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Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex
statistical model of global circulation model (GCM) sub-gridcolumn moisture variability
using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud
data, thereby permitting parameter estimation and cloud data assimilation for large-
scale models. This article performs some basic testing of this new approach, verifying
that it does indeed reduce mean and standard deviation biases significantly with respect
to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top
pressure and that it also improves the simulated rotational–Raman scattering cloud optical
centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone
Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does
show skill in the especially difficult case where the background state is clear but cloudy
observations exist. In traditional linearized data assimilation methods, a subsaturated
background cannot produce clouds via any infinitesimal equilibrium perturbation, but the
Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud
probability. In the example provided, the method is able to restore marine stratocumulus
near the Californian coast, where the background state has a clear swath. This article
also examines a number of algorithmic and physical sensitivities of the new method and
provides guidance for its cost-effective implementation. One obvious difficulty for the
method, and other cloud data assimilation methods as well, is the lack of information
content in passive-radiometer-retrieved cloud observables on cloud vertical structure,
beyond cloud-top pressure and optical thickness, thus necessitating strong dependence
on the background vertical moisture structure. It is found that a simple flow-dependent
correlation modification from Riishojgaard provides some help in this respect, by better
honouring inversion structures in the background state.
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1. Introduction

In the Introduction to Part 1 of this series (Norris and da Silva,
2016), we provided motivation for this study by discussing a
number of the difficulties associated with the subject of cloud
data assimilation (CDA). We particularly emphasized problems
associated with the mismatch between the frequently small scales
of cloud variability and typical global circulation model (GCM)
gridcolumn footprints and the strong nonlinearities present in
cloud processes. One of the key problems is that a subsaturated
background state cannot produce clouds via any small equilibrium
perturbation to moisture. We then provided a detailed description
of a new Monte Carlo Bayesian CDA approach designed to

address these problems, with the goal of improving poor model
background states to the point where more traditional CDA
approaches are able to perform more favourably with them.

This article, Part 2, now discusses the application of the new
method and its performance in a number of case studies and
sensitivity tests. Section 2 provides an overview, in non-technical
terms, of the CDA algorithm described in detail in Part 1.
Section 3 sets up a control cloud data assimilation experiment to
serve as a baseline to the sensitivity experiments that follow. It is
verified that the analyzed cloud state in the control experiment
does indeed reflect the Moderate Resolution Imaging Spectrora-
diometer (MODIS) data that went in: the analyzed cloud optical
depth, brightness temperature and cloud-top pressure exhibit
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significantly reduced biases with respect to the corresponding
MODIS observations. Section 4 examines a number of algorith-
mic and physical sensitivities of the new method and provides
guidance for its cost-effective implementation. This section also
demonstrates the significant utility of a simple flow-dependent
correlation function modification due to Riishojgaard (1998).
Section 5 presents a case study involving marine stratocumulus off
the Californian coast. This case is an especially difficult test of the
new method, because the observations show stratocumulus very
near and sometimes right up to the coast, whilst the background
state has a large clear swath in this region. The results are very
encouraging: the new algorithm is able to restore the missing
stratocumulus, even though the background, subsaturated (clear)
regions cannot produce cloudiness for any small equilibrium
perturbation to the moisture field. The new algorithm is
able to make larger (and non-linearization-based) jumps in
parameter space to find an equilibrium cloudy state faithful to
the observations. Section 6 presents a short application of the
method to assimilation of geostationary cloud retrievals made
for the Spinning Enhanced Visible and Infrared Imager (SEVIRI)
instrument aboard the Meteosat-9 platform. The method is easily
adaptable to assimilation of these data. A comparison against the
assimilation of contemporaneous polar-orbiting Aqua MODIS
data shows comparable results for both types of observation.
Section 7 presents an independent validation of the new method
using a non-assimilated dataset, the so-called cloud optical
centroid pressure (OCP) retrieved from a rotational–Raman
scattering algorithm applied to UV spectral measurements made
by the Ozone Monitoring Instrument (OMI) aboard the Aura
satellite. Finally, Section 8 contains some concluding remarks.

2. Algorithm overview

2.1. Background

Norris and da Silva (2007) conducted a pilot study to investi-
gate the assimilation of International Satellite Cloud Climatology
Project (ISCPP) (and later MODIS) and Special Sensor Micro-
wave Imager (SSM/I) cloud data using a parameter estimation
technique. Independent Clouds and the Earth’s Radiant Energy
System (CERES) top-of-the-atmosphere (TOA) cloud forcing
estimates were used as a benchmark. The previous generation
Goddard Earth Observing System, Version 4 (GEOS-4) model
physics used in that study included rather simple diagnostic cloud
parametrizations, such as the critical-relative humidity (RH)
cloud fraction parametrization of Slingo (1987), and provided an
ideal test-bed for assessing the validity of this approach. While
GEOS-4 had been carefully tuned to match TOA cloud forcing
from CERES, it had excessive cloud amounts in the Tropics and
not enough clouds in the extratropics. Not surprisingly, by tuning
specific parameters in the Slingo-type scheme, we were able to pro-
duce cloud patterns very consistent with the data we assimilated.
Having corrected the cloud patterns, the original model tuning
now produced much degraded cloud forcing in the long- and
short-wave bands. It was not until we constrained the full cloud
state with SSM/I cloud water and ISCCP optical-depth estimates
that a good agreement with the independent CERES observations
could be achieved. The final result was a marked improvement in
GEOS-4 long-wave cloud forcing produced by assimilation of the
ISCCP cloud mask and SSM/I liquid water path; with additional
assimilation of ISCCP cloud optical depth, the short-wave cloud
forcing was at least not degraded (Norris and da Silva, 2007).
The main lesson learned from this study was that simultane-
ous observations of cloud fraction, cloud optical depth and cloud
condensate were necessary to produce an improved cloud forcing.

While the simple physics in GEOS-4 was a good starting
point, we soon realized that, without representing subgrid-scale
variability explicitly, we could not take advantage of the wealth
of statistical cloud information provided by the high spatial
resolution MODIS and other A-Train instruments. Fortunately,

an undercurrent of work (e.g. Sommeria and Deardorff, 1977;
Smith, 1990; Ricard and Royer, 1993; Xu and Randall, 1996;
Larson et al., 2001; Tompkins, 2002; Larson, 2004) has sought
a statistical description of subgrid-scale variability of moisture.
These statistical schemes specify the subgrid-scale probability
density functions (PDFs) of moisture from the outset and the
CDA problem becomes one of estimating the parameters of these
PDFs.

2.2. Gridcolumn statistical model

While a simple uniform or Gaussian PDF would appear to be
a good start, these PDFs fail to model the convectively driven
skewed distributions found in nature. In order to model cloud
processes, which are strongly weighted to the upper tail of the
moisture distribution, more accurately, we adopt here a three-
parameter skewed triangular PDF for a single gridbox. This PDF
is written in terms of total saturation ratio, S ≡ qt/qs(T), defined
as the ratio of the in situ total moisture content qt (vapour plus
cloud condensate) to the saturation vapour content qs at the
in situ temperature T. This PDF is non-zero on (SL, SH), rising
linearly from zero at SL to a mode at S∗ and then falling linearly
to zero again at SH (see Figure 1 and also figure 1 of Part 1). A
full description of the mathematical properties of this PDF can be
found in Appendix A of Part 1. In particular, the gridbox mean
water vapour qv, cloud condensate qc and cloud fraction f can be
derived from this PDF. Conversely, given (qv, qc, f ) arising from
this distribution, one can derive the parameters (SL, S∗, SH) defin-
ing the PDF uniquely. More generally, the macro parameters (qv,
qc, f ) must satisfy a specific relationship in order for a valid trian-
gular PDF to be obtained. Notice that a two-parameter PDF would
pose much more severe constraints on the values of (qv,qc,f ).

Similarly to the problem of specifying cloud overlapping for
radiative calculations, one also needs a prescription for coupling
a vertical stack of triangular PDFs. We adopt here the Gaussian
copula formalism of Norris et al. (2008). The copula of a set
a variables is the joint cumulative distribution function (CDF)

Figure 1. A schematic of a gridcolumn with four layers. Each layer has a skewed
triangle PDF in the total saturation ratio S ≡ qt/qs(T) (see text). The vertical white
line is S = 1, representing saturation, with locations to the left being increasingly
dry and locations to the right increasingly moist. The dark grey regions of the
triangles represent supersaturated air, or cloudiness. The uppermost layer is all
subsaturated, or clear. Mean, variance and skewness vary with the layer. The
height of each PDF is scaled to the layer height in this schematic (the real PDF
height varies such that the PDF area is always one). Each triangle PDF is specified
uniquely by a triplet (SL, S∗, SH), representing the lowest, modal and highest S
values, respectively.
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of the ranks of the variables within their respective univariate
margins. The copula can be thought of as a means of producing
a multivariate distribution with specified margins. A critical
ingredient in this formulation is the specification of a correlation
matrix governing inter-layer correlations.

Given this gridcolumn statistical model (GCSM, i.e. layer
PDFs plus copula), one can efficiently sample profiles of water
vapour and cloud condensate consistent with the model. This is
a type of independent column approximation (ICA) subcolumn
generation, in the sense that our GCSM does not contain any
specification of horizontal correlation, just horizontal PDFs of S
coupled only in the vertical.

2.3. Bayesian parameter estimation

Given a set of measurements y (say, 1 km cloud optical depth
and cloud-top pressure derived from MODIS), one would like to
estimate the GCSM parameters α. Notice that α should include a
set of parameters specifying each layer PDF; α may also include
the vertical coupling between the layers, for example via one or
more vertical decorrelation length-scales associated with inter-
layer correlation. Assuming some prior knowledge of α given by
the prior PDF p(α), we wish to determine how this knowledge
is modified by a vector of observations of the gridcolumn, y.
Specifically, we wish to estimate the posteriori PDF p(α|y). This
is a straightforward application of Bayes’ Theorem:

p(α|y) ∝ p(y|α)p(α). (1)

The first term on the right, p(y|α), is called the likelihood and
evaluates the probability of observing y given a parameter state
α. Our goal is to estimate p(α|y) to quantify its mode(s), which
specifies the most probable α given the observations, as well
as some measure of its spread, which indicates the magnitude
of the error associated with the modal α estimate. For reasons
discussed in Part 1, we use a type of Markov chain Monte Carlo
(MCMC) method to characterize p(α|y). This method makes
quasi-random jumps around parameter space, such that, as the
number of jumps becomes large, the collection of sampled α is
consistent with (samples drawn from) the target PDF p(α|y).

2.4. The GEOS-5 Earth System Model

The prior or ‘background’ state for each of the gridcolumn
statistical models is provided by forecasts of the National
Aeronautics and Space Administration (NASA) Global Modeling
and Assimilation Office (GMAO) GEOS-5 GCM, namely by
initialization from the GCM’s gridbox mean vapour and
condensate contents, q̄v and q̄c, and cloud fraction f . More
precisely, each three-hourly analysis is initialized from the
‘corrector segment’ of the incremental analysis update (IAU)
of the GEOS-5 data assimilation system. This corrector segment
is a 6 h forecast, which gradually introduces the influence of
observations from the regular (non-CDA) six-hourly GEOS-5
analysis. Please see section 2a of Rienecker et al. (2011) for a more
complete explanation.

The model version used in this study is GEOS-5.7.2 and
the model’s parametrizations are described in Rienecker et al.
(2011). This version of the GEOS-5 model uses the relaxed
Arakawa–Schubert (RAS) cumulus parametrization (Moorthi
and Suarez, 1992) for both deep and shallow convection and
a prognostic scheme for cloud liquid water and ice, with a
PDF-based scheme for large-scale condensation and cloud
cover (Bacmeister et al., 2006). As resolution is increased, the
convection parametrization is restrained using a stochastic,
resolution-dependent limit on deep convection (Tokioka et al.,
1988). At resolutions finer than about 10 km, this scheme
essentially prevents deep convection and restricts RAS to act
as a shallow convection scheme. For these experiments, we use
the current operational resolution, which has a nominal 1/4◦

latitude–longitude grid (more precisely 0.25◦ latitude by 0.3125◦
longitude), with 72 vertical layers and a model top at 1 Pa.

Finally, note that each of the eight three-hourly cloud analyses
is independent and uses the background state provided by an
existing GEOS-5 data assimilation run with an IAU cycle (but
without CDA). This study does not include any ‘cycling’, i.e. the
output of the cloud analysis is not used to modify the subsequent
GCM forecast. Such a cycling system is certainly planned, but is
beyond the scope of the current article.

3. Control run

A number of sensitivity tests have been performed (see below)
by perturbing key algorithmic and physical parameters of the
Bayesian cloud assimilation system. The control run for these
tests is largely defined by Part 1 and specifically with the following
choice of parameters.

(1) Nsim = N•max = 64. Here Nsim is the number of simulated
subcolumns (per gridcolumn) and N•max is explained in
Appendix B.2 of part 1.

(2) The number of trials M per point in the multiple-try
Metropolis (MTM) chain is a factor fM = 1/2 of the
reference value M∗ specified in section 2.7.2 of Part 1,
i.e. M is about half the number of effectively independent
dimensions in the parameter space.

(3) For our MTM sampler, the optimal Metropolis–Hastings
(MH) proposal covariance matrix �q of (13) in Part 1 is
amplified by a factor C = 32, since the advantage of MTM
over MH is that it allows for larger proposal steps.

(4) An MTM chain length of n = 200.
(5) A vertical correlation length-scale of L = 100 hPa.
(6) The observation-error parametrization for MODIS cloud

retrievals is still under development and for this initial
phase of our study we consider the perfect observation
limit in which observation errors are not added to the
simulated observations.

Despite the considerable success of an assimilation run with
the above specifications, an examination of the results revealed
excessive cloud water path, CWP = ∫

ρc dz, in the night-time
regions. In retrospect this is not surprising – at night there
are no cloud optical thickness (COT) observations to constrain
the vertically integrated condensate in each gridcolumn. The
remaining observables, Tb and pc, both saturate very quickly with
cloud water path and so cannot constrain CWP. To resolve this
issue, for night-time gridcolumns only, we multiply the prior
term p(α) of Part 1 by an empirical Gaussian-like term,

e−Cλ[ln(λ/λB)]2
, (2)

that constrains the ratio of the condensed water path to the total
water path, λ = CWP / TWP, to its triangularized background
state value λB, where TWP = ∫

(ρv + ρc) dz. We have found
experimentally that the constant Cλ = 256 works well.

With this modification, the resulting run, denoted
b7K64fhC32, forms the control for the sensitivity tests that fol-
low. The run was made for the day of 1 July 2011, comprising
eight 3 h cloud analyses (at 0000 UTC, 0300 UTC, . . . ). Figure 2
shows global plots of COT τ , cloud brightness temperature Tb

and cloud-top pressure pc for the control run for each of the
triangularized background (B), observations (O) and result of
the Bayesian analysis (A). Note that, in general, the analysis is
closer to the observations than the background. We will be more
quantitative shortly.

Note that, in all plots and analysis presented in this article, the
following applies.

(1) The use of the term ‘background’ refers to the triangularized
model background state, namely the gridcolumn of skewed
triangle PDFs produced by the initialization procedure
presented in Part 1.
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Figure 2. Global plots of (a–c) all-sky gridcolumn mean COT τ , (d–f) in-cloud gridcolumn mean cloud brightness temperature Tb and (g–i) in-cloud gridcolumn
mean cloud-top pressure pc for the control run b7K64fhC32 for each of the triangularized background (B), observations (O) and analysis (A). Results are averages of
the eight three-hourly analyses for 1 July 2011 (at 0000 UTC, 0300 UTC, . . . ).

(2) τ is an all-sky gridcolumn mean COT (zeros included
for clear pixels/subcolumns) and Tb and pc are in-cloud
gridcolumn means of cloud brightness temperature and
cloud-top pressure, respectively.

(3) Tb is the mean for only the pixels or subcolumns for
which Tb is actually used, namely when pc > 550 hPa, and,
conversely, pc is the mean for only pc ≤ 550 hPa. τ is the
mean over only daytime gridcolumns.

The ‘gridcolumn mean’ here has a specific meaning. For the
observations, it is just the mean over the pixels falling within a
gridcolumn. For the background and analyzed states, it is the
mean calculated over a sample of Nsim subcolumns generated at
a particular GCSM parameter state α – for the background, that
parameter state is the result of the initialization procedure (Part
1, section 2.3.1) and for the analyzed state, that parameter state is
the MCMC chain element with the highest posterior probability
(Part 1, section 2.7).

Note that each of MODIS Aqua and Terra provides global
coverage every 1–2 days, but the recoverage period is much
shorter at higher latitudes. When multiple satellites/multiple
orbits observe the same gridcolumn within the same time window,
the MODIS granule that contributes observations closest to the
analysis time is selected. Coverage is also clearly not representative
of a diurnal average, given the Sun-synchronous orbits of the
satellites. For the average over the eight three-hourly analyses of
Figures 2 and 3, the time average is used mainly to allow the global
data set to be displayed on a single map, as is common with Level
3 satellite data. However, given the latitude factor as above and the

two satellites, the average is somewhat complicated. Regardless,
the observations, background and analysis are averaged in the
same way, with a common set of gridcolumns for each time
window, to yield a consistent comparison.

Figure 3 shows the corresponding global plots of the O–B and
O–A biases. Clearly the analysis biases are much smaller than
the background biases. Figure 4 shows the PDFs of O–B and
O–A biases in τ for the control run. The peaks of the O–A PDFs
are all significantly narrower than for the corresponding O–B
PDFs, again indicating the basic success of the cloud assimilation
method. Both the modal and the mean biases are also generally
smaller in magnitude for O–A than O–B. The figure also shows
that the analysis was quite successful in removing unobserved
clouds from the background (see figure caption).

Figures 5 and 6 show the corresponding PDFs of biases for the
cloud brightness temperature Tb and CO2-slicing-based cloud-
top pressure, pc. Similar conclusions can be drawn as from
Figure 4. Note that the inset panels have a slightly different
interpretation than for Figure 4. Namely, for Figure 5 the • refers
to the existence of a Tb value, i.e. a ‘low cloud’ (pc > 550 hPa),
while the ◦ represents not only clear pixels/subcolumns but also
those which do not use Tb because the cloud top is too high (pc ≤
550 hPa). Based on this interpretation, the inset illustrates that
the fraction of modelled low clouds not seen in the observations
is reduced by the analysis (transfer of upper-left red to lower-left
blue) and also that the fraction of observed low clouds that are not
modelled is also reduced by the analysis (transfer of lower-right
red to upper-right blue). Analogous comments apply for Figure 6.
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Figure 3. Global plots of O–B and O–A biases for the control run b7K64fhC32 for the observables in Figure 2. Clearly, the analysis biases ((b) COT, (d) cloud
brightness temperature, (f) cloud-top pressure) are much smaller than the corresponding background biases (a,c,e).

In view of the clear difference between day and night
assimilation (see Eq. (2) and context), we also computed the
global bias statistics for the control run separately for day and
night gridcolumns. Table 1 shows the results. Note the following:
(i) the background biases O–B are significantly smaller in the
mean during the day than during the night, but very similar in
standard deviation and (ii) the correction of mean bias in Tb

and pc by the cloud analysis is significantly stronger during the
night than during the day; the same also applies for the standard
deviation in the bias, though to a much lesser degree. It would
seem that the daytime analysis, with its additional constraint
on the τ observable, achieves a reduced alignment to the Tb

and pc observables and that addition of the night-time prior
constraint on CWP/TWP, although having a similar effect, is not
as dominant.

4. Sensitivity tests

The above results simply show that assimilating observations
moves a background state to an analysis with a better fit to those
observations. This is to be expected, and only acts as a gross check
of the assimilation system. It does not necessarily imply that the
analysis is better according to other measures, such as internal
dynamic/thermodynamic consistency or vertical structure not
constrained by the observations. We will now perform various

sensitivity tests on algorithmic and physical parameters of the
CDA system and will judge these sensitivity tests according to
how they impact the fit to observations. Again, a better fit does
not imply a better analysis. Rather, our confidence in the analysis
must be built by examining it in various case studies and by
validating it with additional non-assimilated observables. We will
begin this additional validation with a marine stratocumulus case
study and an OCP validation later in the article.

Table 2 lists the global mean biases in τ , Tb and pc and
the standard deviation (sdev) in the biases for the control run
b7K64fhC32 and for several sensitivity experiments varying key
algorithmic parameters. The experiment b7K64fhC16 reduced
the proposal covariance by half with C = 16 and produces
a slightly worse mean and sdev O–A than the control.
Tests with C = 64 (not shown) produced mixed results when
compared with the control, but no significant improvement.
The experiment b7K64f1C32 uses twice as many trials per MTM
chain point as the control, namely fM = 1. We expected this
to be better, since using the same number of trial points as
there are effectively independent dimensions in the parameter
space seems reasonable. Indeed, the results are slightly better,
but certainly not enough to justify twice the expense of
this experiment (doubling the number of trials approximately
doubles the experiment timing). The experiment b7K128fhC32
doubles Nsim (and N•max) to 128. On the whole, it is slightly
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Figure 4. PDFs of the biases O–B (red) and O–A (blue) in all-sky gridcolumn mean cloud optical thickness for control run b7K64fhC32. Biases are shown for six
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narrower than those of the corresponding O–B PDFs, indicating the basic success of the cloud assimilation method. Both the modal biases (location of the peak) and
the mean biases (dashed vertical lines) are also generally smaller in magnitude for O–A than O–B. The mean and standard deviation of the biases are also explicitly
printed in the upper left of each panel. Note that all these results are for the subset of gridcolumns that are non-clear (either partially cloudy or overcast) for both the
observations (in the gridcolumn) and the model (B or A). This subset is also represented in the •• quadrant of the upper right inset of each panel. This inset shows the
four-way fractional split between clear (◦) and non-clear (•) cases for the observations O and the model M (B or A). The fact that there is a transfer of probability
from cloudy B to clear A when the observations are clear (i.e. red in upper left to blue in lower left quadrants) is also indicative of the success of the cloud assimilation
method.
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Figure 5. As in Figure 4, but for brightness temperature Tb and including night-time as well as daytime gridcolumns. See the text for important comments on the
inset, which has a different interpretation than in Figure 4.
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Figure 6. As in Figure 5, but for CO2-slicing-based cloud-top pressure. See the text for important comments on the inset.

Table 1. Summary of the global biases for the control run b7K64fhC32 and the
control run with day and night subsetting. The format of each box is O–B →
O–A, where the mean bias is reported in the upper section and the standard
deviation of the bias in the lower section. No column for τ bias is reported, since

τ is only available during the day.

Mean Tb pc

b7K64fhC32 1.91 → 0.71 37.93 → 8.76
Day only 1.48 → 0.96 32.17 → 14.39
Night only 2.21 → 0.54 41.54 → 5.25

sdev Tb pc

b7K64fhC32 6.09 → 3.59 95.41 → 58.19
Day only 6.04 → 4.13 97.12 → 62.43
Night only 6.12 → 3.16 94.14 → 55.10

better, but again not enough to justify twice the expense.
The experiment b7K64fhC32 n400 doubles the length of the
MTM chain to 400 elements. It is also slightly better than the
control, but yet again not worth twice the run-time expense.
All the above experiments involve algorithmic perturbations and
we conclude that the control b7K64fhC32 is satisfactory and
cost-effective.

One final algorithmic sensitivity experiment, b7G64fhC32,
replaced the kernel density estimate (KDE) method of likelihood
evaluation, described in Part 1, section 2.6, with a simple 2D
Gaussian likelihood evaluation, also discussed in that section.
While this Gaussian likelihood forces the likelihood functions
p̂•pc ((ln τ , pc)|α) and p̂•Tb ((ln τ , Tb)|α) to be unimodal and of
Gaussian form (e.g. with elliptic contours), the results from
Table 2 are actually a small improvement on the control in
all measures except global pc bias. Although we retain the
KDE likelihood in the control for its generality and all-round
good performance, we intend to continue to investigate the
Gaussian likelihood, because the simplicity of the Gaussian
may allow some simplification and speed-up of the code (and
perhaps a simpler integration of our CDA method with more
traditional 3D- and 4D-Var approaches). That being said, the

Table 2. Summary of the variation in global biases between the control run
b7K64fhC32 and different algorithmic sensitivity experiments. The format of
each box is O–B → O–A, where the mean bias is reported in the upper section

and the standard deviation of the bias in the lower section.

Mean τ Tb pc

b7K64fhC32 −4.82 → −2.18 1.91 → 0.71 37.93 → 8.76
b7K64fhC16 −4.82 → −2.17 1.90 → 0.79 37.96 → 9.92
b7K64f1C32 −4.83 → −1.87 1.91 → 0.66 37.91 → 6.89
b7K128fhC32 −4.78 → −1.99 1.96 → 0.67 37.49 → 6.11
b7K64fhC32 n400 −4.82 → −1.86 1.91 → 0.64 37.92 → 6.80
b7G64fhC32 −4.82 → −1.94 1.91 → 0.62 37.95 → 10.41
sdev τ Tb pc

b7K64fhC32 15.50 → 7.02 6.09 → 3.59 95.41 → 58.19
b7K64fhC16 15.51 → 7.23 6.09 → 3.81 95.38 → 61.15
b7K64f1C32 15.51 → 6.64 6.09 → 3.49 95.36 → 56.92
b7K128fhC32 15.40 → 6.44 6.08 → 3.39 95.27 → 55.87
b7K64fhC32 n400 15.50 → 6.47 6.09 → 3.41 95.38 → 54.93
b7G64fhC32 15.50 → 6.66 6.09 → 3.49 95.36 → 54.21

Gaussian likelihood version is not currently faster than the
KDE version, because the statistical subcolumn generation
dominates the cost of evaluation of the likelihood at the
observations. This might be reversed with further coding
improvements. (We also plan to try a Gaussian copula (GCOP)
likelihood, a middle ground between the KDE and Gaussian
likelihoods, as mentioned in Part 1. This is distinct from
the GCOP model of layer overlap already included in this
study.)

Table 3 examines the sensitivity of global biases to more
physical parameters. The experiment b7K64fhC32 L200 doubles
the vertical correlation length-scale L to 200 hPa. This is somewhat
worse than the control. It is technically possible to include L in
the parameter list for Bayesian inference, but we have not yet
tried this. The experiment b7K64fhC32 pTrop replaces the fixed
pramp = 100 hPa of Part 1, section 2.3.3, with a variable tropopause
pressure as output by the background GEOS-5 simulation and
replaces the fixed plim = 50 hPa with pramp − 50 hPa. (Note: pramp

Published 2016. This article is a U.S. Government work
and is in the public domain in the USA. Q. J. R. Meteorol. Soc. 142: 2528–2540 (2016)



Bayesian Inference on Sub-gridcolumn Moisture Variability – 2 2535

Table 3. Summary of the variation in global biases between the control run
b7K64fhC32 and sensitivity experiments examining physical parameters. The

format is the same as in Table 2.

Mean τ Tb pc

b7K64fhC32 −4.82 → −2.18 1.91 → 0.71 37.93 → 8.76
b7K64fhC32 L200 −4.40 → −3.61 1.79 → 1.15 40.95 → 17.40
b7K64fhC32 pTrop −4.81 → −2.16 1.91 → 0.66 37.90 → 6.26
b7K64fhC32 lnP −4.64 → −2.21 1.99 → 1.05 37.81 → 6.66
b7K64fhC32 lnPtr −4.62 → −2.34 1.99 → 1.04 37.84 → 5.31
b7K64fhC32 RiiS1 −5.12 → −0.66 2.09 → 0.35 35.15 → 3.05
sdev τ Tb pc

b7K64fhC32 15.50 → 7.02 6.09 → 3.59 95.41 → 58.19
b7K64fhC32 L200 15.26 → 9.07 6.17 → 4.29 95.13 → 67.50
b7K64fhC32 pTrop 15.49 → 7.12 6.09 → 3.55 95.37 → 56.94
b7K64fhC32 lnP 15.40 → 7.02 6.14 → 3.80 95.21 → 55.61
b7K64fhC32 lnPtr 15.39 → 7.29 6.14 → 3.82 95.21 → 54.95
b7K64fhC32 RiiS1 15.70 → 6.22 6.05 → 3.23 95.68 → 53.65

is the lowest pressure at which full parameter variability is
permitted. Above this level, the parameter variability decays
linearly with pressure to zero at plim. This ramp affects both
the S̄ prior of Part 1, section 2.3.3, and the MTM estimated
target covariance, �π , discussed in Part 1, section 2.7.2). The
results for b7K64fhC32 pTrop are very similar to the control
run, with the exception that the mean cloud-top pressure
bias is significantly reduced (from a 77% reduction in O–B
→ O–A to an 83% reduction). This improvement makes
sense: we are constraining the analyzed cloud-top pressure to
approximately below the background tropopause, rather than
a nominal level of 100 hPa in the control. In retrospect, this
modification should have been included in the control and will
be for future work, but not for the current article, except where
noted.

The experiment b7K64fhC32 lnP uses ln p rather than p in
matters relating to the specification of vertical correlation. This
has some justification, since ln p is a proxy for the height above
the surface, z, and it is more common to parametrize vertical
correlation in terms of z than p. The implementation is as follows:
in the evaluation of the vertical correlation matrix C in Part 1, Eq.
(3), ξkk′ = |pk − pk′ |/L is replaced by ξkk′ = | ln pk − ln pk′ |/Lln,
where Lln is a ‘length-scale’ in ln p, given by Lln = ln[(pref +
�p/2)/(pref − �p/2)], such that pref + �p/2 and pref − �p/2 are
separated by one length-scale in ln p, where pref is some reference
pressure, set to 500 hPa for this experiment, and �p = 100 hPa,
akin to the L = 100 hPa of the control. This means that 450
and 550 hPa have the same decorrelation in both the control
b7K64fhC32 and the b7K64fhC32 lnP experiment, but that other
levels separated by 100 hPa now have different decorrelations
from the control. In particular, upper levels separated by 100 hPa
are relatively less correlated, since �p higher in the atmosphere
represents a relatively greater altitude difference than the same �p
near the surface. In addition, the linear ramp in p between pramp

and plim discussed above for near-tropopause decay of parameter
variability now becomes linear in ln p. Lastly, in the calculation
of the number of trials M per point in the MTM chain (Part 1,
section 2.7.2), (p0 − plim)/L is replaced by ln(p0/plim)/Lln. The
performance of the b7K64fhC32 lnP experiment is at best mixed,
with small improvements for pc and degradations for Tb. The lnP
experiment is also about 60% more expensive than the control,
due to the increase in the number of trials M per MTM chain
point, as described above [ln(p0/plim)/Lln ÷ (p0 − plim)/L =
ln(1000/50)/ ln(550/450) ÷ 950/100 ≈ 15 ÷ 9.5 ≈ 1.6]. Using
a pref lower in the atmosphere exacerbates this prob-
lem. The experiment b7K64fhC32 lnPtr is a combination of
b7K64fhC32 pTrop and b7K64fhC32 lnP. The pTrop modifica-
tion generally lowers plim within the atmosphere and therefore
decreases M, resulting in a small overall decrease in computation
time for b7K64fhC32 lnPtr relative to the control. However, the
results from Table 3 are not, on balance, better than the lnP

experiment, with a slight improvement in pc being offset by a
slight deterioration in COT.

Finally, the experiment b7K64fhC32 RiiS1 implements a
version of the simple flow-dependent correlation function
proposed by Riishojgaard (1998). The idea is to replace the
‘pressure distance’ based vertical correlation matrix C of Part 1,
Eq. (3), by the Hadamard product of itself and another correlation
matrix D with elements

Dkk′ = ν(|θ(αb
k) − θ(αb

k′)|),

where ν is a correlation function on R and θ is a function of
the background state vector αb for a layer. In this study, we
use the Gaussian correlation function ν(r; σ ) = exp[−r2/(2σ 2)].
Riishojgaard suggests the use of some conservative function for
θ , on the basis that Lagrangian transport preserves conservative
properties. In effect, the D matrix would therefore decorrelate
regions that have different Lagrangian origins. The use of a
conservative θ is most important for horizontal correlations, since
advection-based variability dominates in the horizontal. In the
vertical, other processes such as turbulent diffusion and radiative
heating become significant. For our case of vertical correlations,
we could use the conservative total water content, qt, but we can
just as well use the control variable S̄, the mean total saturation
ratio, which has a smaller dynamic range but still captures well
the sharp humidity inversion at the top of the planetary boundary
layer, for example. This is really our goal – to use the D term
to provide strong decorrelation across inversion features in the
vertical, which are otherwise not decorrelated adequately by
the fixed pressure scale L of the control C model. Thus, the
experiment b7K64fhC32 RiiS1 applies the above D modification,
with θ(αb

k) = S̄ b
k and a standard deviation σ = κS σS̄, where

σS̄ = 0.1 is the prescribed standard deviation of S̄ in the control
(see Part 1, section 2.3.3) and κS is a constant, set to one for this
experiment. Looking at the results from Table 3, we see that this
experiment is superior to the control in all measures. We believe
that using the D matrix honours better the basic vertical structure
of the atmosphere, as represented in the background state, and,
to the extent that this background state is able to capture realistic
vertical structure, is producing an analyzed state more consistent
with the observations. In retrospect, this modification should
have been included in the control and will be for future work, but
not for the current article, except where noted.

5. California stratocumulus study

Figure 7 shows a case study off the west coast of North America,
in which marine stratocumulus is present right up to the coast in
Southern California and Baja California, but is absent in a wide
swath off this coast in the background. In such cases, it is typically
very difficult for a cloud data assimilation system to restore
equilibrium cloud to such regions because the background,
subsaturated clear regions cannot produce cloudiness for any
small equilibrium perturbation to the moisture field. However, the
Monte Carlo Bayesian system is able to restore the stratocumulus,
since it makes non-gradient-based jumps in parameter space. The
cloud brightness temperature Tb, in the restored region is in good
agreement with the observations, although the COT appears a
little too high. Note that these results are for the experiment
b7K64fhC32 RiiS1, i.e. the control with the Riishojgaard (1998)
correlation modification. While the pure control was almost as
good and certainly also restored the near-coast stratocumulus,
it produced a more noisy analysis with even higher COT in
the restored region. It seems that the Riishojgaard modification
is acting, as anticipated, to honor the background moisture
inversion structure, thereby limiting the ability of the analysis to
produce excessive cloud thickness by artificially raising the cloud
top.

Note that our earlier experiments with this marine stratocumu-
lus case were a failure. In those experiments, we were using only
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Figure 7. A case study of marine stratocumulus off the coast of California and Baja California (1 July 2011, at 2100 UTC). The upper panels (a–c) show brightness
temperature Tb and the lower panels (d–f) all-sky COT (τ ). The background (a,d) is absent the stratocumulus near the Southern or Baja Californian coast that
is present in the observations (b,e). The analysis (c,f) is able to restore this stratocumulus, albeit with a slightly higher COT than observed. The somewhat noisier
appearance of the analysis comes from the fact that each gridcolumn analysis is currently independent of its neighbours.

τ and pc as observables, not Tb. The failure occurred because the
MODIS-retrieved CO2-slicing cloud-top pressure is unreliable for
low clouds (below 550 hPa) and was producing cloud-top pres-
sures in the range 650–750 hPa, significantly above the marine
inversion, which is below 900 hPa. The anatomy of the failure was
as follows: the assimilation system was trying to produce a cloud
with a top around 700 hPa (based on the erroneous MODIS pc),
but the background relative humidity at this height, well above
the marine inversion, was only about 10%. Clearly, the prior in
S̄ prevented the system from shifting the mean too far from 0.1,
so the system instead produced a very positively skewed moisture
PDF, with the upper tail just crossing saturation. The resulting
small cloud fraction (less than 10%) near 700 hPa was able to raise
the simulated cloud-top pressure towards the incorrect MODIS
value, but at the expense of changing the observed cloud fraction
of close to 100% to less than 10%! This illustrates the potential
problems that can arise when assimilating erroneous data or alter-
natively using a forward model that does not simulate the actual
observable well. In practice, had we made the cloud fraction an
additional observable with a prior constraint, then the outcome
would have been different. In that case, the highly skewed, low
cloud fraction solution would have been impossible and the anal-
ysis would have remained near the background, which would
have been preferable. As it was, we chose a better solution: we
dropped the pc observable in favour of Tb below 550 hPa.

6. Comparison between MODIS and SEVIRI assimilation

We ran an assimilation with a short 15 min window centred on
13:52:30 GMT of 1 July 2011, to compare the assimilation of
MODIS Aqua cloud retrievals (as above) with assimilation of
cloud retrievals made by the NASA Langley Cloud and Radiation
Group from the SEVIRI instrument aboard the Meteosat-9
geostationary platform (see Minnis et al., 2008). (The above time
is near the Aqua MODIS viewing of 0◦N, 0◦E, the subsatellite
point of Meteosat-9.) The Meteosat-9 SEVIRI retrievals have the
advantage of large spatial coverage (including the whole of Europe,
the Atlantic Ocean and all of Africa) at high temporal resolution

(every 15 min), compared with the twice-a-day overpasses of
the Aqua and Terra polar-orbiting platforms. The nadir field of
view is also reasonably small at 3 km, though not as small as the
MODIS 1 km optical retrievals. From an assimilation point of
view, the main difference is that only cloud optical thickness τ

and brightness temperature Tb are assimilated from the SEVIRI
retrievals, not CO2-slicing cloud-top pressure pc as for MODIS.
Thus, while the MODIS assimilation switches between Tb and pc

for cloudy pixels, depending on the value of pc as described earlier
and in Part 1, the SEVIRI assimilation always uses Tb when cloud
is present.

Comparing Figures 8 and 9, it seems that assimilation of the
two retrieval datasets is comparable (though the SEVIRI dataset
has the obvious advantage of being available as a full-disc image
every 15 min). An examination of the corresponding O–A PDFs
(not shown) confirms this comparability, although the ability
of the assimilation algorithm to remove unobserved cloud from
the background appears to be a little better for MODIS than
for SEVIRI assimilation. (Both experiments use the b7K64fhC32
control with the tropopause (pTrop) and Riishojgaard (RiiS1)
modifications discussed above.) Figure 10 summarizes the cross-
validation of the MODIS Aqua and SEVIRI CDA results for the
gridcolumn COT shown in Figures 8 and 9. It is evident that
the two data sets are much closer to one another than the model
background state is to either: mean OSEVIRI − OMODIS ≈ −1.9,
cf. mean OMODIS − B ≈ −6.9 and mean OSEVIRI − B ≈ −8.8.
Furthermore, we see that assimilating SEVIRI cloud data strongly
improves the validation against independent MODIS cloud data
and vice versa. This provides further support for our Monte Carlo
Bayesian CDA algorithm.

7. Validation using OMI

The above results provide substantial evidence that the Bayesian
cloud data assimilation system is at least doing what it was
designed to do: to drive the subcolumn model to a new state more
consistent with the observations. We also have evidence, from
the stratocumulus case study, that the CDA system is also able to
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Figure 8. Cloud optical thickness for an assimilation of MODIS Aqua cloud data for a 15 min window centred on 13:52:30 GMT of 1 July 2011: (a) triangularized
background, (b) observations, (c) CDA analysis. These results should be compared with the SEVIRI assimilation results in Figure 9.
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Figure 9. As in Figure 8, but for assimilation of cloud retrievals made by the NASA Langley Cloud and Radiation Group for Meteosat-9 SEVIRI data (see text.)

handle particularly tricky cases where there is no linear sensitivity
of the observations to the model. However, we also want a
broader global validation of the improvement of the analyzed
state compared with some independent, non-assimilated dataset.
For this, we turn to the so-called Optical Centroid Pressure
(OCP) retrieved from a rotational–Raman scattering (RRS)
algorithm (see Joiner et al., 2012, hereafter J12) applied to UV
spectral measurements made by OMI aboard the polar-orbiting
Aura satellite (at the rear of the so-called ‘A-Train’, 15 min
behind Aqua).

The OCP is a measure of how far into a cloud one can
see in the UV, which is much further than at IR wavelengths.
Therefore, the OCP is much deeper inside a cloud than an
IR window or CO2-slicing-derived cloud-top pressure (CTP),
which is typically very near the cloud top for all but very thin
clouds. As such, the OCP is sensitive to both the CTP and the
COT. That being said, we must realistically acknowledge that the
Bayesian CDA system described in this series (Part 1) does not
put a strong constraint on the vertical structure of the cloud,
but mainly on the cloud top and the overall optical thickness.
This limitation is particularly true for multi-layer clouds. Thus we
cannot necessarily expect to achieve a major improvement in OCP
simulations from the analyzed cloud state, but some improvement
is hoped for.

For the observations, we use the OMI OMCLDRR product,
which contains both the effective cloud fraction feff (‘CloudFrac-
tionforO3’) and optical centroid pressure POCP (‘CloudPressure-
forO3’) scientific datasets (SDS). The nadir field of view (FOV)
is approximately 12 km along track and 24 km across track. We
only include FOVs satisfying the following conditions, based on

guidance from J12 and the OMCLDRR README file provided
with the data.

(i) The OCP is valid if bits 0, 1, 2, 3, 4, 6, 7, 13, 14 and 15 of
the ‘ProcessingQualityFlagsforO3’ SDS are all zero and if
the POCP value itself has some positive value.

(ii) feff is valid if POCP is and, further, we require feff ≥ 0.3,
since the algorithm is very noisy for small effective cloud
fractions.

(iii) We also exclude FOVs flagged as snow/ice by bit 5 of the
above processing quality flag (pqf), since for these surface
types feff is set to one and so POCP is approximate.

(iv) We also exclude FOVs with radiance or irradiance errors
according to bits 9 and 11 of the pqf.

(v) Finally, we exclude FOVs possibly compromised by sea-
glint under low cloud fraction conditions (namely feff < 0.3
and bit 4 of the ‘GroundPixelQualityFlags’ SDS set).

All FOVs satisfying these conditions are binned into the reduced
longitude grid of the analysis and the mean (in-cloud) POCP is
calculated for each accepted gridcolumn. In addition, only those
gridcolumns for which the corresponding observed gridcolumn
mean all-sky COT from Aqua is at least 5 are included in the
analysis, since the retrieved OCP is believed to be less reliable for
optically thinner clouds (see J12).

We study the day of 13 February 2007 and use a modified CDA
control run that only assimilates Aqua (not Terra) observations,
since OMI is on board Aura, which closely follows behind
Aqua. A POCP is simulated for the triangularized background
(B) and analyzed (A) states using the fast ‘R3S’ simulator
of J12. Namely, POCP is evaluated according to Eq. (5) of
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Figure 10. For the MODIS Aqua and SEVIRI gridcolumn COT of Figures 8 and 9, the following are shown. (a) The probability density of SEVIRI minus MODIS Aqua
COT observations for gridcolumns sampled as cloudy by both instruments. (b) A cross-validation of the SEVIRI CDA (ASEVIRI) against MODIS Aqua observations
(OMODIS), showing the probability density of CDA bias (green) compared with the density of background bias (red). Both densities use only gridcolumns sampled
by both instruments and, for each density, both sides of the difference must be cloudy. (c) Conversely, a cross-validation of the MODIS Aqua CDA against SEVIRI
observations. It is evident that MODIS Aqua and SEVIRI COT are much closer to one another than the model background state is to either. Furthermore, assimilating
SEVIRI cloud data strongly improves the validation against MODIS and vice versa.

J12: POCP = ∑
l ρlPl/

∑
l ρl, where Pl is the mid-point model

layer pressure and ρl is the contribution to the cumulative UV
cloud reflectance from layer l, as described in J12 (using the
adding–doubling method and a conservative delta-Eddington
two-stream calculation of layer reflectances and transmittances,
with asymmetry factor g = 0.8).

Figure 11 shows POCP bias PDFs for O–B and O–A, globally
and for different regions. The biases are in the in-cloud mean
POCP for each gridcolumn in the specified region and for each of
the eight assimilation time windows in the 24 h period.

Global mean biases are reduced by about 25% and the standard
deviation in the biases by about 21%. Biases also appear to be
more Gaussian after assimilation, which is helpful, given that
these analyzed states will eventually become the background for
a more traditional 3D- or 4D-variational data assimilation.

It is somewhat disappointing that the biases were not more
strongly reduced, but, as stated earlier, the CDA method does not
constrain cloud vertical structure strongly and also the fast R3S
OCP simulator only provides an approximation to the retrieved
OCP. To investigate the potential role of cloud vertical structure,
we also studied the global mean bias and standard deviation
reductions as a function of COT, τ . For moderately thin clouds
(5 ≤ τ ≤ 10), the global mean bias was reduced by 33% and the
standard deviation by 24%. For clouds with 10 ≤ τ ≤ 25, these
reductions are 27 and 23% and, for τ ≥ 25, only about 12 and 9%.
Thus, the reductions do seem to deteriorate with increasing cloud
thickness, especially for thick clouds (τ ≥ 25), which is consistent
with the idea that cloud vertical structure will be more important
for thick clouds. That being said, the addition of the ‘pTrop’
modification produced no significant change in the OCP bias
reductions and the Riishojgaard modification produced a small
degradation, so it is clear that the issue of constraint of vertical
cloud structure is not yet well understood and needs further
study. It should also be noted that the Riishojgaard modification
still uses the same number of MTM trials M per chain point as the
control, calculated based on the standard pressure scale-length
method of Part 1 section 2.7.2. This should really be modified
when using the Riishojgaard correlation modification, but it is
not immediately clear to us how to do that.

Another potential issue affecting our OCP estimates could be
our simplistic treatment of the cloud phase split and of mixed-
phase clouds, as detailed in section 2.8 of Part 1. Certainly,
the tropopause correction above would not improve this issue,
since high clouds are mostly all ice. Nor would the Riishojgaard
modification necessarily improve this matter, since many of the

buoyancy-inhibiting inversions capping the planetary boundary
layer occur below the freezing level. In the final analysis, the
treatment of phase is certainly a weak point that deserves further
attention in subsequent studies.

8. Discussion and conclusions

Part 1 of this series presented a new Monte Carlo Bayesian
method for constraining a complex statistical model of GCM sub-
gridcolumn moisture variability using high-resolution MODIS
cloud data. The method has strong application possibilities in
cloud data assimilation and cloud parametrization testing and
development, since it can be used to evaluate and improve
background (prior) estimates of the state of a model gridcolumn
and its subgrid parametrization parameters. We have chosen one
particular gridcolumn statistical model for this study, namely
skewed triangle PDFs of intra-layer moisture and a Gaussian
copula to couple them in the vertical, but many other more or less
complicated models can be conceived and intercompared using
this method, for fidelity in simulating observed cloud data.

Part 2 has performed some basic testing of the new method,
verifying that it does indeed reduce mean and standard deviation
biases very significantly with respect to assimilated MODIS cloud
optical depth, brightness temperature and cloud-top pressure. Of
particular interest, a case study of marine stratocumulus off the
Californian coast has demonstrated that the Monte Carlo method
performs well in the especially difficult case where the background
state is clear but cloudy observations exist. In traditional linearized
data assimilation methods, a subsaturated background cannot
produce clouds via any infinitesimal equilibrium perturbation,
but the Monte Carlo approach allows non-gradient-based jumps
into regions of non-zero cloud probability. In the example
provided, the method was able to restore marine stratocumulus
near the Californian coast, where the background state had a large
clear swath.

One important application of the method is assimilation of
cloud data into large-scale numerical weather prediction models.
By showing that the method also easily assimilates geostationary
SEVIRI retrievals, which are available every 15 min with huge
spatial coverage, we have opened up the possibility of future
significant assimilation of such retrievals to constrain the global
moisture field, of which clouds are a significant marker.

The ultimate goal of this work is to produce a fully cycling
data assimilation system, one in which the model total water
PDF parameters are re-initialized with the values coming from
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Figure 11. PDFs of the biases O–B (red) and O–A (blue) of in-cloud mean gridcolumn cloud optical centroid pressure POCP for a modified control run that
assimilates only Aqua (not Terra) observations. Biases are shown for six regions (a)–(f), as noted, where the latitude boundaries between Tropics, mid and high
latitudes are at 22.5 and 50◦.

the ‘cloud analysis’, with the GCM producing a first guess
for the next cloud analysis. To achieve this goal, we have
structured the project with two distinct milestones: (i) devel-
opment and assessment of the ‘cloud analysis’ step by means
of MCMC and (ii) update of the PDF scheme in GEOS-5 to
provide the time evolution of the triangular PDF parameters
and to use the triangular PDF and subcolumn generation consis-
tently in the radiation parametrization and throughout GEOS-5.
This article, however, focuses on milestone (i). Moreover, the
improved moisture/cloud state afforded by the MCMC algorithm
is intended to provide a better background for the hybrid ensem-
ble/variational algorithms in GEOS-5, as well as to assist in the
development of proper observation operators for cloudy radi-
ances (taking into consideration cloud overlapping and subgrid
variability).

For computational feasibility, we have stayed away from a
multivariate cloud analysis involving wind–mass coupling in the
MCMC algorithm. Having obtained mass analysis increments,
the correspond wind increments could, in principle, be generated
by using the balance operators in our hybrid grid-point statistical
interpolation (GSI) system or relegated altogether to the full
meteorological analysis. The tacit goal of our approach is to
extract cloud information from the wealth of visible and IR
sensors as an intermediate step and to use this information to
constrain better the assimilation of IR and microwave cloudy
radiances in the main meteorological data assimilation system.
What we present here is an incremental step in this direction.

Also, note that in many situations the maintenance of the
analyzed cloud state requires support by other portions of
the atmospheric state (surface fluxes, PBL mixing, subsidence,
etc.). Many of these features are not constrained directly by the
meteorological assimilation. Wind increments generated from
mass increments by balance operators are often adiabatic, with
minimal impact on subsidence (a largely unobserved aspect of the
circulation). Therefore, we are not very optimistic that we will be
able to resolve data retention issues with data assimilation only.
Ultimately, model deficiencies will need to be addressed in order
for cloud information to be retained. However, a cloud analysis

and its concurrent estimate of cloud radiative forcing can provide
a very useful complementary dataset for atmospheric reanalyses,
even when these data are only partially retained by the model.

One remaining difficulty for our method (and for other
CDA methods as well) is the limited information content on
cloud vertical structure in the chosen cloud observables, cloud-
top pressure (or brightness temperature) and column optical
depth. However, even these variables produce a significant
improvement in the simulated rotational–Raman scattering
cloud OCP against independent (non-assimilated) retrievals from
the OMI instrument. Because one can see deeper into a cloud
in the UV, the OCP is sensitive not only to the cloud-top
pressure but also to cloud vertical structure. Clearly, the fidelity of
the model’s background vertical structure, including boundary-
layer inversions, will be important for this problem and it is
important to honour such features in the assimilation process. It
was found that a simple flow-dependent correlation function due
to Riishojgaard (1998) provides some help in this respect, since
it permits stronger decorrelations across moisture (or other)
inversions in the background state. To improve the analyzed
vertical structure of the cloud field further, future work could
consider the addition of new observables, with stronger vertical
sensitivity, to the Bayesian problem: OCP is one such observable,
but other multispectral passive observations or active sensors
can be considered as well. While current LIDAR and RADAR
observations (e.g. CALIPSO, CloudSat and forthcoming sensors)
contain the much needed vertical information, their coverage is
usually too sparse to provide any lasting impact on global data
assimilation systems.
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