SYSTEM LEVEL AEROTHERMAL TESTING FOR THE ADAPTIVE DEPLOYABLE ENTRY AND PLACEMENT TECHNOLOGY (ADEPT).

Alan Cassell¹, Sergey Gorbunov², Bryan Yount³, Dinesh Prabhu⁴, Maxim de Jong⁵, Tane Boghozian⁴, Frank Hui¹, Y.-K. Chen¹, Carl Kruger³, Carl Poteet⁶, Paul Wercinski¹

Email: <u>Alan.M. Cassell@nasa.gov</u>, Entry Systems & Technology Division, NASA Ames Research Center, Moffett Field, CA
Jacobs Technology, Inc.- Entry Systems & Technology Division, NASA Ames Research Center, Moffett Field, CA
Engineering Systems Division, NASA Ames Research Center, Moffett Field, CA
Analytical Mechanics Associates, Entry Systems & Technology Division, NASA Ames Research Center, Moffett Field, CA
Thin Red Line Aerospace, Chilliwack BC, Canada
Structural Mechanics and Concepts Branch, NASA Langley Research Center, Hampton, VA

6/15/2016

International Planetary Probe Workshop-13

IHF301Run001

Outline

ADEPT Overview

Test Objectives

Test Design 🚽

Results

Lessons Learned & Future Work

Adaptive Deployable Entry and Placement Technology

Key ADEPT Components

Front Surface- Plain Weave

Aft Surface- Ortho Weave

• Develop and integrate technologies for a mechanically deployable decelerator for missions to Venus, Mars, and other destinations.

Deployment Prototype Time Lapse Video

1 m Class Technical Maturation

See: B.P. Smith et al "Nano-ADEPT: An Entry System for Secondary Payloads" IEEE Aerospace Conf., 2015

International Planetary Probe Workshop-13

6/15/2016

Test Objectives

60

50

Axial coordinate (from nozzle exit plane), in

Arc Heated Flow Simulations

Temperature & Flow Structure Atomic Oxygen 34 in 20-20 13 in Radial coordinate, in ⊒. 10-Radial coordinate, i Nozzle exit (21.5-in dia) Nozzle exit (21.5-in dia) Kin temperature K 7500 10000 12500 20 30 40 50 60 40 20 30

Axial coordinate (from nozzle exit plane), in

Primary Objective:

Demonstrate simplified ADEPT SPRITE-C configuration maintains integrity during test.

Secondary Objectives:

- Monitor temperatures of key design features. 1.
- Evaluate fabric joint designs. 2.
- 3. Measure recession.
- Measure carbon fabric aft side temperature. 4.
- 5. Determine if rigid nose ablation products effect downstream design features.

Chamber Set-Up

Key TPS Design Features

Test Article Description-Assembly

Test Environment Predictions

Test Article Description

Test Article 1 Condition 1 for 60 sec

- **Graphite Nose** ٠
- Six Layer C-Fabric
- Phenolic Infused Joints

Test Article 2 Condition 1 for 40 sec Condition 2 for 40 sec

- **Conformal PICA Nose** ٠
- Six Layer C-Fabric ٠
- Phenolic Infused Joints •

Test Article 3 Condition 2 for 60 sec

- Graphite Nose
 - Six Layer C-Fabric
- Various Resin Infused Joints

Test Article 4 Condition 2 for 60 sec

- Graphite Nose
- Four Layer C-Fabric •
- Various Resin Infused Joints
- **Insulating Fabric at Rib Interface**

Instrumentation & Imagery

Thermocouple Locations & Pyrometer Pointing

SPRITE-C2

SPRITE-C3

Thin Film TCs to monitor rib temperature

HD Video, Infrared Thermography & Pyrometry

Test Article C2 @ 40 sec

6/15/2016

Results: Test Video- C2, Condition 1

West Sting: SPRITE-C #2

12:48:59:24 🕯

Results: Fabric Performance

Results: Fabric Joint Performance

Infrared Imagery

<u>Rib Interface Temperatures for Various Joint Configurations</u>

*Infused & Insulated Joint Showed Best Overall Performance.

Resin-Infused Shielding Layers Are Robust Under These Environments

Non-Infused Shielding Layers Shed After Burning Through Top Plies

6/15/2016

Results: Upstream Ablator & Dual Heat Pulse

TEST ARTICLE C2 @ 40 SEC

Graphite versus Conformal PICA Nose @ Condition 1

• Thermally massive graphite nose piece took time to reach thermal equilibrium, likely causing downstream temperature increases observed.

TEST ARTICLE C1 @ 40 SEC

Ablator upstream of fabric does not have much effect on performance of fabric.

Dual Heat Pulse Capability Demonstrated - SPRITE-C with C-PICA nose TPS

- 1st pulse- Heat Rate 120 W/cm² (stag point), duration 40 sec (test article left overnight in test chamber)
- 2nd pulse- Heat Rate 60 W/cm² (stag point), duration 40 sec

PRE-TEST

ARC JET TEST (2 EXPOSURES)

International Planetary Probe Workshop-13

POST-TEST

SURFACE TEMPERATURE COMPARISON

Lessons Learned & Future Work

Lessons Learned

1. More Instrumentation

.

- Facility is generally limited to 12-channels per test article
- Modify design to incorporate custom miniaturized data acquisition systems
- 2. Develop more robust TC mounting technique.
 - 5 out of 32 of the foil TCs did not survive assembly
- 3. Develop better handling procedures.
 - Fabric skirt was prone to shifting/geometry changes during preparation and handling, need more consistent geometry, especially at the free trailing edge.
- **4. Develop insulating joint concept**, especially for less severe entry environments (i.e.-Mars).
 - Quartz fabric at joint/rib interface shows promise for limiting conduction into structure
- 5. Understand 'payload' environment better, including heat transfer, contamination (outgassing and decomposition of the fabric skirt) and fabric permeability.

Future Work

- 1. Design Flight-Like Arc-Jet Test Article
 - Incorporate Flight-Like Structural Features, Payload Simulator & Seals.
- 2. Load Test Post-Heated Joints to Failure.
 - Evaluate various designs for ultimate load strength.
- 3. Utilize Computed Tomography Imaging to Aid in Material Properties Characterization.
 - See Panerai et al "Thermal Conductivity of Woven Thermal Protection System Materials" 8th European Workshop on TPS & Hot Structures, 19-22 April, 2016.

International Planetary Probe Workshop-13

W m⁻¹ K

-k eff,min

)/(k_{eff,max}.

(k_{eff}-k_{eff,}

Acknowledgements

Funding

- Space Technology Mission Directorate- Game Changing Development
- Ames Research Center Innovation Fund

ADEPT Team Members Past & Present

• Brandon Smith, Owen Nishioka, Greg Swanson, Cole Kazemba, James Arnold, Ethiraj Venkatapathy, Peter Gage

Industry Partners

- Bally Ribbon Mills
- Thin Red Line Aerospace

Facility

- Arc Jet Test Crew
- STAR Labs

Computed Tomography-Lawrence Berkeley National Laboratory

- Francesco Panerai
- Nagi Mansour