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Abstract
In the current work, unanticipated synthetic byproducts were obtained arising from alkylation of
the δ1 nitrogen (N3) of the histidine imidazole ring of the polo-like kinase-1 (Plk1) polo-box
domain (PBD)-binding peptide PLHSpT. For the highest affinity byproduct, bearing a
C6H5(CH2)8– group, a Plk1 PBD co-crystal structure revealed a new binding channel that had
previously been occluded. An N-terminal PEGylated version of this peptide containing a
hydrolytically-stable phosphothreonyl residue (pT) bound to the Plk1 PBD with affinity equal to
the non-PEGylated parent, yet it exhibited significantly less interaction with the PBDs of the two
closely-related Plk2 or Plk3. Treatment of cultured cells with this PEGylated peptide resulted in
Plk1 delocalization from centrosomes and kinetochores, and chromosome misalignment that
effectively induced mitotic block and apoptotic cell death. This work provides new insights that
may advance efforts to develop Plk1 PBD-binding inhibitors as potential Plk1-specific anticancer
therapeutic agents.
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The polo-like family of serine/threonine protein kinases (collectively, Plks) play crucial
roles in cell cycle regulation and cell proliferation.1–5 Of four human Plks (1 through 4), the
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ability of Plk1 to promote oncogenic transformation6–8 has lead to the search for inhibitors
of Plk1 function that could serve as clinically relevant anticancer therapeutics.9–16 A
potential drawback of classical inhibitors directed at the Plk1 kinase domain is a lack of
specificity due to the high degree of similarity in the ATP binding clefts among kinases.
This could present difficulties, since down regulation of Plk1 with concomitant inhibition of
the closely-related Plk2 or Plk3 would be contraindicated because of the positive roles these
latter kinases play in maintaining genetic stability.17,18

In addition to their kinase domains, Plks also contain C-terminal polo-box domains (PBDs)
that recognize phospho-Ser (pS)/phospho-Thr (pT)-containing motifs having N-proximal
serine residues [S-(pT/pS)].19–21 PBD-mediated binding provides sub-cellular localization
that is critical for proper Plk function. Blockade of PBD-dependent protein-protein
interactions inhibits the mitotic functions of Plk122–24 and the uniqueness of PBDs to Plks
makes disruption of PBD-dependent interactions an alternative and potentially highly
specific means of inhibiting Plk function.6,25–27 Screening small molecule or natural product
libraries represents one approach to developing Plk1 PBD-binding antagonists.22,24,28,29

Peptide-based antagonists, derived through an understanding of PBD-ligand interactions
afford a complimentary approach.

A single PBD is composed of two highly homologous polo-boxes (PB1 and PB2), each of
which consists of six anti-parallel β-sheet strands and an α-helix. The association of PB1
with PB2 provides a single functional PBD composed of a 12-stranded β-sandwich that is
competent to recognize and bind phoshopeptide targets.20,21 Crystal structures of the Plk1
PBD in complex with phosphopeptides [MQSpTPL (PDB: 1Q4K),21 PMQSpTPL (PDB:
1UMW),20 LLCSpTPN (PDB: 3BZI),30 LHSpTA (PDB: 3FVH),23 PLHSpT (PDB:
3HIK),23 and PPHSpT (PDB: 3C5L)23] show that the peptides bind in similar fashion within
a positively-charged groove formed between the PB1 and PB2 components. Experiments
indicate that a pT residue is essential for high affinity binding. Calculations showing that
this residue provides approximately one third of the overall peptide binding free energy
support empirical observations of its importance.31

In an attempt to improve the pharmacological properties of the high affinity Plk1 PBD-
binding peptide PLHSpT (1), we previously replaced without loss of Plk1 PBD binding
affinity, the hydrolytically-labile pT residue with the phosphatase-stable pT mimetic, (2S,
3R)-2-amino-3-methyl-4-phosphonobutanoic acid (Pmab)32 (2).23 More recently, we
undertook the preparation of a series of pT phosphodiesters of peptide 1, with the intent of
reducing the anionic charge of the pT residue. As reported herein, during the course of these
latter studies, unexpected peptide byproducts were formed that exhibited exceptional
binding affinities. A co-crystal structure of the highest affinity peptide byproduct bound to
Plk1 PBD unambiguously identified the structure of the byproduct as a His-adduct and
revealed a new mode of binding interaction. Treatment of cultured cells with a Pmab-
containing PEGylated variant of this peptide resulted in Plk1 delocalization from
centrosomes and kinetochores, and chromosome misalignment that effectively induced
mitotic block and apoptotic cell death. These findings could potentially be useful in the
design of PBD-binding ligands.

RESULTS
Initial peptide synthesis and evaluation

In order to construct a library of phosphodiesters based on 1,23 we applied Mitsunobu
coupling chemistries33 to precursor peptides bound to acid-sensitive solid-phase resin. These
peptides bore global protection of all reactive heteroatoms, except for a single free
phosphoryl hydroxyl group, which was the intended site of condensation with substrate
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alcohols (Supplementary Methods, Supplementary Results, Supplementary Fig. 1). A variety
of alcohols were employed for esterification, including short alkyl chains bearing terminal
diol, carboxyl, alkenyl, thiofuranyl and phenyl substituents and progressively longer n-
alkyl-1-ols having terminal phenyl rings. The peptides were cleaved from the resin under
acidic conditions and the expected phosphodiesters (3a – 3l) were obtained as the main
reaction products (Supplementary Fig. 1). Unexpectedly, in each case a faster eluting
(HPLC) minor byproduct of unknown structure was obtained (designated as 4a – 4l,
respectively) that exhibited a molecular weight identical to the expected product
(Supplementary Fig. 1, Tables 1 and 2).

Evaluating the Plk1 PBD binding affinities of the synthetic products using an ELISA-based
96-well assay (Supplementary Methods), showed that all expected phosphodiester products
3a – 3l displayed measurable and in some cases, good affinity. However, the reaction
byproducts (4c – 4l) (with the exception of 4a and 4b, which were tested as mixtures with
the corresponding 3a and 3b) uniformly displayed significantly higher affinities than their
corresponding phosphodiester counterparts (Table 1; Supplementary Figs. 5 and 6). The
affinities of n-alkylphenyl byproducts increased roughly with lengthening of the alkyl chain
(with the exception of n = 6 and n = 7) and reached a maximum for n = 8 (4j). Chain
extension beyond this length resulted in a reduction in binding affinity (4k, 4l). Although
some variation in IC50 values was observed from assay to assay, the affinity of the most
potent analogue (4j) consistently exceeded that of 1 by a significant amount, that in some
cases was approximately three orders-of-magnitude (1, IC50 = 36μM; 4j, IC50 = 17 nM,
Table 1).

Because adding long chain n-alkylphenyl groups to 1 introduces significant hydrophobic
character, we considered the possibility that “promiscuous” mechanisms unrelated to
specific interactions with the PBD could give rise to apparent high binding affinity of the
byproducts.34, 35 To address this question we made use of the fact that the “SpT” dipeptide
motif is critical for specific high affinity Plk1 PBD-binding and that replacement of the
serine residue by an alanine significantly reduces affinity.20 Therefore, we prepared the
corresponding analogues of 3j and 4j in which the serine residue was replaced with an
alanine residue [3j(S4A) and 4j(S4A), respectively] and we observed that this resulted in a
significant loss of affinity (Table 1). Previous work showing that high affinity peptides can
retain some portion of binding affinity following serine/alanine replacement,19 was
consistent with the observed activity of the 4j(S4A) peptide, which could be attributable to
the presence of substantially increased serine-independent interactions. Overall, the data
argued strongly that binding of 3j and 4j was specific in nature.

Identification of peptide byproducts as histidine adducts
In order to identify the structure of the highest affinity byproduct (4j), tandem MS analyses
were performed on both 4j and its associated phosphodiester product (3j) (Supplementary
Methods, Supplementary Figs. 2 and 3, Tables 3 and 4). As had been anticipated, the mass
spectral data for 3j was consistent with the intended phosphodiester. However, it was found
that the fragmentation of the byproduct 4j was best explained by placement of the
C6H5(CH2)8– group on the histidine residue. The histidine side chain consists of a (1H-
imidazol-4-yl) ring that presents two nitrogen atoms as potential sites of alkylation. It was
not possible from the tandem MS data to determine on which of the two histidine nitrogens
alkylation had occurred.

Identification of a new PBD-binding channel
To unambiguously identify the site of the histidine alkylation and to understand the basis for
the high binding affinity of 4j, the co-crystal structure of Plk1 PBD in complex with 4j was
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solved (Supplementary Methods, Supplementary Table 7, Supplementary Fig. 7). This
structure confirmed the earlier tandem MS results, showing that alkylation had occurred on
the histidine residue. It also showed that the C6H5(CH2)8– group was attached to the δ1

nitrogen (N3) on the imidazole ring. Based on this data, it is assumed that the remaining
members of the 4-series of peptides also have placement of their respective alkyl groups at
this position as well.

The PBD protein backbone in the PBD•4j complex as well as the peptide ligand were shown
to be nearly superimposable with the previously reported23 Plk1 PBD complexed to 1 (Fig.
1a). Differences in the two structures arose primarily from the binding of the C6H5(CH2)8–
group of 4j, where the alkyl chain extended from the histidyl imidazole ring and traversed
laterally across a series of antiparallel β-sheets (β1 – β4) of the PB1 unit. Binding
interactions of the adduct occurred in a well-formed hydrophobic channel whose floor is
comprised proximally by V415 (arising from the β1 sheet) and distally by F482 (arising
from the αB helix) and whose opposing walls are defined by Y417 (arising from the β1
sheet) and Y485 (arising from the αB helix). The terminus of the channel is formed by L478
and Y481 (arising from the αB helix) (Supplementary Fig. 8a). Formation of this binding
channel required very little movement in the side chain orientations of Y485 and F482
relative to the parent 3HIK structure and more pronounced, yet still modest movement in the
side chain of Y417. However, the most dramatic movement occurred in the orientation of
the Y481 aryl ring, which rotated significantly downward relative to the 3HIK structure
(Fig. 1b). This movement had profound effects on the topology of the protein surface,
resulting in the revelation of a new binding channel, which had previously been occluded
(compare Fig. 1c and Supplementary Fig. 8b). The availability of this hydrophobic channel
was unanticipated based on previous crystal structures.

Peptide PEGylation
Microinjection of the Pmab-containing peptide 2 into HeLa cells interferes with proper
subcellular localization of Plk1 and induces apoptotic cell death as a result of prolonged
mitotic arrest.23, 27 However, in the current work direct incubation of 2 with cultured HeLa
cells (at up to 200 μM concentration) failed to elicit a detectable cellular response. This
failure was potentially due to limited intracellular bioavailability arising both from poor
solubility and from low membrane transport.

Incorporation of polyethyleneglycol into a molecule (termed “PEGylation”) is known to be a
valuable approach toward enhancing pharmaceutical properties.36 Although historically, it
has been applied to large constructs such as proteins (for example, see37, 38) and
nanoparticles (for example, see39), the application of PEGylation to smaller entities, such as
peptides (for example, see 40, 41) and organic molecules (for example, see 42, 43) is also
known. Thus, we prepared N-terminal PEG conjugates of 2 (peptide 5) and the Pmab-
containing variant of 4j (peptide 6) as well as their serine to alanine replacement analogues
for use in whole cell studies (Supplementary Methods, Supplementary Table 5,
Supplementary Fig. 4). We observed that both the non-PEGylated 4j and its PEGylated form
(6) exhibited similar levels of PBD-binding affinities in ELISA assays (Table 1;
Supplementary Fig. 6d) and in fluorescence polarization (FP) competition binding assays
(Supplementary Methods, Supplementary Fig. 9, Supplementary Table 8).

Plk-binding specificity by FP techniques
To test for Plk1 specificity of the PEGylated peptides, we prepared appropriate FITC-
labeled peptides (Supplementary Table 5) and performed direct FP binding assays, in which
the simple construct, FITC-PEG-amide (7) served as a negative control (Supplementary
Methods, Supplementary Fig. 10, Table 9). The data showed that relative to the FITC-
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containing version of PEGylated-1 (peptide 8, Kd = 59.8 ± 4.8 nM), the Plk1 PBD-binding
affinity for FITC-derivatized 6 (peptide 9, Kd = 2.0 ± 0.2 nM) was markedly higher. (It
should be noted that the Kd = 2.0 nM for peptide 9 was derived from the binding curve by
using 2.0 nM of the peptide. This value is an over-estimation due to receptor depletion: The
actual Kd of 9 is expected to be < 2 nM. However, precise experimental determination of
this Kd would require the use of ligand concentrations < 2 nM, which are accompanied by
an insufficient signal to noise ratio.) These assays also showed approximately two orders of
magnitude less affinity for 9 against the Plk2 PBD (Kd = 194.2 ± 39.8 nM) and Plk3 PBD
(Kd = 460.1 ± 99.2 nM) (Supplementary Table 9). Binding was PBD-specific, since deletion
of the phosphoryl group in 8 [8(pT5T)] or introducing a serine to alanine replacement in 9
[9(S4A)] resulted in a significant loss of binding affinity. Specificity was also supported by
results from FP competition assays using non-FITC-containing peptides, where 4j(S4A) and
6(S4A) showed significant affinity reductions relative to the parent peptides (Supplementary
Table 8).

Cell lysate Plk pull-down assays
To compliment the FP binding results, we employed direct pull-down assays using cell
lysates. For this work, we introduced an N-terminal Cys residue onto 1, 1(pT5T), 4j and
4j(S4A) via linkers (peptides 10, 10(pT5T), 11 and 11(S4A), respectively) as well as the
PEGylated peptide 6 and its (S4A)-variant (peptides 12 and 12(S4A), respectively)
(Supplementary Table 5) and then covalently conjugated the Cys residues to SulfoLink
coupling resin (Supplementary Methods). Results showed that in PBD pull-down assays
using transfected 293T cells, both constructs 11 and 12, made with peptides 4j and
PEGylated 6, interacted with Plk1 approximately 40-fold better than the parent 10, made
with control peptide 1 (Fig. 2a; Supplementary Fig. 15).

Cell culture assays
In cultured HeLa cells, we observed that 6, but not 6(S4A), effectively inhibited cell
proliferation in a dose-dependent manner with an IC50 value of 380 μM (Supplementary Fig.
11). The relatively high IC50 value may be due to low cell permeability, since the cellular
uptake of the FITC-labeled construct (9) was less than 0.4% (Supplementary Fig. 12).
PEGylation may have increased water solubility, thereby allowing higher concentrations of
peptide to be used.

Subsequent experiments revealed that treatment of HeLa cells with 200 μM of 6, but not
6(S4A), effectively induced mitotic arrest and apoptotic cell death, while treatment of cells
with low concentrations (50 μM and 100 μM) of 6 induced these defects weakly (Fig. 2b, c;
Supplementary Fig. 13). Compound 5, but not 5(S4A), also induced a weak but significant
level of mitotic arrest under these conditions. As a consequence of the increasing level of
apoptotic cell death following mitotic arrest, the number of arrested cells shrank at later time
points (Fig. 2b–c). In contrast to the biological activities of 5 and 6, non-PEGylated 2 and 4j
failed to exhibit a detectable level of cellular effects under the same conditions
(Supplementary Fig. 13), even though their in vitro PBD inhibitory activities were
comparable to those of their respective PEGylated forms (Table 1; Supplementary Fig. 6d).
As would be expected if the observed mitotic arrest was the result of inhibition of the
function of PBD, treatment of HeLa cells with 6, but not with 6(S4A), induced drastic Plk1
delocalization from centrosomes and kinetochores, and severe misaligned chromosomes
(Fig. 2d–e and data not shown).44 Closely correlating with the degree of PBD binding, 5, but
not the 5(S4A) variant, induced only mild Plk1 delocalization with a moderate level of
misaligned chromosomes (Fig. 2d–e). Unlike the specific inhibition of mitotic progression
by 6, treatment of HeLa cells with a previously characterized Plk1 catalytic inhibitor, BI
2536,13 induced a greatly delayed, but pronounced mitotic arrest and apoptotic cell death
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(Fig. 2f; Supplementary Fig. 14). These observations suggest that, although more potent
than 6, BI 2536 interferes with various uncharacterized processes during the early stages of
the cell cycle.

DISCUSSION
The original intent of this study was to determine whether conversion of the dianonic pT
phosphoryl group to monoanionic phosphodiesters could be achieved with retention of PBD-
binding affinity. Although we did find that depending on the ester group (for example 3j, R
= C6H5(CH2)8–), affinity equal to the parent pT-containing peptide was possible, the most
significant aspect of the current work was the unanticipated finding that histidine residues
bearing long chain alkylaryl groups on the δ1 nitrogen (N3) of the imidazole ring could
impart exceptional binding affinity. This affinity enhancement was achieved through new
PBD-ligand interactions that took advantage of a previously occluded hydrophobic binding
channel on the surface of the PBD. (While this manuscript was under review, an
independent approach was reported for identifying a related binding mode.45) We further
found that N-terminal PEGylation of short (5-mer) peptides did not deleteriously affect
PBD-binding affinity, and that PEGylated peptides exhibited enhanced activity when given
to cells in culture. The low uptake of PEGylated peptide and the observation that the
potency in cellular systems is less than would be expected based solely on PBD-binding
affinity, indicates that the affect of PEGylation may be to increase water solubility, rather
than to increase cellular bioavailability. Although further improvement in membrane
permeability is likely required to increase the efficacy of the compounds, the unexpected
new binding interactions identified in this work could impact the future design of PBD-
binding antagonists. Our current results provide proof-of-principle that specific inhibition of
the function of Plk1 PBD is sufficient to induce mitotic arrest and apoptotic cell death. Since
Plk1 over-expression is closely associated with tumorigenesis in a wide range of cancers in
humans6–8 and PBD is essentially required for Plk1 function,46–48 this study may provide a
new paradigm for the design and discovery of PBD-specific Plk1 inhibitors.

METHODS
Methods and associated references are available in the Supporting Information available on
the Nature Chemical Biology website.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
X-ray co-crystal structures of Plk1 PBD complexed with peptides 1 and 4j. (a) PBD in
complex with 1 (PBD 3HIK; protein backbone and peptide shown in red) superimposed on
the complex with 4j (protein backbone in grey with peptide 4j colored by atom). Key
protein structural features are labeled as indicated in reference 21. (b) Plk1 PBD complex
with 4j (protein backbone in blue ribbon) showing residue side chains involved with the
binding of the C6H5(CH2)8– group of 4j (ligand in yellow with protein carbons in grey)
compared with the same residues in the 3HIK structure of PBD-bound 1 (shown in red).
Displacements (in degrees) are shown for the Y417 and Y481 phenyl groups. (c)
Electrostatic surface of PBD in complex with 4j with coloring based on an arbitrary
electrostatic potential scale (positive = blue; negative = red). Peptide 4j is rendered as thick
sticks and colored by atom (blue = nitrogen; yellow = carbon; tan = phosphorus and red =
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oxyben). Graphics were generated using ICM Chemist Pro by Molsoft, Inc.
(www.molsoft.com).
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Figure 2.
Specific inhibition of the function of Plk1 PBD by peptide 6. (a) Mitotic 293T cell lysates
expressing kinase-inactive Flag-Plk1 (K82M), Flag-Plk2 (K108M), or Flag-Plk3 (K52R)
were mixed and incubated with the indicated compounds covalently conjugated to SulfoLink
coupling resin through Cys-(CH2)6-CO linker [for 10, 10(pT5T), 11, and 11(S4A)] or an N-
terminal Cys residue [for 12 and 12(S4A)]. Precipitates were separated, immunoblotted, and
stained with Coomassie (CBB). Arrows indicate Plk1, 2, and 3 proteins. Numbers indicate
the relative amounts of precipitated proteins. (b–e). HeLa cells released from a thymidine
block and treated with 200 μM of the indicated compounds were quantified to determine the
fraction of mitotic cells with rounded-up morphology (b). Bright-field view (c) and
fluorescence of immunostained cells (d) used to quantify aberrant mitotic cells with
abnormal spindle/DAPI morphologies among total mitotic population (e). Symbols in (d):
Asterisks, centrosomally-localized Plk1 signals; arrowed brackets, kineotchore-associated
Plk1 signals; arrowheads, misaligned chromosomes. Note that Plk1 signals are almost
completely delocalized from the centrosomes and congressed chromosomes, but rather
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accumulated at the kinetochores of misaligned chromosomes near the poles, as previously
described (see48). (f) HeLa cells releasing synchronously from S phase were treated with BI
2536 and analyzed (Supplementary Fig. 14). The data in (b), (e), and (f) represent mean
values +/− s.d. (bars) from three independent experiments.
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