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Algorithms derived from measurements of short-peptide (8–10
mers) binding to class I MHC proteins suggest that the binding
groove of a class I MHC protein, such as Kb, can bind well over
1 million different peptides with significant affinity (<500 nM), a
level of ligand-binding promiscuity approaching the level of heat
shock protein binding of unfolded proteins. MHC proteins can,
nevertheless, discriminate between similar peptides and bind
many of them with high (nanomolar) affinity. Some insights into
this high-promiscuity/high-affinity behavior and its impact on
immunodominant peptides in T-cell responses to some infections
and vaccination are suggested by results obtained here from test-
ing a model developed to predict the number of cell surface pep-
tide–MHC complexes that form on cells exposed to extracellular
(exogenous) peptides.

The heterodimeric αβ antigen-binding receptors on T cells
(TCR) and the antigen-binding Fab fragments of antibodies

are similar structurally and in the great diversity of their ligand-
binding site. Their diversity is also generated by similar stochastic
gene segment rearrangements in developing B and T cells. But
antibodies can be raised against virtually any existing or imagin-
able organic structures (antigens), if sufficiently stable, while the
antigens recognized by T cells’ TCRs are remarkably limited to
complexes formed by peptides bound noncovalently to proteins
encoded by genes in themajor histocompatibility complex (SI Text,
R1 and R2).
Although the peptides are bound with 1:1 stoichiometry, well

over 1 million different peptides are estimated to bind with sig-
nificant affinity to anMHCprotein’s binding site (see below). This
extreme binding promiscuity, or degeneracy, is probably matched
only by the binding of amino acid sequences in unfolded proteins
by some heat shock proteins (1, 2) (SI Text, R3). It is not unlim-
ited, however, because each MHC type (encoded by an MHC
allele) usually exercises preferences for peptides having particular
motifs (e.g., one or two strategically placed anchor amino acid
residues) (3). The MHC binding site can also distinguish between
peptides that differ by single amino acid mutations or substi-
tutions, apparently binding them with different affinities (4, 5).
Moreover, in the in vivo responses to foreign proteins such as to
those proteins of an invading virus, only one (immunodominant)
or a few other subdominant peptides out of the great many po-
tential peptides in the pathogen’s proteome are recognized by
most of a host’s responding T cells (6). These disparate aspects
of peptide/MHC interactions, some seemingly contradictory, are
considered here from the viewpoint of a peptide–MHC interac-
tion model described below.
In the peptide–class I MHC complexes (pMHC-I) that elicit

responses by CD8+ T cells, the peptides are usually 8–10 aa in
length (SI Text, R4), and they are mostly generated intracellularly
by proteolytic cleavage of ubiquinated cytosolic proteins in pro-
teasomes (SI Text, R5). The peptides of cell surface pMHC-I
complexes can also arise from extracellular proteins that enter
cells by endocytosis, are processed proteolytically, and are then
loaded on MHC molecules and ultimately cell-surface–displayed
(cross-presented) (7) (SI Text, R6).

A third way to generate cell surface pMHC, the way with which
we are here concerned, is to simply expose cells to extracellular
peptides. Although generally thought not to occur in vivo, this last
process (often termed peptide pulsing or loading) is critically
important for efforts to identify peptides that are recognized by
particular TCR and stimulate T cells with peptide-pulsed den-
dritic cells, such as in some peptide-based vaccines (SI Text, R7
and R8). That it can also occur under physiological conditions is
suggested by the finding of peptides in lymphatic fluid (8) and by
evidence for extracellular loading of cells in the pancreas with an
insulin-derived peptide (9).
The dynamics of intracellular (endogenous) peptide production

and their association with MHC have been extensively examined
(10, 11, 12) (SI Text, R9), and the thermodynamics and kinetics of
some pMHC interactions have been characterized in considerable
detail (13–15). Still, although peptide pulsing is indispensable for
efforts to identify peptides recognized by T cells, the binding of
extracellular peptides to cell surface MHC is not sufficiently well-
understood to predict the number of pMHCs formed on cells after
exposing them to an extracellular peptide. Our aims here are to
evaluate a model that may serve as the basis for making such
estimates and predictions and to see if the model leads to any
insights into promiscuous peptide binding by MHC proteins and
some of its ramifications. Our results show good agreement be-
tween predicted and measured numbers of cell surface complexes
formed by extracellular peptides, and they support evidence that
promiscuous binding arises from conformational flexibility of
MHC proteins and peptides. They also support and extend evi-
dence that (i) a class I MHC protein can bind millions of different
short peptides and (ii) the very slow dissociation of some pMHC
complexes accounts for their high (nanomolar) affinity; (iii) they
also suggest how MHC binding promiscuity might support the
focusing of T-cell responses to some pathogens and vaccines on
only a few immunodominant peptides.

Model and the Strategy for Testing
The model (Fig. 1) stems from evidence that extracellular (exog-
enous) peptides can bind to those cell surfaceMHCmolecules that
have vacant peptide-binding sites (16) (SI Text, R10). These empty
MHC molecules (M) might have been loaded with an endogenous
peptide that subsequently dissociated to leave a vacant groove, or
theymight have appeared on the cell surface as newly synthesized
MHC molecules that escaped being loaded in the endoplasmic
reticulum with an endogenous peptide. Whatever their origin, the
empty MHCs are unstable: they either bind the extracellular pep-
tide (P), forming an MP complex, or undergo denaturation (17).
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The model focuses on changes over time in the number of cell
surface empty MHC that bind a P and form MP complexes. As is
shown below, the number of these complexes is determined
by the rates at which empty MHC appear on the cell surface
(dM0/dt) and undergo denaturation (kden) and the rates at which
they associate with the peptide (kon) and the MP complexes
dissociate (koff) (Materials and Methods). To determine koff, cells
were pulsed with a peptide, and loss of the resulting MP com-
plexes was then followed over time. Values for the other three
parameters were obtained by measuring the numbers of MP on
cells that had been incubated with a peptide at diverse concen-
trations for various times. All of the measured MP values, to-
gether with the independently derived koff, were then subjected
to a multidimensional search program (MATLAB fminsearch) to
obtain kon, kden, and dM0/dt values that best fit the measured MP.
We examined the binding of two synthetic octapeptides to Kb,

a mouse class I MHC molecule. The Kb-expressing cells were two
cell lines, RMA-S and DC2.4, and bone marrow-derived den-
dritic cells (18 DCs) from C57BL/6 mice. Most experiments were
performed with RMA-S cells, which lack the transporter (TAP)
activity that translocates proteasome-generated peptides into the
endoplasmic reticulum; such TAP-deficient cells are thought to
have (at steady state) a relatively large number of empty class I
MHCs on the cell surface. DC2.4, a dendritic cell line, and the
18 DCs are TAP-competent.
The peptides tested were SIINFEKL (often referred to as

OVA257–264 but here referred to simply as OVA) and SIYR-
YYGL (termed SIY). OVA is produced by cells that express
chicken ovalbumin; the OVA–Kb complex is a potent agonist
for the widely studied TCR on CD8+ T cells from OT-1 TCR
transgenic mice (5). The SIY peptide was identified in a combi-
natorial library (4); the SIY–Kb complex is a potent agonist for
another widely studied TCR on cloned CD8+ T cells (2C) that
are maintained as cultured cell lines or obtained from 2C TCR+

transgenic mice (18) (SI Text, R11).

Results
Peptide–MHC Dissociation Rate Constants (koff). When fluorescein-
labeled OVA was previously added to live cells under conditions
similar to those used in the present work, some peptide was
endocytosed and bound to Kb in the endoplasmic reticulum (19).
In another earlier study, some cell surface pMHC complexes
formed from an exogenous peptide with Ld were rapidly endo-
cytosed and later displayed on the cell surface after a lag of many
hours (20). To minimize endocytosis, cytochalasin D was added to
cells before and during loading of the exogenous peptides. Under
these conditions, peptide dissociation from MP followed single
exponential kinetics (Fig. S1). For OVA, koff was 0.0495/h (t1/2 ∼
14 h), and for SIY, koff was 0.119/h (t1/2 ∼ 5 h) (Table 1). Pre-
viously reported koff values for dissociation of various peptides
from pMHC complexes have been found to span a wide range,
from a fewminutes (21) to days, for a class IIMHC (SI Text, R12).
For OVA–Kb, the finding of a t1/2 of 14 h at 37 8C (Table 1) is

consistent with the 21-h t1/2 value found at 25 8C by surface
plasmon resonance with recombinant Kb, and the OVA peptide
modified covalently for immobilization on a chip (22).

Binding of OVA and SIY to Kb (kon, kden, dM0/dt). The numbers of
OVA–Kb complexes that formed on RMA-S and DC2.4 cells
after incubating them for 20 min to 4 h with OVA at concen-
trations that ranged from 0.01 to 10 μM were measured with the
25D1.16 antibody. The data (Fig. 2A) were all combined and
analyzed according to the equations shown in Materials and
Methods using the fminsearch program (MATLAB) and the in-
dependently determined koff value (Fig. S1). The best-fitting
values for kon, kden, and dM0/dt are shown in Table 1.
Antibodies that are highly specific for a particular pMHC

complex—like mAb 25D1.16 for theOVA–Kb complex—are rare,
perhaps because they are more stable than most other pMHCs
and thus exceptionally immunogenic. It was of interest, therefore,
to test the model with more commonplace anti-MHC antibodies,
which react with allele-specific elements of MHC proteins
regardless of the associated peptide. mAb Y3 recognizes such
elements in the α1 and α2 domains of Kb (23). Hence, fluorescein-
labeled Y3 was used to follow the binding of the SIY peptide to Kb

on RMA-S cells. Under these conditions, it was necessary to
subtract from the amount of Y3 that bound to SIY-pulsed cells the
amount of Y3 bound to cells that were not peptide-pulsed. After
incubating the cells with SIY at various concentrations and dif-
ferent times, the numbers of SIY–Kb complexes formed were
measured (Fig. 2B). The SIY–Kb dissociation constant (koff) was
determined as shown in Fig. S1, Lower, and the values found for
kon, kden, and dM0/dt for SIY binding toKb, shown in Table 1, were
obtained as described above for the OVA–Kb interaction.
Unlike kon and kden, which reflect inherent properties of OVA

and SIY interactions with empty Kb and of empty Kb alone, it was
expected that dM0/dt might vary considerably from experiment
to experiment, because the experiments were carried out over
a period of many months with cells maintained more or less
continuously in culture. The results of each experiment were,
therefore, analyzed separately for dM0/dt using the koff, kon, and
kden values from Table 1. dM0/dt was seen to vary only from
about 10,000 to 20,000 cells−1 h−1 for RMA-S cells and from
about 20,000 to 60,000 cells−1 h−1 for DC2.4 cells.
The experimentally determined and predicted numbers of MP

per cell are compared in Fig. 3. Agreement was equally evident
over short and long pulsing times (20 min to 4 h) with low- or
high-peptide concentrations and both the TAP− RMA-S and the
TAP+ DC2.4 cells.

Sensitivity of Calculated Numbers of MP per Cell to Changes in
Parameter Values. To examine the impact of parameter value
variations on calculated MP values, each parameter was allowed

Fig. 1. Diagram outlining the model. Empty MHC molecules on the cell
surface bind extracellular (exogenous) peptide (P) or undergo irreversible
denaturation.

Table 1. Affinity and rate constants for SIINFEKL (OVA) and
SIYRYYGL (SIY) binding to cell surface Kb

Rate constants SIINFEKL SIYRYYGL

konðM−1h−1Þ 1.627 × 107 7.889 × 105

koff ðh−1Þ 0.0495 0.1191
KD ¼ koff

kon
ðnMÞ 3.042* 151

kdenðh−1Þ 1.0872 0.4683
dM0
dt ðh−1Þ [1.00 − 3.19] × 104† [1.36 − 1.88] × 104†

[2.44 − 5.69] × 104‡

1.23 × 104§

*In other studies of OVA binding to Kb, KD values ranged from 1.5 to 7 nM
(21, 22) (SI Text, R25).
†RMA-S cells.
‡DC2.4 cells.
§Primary dendritic cells.
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to vary, in turn, and the other three parameters were kept un-
changed. The effects on the calculated values after 1 and 2 h
simulated incubation with extracellular peptides are shown in
Fig. 4. Over the range of values examined, the largest effects
were seen with varying dM0/dt and, notably, varying kden, where
lower values, corresponding to increased stability of empty Kb,
led to accumulation of more MP per cell.

Limitations of the Model. The pMHC values on dendritic cells are of
particular interest, because under physiological conditions, these
cells are especially effective, perhaps uniquely so, in activating naïve
T cells. For the dendritic cell line DC2.4, the predicted and ob-
served pMHCvalues were in agreement.With 18DCs, however, the
results were only partially in agreement. The 18 DCs obtained after
7 d of culture of bonemarrow cells fromB6mice with growth factor
granulocyte macrophage colony-stimulating factor (GMCSF) were
highly variable in size and likely in extent of maturation (SI Text,
R13). Preliminary trials with these cells, regardless of whether they

were activated with LPS, showed that the number of MP formed
from extracellular peptide (OVA) increased with incubation times
from 20 min to 4 h as with the cultured cell lines (Fig. 3, green
symbols). However, after longer incubation times,MP values on the
dendritic cells decreased (e.g., after 24 h, they were substantially
lower than at 4 h). The decrease was faster than expected from the
OVA–Kb koff (Table 1) and was likely caused by the marked en-
docytotic activity of 18 DC, especially immature DCs (24). The
present model does not explicitly take into account the effects of
endocytic activity or changes in MP complexes over longer times as
cells grow and divide.

Frequency of Short Peptides That Bind to Class I MHC (Kb). The af-
finities of various class I MHC proteins for thousands of peptides,
measured as IC50 values, have served as the basis for predictive
algorithms that sort peptides with considerable accuracy into
strong and moderate binders (IC50 < 500 nM) and weak or
nonbinders (IC50 > 500 nM) to various MHC-I proteins (25).
Using the 500-nM affinity cutoff, it has recently been estimated
that about 1% of the ∼10 million unique nonamers in the human
proteome bind to human MHC-I: 0.7% bind to what may be the
least promiscuous class I MHC protein, HLA-B57, and 1.8%
bind to a more conventional protein, HLA-B7 (26). Using a more
stringent 50-nM cutoff to identify strong binders, Istrail et al. (27)
found a lower frequency of short peptides that bind (0.2–0.5%
depending on the MHC-I allele), but importantly, the frequency
was the same for predicted proteins from a wide variety of pro-
teomes: human, mouse, Drosophila, Caenorhabditis elegans, many
viruses, bacterial species (including archeobacteria from the
ocean floor), and even the randomly permuted (shuffled) amino
acid sequences of various proteomes.
To further examine this issue, we considered the frequency ofKb-

binding octamers from two proteins that are evolutionarily remote
from mammals and their pathogens. The selected proteins were
from the set of putatively plant-specific proteins that have been
identified in a plant genome (Arabidopsis thaliana; i.e., proteins
with similar sequences are found only in genomes of plant species
and not in genomes from Eukaryota, Bacteria, and Archea) (28).
In one of these plant proteins (a β-amylase, 77 kDa; accession no.
AT2G45880, UniProt 90/Swiss KB database) with 684 unique 8-
mers, nine (1.3%) octamers are predicted by NetMHCpan (version
2.4) (25) to bind to Kb (with higher affinity than IC50 < 500 nM). In
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Fig. 2. Binding of peptides to cell surface Kb (37 8C). The curves are based on
Eq. 4 and values for kon, koff, kden, and dM0/dt in Table 1. (A) Binding of OVA
peptide to Kb on RMA-S (a–f), DC2.4 (g and h), and primary dendritic cells
(i). Peptide concentrations are indicated by color in order of orange, green,
purple, and (when applicable) blue. (a) 7.85E-009, 7.85E-008, 7.85E-007; (b)
6.30E-008, 6.30E-007, 6.30E-006; (c) 3.00E-007, 3.00E-006, 3.00E-005; (d) 3.00E-
007, 3.00E-006, 3.00E-005; (e) 1.00E-008, 1.00E-007, 1.00E-006; (f) 1.00E-008,
1.00E-007, 3.00E-007, 1.00E-006; (g) 1.00E-006, 3.00E-006, 3.00E-005; (h) 3.00E-
007, 3.00E-006, 3.00E-005; (i) 1.00E-007, 1.00E-006, 1.00E-005. (B) Binding of
SIY peptide to Kb on RMA-S cells. SIY concentrations are indicated by color in
the order of orange, green, purple, and (only for a) blue. (a) 1.00E-008, 1.00E-
007, 1.00E-006, 1.00E-005; (b) 8.30E-008, 8.30E-007, 8.30E-006.

Fig. 3. Scatter plot comparing predicted and measured number of MP
complexes per cell (y and x axes, respectively) from data in Fig. 2. For OVA
peptide binding, red dots are from RMA-S cells, blue dots are from DC2.4
cells, and green dots are from primary bone marrow-derived dendritic cells.
For SIY peptide binding, purple dots are from RMA-S cells. Linear regression
values (95% confidence intervals in parentheses) are slope = 0.9757 (0.9291–
1.022), y-intercept = −405, and r2 = 0.922. Dashed line corresponds to perfect
match between predicted and measured values.
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another plant-specific protein (a methyltransferase, 77 kDa; ac-
cession no. AT1G78240, UniProt 90/Swiss KB database) with 677
unique 8-mers, seven (1.0%) octamers are predicted to bind to Kb

with affinity above the cutoff (one of them, SSFAYSRL, with a
predicted 2-nM affinity). Thus, it seems that, in general, a repre-
sentative MHC-I protein, such as Kb, can bind with significant af-
finity about 1% of all potential octamers. It can be estimated that
the number of unique octamers in all 1.3 million proteins in the
UniProt 90/Swiss KB database (as of 2005) is about 354 million.
Thus, although Kb, a typical MHC-I protein, binds only around 1%
of octamers, this small fraction amounts to over 3 million different
peptides. And this number is an underestimate because (i) the
500-nM affinity cutoff is somewhat arbitrary (Table 2), (ii) there
are limitations to the algorithm’s accuracy—estimated in the
work by Kosmryl et al. (26) for a similar algorithm to be about
80% accurate, and (iii) excluded from the total are peptides with
covalent modifications, such as phosphoryl groups, and other
posttranslational modifications, haptenated peptides [like 2,4-
dinitrophenyl (DNP) and the great many other low molecular-
mass substances that cause allergic contact dermatitis and drug
hypersensitivities], and peptides generated in combinatorial li-
braries, like the one in which the SIY peptide was identified (4).
Indeed, the SIY peptide does not exist in known proteomes (as
of 2005).
Table 2 shows that, of several extensively studied peptides,

NetMHCpan correctly identified three binders to Kb; it also
shows, correctly, that peptide #3 (dEV8) is a better binder than
peptide #4 (p2Ca) to Kb, consistent with Kb having been suc-
cessfully crystallized in association with dEV8 but not with p2Ca
(SI Text, R14). Still, p2Ca (LSPFPEQL), with affinity for Kb that
is below the 500-nM cutoff, actually forms complexes with Kb (SI
Text, R15) that are recognized by a TCR (2C), albeit very weakly
(29), and elicits a specific cytolytic response by cloned CD8+ 2C
T cells (30). Likewise, the two peptides (#4 and #5) that are
predicted not to be bind significantly to Ld actually form com-
plexes with Ld that may be the most potent natural T-cell ago-
nists known (29, 31). It may be that predicted values for peptide-
Ld complexes are erratic because the training set is limited.

Discussion
According to the model illustrated in Fig. 1, four parameters
(kon, koff, kden, and dM0/dt) determine how many pMHC com-
plexes are formed on cells that are exposed to extracellular
peptides. How well do the parameters values found here match
the corresponding values reported previously, and what bearing
do they have on binding promiscuity? The koff and KD values

found here are consistent with those reported previously for
various pMHC complexes, including OVA–Kb (21, 22) (Table 1,
SI Text, R25, and Fig. S1).
The association (kon) and denaturation rate constants (kden),

however, are of particular interest for promiscuity. The procedures
used to measure kon for peptide binding to ostensibly empty MHC
molecules have varied widely, and the reported association rate
constants have spanned a wide range, roughly from 102 to 106

M−1s−1. Many reported values are at the low end of this range (21)
(SI Text, R16 andR17), similar to those values found here and also
for peptide binding to a class II MHC (32). When expressed in
conventional units (M−1s−1) rather than in the units (M−1h−1) used
in Table 1, we found 4,900M−1s−1 for OVA–Kb and 217M−1s−1 for
SIY–Kb (Table 1). In contrast, the highest kon reported was about
106 M−1s−1 for a nonamer binding to Db (33). The latter, however,
is still 10–100 times slower than the value found for some anti-
body–hapten reactions; for instance, the kon for binding an ε-2,4-
DNP-lysine nonamer [DNP-(lysine)9] by a homogeneous antibody
(myeloma protein) was 107 M−1s−1, and the same protein’s binding
of the smaller hapten, ε-2,4-DNP-lysine, was 108 M−1s−1, which
was almost diffusion limited (SI Text, R18 and R19).
A basis for these disparate kon values is suggested by studies in

which the binding of dansyl- or fluorescein-labeled peptides to
recombinant MHC proteins was monitored continuously (13–15,
33). Under these conditions, the association kinetics were bi-
phasic: one rate, reflecting a slow unimolecular step, was attrib-
uted to changes of MHC conformation from peptide-unreceptive
to -receptive conformations, and the other rate was attributed to
peptide binding to the MHC’s receptive conformation. Because
there is also evidence that peptides are flexible and can adopt
different configurations (9, 34, 35) (SI Text, R26), the very slow
overall on-rate values could reflect the time required to achieve
sufficient mutual configurational complementarity for flexible
MHC and flexible peptides to form an initial complex, which
might then undergo an induced fit process. The resulting very
slow dissociation of some pMHC could account for their high
affinity (Table 1, OVA–Kb). The binding of flexible MHC and
peptides is expected to have an entropic cost. To assess the cost,
the entropy change for a peptide–MHC interaction was de-
termined and actually found to be favorable, probably because of
the hydrophobicity of the peptide and the MHC’s binding site
(13). Whether other peptide–MHC reactions are also entropy-
driven remains to be seen.
Although conformational variability underlies an MHC mol-

ecule’s ability to bind many different peptides (13), a structural
basis for this promiscuity is evident in X-ray crystallographic
findings. Most of the hydrogen bonds between bound peptide
and an MHC’s binding site residues involve the peptide’s back-
bone main chain atoms, a common feature of peptides bound
in extended conformation (SI Text, R20–R22). In contrast, the
preferential binding of some peptides (determinant selection)
arises from interactions of side chains of peptide residues at the
anchor and some other positions of the peptide with MHC res-
idues in depressions or pockets in the binding site.

Table 2. Predicted relative affinity (IC50) of some class I-MHC
proteins for the indicated peptides

Peptide MHC-I Affinity (IC50; nM)*

1. SIYRYYGL Kb 13.27
2. SIINFEKL Kb 215.07
3. EQYKFYSV Kb 236.63
4. LSPFPEQL Kb 716.55
5. LSPFPEQL Ld 17,349
6. QLSPFPEQL Ld 28,392

*Values are from the netMHCpan predictive algorithm, v2.4 (23).

Fig. 4. Sensitivity of predicted MP complexes per cell to variations in pa-
rameter values; y axes are predicted MP per cell with OVA peptide after 1-
and 2-h incubation times (dark and light lines, respectively) at various kon,
koff, kden, and dM0/dt values. Vertical dashed lines refer to parameters for
OVA peptide in Table 1.
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If slow association rates and MHC conformational variability
are the keys to promiscuous peptide binding, the lifetime of empty
MHC molecules (indicated by kden) is significant. The kden found
here correspond to t1/2 values of 38–88 min (at 37 8C). These
values (∼50 min on average) (Table S1) are similar to the only
other t1/2 (55 min) for an empty MHC of which we are aware; the
latter was found for a human class II MHC, HLA-DR [calculated
by Kevin Fowler from data in the work by Grotenbreg et al. (32)
using a model that differed considerably from the model used
here].Whether these unexpectedly long-lived emptyMHCs found
for one mouse class I and one human class II MHC are repre-
sentative of MHC proteins in general remains to be seen. For
effective peptide pulsing of cells, the lifetimes of empty MHCs
should exceed peptide–MHC association rates (kon > kden). This
inference is supported by the simulated effect of reducing kden on
the number of predicted pMHC complexes formed (Fig. 4).
In contrast to promiscuous peptide binding to MHC, only one

or very few of the short peptides that can be potentially derived
from a virus’s proteins are actually recognized in vivo by the most
of the T cells that respond to some virus infections (6). An ex-
treme example of such immunodominant peptides is seen in C57/
BL6 (B6) mice, which have two MHC-I proteins, Kb and Db. In
these mice, the majority of CD8+ T cells produced in response to
influenza virus infection of the respiratory tract recognize only 1
octamer of viral origin (NP366–374 in association with Db) of the
over 4,000 potential octamers in the virus’s proteome (about
4,400-aa residues encoded in 11 proteins). Similar immunodo-
minance of a few peptides is also evident in humans infected with
influenza virus, but the dominant peptides differ among various
individuals, even those individuals sharing the same restricting
MHC (36). Altering the route of vaccinia virus infection in mice
also results in changes in the vaccinia virus-derived dominant
peptides that elicit T-cell responses (37, 38).
Various mechanisms could contribute to peptide immunodo-

minance (6). It could also be favored by promiscuous peptide
binding if, as is likely, binding encounters between unselected
pMHC and naïve, unselected T cells only rarely leads to activa-
tion of a T cell. MHC binding promiscuity allows the generation
of large pMHC libraries from antigenic proteins, and the larger
and more diverse the library, the greater the chance that one or
a few of its pMHC will be bound strongly enough to the TCR on
a T cell to stimulate the cell to proliferate and thereby identify an
immunodominant peptide. Because somewhat different pMHC
libraries may be generated by differences in antigen-presenting
cells at various anatomic sites, the immunodominant peptides
arising from a pathogen may well vary and depend on the route of
infection (37, 38).
It is of interest to note similarities between promiscuous peptide

binding by MHC proteins and by some heat shock proteins (Hsp
70 family). DnaK, the bacterial homolog of ubiquitous Hsp70
proteins, binds (with 5-nM to 5-μMaffinity)many short amino acid
sequences in unfolded proteins, the consensus sequence of bound
peptides consisting of four to five residues enriched in hydro-
phobic amino acids flanked by cationic residues. These sequences
are typically separated in unfolded proteins by around 50–100
intervening residues (1, 2), a frequency not unlike that of octamers
that bind to class I-MHC proteins.
The enormous peptide binding promiscuity of MHC is to be

expected, of course, because the proteins encoded by the few class
I MHC genes in each individual (e.g., HLA-A, -B, and -C in
humans and HLA-K, -L, and -D in mice) have to be able to ef-
fectively present to an individual’s T cells short peptides gener-
ated from a great multitude of proteins, including those from
exotic microbial pathogens never encountered in a species’ evo-
lutionary history. Although many of the T cells produced in im-
mune responses to an antigenic protein may be elicited by only
one or a few of the many peptides that are potentially generated
from that protein, it is ironic that the adaptive immune system,

which is noted for its great specificity, should depend on an ini-
tiating ligand–protein reaction that is among the most promis-
cuous known, ranking with the binding of unfolded proteins by
some heat shock proteins.

Materials and Methods
Model. The processes shown in Fig. 1 can be represented by (Eq. 1)

dM
dt

¼ dM0

dt
− kon · P ·M þ koff ·MP − kden ·M; [1]

where M refers to empty MHC molecules and dM0/dt refers to the rate at
which empty MHC molecules appear on the cell surface. kon is the rate
constant for P binding to empty MHC to form MP, koff is the rate constant
for P dissociation from MP, and kden is the rate constant for denaturation of
the empty MHC molecules (i.e., the rate at which they lose, essentially ir-
reversibly, the ability to bind peptides).

The rate at which the pMHC complexes of interest (MP) are formed is
(Eq. 2)

dMP
dt

¼ kon ·P ·M− koff ·MP: [2]

Eqs. 1 and 2 combine to (Eq. 3)

dMP
dt

¼ dM0

dt
−

dM
dt

− kden ·M: [3]

The solution to Eq. 3, given in SI Text, yields the following formula (Eq. 4) for
MP(t), the number of cell surface MP per cell formed by incubating cells for
a specified time with the peptide at a known concentration. The derivation
of Eq. 4 assumes there are no significant changes in peptide concentration or
rate of appearance of empty MHC during the period of observation (Eq. 4):

MP
�
t
� ¼ A

��
kden
aþ

− 1
��

1 − e−aþt
�
−
�
kden
a−

− 1
��

1 − e−a− t
��

; [4]

where A ¼ konP
dM0
dt

kdenða− − aþÞ, a±¼ g±
ffiffiffiffiffiffiffiffiffiffiffi
g2 −4h

p
2 , g ¼ konP þ koff þ kden, and h ¼ koff kden.

Cells. RMA-S cellswere fromAmericanTypeCell Culture.DC2.4 cells, agift from
K. L. Rock (University ofMassachusetts,Worcester,MA), are c-myc–transfected
(immortalized) dendritic cells from B6 mice. Primary dendritic cells were de-
rived from bone marrow of B6 mice by standard procedures (SI Text, R23).

Monoclonal Antibodies. Hybridoma cells producing the 25D1.16 antibody (39)
were a gift from Ron Germain (National Institutes of Health, Bethesda, MD).
The hybridoma that produces antibody Y3 (SI Text, R24) was from American
Type Cell Culture. Both antibodies were purified from hybridoma cell culture
supernatants on a protein A column. Antibodies were labeled as described in
SI Text with 125I, AlexaFluor 680 (AF), or fluorescein (F), or they were doubly
labeled with both 125I and AF. The number of AF or F groups per antibody
molecule was determined by UV absorption using a molar extinction co-
efficient for fluorescein = 77,000 (pH 7.3, 494 nm) and a molar extinction
coefficient for AF = 187,400 cm−1 (679 nm). Protein concentrations were
determined by bicinchoninic acid (BCA) assay or UV absorption at 280 nm
and corrected for chromophore absorption at 280 nm by subtracting 0.2×
absorption at 679 nm for AF or subtracting 0.2× absorption at 494 nm
for fluorescein. In various preparations, there were 1.3–1.5 AF groups per
antibody molecule and 1.7–3.38 F groups per antibody molecule. The
125I-labeled antibodies were initially about 200,000 cpm/μg protein.

Exogenous Peptide Binding to Cells. Typically, 200,000 cells in 180 μL RPMI
1640-based medium (10% heat-inactivated FCS) were mixed with 20 μL
peptide at various concentrations in PBS or with PBS alone (control) in a total
volume of 200 μL/well in round-bottomed 96-well plates. After incubating
the plates at 37 8C (5% CO2) for various times, they were centrifuged, and
the cells were washed one time (with cold PBS) and stained on ice by first
adding an Fc blocker and then after 10 min, F- or AF-labeled antibody. After
45 min on ice, the cells were washed and analyzed using a flow cytometer
(FACSCaliber; BD Sciences) for F antibody-stained cells or a Licor plate reader
for AF antibody-stained cells (Licor).

Measurement of Number of Cognate pMHC per Cell (MP). Standardized beads,
with specified numbers of fluorescein equivalents per bead (Bang Labora-
tory), were run through theflow cytometer immediately before (and/or after)
the stained cells. Calibration curves based on the beads’ fluorescence allowed
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conversion of fluorescence intensity of stained cells to moles of fluorescein
per cell and hence (given the number of chromophore groups per antibody
molecule), moles of antibody bound per cell. The latter value, multiplied by
two to correct for bivalent antibody binding, yielded the number of anti-
body-bound MP per cell. The validity of this approach was indicated from
the agreement found for MP values when T2–Kb cells were stained with
fluorescein-labeled Y3 antibody or 125I-labeled Y3 (340,000 peptide–Kb com-
plexes per cell vs. 320,000 complexes per cell).

For cells stained with F-25D1.16, background staining of nonpulsed cells
was negligible (<10%). For cells stained with F-Y3, however, it was necessary
to subtract from their fluorescence values found for cells that had been
treated identically but not peptide-pulsed. To test the validity of this pro-
cedure, RMA-S cells were loaded with OVA, and the resulting OVA–Kb

complexes were measured with both antibodies; with F-25D1.16, there were
194,864 complexes per cell, and with F-Y3, there were 176,016 complexes
per cell.

For experiments in which the cells were stained with AF antibody or an-
tibody doubly labeled with 125I and AF, cell fluorescence was read in the
infrared (700 nm) using the Odysses program on a Licor plate reader. Cells
stained with 125I-labeled antibody were read in a γ-detector (Packard), with
the known specific radioactivity allowing determination of the number of
antibody molecules bound per cell.

Peptides. These were synthesized and purified by HPLC at the Koch Institute
Biopolymer Facility.

Dissociation of Peptides from MP on Cells. Cells were incubated with cyto-
chalasin D (final concentration = 1–10 μg/mL) before and while they were
being loaded with exogenous peptide. After the cytochalasin D-treated cells
were peptide-pulsed, they were washed to remove unbound peptide, and
the loss of cell surface MP was followed beginning about 0.5–1 h after the
washed cells were resuspended in peptide-free medium. When pMHC dis-
sociation was measured with Y3 antibody, Brefeldin A was added to a final
concentration of 1 μg/mL to prevent the background cell surface level of Kb

from increasing during the period of observation.
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