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‘Inner Magnetosphere Effects
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‘Historical Background: Space in 1950
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‘Historical Background

whistlers

Whistlers revealed unexpected plasma
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1952
L. R. Owen Storey ,
Cavendish Laboratory °* .
University of Cambridge -

Historical Background
L. R. O. Storey, Phil. Trans. R. Soc. Lond. A 1953 246 113-141; DOI: 10.1098/rsta.1953.0011. Published 9 July 1953



‘Historical Background
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‘Ionosphere

Photoionization
O+hv=0"+e"

* |lonosphere: ionized portion of upper atmosphere
— Extends from around 60 to beyond 1000 km
— Completely encircles the Earth
— Main Source: photoionization of neutrals

+ Other production processes may dominate in
certain ionospheric regions

— Loss Mechanism: ionospheric outflow

Main regions and transport processes



‘Ionosphere outflow

e Main cause e ionoéphere
. - T\ —
— Ambipolar electric field
— pressure gradients
— Mirror force due to gyration of charged particles

e Polar wind: lonospheric loss at polar latitude
— Along essentially open geomagnetic field lines

* At mid-latitudes the plasma may bounce to the
conjugate ionosphere or become the plasmasphere

Main regions and transport processes



‘Plasmasphere Formation:
Diffusive Equilibrium
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Titheridge (1972)

H; = scale height

k = Boltzmann constant
m; = j'th ion mass

g = gravitational constant
m, = mean ion mass

T, = electron temperature

T, =T, + T, total temperature
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‘Global convection Plasma flow in the

polar and auroral
ionosphere

Dawn

e Inthe Late 50s,  Dusk
ground-based A&&@aﬂ?ﬂ
measurements

revealed the plasma
flow pattern in the polar and auroral ionosphere

— Anti-sunward flow over the polar cap and
— Return flow equatorward of the auroral oval
* |n 1959 Gold introduced the term convection

— Resemblance to thermally driven flow cells
Main regions and transport processes




‘Solar wind dynamo

Positive
charge

Negative
charge

Polar cap magnetic flux
Open magnetic field lines

e Highly conducting
plasma in the solar oo
wind flows across
polar geomagnetic
field lines

— Induces an electric dynamo field

lonosphere

dawn

\_dusk

— Frozen-in flux concept

Main regions and transport processes



| Reconnection

Plasma flow in the
polar and auroral
ionosphere

Dawn

< Dusk

Auroral
oval

e |f the polar geomagnetic field lines are open

— The electric field produces an anti-sunward ExB
drift of solar wind and magnetospheric plasma
across the polar cap

— Reconnection occurs down tail

— Closed geomagnetic field lines flow back
towards Earth at lower latitudes

Main regions and transport processes



‘Plasma sheet

Plafmashest

 Plasma sheet: population of
lonospheric and solar wind |
particles being accelerated Earthward

 Neutral current sheet: large-scale current flow
from dawn to dusk across the plasma sheet

— Separates the two regions of oppositely directed
magnetic field in the magnetotail

— Accelerates particles towards Earth

* Direct access to night side auroral oval o
— Can collide with ionosphere producing aurora

Main regions and transport processes



‘Adiabatic Invariants

 Energetic plasma near the center
of the plasma sheet gyrates
closer to the Earth gt TN

— Become trapped on closed dipole like field lines
— Encounter increasing magnetic field stren gth
— Bounce between hemispheres HJ‘H Cb" di = d>"||

bounce bounce

— Gradient and curvature drift H?n: ] B-dA
drift
+ Divert ions and electrons in opposite directions

+ Form the ring current and radiation belts

Main regions and transport processes



‘Ring Current

e Hot (1-400 keV) .
tenuous (1-10s cm3)

e diamagnetic current produced
by motion of plasma trapped
in the inhomogeneous geomagnetic field

— Torus-shaped volume extending from ~3 to 8 R
— Main Source: plasma sheet particles

— Loss Mechanisms: charge exchange, coulomb
collisions, atmospheric loss, pitch angle (PA)

diffusion, and escape from magnetopause  Chorus

Main regions and transport processes



‘Radiation Belt
e Very Hot (100s keV - MeV)

e Extremely tenuous: <<1 cm

— QOuter belt: very dynamic region
+ Mostly elections located at 3-6 R
— Inner belt: fairly stable population
+ Protons, electrons and ions at 1.5-2 R

e Source: injection and energization events
following geomagnetic storms

e Loss Mechanisms: Coulomb collisions,

magnetopause shadowing, and PA diffusion ™S

Main regions and transport processes



‘Plasmasphere

e Cool (<10 eV)
* High density (100s-1000s cm3)
e Co-rotating plasma

— Torus-shaped, extends to 4-8 R

— Plasmapause: essentially the b0undar;"‘-‘?:::..f
between co-rotating and convecting plasma

 Main Source: the ionosphere

e Loss Mechanism: plasmaspheric erosion and
drainage plume

Main regions and transport processes



‘Geomagnetic storms

e Large (100s nT)
* Prolonged (days)
e Magnetospheric disturbances
— Caused by variations in the solar wind

— Related to extended periods of large southward
interplanetary magnetic field (-IMF Bz)

+Increasing the rate of magnetic reconnection
+ Enhancing global convection

Geomagnetic Activity



‘Geomagnetic storms
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e Enhanced convection

— Increased rate of injection into the ring current
+The ring current then expands earthward

+Induced current can reduce the horizontal
component of the geomagnetic field (100s nT)

* Used to calculate Dst

Geomagnetic Activity



‘Plasmaspheric Plumes

 Enhanced convection
also causes the co-rotating BENR
plasmaspheric material to surge sunward

— Decreasing the night-side plasmapause radius
— Extending the dayside plasmapause radius
e Creates a plume extending from 12 to 18 MLT

e For continued enhanced convection less material
remains to feed the plume and it narrows in MLT

— Dusk edge remains almost stationary
— Western edge moves eastward

Geomagnetic Activity




‘Substorms

e A relatively short (hours) period of increased
energy input and dissipation into the inner
magnetosphere

— Events may be isolated or occur during a storm

— Associated with a flip from northward to
southward IMF Bz

* |Increased rate of reconnection
* |ncreased flow in magnetospheric boundary layer
 Energy accumulates in the near-Earth tail

Geomagnetic Activity



‘Substorms

e Additional magnetic
flux in the tail lobes
causes the cross-tail

Magnetosheath / /
e Mag nelupal.:l?i_d_,
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current sheet thickness to decrease

— When the current sheet thickness reaches its

threshold reconnection occurs ™/
— The cross-tail current is disrupted
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e The substorm current wedge closes the cross-tail
current through the ionosphere

e Particle precipitation increases Auroral activity

Geomagnetic Activity



‘I\/Iodels — Empirical: IRI

IRCCIR MmF2 at 10UT on day 183
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‘I\/Iodels — Empirical: GCPM

GCPM Version 2.2
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‘ Models —LFM Model muiti-Fluid Lyon-Fedder-Mobarry MHD)

L A 5o - Max; 3.88 T Maxs 142,35
1 Min: —37.60 1 Min: —8695.62
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Lyon, Fedder, Mobarry, DOI: 10.1016/j.jastp.2004.03.020
Through the Coordinated Community Modeling Center, NASA/GSFC




‘Coupling Models

“Inner Magnetosph
Drift Physics Model

Framework

4

4

lonospheric
Electrodyn amics-
Model
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Inner Heliosphere Mode|

Toth, et al., The Space Weather Modeling Framework, Proceedings of ISSS-7, 26-31, March, 2005
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