
Low-Thrust Trajectory
Optimization with
Simplified SQP Algorithm
NATHAN L. PARRISH

DANIEL J. SCHEERES

UNIVERSITY OF COLORADO
BOULDER

Astrodynamics Specialist Conference, August 2017

https://ntrs.nasa.gov/search.jsp?R=20170007867 2019-08-29T23:35:05+00:00Z

Introduction & Motivation
Most nonlinear optimization methods require an initial guess “close” to
the optimal solution

Initial guess can be hard to find

There may be many local optima, and the initial guess dictates which
one is found

General NLP “black box” solvers (IPOPT, SNOPT, …) can be slow

 Many iterations

 For large problems, most CPU time is spent in the optimizer

2

?

Solution Overview
Start with very poor initial guess

Use multiple shooting with ~50-100 nodes
 Continuous thrust during propagation

 Constrain defects to go to zero at matchpoints

Optimize states, controls, and endpoint locations by solving
a series of quadratic sub-problems

3

Multiple Shooting Formulation
Trajectory defined by a set of nodes with
 Position

 Velocity

 Mass

 Continuous control

Propagate backwards and forwards in time

Enforce continuity at matchpoints

4

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

Multiple Shooting Formulation
Fixed step size integrator is used, with 5 steps per node

Why fixed step size?
 More consistent finite-differenced partial derivatives faster

convergence

 Faster integration (don’t get stuck at a singularity with poor initial
guess)

 Better for parallelization (future work)

Runge-Kutta 78 numerical integration is used
 Normally, use the 8th order truncation term to estimate the error in

the 7th order step. Then choose the largest step size possible where
the error remains within tolerance.

 Here, we force a fixed step size, but use the truncation term to
output the error estimate for use in mesh refinement

Mesh refinement: Add nodes where the 8th order
truncation term for any of the integrator steps is > tolerance

5

Multiple Shooting Formulation

6

Mesh Refinement

Then solve again with refined mesh

Traditional SQP Algorithm
Minimize the Lagrangian:

ℒ 𝑥, 𝜆, 𝜇 = 𝑓 𝑥 + 𝜆 ∙ ℎ 𝑥 + 𝜇 ∙ 𝑔 𝑥

This is some nonlinear function which we don’t know how to solve

We do know how to solve Quadratic Programming problems, so
approximate the nonlinear problem as quadratic:
 Two-term Taylor series expansion of 𝑓 𝑥 :

𝑓 𝑥 ≈ 𝑓 𝑥𝑘 + 𝛻𝑓 𝑥𝑘 ∙ 𝛿 𝑥 +
1

2
𝛿 𝑥 ∙ 𝐻𝑓 𝑥𝑘 ∙ 𝛿 𝑥

 One-term Taylor series expansion of constraints:

ℎ 𝑥 ≈ ℎ 𝑥𝑘 + 𝛻ℎ 𝑥 ∙ 𝛿 𝑥

 𝑔 𝑥 ≈ 𝑔 𝑥𝑘 + 𝛻 𝑔 𝑥 ∙ 𝛿 𝑥

Sequential Quadratic Programming
 Solve a sequence of quadratic programming (QP) problems that

approximate the general nonlinear programming problem

7

objective constrain = 0 constrain ≤ 0

SQP Algorithm Variant
Minimize:

𝑓 =

𝑖=1

𝑁

𝑗=1

3

𝑢𝑖𝑗 + 𝛿𝑢𝑖𝑗
2

Subject to:
 Dynamics constraints:

 𝑑 + 𝐽 ∙ 𝛿𝑋 = 0
 𝑑 = defects

𝐽 =
𝜕 𝑑

𝜕𝑋

𝛿 𝑋 = update to all optimization variables

8

Truly quadratic objective

Endpoints

9

Moon L2 halo
orbit

Linearized
endpoint

Quadratic
endpoint

Previously demonstrated that this approach (or even ordinary least
squares) can be used to optimize trajectories when the endpoints and
time of flight are fixed

Now extend to variable endpoints & time of flight

Easy (fast) to solve problems with:
 Linear equality constraints

 Quadratic inequality constraints

 Quadratic cost

Hard (slow) to solve problems with
any higher order

Problem: Linearized endpoint does not
capture dynamics well

Solution: use linear equality constraints
and add quadratic endpoint term to cost

Endpoints

10

Define endpoint: 𝑞 𝜏 = L2 halo orbit, defined by a set of points in a text file

True endpoint constraint: ℎ𝑒 =
 𝑟𝑒
 𝑣𝑒

− 𝑞 𝜏 = 0

Quadratic expansion of endpoint:

 𝑞 𝜏 ≈ 𝑞 𝜏𝑘 +
𝜕𝑞 𝜏

𝜕𝜏 𝜏𝑘

𝛿𝜏 +
1

2

𝜕2𝑞 𝜏

𝜕𝜏2
𝜏𝑘

𝛿𝜏2

Linear endpoint equality constraint:

ℎ𝑒 =
 𝑟𝑒
 𝑣𝑒

− 𝑞 𝜏𝑘 +
𝜕𝑞 𝜏

𝜕𝜏 𝜏𝑘

Add to objective function:

𝑓 = 𝑓𝑝𝑎𝑡ℎ + 𝛽 ∙
𝜕2𝑞 𝜏

𝜕𝜏2 ∙ 𝛿𝜏2

With 𝛽 too small, solution bounces
around optimal 𝜏 indefinitely

With 𝛽 too large, solution converges
prematurely on sub-optimal 𝜏

Moon L2 halo
orbit

Linearized
endpoint

Quadratic
endpoint

Endpoints

11

L2 halo

DRO

Linear
expansion
of MEE’s

Quadratic
expansion of
MEE’s

Linear
expansion
of MEE’s

 What if we use a linear expansion with a different set of parameters?

 Tried Modified Equinoctial Elements, unsuccessful

 Works well sometimes (when far from singularities)

 Totally fails sometimes (when close to singularities)

Endpoints

12

L2 halo

DRO

Quadratic
expansion of
MEE’s

 What if we use a linear expansion with a different set of parameters?

 Tried Modified Equinoctial Elements, unsuccessful

 Works well sometimes (when far from singularities)

 Totally fails sometimes (when close to singularities)

Line Search
Each solution to the QP problem gives us an update 𝛿 𝑥 to all
optimization variables

 𝑋𝑘+1 = 𝑋𝑘 + 𝛼 ∙ 𝛿 𝑥

If the problem is sufficiently linear, the QP update is accurate enough to
assume 𝛼 = 1

Why do a line search?
 We do not trust the solution to the linearized problem

 𝑋𝑘+1 = 𝑋𝑘 + 𝛼 ∙ 𝛿 𝑥

For short transfers (<1 revolution), no need to perform line search – the
problem is sufficiently linear to converge quickly with full steps

13

Maratos effect

Line Search
A comment on parameterization
 Line search is only necessary as the solution takes on

more revolutions

With a different parameterization (i.e. orbital elements),
the revolutions can be “unwound” to keep the problem
more linear

However, the optimization algorithm is too “smart” for
this
 Every orbital element set has some singularity (or multiple)

 Optimization algorithm will exploit the singularity to find a non-physical
solution with very low cost

14

Example applications
Now, two examples, with CRTBP dynamics
 DRO (distant retrograde orbit) to L2 halo orbit

 DRO to different DRO

Initial guess is random

Endpoints and time of flight are variable, but only allowed
to change a small amount each iteration, to preserve
accuracy of linearization

15

Example applications

16

Example applications

17

Example applications

18

Example applications

19

This transfer requires 15 days and an acceleration of 1.7E-4 m/s2

(equivalently, 170 mN for a 1000 kg spacecraft)

Example applications

20

This transfer requires 29 days and an acceleration of 2.8E-4 m/s2

(equivalently, 280 mN for a 1000 kg spacecraft)

Example applications

21

This transfer requires 28 days and an acceleration of 2.8E-4 m/s2

(equivalently, 280 mN for a 1000 kg spacecraft)

Fuel Optimal Solutions

22

Previously demonstrated we can easily
transition from one objective to
another
 𝑢 𝑝 𝑑𝑡

 With 𝑝 = 2, large radius of convergence

 With 𝑝 = 1, small radius of convergence

 Use homotopy method with control law
to transition from 𝑝 = 2 to 𝑝 = 1

Example for Earth-Mars low-thrust
rendezvous

Implementation notes
Implemented in Julia language, with JuMP optimization
toolbox and Gurobi as QP optimizer

Computation time (40-100 nodes):
 Each iteration:
 Set up QP problem: 0.2 – 0.5 seconds

 Solve QP problem: 0.2 – 0.5 seconds

 Line search: 0.2 – 0.5 seconds

 Short transfers total time
 From random initial guess: 10 – 30 seconds

 From close initial guess: ~1 – 3 seconds

 Long transfers total time varies
 Line search becomes necessary, so more iterations required

 Does not always converge

23

Low-Thrust Trajectory Optimization
with Modified SQP Algorithm

Astrodynamics Specialist Conference, August 2017

This work was supported by a NASA Space Technology Research Fellowship

Questions?

NATHAN L. PARRISH

DANIEL J. SCHEERES

UNIVERSITY OF COLORADO
BOULDER

