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Introduction & Motivation

=*Most nonlinear optimization methods require an initial guess “close” to
the optimal solution

*|nitial guess can be hard to find

*There may be many local optima, and the initial guess dictates which
one is found

=General NLP “black box” solvers (IPOPT, SNOPT, ... ) can be slow
= Many iterations

= For large problems, most CPU time is spent in the optimizer
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Solution Overview

sStart with very poor initial guess

=Use multiple shooting with ~50-100 nodes
= Continuous thrust during propagation
= Constrain defects to go to zero at matchpoints

*Optimize states, controls, and endpoint locations by solving
a series of quadratic sub-problems




Multiple Shooting Formulation

"Trajectory defined by a set of nodes with
= Position

= Velocity
= Mass
= Continuous control

"Propagate backwards and forwards in time

=Enforce continuity at matchpoints
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Multiple Shooting Formulation

sFixed step size integrator is used, with 5 steps per node

*Why fixed step size?
= More consistent finite-differenced partial derivatives = faster
convergence

= Faster integration (don’t get stuck at a singularity with poor initial
guess)

= Better for parallelization (future work)

"Runge-Kutta 78 numerical integration is used

= Normally, use the 8t order truncation term to estimate the error in
the 7t order step. Then choose the largest step size possible where
the error remains within tolerance.

= Here, we force a fixed step size, but use the truncation term to
output the error estimate for use in mesh refinement

=Mesh refinement: Add nodes where the 8t order
truncation term for any of the integrator steps is > tolerance



Multiple Shooting Formulation
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Then solve again with refined mesh



raditional SQP Algorithm

"Minimize the Lagrangian:
L(ZAE) =@ +1-h@) + i §&)

objective constrain=0 constrain <0

=*This is some nonlinear function which we don’t know how to solve

*We do know how to solve Quadratic Programming problems, so
approximate the nonlinear problem as quadratic:

= Two-term Taylor series expansion of f(X):

fO) ~ f(x*) +Vf(xF) - 6%+ Loz Hf (%) - 6%

2
= One-term Taylor series expansion of constraints:
h(%) = h(Z¥) + Vh(Z) - 6%
g@) = g(x*) + vg(x) - 62
sSequential Quadratic Programming

= Solve a sequence of quadratic programming (QP) problems that
approximate the general nonlinear programming problem



SQP Algorithm Variant

"Minimize:
N 3
2
f = Z 2wy + 0w
i=1j=1
J
|
Truly quadratic objective
=Subject to:

= Dynamics constraints:
d+]-6X=0
d = defects
ad
/=%%

5X = update to all optimization variables



Endpoints

=Previously demonstrated that this approach (or even ordinary least
squares) can be used to optimize trajectories when the endpoints and
time of flight are fixed

*Now extend to variable endpoints & time of flight

=Easy (fast) to solve problems with: Earth-Moon rotating frame

= Linear equality constraints

= Quadratic inequality constraints 009

L, halo

= Quadratic cost
orbit
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=Solution: use linear equality constraints
and add quadratic endpoint term to cost



Endpoints

=Define endpoint: g(t) = L, halo orbit, defined by a set of points in a text file

-

T

‘|- =0

"True endpoint constraint: fze = [%
e

"Quadratic expansion of endpoint:
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Endpoints

What if we use a linear expansion with a different set of parameters?

Tried Modified Equinoctial Elements, unsuccessful

Works well sometimes (when far from singularities)

Totally fails sometimes (when close to singularities)
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Endpoints

What if we use a linear expansion with a different set of parameters?

Tried Modified Equinoctial Elements, unsuccessful

Works well sometimes (when far from singularities)

Totally fails sometimes (when close to singularities)
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Line Search

=Each solution to the QP problem gives us an update §x to all
optimization variables

Xk+1 = ¥k 4 0. 5%

*If the problem is sufficiently linear, the QP update is accurate enough to
assumea =1

*Why do a line search?
= We do not trust the solution to the linearized problem

= Xkt = Xk 4 o . 5%

"For short transfers (<1 revolution), no need to perform line search — the
problem is sufficiently linear to converge quickly with full steps

Maratos effect



Line Search

*A comment on parameterization

" Line search is only necessary as the solution takes on
more revolutions

= With a different parameterization (i.e. orbital elements),
the revolutions can be “unwound” to keep the problem
more linear

" However, the optimization algorithm is too “smart” for
this
= Every orbital element set has some singularity (or multiple)

= Optimization algorithm will exploit the singularity to find a non-physical
solution with very low cost



Example applications

"Now, two examples, with CRTBP dynamics
= DRO (distant retrograde orbit) to L, halo orbit
= DRO to different DRO

"|nitial guess is random

*"Endpoints and time of flight are variable, but only allowed
to change a small amount each iteration, to preserve
accuracy of linearization




Example applications

Iteration 0




Example applications

Iteration 2




Example applications

Iteration 8




Example applications

Iteration 19
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This transfer requires 15 days and an acceleration of 1.7E-4 m/s?
(equivalently, 170 mN for a 1000 kg spacecraft)



Example applications
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This transfer requires 29 days and an acceleration of 2.8E-4 m/s?
(equivalently, 280 mN for a 1000 kg spacecraft)



Example applications
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This transfer requires 28 days and an acceleration of 2.8E-4 m/s?
(equivalently, 280 mN for a 1000 kg spacecraft)



Fuel Optimal Solutions

=Previously demonstrated we can easily 0.3 \ |
transition from one objective to —_— ‘
another > !
p © 0.2
- quI dt B
= With p = 2, large radius of convergence 0.15
= With p = 1, small radius of convergence g /)
. 0.1 =
= Use homotopy method with control law  E \ -
to transition fromp =2top =1 = 0.05 \ :
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Example for Earth-Mars low-thrust
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Implementation notes

"Implemented in Julia language, with JuMP optimization
toolbox and Gurobi as QP optimizer

*Computation time (40-100 nodes):

= Each iteration:
= Set up QP problem: 0.2 — 0.5 seconds
= Solve QP problem: 0.2 — 0.5 seconds
= Line search: 0.2 — 0.5 seconds

= Short transfers total time
* From random initial guess: 10 — 30 seconds
= From close initial guess: ~¥1 — 3 seconds

" Long transfers total time varies
= Line search becomes necessary, so more iterations required
= Does not always converge
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