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Introduction & Motivation
Most nonlinear optimization methods require an initial guess “close” to 
the optimal solution

Initial guess can be hard to find 

There may be many local optima, and the initial guess dictates which 
one is found

General NLP “black box” solvers (IPOPT, SNOPT, … ) can be slow

 Many iterations

 For large problems, most CPU time is spent in the optimizer
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Solution Overview
Start with very poor initial guess

Use multiple shooting with ~50-100 nodes
 Continuous thrust during propagation

 Constrain defects to go to zero at matchpoints

Optimize states, controls, and endpoint locations by solving 
a series of quadratic sub-problems
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Multiple Shooting Formulation
Trajectory defined by a set of nodes with
 Position

 Velocity

 Mass

 Continuous control

Propagate backwards and forwards in time

Enforce continuity at matchpoints
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Multiple Shooting Formulation
Fixed step size integrator is used, with 5 steps per node

Why fixed step size? 
 More consistent finite-differenced partial derivatives  faster 

convergence

 Faster integration (don’t get stuck at a singularity with poor initial 
guess)

 Better for parallelization (future work)

Runge-Kutta 78 numerical integration is used
 Normally, use the 8th order truncation term to estimate the error in 

the 7th order step. Then choose the largest step size possible where 
the error remains within tolerance.

 Here, we force a fixed step size, but use the truncation term to 
output the error estimate for use in mesh refinement

Mesh refinement: Add nodes where the 8th order 
truncation term for any of the integrator steps is > tolerance
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Multiple Shooting Formulation
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Mesh Refinement

Then solve again with refined mesh



Traditional SQP Algorithm
Minimize the Lagrangian: 

ℒ  𝑥,  𝜆,  𝜇 = 𝑓  𝑥 +  𝜆 ∙ ℎ  𝑥 +  𝜇 ∙  𝑔  𝑥

This is some nonlinear function which we don’t know how to solve

We do know how to solve Quadratic Programming problems, so 
approximate the nonlinear problem as quadratic: 
 Two-term Taylor series expansion of 𝑓  𝑥 :

𝑓  𝑥 ≈ 𝑓  𝑥𝑘 + 𝛻𝑓  𝑥𝑘 ∙ 𝛿  𝑥 +
1
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𝛿  𝑥 ∙ 𝐻𝑓  𝑥𝑘 ∙ 𝛿  𝑥

 One-term Taylor series expansion of constraints: 

ℎ  𝑥 ≈ ℎ  𝑥𝑘 + 𝛻ℎ  𝑥 ∙ 𝛿  𝑥

 𝑔  𝑥 ≈  𝑔  𝑥𝑘 + 𝛻  𝑔  𝑥 ∙ 𝛿  𝑥

Sequential Quadratic Programming
 Solve a sequence of quadratic programming (QP) problems that 

approximate the general nonlinear programming problem
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objective constrain = 0 constrain ≤ 0



SQP Algorithm Variant
Minimize:

𝑓 =  

𝑖=1

𝑁

 

𝑗=1
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𝑢𝑖𝑗 + 𝛿𝑢𝑖𝑗
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Subject to: 
 Dynamics constraints:

 𝑑 + 𝐽 ∙ 𝛿𝑋 = 0
 𝑑 = defects

𝐽 =
𝜕  𝑑

𝜕𝑋

𝛿  𝑋 = update to all optimization variables
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Truly quadratic objective



Endpoints
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Moon L2 halo 
orbit

Linearized 
endpoint

Quadratic 
endpoint

Previously demonstrated that this approach (or even ordinary least 
squares) can be used to optimize trajectories when the endpoints and 
time of flight are fixed

Now extend to variable endpoints & time of flight

Easy (fast) to solve problems with:
 Linear equality constraints 

 Quadratic inequality constraints

 Quadratic cost 

Hard (slow) to solve problems with 
any higher order 

Problem: Linearized endpoint does not 
capture dynamics well

Solution: use linear equality constraints
and add quadratic endpoint term to cost



Endpoints
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Define endpoint:  𝑞 𝜏 = L2 halo orbit, defined by a set of points in a text file

True endpoint constraint: ℎ𝑒 =
 𝑟𝑒
 𝑣𝑒

−  𝑞 𝜏 = 0

Quadratic expansion of endpoint: 

 𝑞 𝜏 ≈  𝑞 𝜏𝑘 +  
𝜕𝑞 𝜏

𝜕𝜏 𝜏𝑘

𝛿𝜏 +
1

2
 

𝜕2𝑞 𝜏

𝜕𝜏2
𝜏𝑘

𝛿𝜏2

Linear endpoint equality constraint: 

ℎ𝑒 =
 𝑟𝑒
 𝑣𝑒

−  𝑞 𝜏𝑘 +  
𝜕𝑞 𝜏

𝜕𝜏 𝜏𝑘

Add to objective function: 

𝑓 = 𝑓𝑝𝑎𝑡ℎ + 𝛽 ∙
𝜕2𝑞 𝜏

𝜕𝜏2 ∙ 𝛿𝜏2

With 𝛽 too small, solution bounces 
around optimal 𝜏 indefinitely

With 𝛽 too large, solution converges 
prematurely on sub-optimal 𝜏

Moon L2 halo 
orbit

Linearized 
endpoint

Quadratic 
endpoint



Endpoints

11

L2 halo

DRO

Linear 
expansion 
of MEE’s

Quadratic 
expansion of 
MEE’s

Linear 
expansion 
of MEE’s

 What if we use a linear expansion with a different set of parameters?

 Tried Modified Equinoctial Elements, unsuccessful

 Works well sometimes (when far from singularities)

 Totally fails sometimes (when close to singularities)



Endpoints
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L2 halo

DRO

Quadratic 
expansion of 
MEE’s

 What if we use a linear expansion with a different set of parameters?

 Tried Modified Equinoctial Elements, unsuccessful

 Works well sometimes (when far from singularities)

 Totally fails sometimes (when close to singularities)



Line Search
Each solution to the QP problem gives us an update 𝛿  𝑥 to all 
optimization variables

 𝑋𝑘+1 =  𝑋𝑘 + 𝛼 ∙ 𝛿  𝑥

If the problem is sufficiently linear, the QP update is accurate enough to 
assume 𝛼 = 1

Why do a line search? 
 We do not trust the solution to the linearized problem

 𝑋𝑘+1 = 𝑋𝑘 + 𝛼 ∙ 𝛿  𝑥

For short transfers (<1 revolution), no need to perform line search – the 
problem is sufficiently linear to converge quickly with full steps
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Line Search
A comment on parameterization
 Line search is only necessary as the solution takes on 

more revolutions

With a different parameterization (i.e. orbital elements), 
the revolutions can be “unwound” to keep the problem 
more linear

However, the optimization algorithm is too “smart” for 
this
 Every orbital element set has some singularity (or multiple)

 Optimization algorithm will exploit the singularity to find a non-physical 
solution with very low cost
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Example applications
Now, two examples, with CRTBP dynamics
 DRO (distant retrograde orbit) to L2 halo orbit

 DRO to different DRO

Initial guess is random

Endpoints and time of flight are variable, but only allowed 
to change a small amount each iteration, to preserve 
accuracy of linearization
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Example applications
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Example applications
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Example applications
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Example applications
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This transfer requires 15 days and an acceleration of 1.7E-4 m/s2

(equivalently, 170 mN for a 1000 kg spacecraft)



Example applications
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This transfer requires 29 days and an acceleration of 2.8E-4 m/s2

(equivalently, 280 mN for a 1000 kg spacecraft)



Example applications
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This transfer requires 28 days and an acceleration of 2.8E-4 m/s2

(equivalently, 280 mN for a 1000 kg spacecraft)



Fuel Optimal Solutions
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Previously demonstrated we can easily 
transition from one objective to 
another
  𝑢 𝑝 𝑑𝑡

 With 𝑝 = 2, large radius of convergence 

 With 𝑝 = 1, small radius of convergence

 Use homotopy method with control law 
to transition from 𝑝 = 2 to 𝑝 = 1

Example for Earth-Mars low-thrust 
rendezvous



Implementation notes
Implemented in Julia language, with JuMP optimization 
toolbox and Gurobi as QP optimizer

Computation time (40-100 nodes): 
 Each iteration: 
 Set up QP problem: 0.2 – 0.5 seconds

 Solve QP problem: 0.2 – 0.5 seconds

 Line search: 0.2 – 0.5 seconds 

 Short transfers total time
 From random initial guess: 10 – 30 seconds

 From close initial guess: ~1 – 3 seconds

 Long transfers total time varies 
 Line search becomes necessary, so more iterations required

 Does not always converge
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