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REMEDIATING NON-POSITIVE DEFINITE STATE COVARIANCES 
FOR COLLISION PROBABILITY ESTIMATION 

Doyle T. Hall,* Matthew D. Hejduk,† and Lauren C. Johnson‡ 

The NASA Conjunction Assessment Risk Analysis team estimates the probability 

of collision (Pc) for a set of Earth-orbiting satellites. The Pc estimation software 

processes satellite position+velocity states and their associated covariance matri-

ces.  On occasion, the software encounters non-positive definite (NPD) state co-

variances, which can adversely affect or prevent the Pc estimation process.  Inter-

polation inaccuracies appear to account for the majority of such covariances, alt-

hough other mechanisms contribute also.  This paper investigates the origin of 

NPD state covariance matrices, three different methods for remediating these co-

variances when and if necessary, and the associated effects on the Pc estimation 

process. 

INTRODUCTION 

The NASA Conjunction Assessment Risk Analysis (CARA) team estimates the probability of 

collision (Pc) for a specific set of high-value Earth-orbiting satellites. For each conjunction, the 

CARA software system calculates Pc using inertial-frame position+velocity states and associated 

covariance matrices for both the primary and secondary satellites, specified at the time of closest 

approach (TCA).  Orbit determination (OD) processes1 typically provide positive definite (PD) 

covariances, or at least positive semi-definite (PSD) covariance matrices  characterized by real 

eigenvalues that are all > 0 or  0, respectively.  On occasion, however, the CARA system encoun-

ters non-positive definite (NPD) state covariances  most often characterized by one slightly neg-

ative eigenvalue. 

NPD covariances can conceivably arise in a variety of ways.  For instance, interpolating from 

an ephemeris of covariances to obtain TCA estimates can introduce inaccuracies that yield NPD 

matrices.2  Inaccuracies can also be introduced when converting from one state representation sys-

tem to another (such as between orbital elements and inertial state vectors) using first-order or 

finite-difference transformation approximations.  Computational precision limitations can similarly 

create NPD covariances, even when performing otherwise exact transformations (such as basis-

vector rotations).  NPD matrices can also arise from truncation errors that occur when numerically 

storing or transmitting covariances using data structures with a limited bit length or number of 

significant figures.  Preliminary analysis indicates that interpolation inaccuracies account for the 

majority of NPD covariances currently encountered by the CARA system, although other mecha-

nisms may contribute as well. 
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From a purely computational point of view, Pc estimation processes do not always require fully 

PD state covariance matrices for both of the objects involved in a conjunction.  For instance, when 

the primary and secondary state covariances are uncorrelated, Pc values can be estimated using only 

their joint or summed covariances.3  The CARA system occasionally processes conjunctions that 

have an NPD primary or secondary state covariance, but when summed yield a PD joint covariance 

matrix  a situation that raises concern but does not actually prevent the Pc computation.  Similarly, 

the often-used “2D Pc” approximation3,4 only requires PD status for a marginalized, 22 relative 

position covariance at TCA, regardless of the status of the original state covariances.  Finally, 

Monte Carlo (MC) methods5 require repetitively sampling state probability distribution functions 

(PDFs) for both the primary and secondary objects, but these sampling computations only require 

PSD covariances. 

Despite these situations, the CARA system does sometimes encounter conjunctions in which 

NPD covariances prevent the computation of Pc estimates or related quantities.  For these situations, 

CARA’s current approach is to “repair” the matrix as required for the specific calculation at hand.  

CARA has investigated three remediation methods for this task: Spectrum Shifting entails adding 

a small offset to the entire set of covariance eigenvalues, and then reconstructing a remediated 

covariance matrix using the original eigenvectors.  Higham Remediation6 employs a method devel-

oped for the financial industry to remediate NPD correlation matrices, by finding the closest PSD 

matrix in terms of Frobenius norm.  This approach requires that the covariance first be transformed 

into a correlation matrix, which has the advantages of being dimensionless and often better condi-

tioned than the original covariance.  Finally, Eigenvalue Clipping sets a minimum limit for the 

eigenvalues of the covariance or correlation matrix, and simply forces smaller eigenvalues to this 

limit.  There are different ways of establishing the eigenvalue limit.  For instance, remediating NPD 

position covariances can employ physics-based considerations, specifically by using a clipping 

limit based on the precision of the original OD metric observations, or alternatively, a limit that 

corresponds to a small percentage of the satellite’s hard-body radius.  

This paper investigates the frequency that NPD covariance matrices occur by analyzing a large 

number of conjunctions archived in CARA’s database, as well as describing three different methods 

for remediating these covariances when and if necessary, and the associated effects on the Pc esti-

mation process. 

ANALYSIS OF ARCHIVED CONJUNCTIONS 

This section describes the analysis of actual conjunctions contained in CARA’s data archive, to 

determine the frequency and circumstances in which improper NPD covariances occur.  

Conjunction Data Supplied to CARA 

Most conjunctions represent single, isolated close approach events between two satellites.  

These occur when the magnitude of the relative position vector, |r(t)|, reaches a minimum in time.  

The U.S. Air Force maintains orbital states for a large catalog of trackable satellites, enabling pre-

dictions of such close approaches for CARA’s set of high-value primary satellites.7  Conjunction 

analysis occurs when any cataloged secondary satellite is predicted to make an incursion into a 

predefined screening volume centered on a primary.7,8  For each conjunction, the CARA system 

receives and processes raw data similar to that contained in a standard conjunction data message 

(CDM)  produced in a previous and separate analysis. For purposes of this paper, the input data 

will be referred to hereafter as a CDM.  Each CDM contains the time of close approach (tca or 

TCA), and many other quantities related to the orbital states and associated uncertainties of the 

primary and secondary objects for the conjunction. 
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ECI Frame Satellite States and Covariances 

For instance, the CDM contains data that can be readily converted to the Earth-centered inertial 

(ECI) reference frame9 mean position+velocity states for both the primary and secondary, xp(tca) 

and xs(tca), respectively, where x(t) = [r(t) v(t)].  CDM’s also contain state covariance data, origi-

nally expressed in the Cartesian radial, in-track and cross-track (RIC) reference frame9 (also some-

times called the UVW frame).  The RIC covariance matrices can be transformed to the ECI state 

covariances9,10 for the primary and secondary, denoted here as  Cp(tca) and Cs(tca), respectively, 

which have matrix dimensions of 66.  These transformed quantities can then be used to define the 

relative ECI state at close approach, x(tca) = xs(tca) – xp(tca), and the associated combined covariance 

C(tca) = Cs(tca) + Cp(tca).  The CARA software system employs TCA ECI states and covariances to 

estimate collision probabilities. 

Marginalized Position and Velocity Covariances 

The 66 ECI covariance matrices discussed can be decomposed into three 33 sub-matrices as 

follows 
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where A denotes the marginalized position-position covariance, E the marginalized velocity-ve-

locity covariance, and B contains the position-velocity cross covariance terms. This report denotes 

covariance matrices and sub-matrices using all upper case letter symbols. 

Correlation Matrices 

Under most circumstances state covariances can be transformed into correlation matrices, de-

noted here using lower case symbols.  These have unit diagonals, and can be calculated as follows: 

the correlation matrix, c, associated with covariance matrix, C, is given by11 

 DCDc    (2) 

where D denotes a diagonal matrix with elements Di,j = i,j (Ci,i)-1/2, and i,j denotes the Kronecker 

delta function.  This conversion yields a proper, unit-diagonal correlation matrix only if all of the 

diagonal elements, Ci,i, are positive, which may not be true for an approximated covariance.  In 

conjunction analysis, correlation matrices have the advantages of being dimensionless, and also 

usually much better conditioned than the original covariance.  For instance, a 66 ECI state covar-

iance, as given in equation (1), has elements with dimensions of m2 in the A submatrix, m2 s-2 in 

the E submatrix, and m2 s-1 in the B submatrix.  The six eigenvalues of such a mixed-dimension 

covariance are difficult to interpret physically, and can also span a much larger numerical range 

than those for the associated correlation matrix.  Matrix condition numbers (calculated using the 

cond function of the Matlab software system) for the ECI state covariances Cp(tca) and Cs(tca) were 

found to have typical values of order ~31013 in the archive analysis, but condition numbers for the 

associated correlations matrices cp(tca) and cs(tca) were ~3107, six orders of magnitude smaller.  

The marginalized position covariances Ap(tca) and As(tca), had significantly better typical condition 

numbers of ~3103, and their correlation matrices ap(tca) and as(tca) had even better condition num-

bers ~103. 
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Equinoctial Element States and Covariances 

The ECI states and covariances for the primary and secondary objects can also be converted to 

equinoctial element mean states and covariances9,10 denoted here using the primed symbols xk(tca) 

and Ck(tca), respectively, where k represents either p or s. For this study, the Jacobian matrices 

required for ECIequinoctial covariance transformations were calculated numerically using a fi-

nite differencing algorithm.  The equinoctial state covariances were found to be somewhat better 

conditioned than their associated ECI state covariances, with condition numbers typically factors 

of about 10 to 20 smaller.  Equinoctial state correlation matrices were found to be the best condi-

tioned among all of the 66 matrices analyzed here, with typical condition numbers ~3102.  

NPD Number and Status Indicators 

Properly formulated and constructed covariance and correlation matrices cannot be NPD.2,6,11  

Trying to use NPD matrices without any remediation to calculate Pc values could prevent the cal-

culation or potentially lead to inaccurate results.  To prevent this, such NPD matrices must first be 

detected, and this section defines two indicators designed for this task.  The first indicator of the 

NPD status of an NN covariance matrix, C, is given by the NPD number, n(C), an integer quantity 

defined as the summed number of nonpositive eigenvalues.  (All eigenvalues in this analysis were 

calculated using Matlab’s eig function.)  PD covariances have n(C) = 0, and NPD covariances have 

0 < n(C)  N.  The second indicator is the NPD status, b(C) = min[1, n(C)], a binary quantity 

defined so that PD matrices have b(C) = 0, and NPD matrices have b(C) = 1. 

The NPD number indicator for a correlation matrix, c, can be defined similarly, except in the 

rare cases in which the original NN covariance matrix, C, has one or more diagonal elements less 

than or equal to zero.  As explained above, this prevents the calculation of a proper, unit-diagonal 

correlation matrix.  In these cases, the NPD number indicator is defined as n(c) = N+L, where L is 

the number of nonpositive diagonal elements of C.  Defined this way, PD correlation matrices have 

n(c) = 0, NPD correlations have 0 < n(c)  N, and, in cases where proper correlations cannot be 

calculated, N < n(c)  2N.  The binary NPD status indicator for correlation matrices remains defined 

as b(c) = min[1, n(c)]. 

NPD Fractions 

The NPD analysis for a large, archived set of conjunctions can be conveniently summarized in 

the form of NPD fractions, which indicate the fraction of conjunctions involving an NPD matrix.  

For instance, for a set of M conjunctions, the fraction that have NPD primary object ECI state 66 

covariances can be expressed as Fp = {m[b(Cm,p)]} / M, where m represents a summation over the 

set of M conjunctions, and Cm,p is the primary’s ECI state covariance at TCA for the mth archived 

conjunction.  Likewise the NPD fraction for ECI relative state correlations is f = {m[b(cm)] } / M.  

The NPD fractions {Fp, fp, Fs, fs, F, f, Fp, fp, Fs, fs} can all be defined similarly (again with upper-

case symbols corresponding to covariances, lower-case to correlations, unprimed quantities to ECI 

states, primed quantities to equinoctial states, {p,s} subscripts to primary and secondary object 

states, and no subscripts to relative states). 

NPD Analysis of Two Years of Archived Conjunction Data 

This study reports the analysis of 839,383 conjunctions that occurred during a 2-year period 

between 2015-04-01 and 2017-04-06.  Of these, 8,874 were eliminated due to primary or secondary 

ECI state covariance matrices that contained all zeros, or that defined implausibly large 1-sigma 

position uncertainties greatly exceeding one earth radius.  NPD number and status indicators, as 

defined above, were calculated for all of the remaining M = 830,509 conjunctions.  Specifically, 

these indicators were calculated for the 66 ECI and equinoctial state covariance and correlation 
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matrices, as well as the 33 ECI position covariance and correlation matrices, and then used to 

calculate NPD fractions. 

 

Figure 1. NPD fractions plotted as a function of time during the 2-year study period. 

Figure 1 shows the NPD fractions for 66 state matrices {Fp, fp, Fs, fs, Fp, fp, Fs, fs} plotted as 

a function of time during the 2-year study period using 1-week time bins.  In Figure 1, the dashed 

blue lines correspond to covariance matrices and the dotted red lines to correlation matrices; the 

left-side panels to ECI states and the right panels to equinoctial states. Specifically, the top left 

panel of Figure 1 shows NPD fractions for the primary ECI state matrices (Fp dashed blue, fp dotted 

red); the bottom left for secondary ECI matrices (Fs dashed blue, fs dotted red); top right for primary 

equinoctial state matrices (Fp dashed blue, fp dotted red); and bottom right for secondary equinoc-

tial state matrices (Fs dashed blue, fs dotted red).  The corresponding NPD fractions for the 33 

position matrices are all significantly smaller, and are not plotted here; in fact, the fractions {Fp, fp, 

Fp, fp} were all found to be zero, except for one primary which had a small number of NPD oc-

currences (as discussed further below). 

Notably, Figure 1 indicates that NPD fractions observed during the first 13 months of the 2-year 

study period were significantly larger than during the last 11 months, with a dramatic and sudden 

decrease occurring just before 2016-05-01.  This improvement occurred because, near this time, 

the number of significant figures used to express RIC covariance elements within the CDMs ex-

panded from 4 up to 16  an increased precision that markedly reduced the number of NPD 66 

matrices.  This demonstrates explicitly that NPD matrices can arise when numerically storing or 

transmitting covariances using data structures with a limited precision due to a limited number of 

significant figures or bit length. 

Because the earlier, lower precision data does not provide a good representation for future con-

junctions, the remainder of the archive analysis concentrates on the later 11-month period. 
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NPD Analysis of High-Precision Archived Conjunction Data 

A total of 433,768 conjunctions occurred during the 11-month period between 2016-05-01 and 

2017-04-06.  Of these, 5,179 were eliminated, as before, due to all-zero covariances or implausibly 

large position uncertainties.  The remaining M = 428,589 conjunctions comprised 81 unique pri-

mary satellites, and occurred at a rate of about 8,000 per week.  Again, NPD number and status 

indicators were calculated for all of these conjunctions.  Table 1 along with Figures 2 and 3 sum-

marize the results in the form of the NPD fractions {Fp, fp, Fs, fs, Fp, fp, Fs, fs}, as described earlier. 

Table 1. NPD fractions for conjunction covariance and correlation matrices (%). 

Number 

Of 

Primaries 

Num. 

of 

Events 

M 

NPD Fractions (%)  for 6x6 State Covariances (F) and Correlations (f) 

Cartesian ECI States Equinoctial States 

Fp fp Fs fs F f F'p f'p F's f's 

All 81 428589 6.81 6.76 1.62 0.20 0.12 0.06 6.76 6.76 0.20 0.20 

72 with ep  0.01 308971 8.4e-2 4.1e-2 1.36 0.14 8.4e-2 2.0e-2 4.1e-2 4.1e-2 0.14 0.14 

9 with ep  0.68 119618 24.19 24.12 2.28 0.36 0.20 0.17 24.12 24.12 0.36 0.36 

  NPD Fractions (%)  for 3x3 Position Covariances (F) and Correlations (f) 

All 81 428589 6.8e-3 6.8e-3 1.2e-3 1.2e-3 1.9e-3 1.9e-3 NA* NA NA NA 

72 with ep  10-2 308971 0 0 6.5e-4 6.5e-4 6.5e-4 6.5e-4 NA NA NA NA 

9 with ep  0.68 119618 2.4e-2 2.4e-2 2.5e-3 2.5e-3 5.0e-3 5.0e-3 NA NA NA NA 

*NA = Not applicable; 33 marginalized matrices are only analyzed for Cartesian states. 

The top part of Table 1 lists the results for analyses of 66 state matrices, and the bottom part 

summarizes the results for the marginalized 33 ECI position matrices.  Among the 81 primary 

satellites, 72 were found to have low eccentricity orbits, with ep  10-2; the remaining 9 had very 

eccentric orbits, with 0.68  ep  0.84.  A total of 29,201 of the 428,589 ECI primary state 66 

covariances were found to be NPD, representing a fraction of Fp = 6.81%, as listed in the top data 

row of Table 1.  The fraction of NPD primary ECI correlation matrices was slightly smaller at fp = 

6.76%, listed adjacently.  The bottom part of Table 1 lists the NPD fractions for the marginalized 

33 ECI position covariances and correlations {Am,p, am,p, Am,s, am,p, Am, am}, which are signifi-

cantly smaller than the NPD fractions for the 66 matrices (as discussed further below). 

Figures 2 and 3 show NPD fractions for the 66 state matrices plotted as a function of time 

during the 11-month study period.  Figure 2 shows the fractions for both primary and secondary 

objects for all of the conjunctions combined, in the same format used in Figure 1 above. Figure 3 

separates the fractions for the primaries into low- and high-eccentricity groups.  Specifically, the 

top panels of Figure 3 show NPD fractions for the 72 primaries with ep  10-2, and the bottom panels 

for the 9 other primaries with 0.68  ep  0.84. Again, the corresponding NPD fractions for the 33 

position matrices are all zero, except for one primary (as discussed further in the next section), and 

are not plotted here. 
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Figure 2. NPD fractions plotted as a function of time during the 11-month study period. 

 

 

Figure 3. NPD fractions for primaries with low (top) and high eccentricity (bottom). 
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Empirical Observations from the NPD Analysis 

The following observations can be made from the 11-month archive analysis summarized in 

Table 1 as well as Figures 2 and 3: 

1. The 33 ECI position covariance and correlation matrices {Am,p, am,p, Am,s, am,p, Am, am} were 

found to have significantly fewer NPD occurrences than their 66 counterparts.  In fact, only 

one primary  Themis E (SCN 30798), in a highly eccentric orbit with ep = 0.83   had any 

NPD 33 matrices: specifically, in 29 out of its 8,905 conjunctions.  All other primaries had 

33 fractions Fp = fp = 0 exactly.  When including all primaries, the NPD fractions {Fp, fp} for 

the 33 matrices were both less than 0.01%, but for the 66 matrices both approached 7%.  In 

other words, the NPD frequency for 33 matrices could be considered to be negligibly small 

compared to that of 66 matrices.  For this reason, the remainder of this section restricts dis-

cussion to the 66 matrices, unless otherwise stated. 

2. NPD fractions for high-eccentricity objects were found to significantly exceed those for low-

eccentricity objects (see Figure 3).   For example, during the 11-month study period, 23 of the 

72 primaries with ep < 10-2 were found to have zero NPD fractions for their ECI covariances, 

and only three had Fp > 2%. However, the 9 high-eccentricity primaries all had much larger Fp 

values.  Analysis shows that inaccurate interpolation of covariance ephemerides generate a 

significant portion of these NPD covariances.  Specifically, the ephemerides can have relatively 

large angular spacing near orbital perigee, which degrades the accuracy of the covariance in-

terpolation.  

3. Preliminary analysis indicates that primary satellites engaged in maneuvers may also have el-

evated NPD frequencies, possibly because such objects often require special, customized orbit 

determination processing.  Because many CARA primary satellites regularly maneuver, this 

may explain some of the elevated NPD fractions observed for low eccentricity primaries. 

4. The overall NPD fractions for primary objects typically exceeded those for secondaries by a 

factor of ~2 or more.  This is likely related to the fact that CARA primaries, on average, have 

higher eccentricities and maneuver more often than the secondaries. 

5. Converting ECI state covariances into correlation matrices maintained or reduced the NPD 

fractions for all objects, i.e., fk  Fk for all k  {p,s}.  The ECI covariances {Cm,p, Cm,s, Am,p, 

Am,s} were found to have all positive diagonal elements without exception for the entire data 

set, allowing calculation of their associated correlation matrices.  These ECI covariancecor-

relation conversions did not ever produce an NPD correlation from a PD covariance, meaning 

that b(cm,k)  b(Cm,k) and b(am,k)  b(Am,k) for all m  {1…M} and k  {p,s}. 

6. Converting ECI state covariances into equinoctial covariances always maintained or reduced 

the NPD fractions, i.e., Fk  Fk for all k  {p,s}. However, 116 (0.03%) and 79 (0.02%) of the 

equinoctial covariances Cm,p and Cm,s were found to have at least one nonpositive diagonal 

element, respectively, possibly caused by inaccuracies in the ECIequinoctial transfor-

mations, which employed Jacobians approximated using a finite differencing scheme. 

7. The NPD status indicators for the entire set of ECI state correlation matrices and equinoctial 

covariance matrices were found to be identical, and equal to or less than those for the ECI 

covariances, i.e., b(cm,k) = b(Cm,k) = b(cm,k)  b(Cm,k) for all m  {1…M} and k  {p,s}.  This 

indicates that the conversions Cm,p  cm,p and Cm,p  Cm,p each had the net effect of maintain-

ing or reducing NPD occurrences.  Furthermore, these conversions never created NPD matrices 

when there was none originally. These NPD status improvements may be related to the better 

condition numbers of the cm,p and Cm,p matrices compared to the Cm,p matrices, as discussed 

previously. 
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8. The process of summing the primary and secondary ECI covariances, i.e., Cm = Cm,s + Cm,p and 

Am = Am,s + Am,p, did not ever create an NPD combined matrix when there was none originally.  

Also, the NPD status indicators for the relative state matrices were always less than or equal to 

the maximum NPD status for the primary or secondary matrices, i.e., b(Cm)  max[b(Cm,p), 

b(Cm,s)], b(cm)  max[b(cm,p), b(cm,s)], b(Am)  max[b(Am,p), b(Am,s)], b(am)  max[b(am,p), 

b(am,s)] for all m  {1…M}.  In fact, the covariance summing process often resulted in a PD 

combined covariance for conjunctions in which the primary or secondary covariances were 

NPD, thereby reducing the overall NPD fractions so that F < min[Fp, Fs] and f < min[fp, fs].  

9. Although not shown here, NPD frequencies for covariances expressed in the Cartesian radial, 

in-track and cross-track (RIC) reference frame9 (also sometimes called the UVW frame) show 

qualitatively the same patterns as those expressed in the Cartesian ECI reference frame.  In 

fact, the covariances currently delivered to CARA are expressed in this frame, and were origi-

nally produced by interpolating between ephemeris times that bracket the conjunction’s TCA 

(c.f., reference 12). 

METHODS OF NPD COVARIANCE REMEDIATION 

The CARA system does sometimes encounter conjunctions in which NPD covariances prevent 

the computation of Pc estimates.  For instance, the often-used “2D Pc” approximation3,4 requires 

PD status for a marginalized, 22 relative position covariance at TCA3.  Notably, among all of the 

>800,000 conjunctions analyzed here, only one such NPD 22 covariance was found, preventing 

2D Pc estimation; this involved a high eccentricity primary with ep = 0.68.  CARA’s “3D Pc” ap-

proximation13 experiences more frequent NPD issues, because it employs an ephemeris of states 

and covariances spanning the conjunction, and requires PD relative position covariances, A(t), at 

all ephemeris times.  Similarly, the relative position Mahalanobis distance at TCA, MD(tca), which 

can be used to screen efficiently for negligibly small Pc values,13 requires PD relative position co-

variances, A(tca).  Finally, CARA’s Monte Carlo Pc estimation algorithm requires equinoctial state 

covariances with eigenvalues  0. 

When the CARA system encounters such problematic cases, the current approach is to remedi-

ate the NPD matrix to a sufficient level that allows the calculation at hand to be performed.  Three 

remediation methods have been investigated for this task: Spectrum Shifting, Higham Remediation, 

and Eigenvalue Clipping.   

Spectrum Shifting Method 

Spectrum Shifting entails adding an offset to the entire set or spectrum of matrix eigenvalues, 

and then constructing a remediated matrix using the original eigenvectors.  The first step of this 

NPD remediation process entails describing an NN matrix, C, (which is assumed here to be real 

and symmetric) using an eigen-decomposition 

 
T

VΛVC    (3) 

where V is a unitary matrix comprising the N orthogonal eigenvectors, and  a diagonal matrix of 

the N associated eigenvalues, i,j = i,ji.  In this analysis, eigenvalues are sorted into increasing 

order so that i  i+1, and associated eigenvectors are denoted Vi.  The matrix C requires no reme-

diation if all of its eigenvalues are positive.  If not, the second step defines a shifted set of eigen-

values, i, constructed by adding an offset so all become nonnegative: i = i + (|min| + ), where 

min = min[i] and   0.  The third step entails using these shifted eigenvalues to construct a reme-

diated matrix 
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T

rem VΓVC    (4) 

where i,j = i,ji.  For  = 0, this remediated matrix is PSD by construction, because min = 0 iden-

tically.  For  > 0, Crem is PD by construction with minimum eigenvalue min = .  CARA’s imple-

mentation of the spectrum shifting remediation algorithm employs a default value for  that is small 

compared to typical eigenvalues but significantly larger than the computing precision limit. How-

ever,  can be made even larger if needed (for instance, to ensure that Matlab’s Cholesky decom-

position function chol evaluates Crem as PD, in addition to Matlab’s eig function). 

The principal advantage of the spectrum shifting method is simplicity.  One disadvantage is that 

the method shifts the entire spectrum of eigenvalues upward, even though usually only one of these 

estimated quantities is originally negative.  Another is that the method assumes that the original 

eigenvectors can be used without modification to construct the remediated matrix in equation (4).  

A final disadvantage is that there is no objective, physics-based means of establishing what the size 

of  should be in cases that require a fully PD remediated covariance. 

Higham’s Nearest Correlation Matrix Method 

Higham Remediation employs methods developed for the financial industry to remediate NPD 

correlation matrices6 and covariance matrices11,14 by finding the closest PSD matrix in terms of 

Frobenius norm.  The CARA software implementation employs the correlation matrix remediation 

algorithm6 as the primary method.  So when remediating an approximated NN covariance matrix, 

C, the first step of the process entails conversion into the associated correlation matrix, c, using 

equation (2).  As mentioned previously, this requires that the diagonal elements of C all must be 

positive to yield a proper, unit-diagonal c matrix.  In the rare cases where any Ci,i  0, Higham’s 

alternate but closely related method14 is used as the backup algorithm directly for covariance reme-

diation.  Given a correlation matrix, c, Higham’s algorithm6 employs nonlinear optimization to 

estimate the unique PSD matrix with the closest Frobenius matrix norm, ||c||2 = i,j[(ci,j)2].  The 

resulting remediated correlation matrix, crem, is proper in that it has unit-diagonal and nonnegative 

eigenvalues.  The covariance associated with this remediated correlation can be derived by invert-

ing equation (2), Crem = D-1 crem D-1.  The conjunction archive analysis indicates that this method 

yields Crem matrices that also usually have nonnegative eigenvalues.  However, when that is not the 

case, then again Higham’s alternate method14 can be used as a backup algorithm. 

The principal advantages of the Higham remediation methods are that they have been derived 

with mathematical rigor, and multiple versions of the implemented algorithms are posted on-line.  

The disadvantages are that these algorithms are relatively computationally intensive, and designed 

only to estimate PSD matrices  again leaving unaddressed situations requiring a fully PD reme-

diated matrix.  Furthermore, finding the closest matrix in terms of the closest Frobenius norm, while 

mathematically well defined, is not a physics-based criterion. 

Eigenvalue Clipping Method 

Eigenvalue Clipping sets a minimum limit for the eigenvalues of a covariance or correlation 

matrix, and simply forces smaller eigenvalues to this limit.  The CARA analysis team developed 

this method in part to address situations requiring fully PD covariances, such as 3D Pc or Mahalano-

bis distance estimation.  The first step of this remediation process entails eigen-decomposition, as 

in equation (3).  Next, the matrix is deemed to need remediation if any of the eigenvalues are found 

to be smaller than a nonnegative eigenvalue clipping limit, clip, which can be constrained to have 

a sensible size using physics-based considerations as discussed below.  Then, a new set of clipped 
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eigenvalues can be defined as i = max[i, clip], and the remediated matrix calculated using equa-

tion (4).  To produce PSD remediated matrices clip = 0; for fully PD remediation clip > 0.  When 

remediating correlation matrices, a final step employing a transformation in the form of equation 

(2) can be used to ensure that the final result has proper unit diagonal form. 

The principal advantages of eigenvalue clipping are that it is the simplest to implement among 

the three methods, and the physics of hard-body collisions can be used as a basis for remediating 

position covariances.  A disadvantage (shared with spectrum shifting) is that this method assumes 

that the original eigenvectors can be reused without modification in equation (4).   

Eigenvalue Clipping for Marginalized Position Covariances 

Physics-based considerations can provide sensible constraints on the eigenvalue clipping limit, 

clip, for marginalized position covariances.  This is because the eigenvalues for such covariances 

can be interpreted2 as the squares of the 1-sigma widths of the position uncertainty PDFs, specifi-

cally i = i
2.  For instance, if a primary object has a 33 position covariance, Ap, with all positive 

eigenvalues, then the associated PDF can be visualized as a 1-sigma uncertainty ellipsoid with 

principal axes aligned with the eigenvectors (Vp,1, Vp,2, Vp,3), and half-width dimensions of (p,1, 

p,2, p,3).  However, if Ap is PSD with p,1 = 0 and 0 < p,2  p,3, then the PDF becomes confined 

to a plane, and the 1-sigma surface an elliptical area on that plane.  This PSD covariance unrealis-

tically indicates that there is no uncertainty at all in the object’s position vector along the direction 

of the first eigenvector.  NPD covariances are even more unrealistic. They lack realism because 

satellite positions are estimated quantities, based on measurements limited in both number and ac-

curacy, so actual sigma values must always be real and finite. These unrealistic situations occur 

because Ap and its eigenvalues suffer from inaccuracies, which can arise a variety of ways as pre-

viously discussed. 

Eigenvalue clipping constrains the remediated position covariance to have a 1-sigma uncertainty 

ellipsoid with i  (clip)1/2.  One conceivable method of establishing this clipping limit would be 

simply to impose a limit on how accurate future satellite positions could ever be predicted from the 

orbital determination estimation process.  For instance, detailed analysis and/or long-term experi-

ence might allow one to conclude that, for a given set of tracking sensors and measurements, 1-

sigma uncertainties on future satellite positions could never be reduced below a lower limit, lim.  

In this case one could sensibly use a clipping limit of clip = (lim)2.  Unfortunately, such lim values 

will likely vary significantly over time and from satellite to satellite; in addition, they may require 

a prohibitively detailed analysis of the original satellite tracking data to estimate confidently. 

Fortunately, considerations based on the physics of collisions can also be used as the basis for 

covariance remediation in these situations.  The Pc estimation process idealizes collisions as occur-

ring when the hard-body radii of the primary and secondary objects begin to overlap as they ap-

proach one another.2,4,5  If any of the primary’s estimated eigenvalues are significantly less than the 

square of its hard-body radius, i.e., 0  p,i << hp
2, then random variations in the position vector 

along the eigenvector direction Vp,i are very small compared to the object size.  As explained in 

more detail below, this means that the probability of collision becomes insensitive to the exact 

value of p,i, as long as it is significantly smaller than hp
2.  In other words, all eigenvalues satisfying 

0  p,i << hp
2 should produce approximately the same Pc value.  This concept also applies to sec-

ondary objects.   

To envision this concept, imagine a conjunction with one small primary position eigenvalue, 

i.e., 0  p,1 << hp
2, but no other similarly small eigenvalues p,i or s,i.  Next, consider the family 

of related conjunctions in which p,1 varies over the domain 0  p,1  hp
2, but all other conjunction 
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parameters remain fixed.  Collision probabilities for this family vary with p,1.  Let Pc,0 denote the 

probability for the family member with p,1 = 0.  In this case, although there are no random position 

variations along Vp,1, the object itself extends along this direction by hp.  For other members of 

this family with p,1 << hp
2, this situation remains essentially unchanged:  the object itself extends 

along Vp,1 by hp with very small random variations.  So these cases should also have collision 

probabilities approximately equal to Pc,0.  Figure 4 demonstrates this explicitly by plotting 2D Pc 

values4 as a function of the ratio p,1/hp, for the following conjunction TCA parameters (all speci-

fied using length units in m, and time units in s): hp = 10, rp = [0 0 0]T, vp = [104 0 0] T, Vp = [ẑ ŷ 

x̂], p,2 = 20, p,3 = 100, hs = 1, rs = [1 0 0]T, vs = [0 104 0]T, Vs = [ŷ x̂ ẑ], s,1 = 20, s,2 = 50, and 

s,3 = 200, where x̂, ŷ, and ẑ denote standard unit column vectors.  For this notional conjunction, 

Pc,0 = 0.0179, and Pc values depart from this by less than 0.2% over the range 0  p,1/hp < 0.1 (see 

Figure 4).  Analysis indicates that this same pattern holds for many different conjunctions with 

widely varying encounter geometries, both with fabricated parameters (as in this example), or those 

taken directly from CARA’s archive. 

This concept can be exploited for NPD covariance remediation by extending it to the relatively 

small negative eigenvalues that occasionally occur in conjunction analysis.  Again, when the CARA 

system encounters NPD covariances, most commonly only one of the eigenvalues is negative, and 

only very slightly so relative to the largest positive eigenvalue.  Clipping these slightly negative 

eigenvalues is appropriate if one assumes they represent estimation inaccuracies (such as interpo-

lation errors), and that a better estimation procedure would have yielded small positive values.  

CARA’s remediation algorithm for 33 position covariances employs a clipping limit that corre-

sponds to a small fraction of the object’s hard-body radius, i.e., clip = (hfclip)2, with the clipping 

fraction set to fclip = 10-4 by default, although values over the range 10-6  fclip  10-2 produce essen-

tially equivalent Pc estimates in all cases examined.  Relative position covariances, A = Ap + As, 

can be remediated using the same approach but using the combined hard-body radius, h = hp + hs.  

Notably, this eigenvalue clipping approach produces PD remediated matrices, enabling computa-

tion of Mahalanobis distances and 3D Pc values13 which both require invertible covariances.  It also 

enables 2D Pc computation in the extremely rare conjunctions where the 22 marginalized relative 

position covariance used within that calculation3,4 is found to be NPD.  

 

Figure 4. Pc plotted as a function of the smallest primary covariance sigma value. 
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Eigenvalue Clipping for Monte Carlo Sampling  

CARA’s Monte Carlo Pc estimation algorithm requires repetitively sampling the equinoctial 

state probability distribution functions of the primary and secondary objects.  Given an object’s 

mean equinoctial state, x, and covariance, C, a sampled state, y, can be written as 

  



N

i

iii

1

 Vy   (5) 

where Vi denotes the eigenvectors, i the eigenvalues, and i normally-distributed random variates 

(generated using Matlab’s randn function).  For NPD covariances, this equation will produce sam-

pled states with imaginary values.  However, real-valued sampled states can be approximated using 

an eigenvalue clipping limit of zero, clip = 0, as follows 

  



N

i

iii

1

]0,max[ Vy   (6) 

The very slight alteration between equations (5) and (6) indicates how simple the software imple-

mentation of eigenvalue clipping can be, especially compared to Higham remediation. 

Again, most commonly only one of the NPD covariance eigenvalues is negative, and only 

slightly so.  In these cases, using equation (6) restricts the distribution of sampled states to a five 

dimensional locus within the six dimensional space of equinoctial states.  Similar concepts also 

apply to sampling Monte Carlo states using the equinoctial state correlation matrix c rather than 

the covariance C.  This approach may have advantages because of the dimensionless nature and 

better conditioning of the c matrices, and is currently being investigated by the CARA team. 

EFFECTS OF COVARIANCE REMEDIATION ON COLLISION PROBABILITIES 

As mentioned previously, from a purely computational point of view, Pc estimation processes 

do not always require fully PD state covariance matrices for both of the objects involved in a con-

junction.  This is especially true for the often-used 2D Pc approximation3,4 which only requires PD 

status for a marginalized 22 relative position covariance at TCA, regardless of the status of the 

original state covariances.  Of the 830,509 archived events analyzed here, only one conjunction 

produced such an NPD 22 marginalized covariance that prevented the 2D Pc computation.  So the 

vast majority of events that have NPD 66 covariances for their TCA primary, secondary and/or 

relative states can still be processed to provide a 2D Pc estimate without any covariance remediation 

at all.  Even the more demanding 3D Pc computation13 can be performed in many of these situations 

without invoking any remediation for similar reasons. 

These situations raise concern because of the possibility that the calculated 2D and 3D Pc esti-

mates may be inaccurate because the original covariances were compromised.  One way to inves-

tigate this possibility is to remediate any NPD 66 covariances before they are processed for Pc 

estimation, and then compare the resulting “Pc,rem” values to the “Pc,unrem” values calculated without 

any remediation performed. This study uses the 2D Pc estimation method to perform such a com-

parison for the 11-month archive data set described above, comprising 428,589 conjunctions with 

high-precision covariances.  When the subset of conjunctions with NPD 66 ECI state covariances 

were remediated using eigenvalue clipping with clip = 0, differences between Pc,rem and Pc,unrem 

were all found to be less than 0.2% when restricted to the 2,866 conjunctions with Pc,max = 

max[Pc,rem, Pc,unrem] values of 10-7 or more.  Spectrum shifting remediation produced comparable or 
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smaller differences.  Higham remediation also produced comparable differences, except in one 

conjunction (out of 2,866) in which Pc,rem and Pc,unrem differed by about 1.8%.  This demonstrates 

that remediating the full 66 ECI covariances before the 2D Pc calculation does not substantially 

change Pc estimates, regardless of which of the three remediation methods are used.  Similar results 

are also found using the 3D Pc calculation. 

Other similar tests could also be performed.  For instance, instead of directly remediating any 

NPD 66 ECI state covariances before the Pc calculation, as done above, the covariances could 

first be converted to equinoctial covariances, remediated in that form, and then converted back into 

ECI state covariances to be used for the “Pc,rem” estimates.  Similarly, one could first remediate the 

RIC covariances, followed by RICECI conversions, and then the Pc calculation.  Converting to 

correlation matrices as an intermediate step could also be investigated.  However, as mentioned 

previously, in most cases such remediation is not required from a purely computational point of 

view.  CARA’s current approach entails performing remediation only when required by a specific 

calculation.  So to calculate a 2D Pc estimate, remediation would be performed only for the 22 

marginalized covariance required for that specific calculation (i.e., only once for all of the >800,000 

conjunctions analyzed here). 

CONCLUSIONS 

This analysis indicates that the frequency of NPD 66 state covariance matrices in CARA’s 

archive decreased dramatically near 2016-05-01, when the number of CDM significant figures was 

increased to improve numerical precision.  After this time, the fraction of conjunctions involving 

NPD ECI state covariances for the primary objects decreased to less than 0.1% for low-eccentricity 

primaries.  However, almost 25% of the 66 ECI covariances for high-eccentricity primaries were 

found to be NPD, likely due at least in part to covariance interpolation inaccuracies.  The frequency 

of NPD 33 position matrices was significantly smaller than that of 66 state matrices. 

Converting covariance state matrices to correlation matrices maintains or decreases the fre-

quency of NPD occurrences.  Converting Cartesian frame state covariances into equinoctial state 

covariances similarly decreases NPD occurrences.   

Collision probability calculations do not always require fully PD state covariance matrices for 

both of the objects involved in a conjunction, because these computations often employ marginal-

ized covariances of reduced dimension.  Of the >800,000 archived conjunctions analyzed here, 

only one produced an NPD marginalized 22 covariance required for the 2D Pc computation.  NPD 

covariances occasionally need to be remediated when calculating Mahalanobis distances, using the 

3D Pc approximation, or when performing Monte Carlo simulations to estimate Pc values.  Three 

methods have been investigated for this task:  spectrum shifting, Higham remediation, and eigen-

value clipping.  When applied to the archived conjunctions involving NPD ECI state covariances, 

these three methods produced 2D Pc values that differed only slightly from one another. The eigen-

value clipping method has the advantages of being the simplest among the three, and the only one 

that provides a means of establishing reasonable, physics-based levels of remediation for NPD po-

sition covariances. 

ACKNOWLEDGMENTS 

The authors would like to thank Joseph Frisbee and Steve Casali for several helpful discussions 

and analyses, and acknowledge Ron Morgan for the original concept of the spectrum shifting NPD 

matrix remediation method. 

 



 15 

REFERENCES 

1 B.D. Tapley, B.E. Schutz, and G.H. Born, Statistical Orbit Determination, Elsevier Academic 

Press, Burlington, MA, 2004. 
2 P. García, D. Escobar, A. Agueda, and F. Martínez, “Covariance Determination, Propagation and 

Interpolation Techniques for Space Surveillance,” European Space Surveillance Conference, Ma-

drid, Spain, June 7–9, 2011. 
3 K. Chan, Spacecraft Collision Probability, El Segundo, CA, The AeroSpace Corporation, 2008. 
4 J.L. Foster and H.S. Estes, “A Parametric Analysis of Orbital Debris Collision Probability and 

Maneuver Rate for Space Vehicles,” NASA/JSC-25898, Aug. 1992. 
5 S. Alfano, “Satellite Conjunction Monte Carlo Analysis,” AAS SpaceFlight Mechanics Meeting, 

Pittsburgh, PA, Paper 09-233, Feb. 2009. 
6 N.J. Higham, “Computing the Nearest Correlation Matrix—A Problem from Finance,” IMA Jour-

nal of Numerical Analysis 22, 329-343, 2002. 
7 L.K. Newman and M.D. Hejduk, “NASA Conjunction Assessment Organizational Approach and 

the Associated Determination of Screening Volume Sizes,” International CA Risk Assessment 

Workshop, 19-20 May 2015. 
8 B.L. Livergood, “Implementation of 2014 Screening Volume Analysis,” Flight Dynamics Task 

Order 21 Technical Memorandum, FDSS-21-0012, June 2014. 
9 D.A. Vallado, Fundamentals of Astrodynamics and Applications, 2rd ed., Microcosm Press, El 

Segundo CA, 2001. 
10 D.A. Danielson, B. Neta, L.W. Early, Semianalytic Satellite Theory, Technical Report NPS-MA-

95-002, Monterey, CA, Naval Postgraduate School, 1995. 
11 C. Lucas, Computing Nearest Covariance and Correlation Matrices, University of Manchester, 

School of Mathematics Thesis, 2001. 
12 S. Alfano, “Orbital Covariance Interpolation,” AAS SpaceFlight Mechanics Meeting, Maui, HI, 

Paper 04-223, Feb. 2004. 
13 D.T. Hall, M.D. Hejduk, and L.C. Johnson, “Time Dependence of Collision Probabilities During 

Satellite Conjunctions,” AAS SpaceFlight Mechanics Meeting, San Antonio, TX, Paper 17-271, 

Feb. 2017. 
14 N.J. Higham, “Computing a Nearest Positive Semidefinite Matrix,” Linear Algebra and Its Appli-

cations, 103, 103-118, 1988. 


