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Robust Fabric Joints
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Develop and integrate technologies for a
mechanically deployable decelerator for
missions to Venus, Mars, and other
destinations.
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See: B.P. Smith et al “Nano-ADEPT: An Entry System for Secondary Payloads” IEEE Aerospace Conf., 2015




Test Objectives

Arc Heated Flow Simulations

Primary Objective:
Demonstrate simplified ADEPT SPRITE-C configuration Temperature & Flow Structure Atomic Oxygen
maintains integrity during test. un _a - ,
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Secondary Objectives:

1. Monitor temperatures of key design features. R 5

e e . . 3 8
2. Evaluate fabric joint designs. 5 5
3. Measure recession. S R — \ E™ e
4. Measure carbon fabric aft side temperature. - R w
5. Determine if rigid nose ablation products effect [ % W - Dir i
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Key TPS Design Features
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Carbon Fabric Skirt

Rigid Nose (no adhesives)

Bushing SS303

Sting Adapter

AFT SIDE FORWARD SIDE

TC Signal Routing Channels
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Test Environment Predictions

Condition 1 "1 — Shear Stress & Pressure Plots for Acreage Material

NosesRib

IHF 21.5-in nozzle, 10” from nozzle exit plane

3

SPRITE-C Shear Stress & Pressure (Gore Centerline)
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Test Article Description Nada

<o -

Test Article 1 Test Article 2 Test Article 3 Test Article 4
Condition 1 for 60 sec Condition 1 for 40 sec Condition 2 for 60 sec Condition 2 for 60 sec
Condition 2 for 40 sec * Graphite Nose
* Graphite Nose * Conformal PICA Nose * Graphite Nose * Four Layer C-Fabric
* Six Layer C-Fabric * Six Layer C-Fabric * Six Layer C-Fabric * Various Resin Infused Joints
* Phenolic Infused Joints * Phenolic Infused Joints * Various Resin Infused Joints Insulating Fabric at Rib Interface

~3.6 kl/cm?
Stag pt heat Ioad_
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Instrumentation & Imagery

Thermocouple Locations & Pyrometer Pointing HD Video, Infrared Thermography & Pyrometry
West View Ports : , Top View Pot
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C1 & C2 Surface Temperatures
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Results: Test Video- C2, Condition 1 NAsA

A A
=" e

West Sting: SPRITE-C #2 12:48:59:24 ¢ E

[y A
Sy

5[;




Results: Fabric Performance

Acreage Fabric Observations Recession Measurements Along Gore Centerline
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Thermal analysis model correlates well with measurements. Engineering Response Model Predicts Recession (+/- 15%)

6/15/2016 International Planetary Probe Workshop-13 11



Results: Fabric Joint Performance

Infrared Imagery
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Resin-Infused Shielding Layers Are Robust Under These Environments

Rib Interface Temperatures for Various Joint Configurations
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100

50

Joint Performance Comparison @ Condition 2

Phenolic Infused

Phenolic Joint w/o Insulator- C2a
Phenolic Joint w/o Insulator- C2b

—— Dry Joint w/fo Insulator- C3b

Phenolic Joint w/o Insulator- C3a
Phenolic Joint with Insulator

Cyanate Ester Joint with Insulator

Non-Insulated Joints

10 20

Dry Seam

Infused & Insulated Joints

30 40 50 60

Time (sec)

*Infused & Insulated Joint Showed Best Overall Performance.

Non-Infused Shielding Layers Shed After Burning Through Top Plies




Graphite versus Conformal PICA Nose @ Condition 1
* Thermally massive graphite nose piece took time to reach thermal equilibrium, likely causing downstream temperature increases observed.

TEST ARTICLE C1 @ 40 SEC TEST ARTICLE C2 @ 40 SEC SURFACE TEMPERATURE COMPARISON

C1 & C2 Surface Temperatures

Graphite F . 1800
Nose ’
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3
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© -+ C1 Rib Tip
ﬂhJ ——¢2 Rib Tip
o crenenns 01 Rib
E e
[t ——C2 Fabric TE
weenenns C1 Nose @ Rib
—— (2 Nose @ Rib
0 10 20 30 40 50 60
Time (sec)
Ablator upstream of fabric does not have much effect on performance of fabric.
Dual Heat Pulse Capability Demonstrated- SPRITE-C with C-PICA nose TPS
e 15t pulse- Heat Rate 120 W/cm? (stag point), duration 40 sec (test article left overnight in test chamber)
« 2M pulse- Heat Rate 60 W/cm? (stag point), duration 40 sec
PRE-TEST ARC JET TEST (2 EXPOSURES) POST-TEST
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Lessons Learned & Future Work

Lessons Learned Future Work
1. More Instrumentation 1. Design Flight-Like Arc-Jet Test Article
. Facility is generally limited to 12-channels per test article . Incorporate Flight-Like Structural Features, Payload
. Modify design to incorporate custom miniaturized data Simulator & Seals.
acquisition systems 2. Load Test Post-Heated Joints to Failure.
. Evaluate various designs for ultimate load strength.
2. Develop more robust TC mounting technique.
. 5 out of 32 of the foil TCs did not survive assembly 3.  Utilize Computed Tomography Imaging to Aid in Material
Properties Characterization.
3. Develop better handling procedures. *  See Panerai et al “Thermal Conductivity of Woven
*  Fabric skirt was prone to shifting/geometry changes Thermal Protection System Materials” 8" European
during preparation and handling, need more consistent Workshop on TPS & Hot Structures, 19-22 April, 2016.

geometry' espeCIa”y at the free trallmg edge' * Solid conduction + gas conduction + radiation
* 3D Nourtot i LHMT. 5
4. Develop insulating joint concept, especially for less severe entry * Multiscale
. . M * The material architecture changes dynamically
environments (I'e'_ ars). with temperature and mechanical loaads
. Quartz fabric at joint/rib interface shows promise for ;

limiting conduction into structure

macro pores

5. Understand ‘payload’ environment better, including heat i EtNECH VS
transfer, contamination (outgassing and decomposition of the E 1.0f S " | wa
fabric skirt) and fabric permeability. = 08} 42 ./"‘"'# | ibintows —
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