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Abstract 

In this article, we examine the relationship between implied and realised volatility in the 

Greek derivative market. We examine the differences between realised volatility and 

implied volatility of call and put options for at-the-money index options with a two-

month expiration period. The findings provide evidence that implied volatility is not an 

efficient estimate of realised volatility. Implied volatility creates overpricing, for both call 

and put options, in the Greek market. This is an indication of inefficiency for the market. 

In addition, we find evidence that realised volatility ‘Granger causes’ implied volatility 

for call options, and implied volatility of call options ‘Granger causes’, the implied 

volatility of put options. 
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1. Introduction 

In this study, we examine the relationship between implied volatility and realised 

volatility. There are several criticisms of implied volatility derived from the Black-

Scholes Option Pricing Model (BSOPM). The most important criticisms concern the 

ability of implied volatility to predict realised volatility accurately (Jackwerth and 

Rubinstein, 1996). The mis-estimation of realised volatility can cause mis-pricing in the 

option market. Through this study, we add to the existing literature by using implied 

volatility for both call and put options, whereas most of previous studies have 

concentrated on call option implied volatility. The Greek derivative market is a new 

market with only 5 years of life. Any evidence of mis-pricing in the option contracts can 

cause serious problems to the underlying market and the option market. In addition any 

mis-estimation of the realised volatility could provide evidence that the market is not 

efficient. According to the BSOPM, if the market is efficient, then implied volatility 

should be an unbiased and efficient predictor of realised volatility. In this study we use 

implied volatility for the at-the-money call and put index options of the Greek derivative 

market (i.e. the Athens Derivatives Exchange – ADEX) and we test it against realised 

volatility. 

 

2. Background of study 

Many researchers (Cox et al, 1976, Hull and White, 1987, Kon, 1984, Rubinstein, 

1985, Bodurtha and Courtadon, 1984, Heston, 1993b, Madan et al, 1998, Jiang and Van 

Der Sluis, 2000, Heston and Nandi, 2000), since the appearance of the BSOPM, have 

tried to relax some of the model’s assumptions. One of these assumptions is constant 
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volatility. These researchers have tried to show that stochastic volatility is independent of 

the stock price and so should be valued independently. In the case where the volatility is 

truly uncorrelated with the stock price, then BSOPM provides wrong estimates for the at-

the-money options (overvaluation) and additionally for the deep out-of-the-money and in-

the-money options (undervaluation).  

Specifically, Hull and White (1987) tried to incorporate stochastic volatility into 

the BSOPM due to the volatility smiles that the constant volatility assumption caused. 

Hull and White showed that Black-Scholes volatility should be replaced by a stochastic 

volatility term, which would be instantaneously uncorrelated with the underlying asset. 

They argued that the mean variance (V ) of the stock over some interval of time [0,T] 

would equal the integral:  

2

0

1
( )

T

V t dt
T

             (1) 

Despite the fact that several variations of the model have been developed, there 

are still pricing problems with the BSOPM. The main reason for option mispricing is the 

implied volatility. Is implied volatility the correct measure to use? How can a market 

predict volatility if it is not efficient? These are some important considerations that arise 

from the model.  

Further questions on the issue of implied volatility were posed by Chance (2003) 

such as: “How can the option market tell us that there is more than one volatility for the 

underlying asset?” and he replies: “It does not”. It can be realised from the above 

question how important the implied volatility problem is. Chance argues that the BSOPM 

is incorrect as it provides more than a single volatility for an option with the same 

underlying asset but different type (i.e. call or put), different expiration dates and exercise 
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prices. To give an example of the implied volatility problem, assume that we know the 

volatility but not the option price. In this case, we would estimate the implied option price 

from the volatility. However, we would get more than one option price. How can an asset 

have more than one price at a specific time? Simply, it cannot (Chance, 2003).  

Furthermore, according to Jackwerth and Rubinstein (1996), the BSOPM exhibits 

bias in the at-the-money option prices. Two reasons can explain such bias. The first one is 

that the implied volatility of the at-the-money option rarely equals the historic volatility. 

The second reason is the one we have mentioned before, i.e. the different implied 

volatilities for the same underlying asset in options with different strike prices and 

expiration dates (Rubinstein, 1994, Jackwerth and Rubinstein, 1996, Chance, 2003).    

The gap between implied and realised volatility could also be considered as 

market inefficiency. If the market is efficient, then it should be able to predict the realised 

volatility, thus there should not be any significant difference between the implied and 

realised volatilities. 

In addition, several other studies have also found evidence that implied volatility 

is a biased and inefficient predictor of realised volatility (Christensen and Prabhala, 1998, 

Neely, 2002, Doran and Ronn, 2004, Becker et al, 2006). The same conclusion was 

reached by Szakmary et al (2003), who studied 35 stock markets for the information 

content of implied volatility. Their findings are very significant due to the number of 

stock markets under examination. Overall, they concluded that there is no significant 

information incorporated in implied volatility. 
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Finally Koopman et al (2005) using the S&P 100 index from October 2001 until 

November 2003, found evidence that the realised volatility model performs significantly 

better than the implied volatility model, with regard to volatility forecasts. 

 

3. The Athens Derivatives Exchange 

The Athens Derivatives Exchange (ADEX) began to trade option contract on the 

high capitalization index (FTSE/ATHEX 20) of the Athens Stock Exchange (ATHEX) in 

September 2000. 

[Table 1 HERE] 

 

 Table 1 shows that the market has significantly increased its operations from one 

year to the next. There is a huge increase in the transaction values of the market and in 

the number of investors. Since 2000, there ha been an increase of 6.7 times in the number 

of investors that trade in derivatives and the transaction values have increased by 94 

times.  

However, it is clear that the market is very new as it only trades 10 derivative 

products and the number of investors and the transaction values are very small compared 

to the traditional derivative exchanges such as CBOE and LIFFE.  

 Furthermore, by the time ADEX started to trade options in 2000, the ATHEX was 

still an emerging market. The ATHEX became a mature market in 2001. So, it is clear 

that there could be important implications in the underlying and the derivative market, if 

there is evidence of volatility mis-estimation.    
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4. Data and methodology 

In this study we use daily data from the ADEX and the ATHEX in order to 

calculate the at-the-money call and put implied volatilities for the index options with two 

months expiration period and the realised volatility. The data are from January 2000 until 

January 2003. The underlying reason for choosing the at-the-money index options with 

two months expiration period is simply because they are the most heavily traded options 

in the Greek market and thus they will provide the most significant results.  

We calculate the implied volatilities from the Black-Scholes Option Pricing 

Model using the following approximation for call option: 
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where, ytSe  is the index price level discounted with the annualized daily dividend yield, 

Xe
-rt

 is the discounted strike price and C is the call premium for the at-the-money index 

option with two months expiration date. The implied call option volatility will be shown 

as IVC. 

For the put option’s implied volatility we use: 
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where, ytSe  is the index price level discounted with the annualized daily dividend yield, 

Xe
-rt

 is the discounted strike price and P is the put premium for the at-the-money index 

option with two months expiration date. The implied call option volatility will be shown 

as IVP.  
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The realised volatility will be calculated based on the following formula: 

       
1

1 T

Rt i T
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r r
T




              (4)

 

where T is the number of days to expiration, ir  is the return on a particular day, r is the 

average daily return over the option’s life. Additionally, the realised volatility has been 

annualized using the following formula: 

250ARt Rt              (5) 

We use the number 250 to annualize the realised volatility, as the number of 

trading days for the each of the years was 250. The annualized realised volatility will be 

shown as RV. We use a single realised volatility, which is tested against the call and put 

implied volatility, as according to the BSOPM and the put-call parity, call and put options 

with the same underlying and expiration period, should have the same volatility.  

Using the above calculation for realised volatility, we compute an ex-post 

measure of volatility, whereas the calculation of implied volatility represents ex-ante 

implied volatility. This approach will allow us to test the predictive ability of implied 

volatility. 

 

5. Empirical findings 

5.1. Summary statistics and correlation matrix 

In Table 2 we present the summary statistics of the time series that will be used in 

the study. RV is the realised volatility, LRV is the log realised volatility, IVC is the 

implied volatility for the call options, LIVC is the log implied volatility for the call 
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options, IVP is the implied volatility for the put options and LIVP is the log implied 

volatility for the put options. 

[Table 2 HERE] 

 

It is important to notice that the implied volatilities have higher average values 

than the realised volatilities. The logged values also show the same pattern, i.e. higher 

mean values for the implied volatilities and lower for the realised volatility. Overall, all 

variables (except LIVP) show non-normality, as evidenced by the measures of skewness 

and kurtosis, and the Jarque-Bera test statistic.  

Table 3 shows the correlation coefficient between the variables.   

[Table 3 HERE] 

 

As was expected, all coefficients are positive and they show moderate to strong 

correlation among the variables. In addition, all correlation figures are highly significant. 

It is very interesting that the realised volatility exhibits higher correlation with the call 

option implied volatility than with the put option implied volatility for both the level and 

logged values. Furthermore, the correlation between the two implied volatilities (call and 

put) is moderately positive. However, if the implied volatility estimation was an efficient 

measure, then the two implied volatilities should exhibit very high positive correlation. 

 

5.2. Testing median differences between implied and realised volatility 

We use the Wilcoxon Signed Rank test (due to the non-normality of the data) to 

check whether the average (i.e. median) logged implied volatilities (  and LIVC LIVP ) are 

significantly different from the average logged realised volatility ( LRV ). The results are 

shown in Table 4. 



 

 9 

[Table 4 HERE] 

As we can observe, the W-statistics for both pairs of data are highly significant at 

the 1% level. So, we are able to say that there is a significant difference between the 

realised and implied volatilities for both call and put options. A reason for this result 

could be that the implied volatility is not an efficient predictor of the realised one. 

However, it could also be an indication of inefficiency in the Greek market. In addition, 

such a significant difference between implied and realised volatilities is an indication of 

mis-pricing with respect to realised volatility. 

 

5.3. Testing implied volatility for bias and inefficiency 

The information content of implied volatility can be assessed by estimating a 

regression equation using realised volatility as the dependent variable and implied 

volatility as the independent variable (Christensen and Prabhala, 1998). So, we estimate 

the following regression equations: 

0 1 1t t tLRV a a LIVC e               (6) 

  

0 1 2t t tLRV b b LIVP e               (7) 

 

Based on these equations, we are able to examine the following hypotheses. The 

first concerns the information content of implied volatility. If implied volatility contains 

information about future volatility, then we should have 1 10 and 0a b  . In addition, we 

should find that 1 11 and 1a b   if implied volatility is an unbiased estimator of realised 

volatility and the constants should not be significantly different from zero 

(i.e. 0 00 and 0a b  ). Finally, if implied volatility is an efficient estimator, then the 

error terms should be white noise, i.e. they should have a mean of zero and they should 
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be uncorrelated. However, we will perform an ADF unit root test prior the regression 

estimation. The ADF-test results for unit root in the variables are shown in Table 5. 

 

[Table 5 HERE] 

  

From the ADF unit root test, we are able to find strong evidence that the implied 

and realised volatilities for put and call options are stationary.  

Following the ADF unit root test, we perform the regression analysis. Based on 

the observation from 1/2000 until 1/2003, the regression results indicate that the 

estimated coefficients of LIVC and LIVP are significantly different from zero, which 

suggests that they do contain some information regarding future volatility.  

[Table 6 HERE] 

However as the variables are significantly different from one and the constants are 

significant different from zero, we can argue that the implied volatilities are biased 

predictors. Furthermore, the constant term is negative for both regressions. This finding 

implies that when the implied volatility (either for the call or put options) is low, the 

realised volatility is higher and vice versa.  

The R-squared is higher for the call implied volatility equation compared to the 

put implied volatility equation. This is an indication that the predictive power of the call 

options is higher than the predictive ability of the put options. If the market was able to 

predict volatility correctly, then there should not be any difference in the predictive 

abilities between call and put implied volatilities. In addition, if implied volatility was an 

unbiased predictor of realised volatility, then again there should not be any difference in 

the R-squared of the two regressions.  
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The two implied volatilities are inefficient predictors as well. The error terms for 

both regressions exhibit positive autocorrelation (Durbin Watson statistic is 0.32 and 0.07 

respectively), i.e. they are not white noise. 

From the regression results, we argue that implied volatility is not a good and 

efficient predictor of realised volatility. This mis-estimation of realised volatility could 

create mispricing problems to the options. Figures I and II show this effect. 

 

[Figure 1 HERE] 

 

[Figure 2 HERE] 

 

 

The above figures indicate the both call and put options are mainly overpriced 

with respect to the implied volatility. Based on the above scatter diagrams, we can 

specifically notice there are some days where the mis-pricing seems to be very 

significant. This is another indication that the implied volatility causes problem to the 

option pricing and that the market may be inefficient.  

 

5.4. Granger Causality results      

 Correlation does not necessarily imply causation. In Table 2 we observed that 

there was a positive correlation among the LRV, LIVC and LIVP. However, we need to 

identify any causality among them. So, in this part we perform a Granger causality test. 

In order to run the test we need first to estimate the optimum number of lags. 

From the VAR lag order selection criteria we find that the optimum number of lags is 

three. Table 7 reports the lag order selection criteria. 
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[Table 7 HERE] 

 

If implied volatility can predict future volatility then we expect to find that LIVC 

and LIVP “Granger cause” LRV. Further, we expect to find that there is a multi-

directional causality between the LIVC and LIVP, according to the literature. 

 

[Table 8 HERE] 

 

Table 8 reports the F-statistic of the Granger causality test. Our findings are far 

from expected. From the above results it is clear that LRV “Granger causes” LIVC, and 

LIVC “Granger causes” LIVP. These results indicate that implied volatility cannot cause 

realised volatility. Furthermore, the uni-directional causality that is observed from LIVC 

to LIVP shows that implied volatility is not an efficient predictor, as there should be a 

multi-directional causality due to the fact that the implied volatility for both call and put 

options with the same expiration date and underlying asset, should be the same and due to 

the put-call parity that should hold.  

 

6. Conclusion 

Overall the results indicate that implied volatility is a biased and inefficient 

predictor of the realised volatility. These results support the empirical findings of the past 

literature. Yet the significance of the evidence is also important due to two reasons. 

Firstly, in this study we use both the call and put option implied volatilities and we test 

them against the realised volatility, the first such study for an emerging market, such as 

the Greek derivative market. During the period of the study, the Greek market was an 



 

 13 

emerging market and thus option mis-pricing due to implied volatility could create 

serious problems for the market. Furthermore, the bias and the inefficiency that the 

implied volatility exhibits could also be interpreted as a market anomaly or inefficiency. 

Additional tests should be performed in the Greek market, using additional data, in order 

to assess whether the current mis-estimation of realised volatility is due to implied 

volatility weaknesses or due to the emerging status of the market.   
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TABLES 

Table 1: ADEX statistics   
 2000 2001 2002 2003 

Number of investors 3,181 9,133 15,482 21,256 

Number of products 5 7 8 10 

Transaction values (nominal 
values in million €)   276.12 2,255.1 5,774.86 25,983.9 

 
Source: Athens Derivatives Exchange 

 

 

 

Table 2: Summary statistics 
 RV LRV IVC LIVC IVP LIVP 

 Mean 0.263 -1.377 0.322 -1.165 0.304 -1.230 

 Median 0.253 -1.371 0.317 -1.147 0.288 -1.244 

 Maximum 0.409 -0.893 0.703 -0.351 0.748 -0.289 

 Minimum 0.138 -1.975 0.182 -1.698 0.145 -1.931 

 Std. Dev. 0.076 0.298 0.085 0.259 0.090 0.288 

 Skewness 0.155 -0.098 0.708 0.121 1.008 0.099 

 Kurtosis 1.605 1.593 3.573 2.290 4.869 2.864 

       

 Jarque-Bera 42.539 42.035 48.703 11.702 157.5759 1.215 

 Probability 0.000 0.000 0.000 0.002 0.000000 0.544 

       

 Sum 131.658 -688.931 161.307 -582.581 152.247 -615.460 

 Sum Sq. Dev. 2.903 44.343 3.644 33.642 4.109 41.453 

       

 Observations 749 749 749 749 749 749 

 

 

Table 3: Correlation matrix 
 RV LRV IVC LIVC IVP LIVP 

RV  1.000  0.993*  0.736*  0.765*  0.605*  0.583* 

LRV   1.000  0.746*  0.783*  0.581*  0.560* 

IVC    1.000  0.988*  0.509*  0.486* 

LIVC     1.000  0.505*  0.485* 

IVP      1.000  0.979* 

LIVP        1.000 
  * significant at 1% level 

 

Table 4: Wilcoxon signed rank test results - Implied vs Realised Volatility 

 Wilcoxon W-statistic prob. 

  LIVC vs LRV  10.524 0.000 

  LIVP vs LRV  6.784 0.000 
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Table 5: ADF unit root test 

 ADF-statistic 

LRV   -8.02* 

LIVC -11.98* 

LIVP       -10.42* 
*significant at 1% level 

 

 

Table 6: Volatility regression results 

 0 1 1t t tLRV a a LIVC e    0 1 2t t tLRV b b LIVP e     

Independent Variables: Coefficient prob. Coefficient prob. 

C -0.329**  0.000  -0.664**  0.000  

LIVC* 0.899**  0.000    

LIVP*     0.579**  0.000   

          

R-squared 0.61    0.31    

Durbin-Watson 0.32    0.07    

F-statistic 792.88**  0.000  228.18**  0.000  

 * the LIVC and LIVP coefficients are also significant different from 1, at 5% and 1% 
level, respectively:  
   LIVC t-statistic =   -3.13 
   LIVP t-statistic = -10.94  
   The calculation was based on the following formula: 

   
1

.

coefficient
t stat

st error


   

** variables are significant at 1% level 

 

 

Table 7: Lag order selection criteria 
Lag LogL LR FPE AIC SC HQ 

0   104.049 NA   0.000133 -0.410 -0.385 -0.400 

1  1940.088  3642.222  7.92E-08 -7.837 -7.735 -7.797 

2  1977.995  74.73535  7.04E-08 -7.955 -7.776 -7.884 

3  2015.863  74.19752   6.26E-08*  -8.072*  -7.816*  -7.972* 

4  2022.447  12.81892  6.32E-08 -8.062 -7.729 -7.932 

5  2027.369  9.524160  6.43E-08 -8.046 -7.636 -7.885 

6  2037.301  19.09786  6.41E-08 -8.050 -7.563 -7.859 

7  2047.490   19.46657*  6.38E-08 -8.054 -7.491 -7.833 
* indicates the best lag order 
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Table 8: Granger causality test 
 

 

 

 

 

 

 

 

 

 

*significant at 5% level 

**significant at 1% level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Granger statistic 

LRV Granger causes LIVC    7.63** 

LRV Granger causes LIVP 1.15  

LIVC Granger causes LRV 1.81 

LIVC Granger causes LIVP  3.68* 

LIVP Granger causes LRV 0.11 

LIVP Granger causes LIVC 0.54 
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FIGURES  

 

Figure 1: Call option mispricing 
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Figure 2: Put option mispricing 

 


