0.14 0.00

production (pg™)
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Figure 1. Effect of water activity x temperature effects on (a) mean growth rate and
(b) aflatoxin B production on a conducive YES medium grown for 10 days. LSD,
Least Significant Difference (P=0.05).
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Figure 2. (a) Contour plot for temperature vs. water activity on growth rate (mm day
1), Numbers on the isopleths lines join conditions of the same growth rate; (b)
Contour plot for effect of temperature vs. water activity conditions on aflatoxin B,
production (1g g%). The isopleths lines join conditions at which similar quantities of

aflatoxin B, are produced.
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Ternary diagrams of the relative relationship between expression of aflD,

aflS in response to (a) water activity in the range 0.86 to 1.00 and (b)

temperature in the range 15 to 55°C. Legends indicate relative expression. The closed

circles (e) indicate the experimental data in relation to gene expression.
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Figure 4. Ternary diagram of the relative relationship of expression of aflM, aflR, and
aflS in response to (a) water activity in the range 0.90 and 0.98 and (b) temperature in
the range 20 to 45°C. Legends indicate relative expression of each gene. Closed

circles () indicate the experimental datain relation to gene expression.
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Figure 5. Ternary diagram of relative expression of (@) aflD, aflR, and aflS and (b)
aflM, aflR and aflS on aflatoxin B; production (ug g*). Legends indicate relative

expression of each gene. The closed circles (®) represent the experimental data in
relation to gene expression.
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