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Abstract

A microarray analysis was used to examine the effect of combinations of water

activity (aw; 0.995-0.90) and temperature (20-42oC) on the activation of aflatoxin

biosynthetic genes (30 genes) in A. flavus grown on a conducive YES medium. The

relative expression of 10 key genes (aflF, aflD, aflE, aflM, aflO, aflP, aflQ, aflX, aflR,

aflS) in the biosynthetic pathway were examined in relation to different

environmental factors and phenotypic aflatoxin B1 (AFB1) production. This data, plus

data on relative growth rates, and AFB1 production under different aw x temperature

conditions, were used to develop a mixed-growth-associated product formation

model. The gene expression data was normalised and then used as a linear

combination of the data for all 10 genes and combined with the physical model. This

was used to relate gene expression to aw and temperature conditions to predict AFB1

production. The relationship between the observed AFB1 production provided a good
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linear regression fit to the predicted production based in the model. The model was

then validated by examining data sets outside the model fitting conditions used (37,

40oC and different aw levels). The relationship between structural genes (aflD, aflM)

in the biosynthetic pathway and the regulatory genes (aflS, aflJ) was examined in

relation to aw and temperature by developing ternary diagrams of relative expression.

These findings are important in developing a more integrated systems approach by

combining gene expression, ecophysiological influences, and growth data to predict

mycotoxin production. This could help in developing a more targeted approach to

develop prevention strategies to control such carcinogenic natural metabolites which

are prevalent in many staple food products. The model could also be used to predict

the impact of climate change on toxin production.

1. 1. INTRODUCTION

Aflatoxins are produced by Aspergillus section Flavi group species and are thought to

be one of the most cancerous natural substances known. Economically and

biologically the most important fungal species able to produce aflatoxins are A. flavus

and A. parasiticus (Bhatnagar et al. 2002). The aflatoxin biosynthesis gene cluster of

A. parasiticus has been completely elucidated (Yu et al., 2002; Yu et al. 2004a).

Indeed a whole genome microarray of A. flavus has been used to study the regulation

of aflatoxin biosynthesis genes (O´Brian et al., 2007). Generally, the aflatoxin

biosynthesis genes of A. flavus and A. parasiticus are highly homologous and the

order of the genes within the cluster have been shown to be the same (Yu et al.,

1995). A. flavus strains produce only aflatoxin B1 and B2 while A. parasiticus produce

aflatoxins B1, B2, G1, and G2 (Vaamonde et al. 2003; Giorni et al. 2007).

The biosynthesis of mycotoxins is strongly dependent on growth conditions

such as substrate composition (Luchese & Harrigan 1993) or physical factors

including pH, water activity, temperature or modified atmospheres (Ellis et al. 1993;

Molina & Gianuzzi 2002; Sanchis & Magan 2004; Ribeiro et al. 2006; Giorni et al.

2008). Water activity (aw) is a measure of the amount of freely available water in a

substrate for microbial growth and is related to pure water, which has a aw of 1.00 or

100% equilibrium relative humidity. This aw is related to the total moisture content of

a specific substrate by a moisture sorption curve (Magan 2007). Depending on the

particular combination of external growth parameters the biosynthesis of aflatoxin can
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either be completely inhibited, or the pathway fully activated. Knowledge about these

relationships enables an assessment of which parameter combinations can control

aflatoxin biosynthesis and which are conducive to phenotypic aflatoxin

contamination. For example, a mathematical model which delineated the relationship

between pH, propionic acid concentration and temperature on aflatoxin biosynthesis

by A. parasiticus was described by Molina & Giannuzzi (2002). However, with the

exception of this data at the phenotypic level, very little information is available on

the influence of abiotic factors on the regulation of the aflatoxin biosynthesis genes.

Sweeney et al. (2000) developed a reverse transcription polymerase chain reaction to

analyse the expression of the aflR and ord1 genes of the aflatoxin pathway in relation

to various nutritional media. Price et al. (2005) used a whole genome microarray

approach to analyse the influence of substrate composition and pH on the activation

of aflatoxin biosynthesis genes. O’Brian et al. (2007) using the whole genomic

microarray, demonstrated that conducive and non-conducive temperatures affected

functioning of the genes, with transcript levels of aflR and aflR protein present at

lower concentrations at 37 than at 35oC for a strain of A. flavus.

Using a mycotoxin microarray with sub-arrays for specific mycotoxins,

developed by Schmidt-Heydt & Geisen (2007), the impact of key environmental

factors (aw, temperature) were shown to significantly affect the aflatoxin gene

clusters. The ratio of the key regulatory genes (aflR and aflS [=AflJ]) was important in

encoding the enzymes in the biosynthetic pathway of both A. flavus and A. parasiticus

(Schmidt-Heydt et al. 2009; 2010). Other studies have also demonstrated the impact

that such environmental factors may have, especially marginal stress conditions, on

gene cluster expression and phenotypic toxin production for a number of species

(Schmidt-Heydt et al. 2008). Recently, Schmidt-Heydt et al. (2011) showed that for

Fusarium culmorum and Fusarium graminearum it is possible to integrate such

microarray data on relative TRI gene expression under different environmental

conditions, growth and deoxynivalenol (DON) production and develop models which

can be used to predict DON concentrations for the first time. No such integrated

systems approach has been attempted for A. flavus.

In A. flavus the clustered pathway genes have been detailed, and in some cases

new gene names have been recently given (Yu et al. 2004a, b). Some of the key genes

in the aflatoxin biosynthesis include aflF (old name: norB), aflD (nor-1) and aflE

(norA) which encode a dehydrogenase and two reductases which convert norsolorinic
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acid to averantin; aflM (=ver-1) is a dehydrogenase which converts versicolorin A to

demethylsterigmatocystin; aflaO (=omtB) is a O-methyltransferase I or O-

methyltransferase B which is involved in the conversion of demethylsterigmatocystin

to sterigmatocystin and dihydro-demethylsterigmostocystin to

dihydrosterigmatocystin; aflP (=omtA) is an O-methyltransferase A or II which

converts sterigmatocystin to O-methylsterigmatocystin as well as

demethylsterigmatocystin to dihydro-O-methylsterigmatocystin; other genes such as

aflQ (=ordA) and aflX (=ordB) have been shown to be involved in the final part of the

biosynthetic pathway, as oxidoreductase-P450 monooxygenase and monoxygenase

oxidase. The two key regulatory genes which are important in transcription activation

are aflR which is involved in both aflatoxin and sterigmatocystin production and aflS

(=aflJ) which is involved in the regulation of aflatoxin.

We have utilised the mycotoxin microarray sub-array for the aflatoxin genes

as a tool for examining the changes that interacting environmental factors may have

on the relative expression of A. flavus gene clusters, as well as effects on growth and

phenotypic aflatoxin production. The objectives of this study were to (a) examine the

effect of aw x temperature conditions on growth, aflatoxin B1 (AFB1) and relative

expression of 10 key genes (aflD, aflE, aflF, aflM, aflN, aflP, aflQ, aflX; and the

regulatory genes aflR and aflS) in the biosynthetic pathway using the mycotoxin gene

microarray; (b) to quantify the amounts of AFB1 produced under these interacting

conditions; (c) to mathematically model the relationship between expression of these

genes, environmental factors, growth and AFB1 production; (d) to validate the model

with data sets outside the range of the model and (e) to examine the possible ternary

interactions and relationships between some genes in the early part (aflD, aflM) of the

biosynthetic pathway and key regulatory genes (aflR, aflS) in relation to aw,

temperature and AFB1 production.

2. MATERIALS AND METHODS

2.1 Fungal strain used

The A. flavus strain (NRRL 3357) was previously used in molecular ecology studies

(Schmidt-Heydt et al. 2009). This was kindly provided by Dr. D. Bhatnagar, USDA,

New Orleans, USA. It was stored at 4oC and sub-cultured on a 2% maize meal agar

when required. It has a known aflatoxin B1 (AFB1) production capacity (Schmidt-

Heydt et al. 2009).
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2.2 Growth studies

These were carried out with a conducive YES medium (20 g Yeast extract, 150 g

sucrose, 1 g MgS04•7H20, 1 L). The agar medium was modified with glycerol to

adjust the water availability to 0.99, 0.95, 0.90 and 0.85 aw. The modification was

done by first modifying the water with glycerol (46.1, 230, 506, 782 g l-1 respectively)

and then substituting this mixture as if adding water. The advantage of using glycerol

is its stability over the experimental temperature range for modifying aw. The

accuracy of the modifications was confirmed using an Aqualab 3TE instrument

(Decagon, Pullman, WA, USA) and found to be within ±0.005 of the target aw.

Spores from a 7 days old culture grown at 25oC were dislodged with a sterile

loop and placed in 10 ml sterile water + 0.05% Tween 20, a surfactant, in a 25 ml

Universal bottle. The spores were counted and a 106 spores ml-1 concentration

prepared. The 9 cm Petri plates containing media treatments were all over-laid with

sterile 8.5 cm cellophane discs (P400, Cannings Ltd, Bristol, UK) and then centrally

inoculated with a 5 l spore suspension. Replicates (5 per treatment) were incubated

at 20, 25, 30, 35 for model design and temperatures outside the model boundaries: 37,

40 and 42oC were use to validate the model. Growth was measured daily by taking

two diametric measurements at right angles to each other for a period of 9 days.

Previous kinetics studies suggested that this was an optimum time under some

conditions for gene expression using RT-PCR (Schmidt-Heydt et al. 2008). At the end

of this period the whole colony biomass was scraped from the cellophane surface into

Eppendorf tubes and frozen at -80oC.

2.3 Isolation of RNA from samples

To perform microarray experiments RNA was isolated using the RNAeasy Plant Mini

kit (Qiagen, Hilden, Germany). An amount of 1 g of the mycelium was ground with a

mortar and pestle in liquid nitrogen. Two hundred and fifty mg of the resulting

powder was used for isolation of total RNA. The powder was suspended in 750 µl

lysis buffer, mixed with 7.5 µl β-mercaptoethanol and 100 glass beads with a diameter

of 1 mm (B. Braun Biotech International GmbH, Melsungen, Germany) in a 2 ml

RNase free micro reaction tube. The extracts were mixed thoroughly and incubated

for 15 min at 55 °C and 42 kHz in an S10H ultrasonic bath (Elma, Singen, Germany).
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All further procedures were essentially the same as suggested by the manufacturer of

the kit.

2.4 Microarray experiments

cDNA synthesis and labelling were performed using the Micromax Direct Labeling

kit (Perkin Elmer Life And Analytical Sciences, Inc. Boston, USA). For this purpose

an amount of 50 µg of the DNase I treated total RNA was used according to the

specifications of the kit. After cDNA synthesis and labelling, the cDNA was purified

with the QiaQuick Min Elute kit (Qiagen, Hilden, Germany). The labelled and

purified cDNA was brought to dryness in a vacuum concentrator (Speed Vac, Savant

Instruments, Farmingdale, USA), re-suspended in 60 µl hybridization buffer

(Scienion, Berlin, Germany), heated for 2 min. at 95 °C, placed on ice to prevent

strand rearrangement and hybridized for 18 h at 42°C to the microarray by using an

automatic hybridization station (Perkin Elmer, Boston, USA). After hybridization the

array was scanned with a confocal laser system (Scanarray lite, Perkin Elmer) at a

resolution of 5 µm. The analysis of the results was performed using the Scanarray

software (Perkin Elmer, Boston, USA). The results were normalized using the Lowess

algorithm (locally weighted scatter plot smoothing) together with subtraction of the

background signal. As a control, the constitutively expressed β-tubulin gene was used.

2.5 Aflatoxin analyses

2.5.1 Derivatisation procedure. Agar plugs (4-5 plugs, approx. 0.5 g) were cut out of

the agar medium across the 9 cm Petri plates. These were placed into 2 ml Eppendorf

tubes and weighed. Aflatoxins were extracted by adding 1 ml chloroform and shaking

for 1 hour. The biomass was discarded after centrifugation and the chloroform was

evaporated to dryness. The residue was derivatised (AOAC, 2000) using the

following method:

1. 200 µl HPLC hexane were added to the residue in a 2 ml Eppendorf tube.

2. 50 µl TFA (Triflouroacetic acid) was added and vortexed for 30 seconds;

Eppendorf tubes were left for 5 minutes

3. 950 µl water: acetonitrile (9:1) was added

4. Eppendorf tubes were vortexed for 30 seconds.

5. They were left for 10 minutes for separation of the layers. The upper layer was

discarded. The extracts were filtered through Nylon 13 mm, 0.2 m filter
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(SMI- Lab Hut LTD, UK) directly into amber HPLC vials (Jaytee Biosciences

LTD, UK).

2.5.2 Sample analysis. Sample extracts were analyzed by HPLC using a Waters 600

E system controller, 470 fluorescence detector (Millipore Waters, Corporation

Massachusetts USA) (λexc 360  nm; λem 440 nm) and a C18 column (Phenomenex Luna

ODS2 150 x 4.6 mm, 5 µm) all under control Waters Millennium32 software. The

analysis was performed at a flow rate of 1 ml min-1 of the mobile phase (30 %

Methanol: 60 % Water: 10 % Acetonitrile) and the run time was 25 minutes. A 200 µl

stock solution of an aflatoxin mixed standard in methanol (Supelco, Bellefonte, PA,

USA), containing 200 ng B1, 60 ng B2, 200 ng G1 and 60 ng G1, was dried under

nitrogen gas and derivatised as for samples. Four concentrations (AFB1; 50-200 ng

ml-1) were prepared for HPLC injection to make a standard curve (r2=0.9999). The

limit of detection for AFB1 using HPLC was 0.8 ng g-1 medium.

2.6 Data analysis and model development

This study has used a mixed-growth-associated product formation model (Shuler and

Kargi, 2007), which takes account of both specific growth rate and metabolite

accumulation. This includes the fact that product formation is a combination of

growth rate and the specific rate of product formation which is given by Eq. 1. This

has been previously used for production of compounds such as xanthan gum and a

range of secondary metabolites of pharmaceutical interest.

2.7 Generation of ternary contour surfaces of interactions between gene expression

and environmental factors, and on aflatoxin B1 production

In order to plot the ternary contour surfaces of the genetic expression a standardised

signal from the microarray was calculated as follows for aw and for temperature to

relate the relative abundance of mRNA of the structural genes (e.g. aflD, aflM) to the

regulatory genes (aflR, aflS):( )
= ( + + ) , ( + + ) , ( + + )
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( )
= ( + + ) , ( + + ) , ( + + )

Where the standardised value = actual value – minimum value/maximum value –

minimum value.

For AFB1 production the model is:( ( ))
= ( + + ) , ( + + ) , ( + + )

3. RESULTS

3.1 Effect of environmental factors on growth and aflatoxin B1 production by a strain

of A. flavus

Figure 1a shows the effect of interacting conditions of aw and temperature on growth

of the A. flavus strain used in this study. This shows that optimum was at 0.99 aw and

30-35oC, with good growth at 0.95 aw and 25-40oC. At the driest conditions

examined, 0.85 aw, growth only occurred at 30-37oC.

Figure 1b shows the effect of these parameters on AFB1 production. This

shows a very different pattern from that for growth. Very little, if any AFB1 was

produced at 40oC, except at 0.95 aw. It is interesting to note that at sub-optimal growth

conditions, AFB1 production occurred at 20-37oC with often higher production at

0.99-0.98 aw. These data sets were used in conjunction with the relative gene

expression of the 10 genes encoding for enzymes involved in the biosynthesis of

AFB1 for modelling their relationship.

3.2. Modelling the relationship between environmental factors, gene expression and

aflatoxin B1 production.

We have used a mixed-growth-associated product formation model, with specific rate

of product formation given by the following equation (Shuler and Kargi, 2007)
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 Pq (Eq. 1)

Where qP is the total amount of aflatoxin B1 produced; α and β are constants of

aflatoxin B1 production associated with primary and secondary metabolism and µ is

the specific growth rate.

The specific rate of product formation is proportional to the total biomass and the rate

of product formation.

dt
dP

X
qP

1
 (Eq. 2)

The rate of product formation for a growth associated product is related to the initial

biomass (Xo) and the specific growth rate () and the time (t)

Thus combining Eq. 1 and Eq. 2.

X
dt
dP

)(   (Eq. 3)

μt
0eX

dt
dP

 (Eq. 4)

The rate of microbial growth is characterized by the specific growth rate, defined as

dt
dX

X
1

 (Eq. 5)

After integration form from t=0 to t (days) and X(0)=X0 to X(t)=X

tt XeXeXX   00 (Eq. 6)

Substituting Eq. 6 and 3

teX
dt
dP  0)(  (Eq. 7)
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A temperature-dependent rate coefficient for growth represented by Arrhenius's

empirical equation is given by:

RT
Ea

e


 (Eq. 8)

Where Ea is the activation energy and R is the universal constant of the gases (8.31

10-3 J/mol-K) and T is the absolute temperature (K). If we assume that the rate of

production is affected directly by fungal growth rate and activation energy.

  RT
E

t
a

eeX
dt
dP    0 (Eq. 9)

Based on previous experiments (data not shown) it was observed that the activation

energy could be adjusted as a quadratic function

wa abE 1 (Eq. 10)

Thus

  tRT
ab

eeX
dt
dP w


 

1

0 (Eq. 11)

  dteeXdP
t tRT

ab
P w

 


000

1
 (Eq. 12)

After integration

 1
1

0 









 tRT
ab

eeXP
w


 (Eq. 13)

For assessing the relationship between physiological and thermodynamic conditions

and AFB1 production and the expression of the gene clusters involved in toxin
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production the physical model was combined with the gene expression data as a linear

combination. The generic cluster can be described as a linear function:

 
aflFaflX

aflQaflPaflOaflMaflEaflSaflRaflDg

109

87654321

aa

aaaaaaaa





(Eq. 14)

where a1 to a10 are the parameter estimates from the linear combination of the

expression of genes so that [g] represents the sum of the effect of the individual genes

expressed under specific conditions. The final model which considers aw, temperature,

growth rate and gene expression on the regulation of AFB1 is given by:

   1
1

0 







  tRT

ab

eeXgP
w




 (Eq. 15)

where P is the AFB1 production ( ) and b1, α, and β are parameter estimates

from the model and µ was calculated based on a period of 9 days growth and the

assumption that growth occurs in cylindrical fungal hyphal extension with a constant

radius simplified as follows:

= ln = ln ×× = ln ×
× = ln × ×× × = (Eq. 16)

Where Xf and Xi are final and initial biomass, mf and mi are initial and final fungal

mass, vf and vi are the initial and final fungal road volume, rA is the Aspergillus flavus

hyphal radius and Lf and Li are the radial growth and ρ is the fungal density.

Table 1 shows the actual mean data (n=3) for AFB1 production and that predicted by

the model in relation to different combinations of temperature and aw, the gene

expression data, and the relative mean growth rate.

Table 2 shows the ANOVA for the fit of the model and the regressed coefficients and

the corrected totals. This suggests that the model showed a good fit to the data and

was statistically significant. Table 3 shows the overall estimates and the dependence

for the main areas that are related to the model. All the parameters are statistically

significant at p<0.01. The model fit for the observed vs. the predicted effects on AFB1

production (µg g-1) gave a good correlation between the parameters (r2=0.9495;

residual square difference Rmsd=0.0440). The model was used to construct contour
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maps of the relationship between environmental factors, growth and AFB1 production

(Figure 2 a, b). This shows that optimum growth was at about 27oC and 0.98 aw. The

marginal conditions for growth were in the region <0.90 aw and temperatures <20oC

and >35oC. For AFB1 production optimum conditions were at 0.98-0.99 aw and 25-

33oC.

3.3. Validation of the model

The model was subsequently tested to examine whether it could be used at

temperatures of 37 and 40oC at different aw levels. These conditions were not

originally included in the model because of the limited data at these conditions. Table

4 shows the effect on growth rate, and on the observed and predicted AFB1

production under these conditions. At 37oC and 0.90, 0.95 and 0.99 aw the model

predicted slightly higher AFB1 production than was actually observed. The

divergence between the predicted and observed at 0.95 to 0.99 aw increased from 30%

to 56% at this temperature. At 40oC and 0.90 aw there was very slow growth but no

AFB1 produced. This was similar to the predicted value.

3.3. Ternary relationships between gene expression, environmental factors and

aflatoxin B1 production.

By using a standardised signal from the microarray data set for some of the key

structural and regulatory genes it was possible to examine the relative relationship

between the activity of either aflD or aflM and the two regulatory genes aflR and aflS

at the same time in ternary diagrams in relation to aw, temperature and AFB1

production. Figure 3 shows the effect of aw and temperature on the relative gene

expression (standardised) of the genes aflD, aflS and aflR. These were calculated

using the relative fractions (f) of the three individual genes as shown below:

=
1.37 ( ) + 0.840 ( ) + 0.982 ( )

(Eq. 17)

and for temperature:
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(℃)
= 55.69 ( + + )
+ 25.49 ( + + ) + 19.13 ( + + )

(Eq. 18)

As the aw increased, the expression of aflD was reduced. The regulatory genes aflR

and aflS were less sensitive to water availability. From the model these genes have a

similar sensitivity to aw. For temperature, the genes aflD and aflR expression were

inversely related to this parameter. As the temperature was increased the expression

of aflD and aflR was reduced and that of aflS increased. The model shows higher co-

efficients of aflD and aflR suggesting that a slight change in temperature causes a

large change in expression of these genes.

Similar ternary diagrams were constructed for the interaction between aflM

and the regulatory genes aflR and aflS (Figure 4). The relative fraction (f) of the three

genes was calculated in relation to aw and temperature:

For aw this was:

=
0.97 ( ) + 0.876 ( ) + 0.991 ( )

(Eq. 19)

and for temperature:

T(℃) =
47.95 ( ) + 30.52 ( ) + 17.53 ( )

(Eq. 20)

The effect of interactions between aflM, aflS and aflR showed that with more

available water (e.g. 0.98 aw) there was a higher expression of the genes aflM and aflS

(Figure 5a). In contrast, under drier conditions, there was a higher aflR signal. There

was an inverse proportional effect of temperature on the expression of aflM and aflR.



14

Thus the higher the temperature, the lower aflR and higher aflM gene signal (Figure

5b). The expression of aflS was similar across a wide spectrum of temperatures.

Figure 5 shows the relative expression of (a) aflD, aflR and aflS and (b) aflM,

aflR and aflS in relation to AFB1 production. The relationships were calculated based

on:

aflatoxin B production (μg g )
= 3.66 ( + + ) − 0.802 ( + + )
+ 1.91 ( + + )

(Eq. 21)

and for aflM and the regulatory genes:

aflatoxin B production (μg g )
= 3.21 ( + + ) − 0.63 ( + + )
+ 1.85 ( + + )

(Eq. 22)

4 DISCUSSION

This study has examined the relationship between growth of A. flavus and the impact

that environmental factors can have on key structural and regulatory genes and the

impact that this will have on AFB1 production. This has shown that temperature and

water availability have a profound effect on both gene expression of key biosynthetic

genes as well as significantly affecting the phenotypic production of the toxic

secondary metabolite actually quantified analytically.

The data has shown that while growth can occur over a wider range of

temperatures x aw levels, AFB1 production is over a narrower range of conditions.

Thus optimum conditions for growth of this strain of A. flavus were 30-35oC and 0.99
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aw, with marginal conditions at 15 and 40oC at 0.99 aw. For AFB1 production optimum

conditions were 25-30oC at 0.99 aw and this changed to 30-35oC at 0.95 aw. While few

previous studies have considered interactions between environmental conditions,

Sanchis and Magan (2004) did integrate data based on growth and AFB1 production

on different nutritional matrices and this showed that optimum aw and temperatures on

groundnuts were: 0.94 aw and 34oC for growth and 0.99 aw and 32oC for AFB1

production. More recently, an Italian isolate of A. flavus from maize was shown to

have a wide temperature tolerance range for growth (15-45oC) but much narrower for

AFB1 (20-35oC) production (Giorni et al. 2011).

In the present study expression data were available for the whole aflatoxin

gene cluster. However, we decided to use 8 key biosynthetic genes and the two

regulatory genes which were relevant to the biosynthesis of AFB1 (Yu et al. 2002;

Georgianna and Payne 2009). This showed that both temperature and aw influenced

their relative expression. Schmidt-Heydt et al. (2009, 2010) showed that the ratio of

the regulatory genes aflR and aflS may be important, as a low ratio under certain aw x

temperature levels resulted in low AFB1 production while higher ratios resulted in

significantly higher toxin production in both A. flavus and A. parasiticus. Because of

this we examined the relative activity of two genes (aflD, aflM) present in the early

part of the biosynthetic pathway with the regulatory genes in relation to changes in aw

and temperature. This showed that there was some relationship which was influenced

by both temperature and water stress.

O’Brian et al. (2007) analysed the influence of elevated temperature on

aflatoxin gene expression. They found by microarray analysis a differential

expression of certain genes at 28 °C, which was conducive, compared to 37 °C which

was repressive, for aflatoxin biosynthesis in their strain of A. flavus. However, in

agreement with the data presented here, transcript levels of both aflR and aflS did not

change significantly between these temperatures.

It is necessary to also consider this study in the context of what might happen

when biotic variables are included. Thus, the interaction with ripening maize kernels,

especially where plant physiological and nutritional effects may be important, also

needs to be considered (Georgianna & Payne, 2009). Some relevance from the present

study can be inferred from the changes in aw of maize kernels in ripening maize cobs.

At the early dough stage the moisture content (m.c.) is about 40% (=0.99 aw) with no

water stress effects, this decreases to 30-35% m.c. (= 0.95 aw) at the mid-dough stage
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and to 20-25% (0.90-0.85 aw) at full maturity over a period of about 4-6 weeks

(Brooking, 1990). This will influence infection and colonisation by A. flavus.

Recently, Giorni et al. (2011) showed that the nutritional media made from maize

kernels at different ripening stages had little effect on growth of A. flavus and AFB1

production. This suggests that aw x temperature stresses may play an important role in

influencing both gene expression and aflatoxin contamination in the fungus/plant

interface during this period. This may further influence the interaction with other

mycobiota which colonise the ripening maize cobs during these critical phases of

plant development.

Oxidative stress may also be an important factor as it has been shown that this

can stimulate aflatoxin production (Reverberi et al. 2008). For example, antioxidants

such as gallic acid found in walnuts were found to inhibit several aflatoxin

biosynthetic pathway genes including aflD and aflM (Mahoney and Molyneux 2004).

Kim et al. (2008) showed that caffeic acid down regulated most of the aflatoxin

biosynthetic genes. These studies suggest that several oxidative stress genes such as

catalases, super oxidase dismutases and MAPKinase genes may be required to

overcome such stress. These effects may be further influenced by environmental

parameters which may add another layer of complexity to attempts to model the

system.

Recently Abdel-Hadi et al. (2010) suggested that relative expression of aflD

was an important indicator of colonisation under different environmental regimes.

They were able to develop a contour map in relation to aw and to time of colonisation

of groundnuts. While the expression of aflD was not found to be directly correlated

with populations of A. flavus (CFUs) isolated from stored groundnuts its activity

showed some pattern in relation to the relative amount of water stress imposed.

Very few attempts have been made to try and integrate molecular expression

data under different environmental stresses with phenotypic secondary metabolite

data to develop predictive models. Schmidt-Heydt et al. (2011) used a polynomial

model to examine the relationship between ecophysiological factors, growth and

deoxynivalenol production by strains of Fusarium culmorum and F. graminearum for

the first time. This suggested that it was possible to use quantitative PCR data for

specific genes (e.g. TRI5, TRI6) under different environmental conditions to predict

DON production using contour maps. However, validation was not possible using this

model. The present study has used a mixed growth model to try and relate the relative
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expression of 10 biosynthetic genes under different interacting environmental factors

to growth and AFB1 production. This made it possible to use this approach to develop

a predictive model which gave a good relationship between the observed and

predicted AFB1 production. Contour maps could be developed to show the

relationship between aw x temperature on AFB1 production. It also enabled the

inclusion of the gene expression data for 10 genes as a linear function to relate this to

growth and toxin production under a range of interacting stress conditions. Validation

of the mixed growth model was possible under conditions which were not included in

the model development. Thus the effect of slight changes in temperature to 35oC and

40oC at different water stress levels could be examined. The model gave a better fit

under some conditions, but deviated markedly under very wet conditions, which are

conducive to growth. The approach could be a powerful tool in examining the impact

that climate change factors, including elevated temperature conditions, water stress

and elevated CO2 have on growth, gene expression and potential for toxin production

(Magan et al. 2011).

The development of ternary diagrams to examine the relationship between

structural and regulatory genes in relation to environmental conditions and toxin

production has not been studied in detail previously. This has shown that the relative

expression of aflD or aflM to that of aflR and aflS is important, and is related to and

influenced by both aw and temperature. The fact that aflS expression remains

relatively consistent across a range of interacting environmental conditions suggests

that this is a key regulatory gene in the biosynthetic pathway for aflatoxin

biosynthesis. The relative expression of sugar transporter genes (nadA, hxtA, glcA,

sugR) may also be important, especially under water stress conditions where

utilisation of alternative carbon sources can be important. It has been shown that this

cluster of genes is important in A. parasiticus and may be related to the aflatoxin

biosynthetic gene cluster (Yu et al. 2000). This approach may enable the links

between different genes to be examined in order to better understand how they impact

on the phenotypic production of aflatoxins.

We believe that the effective integration of molecular, ecophysiological and

secondary metabolite data sets could be critical in predicting the relative risk of

mycotoxin contamination under different biotic and abiotic stress scenarios which

could have an impact on both food quality and security (Magan et al. 2011).



18

Acknowledgements

Dr A. Abdel-Hadi is grateful to Egyptian Higher Education Ministry and Al-Azhar

University, Assuit branch, for financial support.

REFERENCES

Abdel-Hadi, A., Carter, D. And Magan, N. 2010 Temporal monitoring of the nor-1

(aflD) gene of Aspergillus flavus in relation to aflatoxin B1 production during

storage of peanuts under different environmental conditions. J. Appl.

Microbiol. 109, 1914-1922.

AOAC 2000 Association of Official Analytical Chemist, Official methods of analysis.

Natural toxins, 17th edn., Chapter 49, Washington, D.C.

Bhatnagar, D., Yu, J., Ehrlich, K.C. 2002 Toxins of filamentous fungi. In

Breitenbach, M., Crameri, R., Lehrer, S. B. (eds) Fungal Allergy and

Pathogenicity. Basel, Karger: Chemical Immunology 167-206.

Brooking, I.B. 1990 Maize ear moisture during gain-filling, and its relation to

physiological maturity and grain drying. Field Crops Res. 23, 55-68.

Ellis, W. O., Smith, P. J., Simpson, B. K., Khanizadeh, S., Oldham, J. H. 1993

Control of growth and aflatoxin production of Aspergillus flavus under

modified atmosphere packaging conditions. Food Microbiol. 10, 9-21.

Georgianna, D.R. & Payne, G.A. 2009 Genetic regulation of aflatoxin biosynthesis:

from gene to genome. Fungal Genet. Biol. 46, 113-125.

Giorni, P. Battilani, P., Pietri, A. & Magan, N. 2008 Effect of water activity and CO2

levels on Aspergillus flavus growth and aflatoxin production in high moisture

maize post-harvest. Int. J. Food Microbiol. 122, 108-112.

Giorni, P., Magan, N., Pietri, A., Bertuzzi, T., Battilani, P. 2007 Studies on

Aspergillus section Flavi isolated from maize in northern Italy. Int. J. Food

Microbiol. 113, 330-338.

Giorni, P., Magan, N., Pietri, A. & Battilani, P. 2011 Growth and aflatoxin production

of an Italian strain of Aspergillus flavus: influence of ecological factors and

nutritional substrates. World Mycotoxin Journal. doi 10.3920/WMJ2011.1300.

Kim, J.H., Yu, J., Mahoney, N., Chan, K.L., Molyneux, R.J., Varga, J., Bhatnagar, D.,

Cleveland, T.E., Nierman, W.C. & Campbell, B.C. 2008 Elucidation of the

functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis.

Int. J. Food Microbiol. 122, 49-60.



19

Luchese, R. H., Harrigan, W. F. 1993 Biosynthesis of aflatoxin-the role of nutritional

factors. J. Appl. Bact. 74, 5-14.

Magan, N. 2007 Fungi in extreme environments. In: Kubicek CP, Druzhinina IS, Eds.

Environmental and Microbial Relationships. The MYCOTA IV, 2nd edn.

Berlin, Germany: Springer Verlag, 85–103.

Magan, N., Medina, A. and Aldred, D. 2011 Possible climate-change effects on

mycotoxin contamination of food crops pre- and postharvest. Plant Pathology

60, 150-163.

Mahoney, N. & Molyneux, R.J. 2004 Phytochemical inhibition of aflatoxigenicity in

Aspergillus flavus by constituents of walnut (Jugalns regia). J. Agric. Food

Chem. 52, 1882-1889.

Molina, M. & Giannuzzi, L. 2002 Modelling of aflatoxin production by Aspergillus

parasiticus in a solid medium at different temperatures, pH and propionic acid

concentrations. Food Res. Int. 35, 585-594.

O’ Brian, G. R., Georgianna, D. R., Wilkinson, J. R., Yu, J., Abbas, H. K., Cleveland,

D., Bhatnagar, T. E., Nierman, W. & Payne, G. A. 2007 The effect of

elevated temperature on gene transcription and aflatoxin biosynthesis.

Mycologia 99, 232-239.

Price, M. S., Conners, S. B., Tachdjian, S., Kelly, R. M. and Payne, G. A. 2005

Aflatoxin conducive and non-conducive growth conditions reveal new gene

associations with aflatoxin production. Fungal Genet. Biol. 42, 506-518.

Reverberi, M., Zjalic, S., Ricelli, A., Punelli, F., Camera, E., Fabbri, C., Picardo, M.,

Fanelli, C. & Fabbri, A.A.(2008 Modulation of the antioxidant defence in

Aspergillus parasiticus is involved in aflatoxin biosynthesis: a role for

ApyyapA gene. Eukaryot. Cell 7, 988-1000.

Ribeiro, J. M. M., Cavaglieri, L. R., Fraga, M. E., Direito, G. M., Dalcero, A. M.,

Rosa, C. A. R. 2006 Influence of water activity, temperature and time on

mycotoxins production on barley rootlets. Letts. Appl. Microbiol. 42, 179-184.

Sanchis, V. & Magan, N. 2004 Environmental conditions affecting mycotoxins.

Chapter 8 In Mycotoxins in food: detection and control. Eds, N. Magan and M.

Olsen. Woodhead Publishing Ltd, Cambridge, U.K. pp. 174-189.

Schmidt-Heydt, M., Geisen, R. 2007 A microarray for monitoring the production of

mycotoxins in food. Int. J. Food Microbiol. 117, 131-140.



20

Schmidt-Heydt, M., Magan, N. & Geisen, R. 2008 Stress induction of mycotoxin

biosynthesis genes in relation to abiotic factors. FEMS Microbiol. Letts. 284,

142-149.

Schmidt-Heydt, M.; Abdel-Hadi,A.; Magan, N. & Geisen R. 2009 Complex

regulation of the aflatoxin biosynthesis gene cluster of A. flavus in relation to

various combinations of water activity and temperature. Int. J.Food Microbiol.

135, 231-237.

Schmidt-Heydt, M., Rüfer, C.E., Abdel-Hadi, A., Magan, N. & Geisen, R. 2010 The

production of aflatoxin B1 or G1 by Aspergillus parasiticus at various

combinations of temperature and water activity is related to the ratio of aflS to

aflR expression. Mycotoxin Res. 26, 241-246.

Schmidt-Heydt, M., Parra, R., Geisen, R. & Magan, N. 2011 Modelling the

relationship between environmental factors, transcriptional genes and

deoxynivalenol mycotoxin production by two Fusarium species. J. Royal Soc.

Interface 8, 117-120.

Shuler, L. & Kargi, F. 2007 Bioprocess Engineering Basic Concepts, Second Edition.

Amundson, N.R (Ed). Printice Hall PTR, Upper Sadle River New Jersy, USA.

Sweeney, MJ, White, S. & Dobson, A.D.W. 2000 Mycotoxins in agriculture and food

safety. Irish J. Agric. Food Safety 39, 235-244

Yu, J., Chang, P-K., Ehrlich, K.C., Cary, J.W., Bhatnagar, D., Cleveland, T.E., Payne,

G.A., Linz, J.E., Woloshuk, C.P. & Bennett, J.W. 2004a Clustered pathway

genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 70, 1253-1262.

Yu, J., Chang, J.W., Wright, M., Bhatnagar, D., Cleveland, T.E., Payne, G.A., &

Linz, J.E. 1995 Comparative mapping of aflatoxin pathway gene clusters in

Aspergillus parasiticus and Aspergillus flavus. Appl. Environ. Microbiol. 61,

2365-2371.

Yu, J., Chang, P-K, Bhatnagar, D. & Cleveland, T.E. 2000. Cloning of a sugar

utilization gene cluster in Aspergillus parasiticus. Biochim. Biophys. Acta.

1493, 211-214.

Yu, J., Bhatnagar, D. & Ehrlich, K. C. 2002 Aflatoxin biosynthesis. Revista

Iberoamericana Micologia 19, 191-200.

Yu, J., Bhatnagar, D., Cleveland, T. E. 2004b Completed sequence of aflatoxin

pathway gene cluster in Aspergillus parasiticus. FEBS Letters 564, 126-130.



21

Vaamonde, G., Patriarca, A., Pinto, V.F., Comerio, R. And Degrossi, C. 2003

Variability of aflatoxin and cyclopiazonic acid production by Aspergillus

section Flavi from different substrates in Argentina. Int. J. Food Microbiol.

88, 79–84.



22

Table 1. Experimental data and model estimation for aflatoxin B 1 at different temperatures,

water activity and observed cluster gene expression for the 10 genes and the effect on growth

rate.

Tem

p.

(oC) aw

afl

D

afl

R aflS

afl

E

afl

M

afl

O

afl

P

ad

lQ

afl

X

afl

F

±S.E.

(cm day-

1)

Aflatoxin B1 (µg

g-1)

Observed

Predicted

20

0.

99

188

7

18

97

206

45

69

40

49

82

334

1

15

71

19

18

19

37

14

04

0.406±0.

002 1.703 1.701

25

0.

9

147

2

40

63

220

7

36

54

18

10

169

6

13

99

17

05

29

03

13

01

0.127±0.

000 0.354 0.336

25

0.

95 217

24

1

178

5

27

8

28

8 237

26

9

32

5

24

3

35

4

0.580±0.

003 0.857 0.859

25

0.

99 505

89

0

133

5

62

8

55

3

115

5

54

8

56

6

65

9

58

9

0.572±0.

002 3.289 3.289

30

0.

9

136

2

11

87

175

1

19

86

15

69

155

4

16

56

17

57

38

95

11

60

0.187±0.

003 0.541 0.509

30

0.

95 315

18

6

132

3

36

3

51

6 390

39

1

34

0

34

6

30

3

0.577±0.

000 1.641 1.637

30

0.

99 266

28

6 793

36

9

42

9 1

50

9

19

3

35

4

23

2

0.679±0.

004 2.788 2.786

35

0.

9

134

4

33

89

113

4

17

41

14

18

143

6

12

41

10

70

15

05

12

55

0.205±0.

001 0.000 0.006

35

0.

95 203

25

9 141

21

2

33

7 248

25

3

15

9

18

0

21

6

0.588±0.

004 1.678 1.677

35

0.

99 400

31

3 312

29

5

23

8 282

26

9

23

0

32

6

23

3

0.687±0.

000 1.881 1.881
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Table 2. Analysis of variance of the developed model

SS DF MS F-value p-value

Regression 92.26 14 6.59 63.90 0.0000

Residual 1.44 14 0.10

Total 93.71 28

Corrected Total 30.07 27

Regression vs. Corrected Total 92.26 14 6.59 5.91 0.0000

SS= Sum of squares, DF= Degrees of freedom, MS= Mean squares
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Table 3. The estimates and the dependence on the main areas that are related to the model.

All the parameters are statistically significant at p<0.01.

Parameter Estimate p-level

Gene cluster for aflatoxin

biosynthesis

a1 (aflD) 0.4874464 0.00

a2 (aflR) -0.5495745 0.00

a3 (aflS) -0.0168165 0.00

a4 (aflE) -0.0785165 0.00

a5 (aflM) 0.2303169 0.00

a6 (aflO) 0.2979484 0.00

a7 (aflP) 0.155606 0.00

a8 (aflQ) -2.527789 0.00

a9 (aflX) 1.90013 0.00

a10 (aflF) 0.4844927 0.00

Mixed-growth-associated product

formation

α 0.1963598 0.00

β -0.0048802 0.00

Initial inoculum X0 0.0027675 0.00

Arrhenius's coefficient b1 -401.0787 0.00



25

Table 4. Model validation outside the regions in which the model was developed

Factors Condition

Temperature (oC) 37 37 37 40

Water activity (aw) 0.90 0.95 0.99 0.9

Growth rate (cm day-1) 0.29 0.59 0.42 0.14

Observed aflatoxin

production (µg-1)

3.96±0.20 2.68±0.14 2.42±0.16 0.00

Predicted aflatoxin

production (µg-1)
4.90±0.00 3.75±0.18 3.78±0.14 0.00
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Figure 1. Effect of water activity x temperature effects on (a) mean growth rate and

(b) aflatoxin B1 production on a conducive YES medium grown for 10 days. LSD,

Least Significant Difference (P=0.05).
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Figure 2. (a) Contour plot for temperature vs. water activity on growth rate (mm day-

1). Numbers on the isopleths lines join conditions of the same growth rate; (b)

Contour plot for effect of temperature vs. water activity conditions on aflatoxin B1

production (µg g-1). The isopleths lines join conditions at which similar quantities of

aflatoxin B1 are produced.
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Figure 3. Ternary diagrams of the relative relationship between expression of aflD,

aflR and aflS in response to (a) water activity in the range 0.86 to 1.00 and (b)

temperature in the range 15 to 55oC. Legends indicate relative expression. The closed

circles (●) indicate the experimental data in relation to gene expression.
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Figure 4. Ternary diagram of the relative relationship of expression of aflM, aflR, and

aflS in response to (a) water activity in the range 0.90 and 0.98 and (b) temperature in

the range 20 to 45oC. Legends indicate relative expression of each gene. Closed

circles (●) indicate the experimental data in relation to gene expression.
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Figure 5. Ternary diagram of relative expression of (a) aflD, aflR, and aflS and (b)

aflM, aflR and aflS on aflatoxin B1 production (µg g-1). Legends indicate relative

expression of each gene. The closed circles (●) represent the experimental data in 

relation to gene expression.


