

Aerodynamic Design of Integrated Propulsion- Airframe Configuration of the Hybrid Wing- Body Aircraft

May-Fun Liou[†], Hyoungjin Kim^{*}, BJ Lee^{**} and Meng-Sing Liou[†]

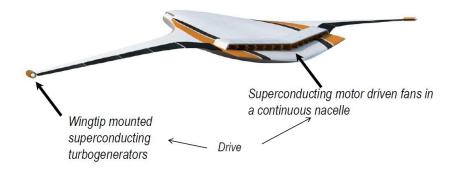
[†] NASA Glenn Research Center
* SAIC & **Vantage Partners, LLC, Cleveland, OH

AIAA Aviation 2017 June 5-9, 2017, Denver, Co.

Outline

- Background & Objectives
- Aerodynamics of Hybrid Wingbody-Propulsion System
- Technical Backgrounds
 - Geometric Parameterization
 - Mesh generation & deformation
- Optimization: Aero Performance & Constraints
- Analysis of Optimal Design
- Viscous Effects on Aerodynamic Performance
- Conclusion

Background – Far Term (beyond 2035)


• HWB (hybrid wingbody) configuration requirements

TECHNOLOGY	TECHNOLOGY GENERATIONS (Technology Readiness Level = 5-6)					
BENEFITS	Near Term 2015-2025	Mid Term 2025-2035	Far Term beyond 2035			
Noise (cum below Stage 4)	22 – 32 dB	32 – 42 dB	42 – 52 dB			
LTO No _x Emissions (below CAEP 6)	70 – 75%	80%	>80%			
Cruise No _x Emissions (rel. to 2005 best in class)	65 – 70%	80%	>80%			
Aircraft Fuel/Energy Consumption (rel. to 2005 best in class)	40 – 50%	50 - 60%	60 – 80%			
		-				
E١	olutionary R	Revolutionary	Transformational			

Distributed Electric Propulsion System

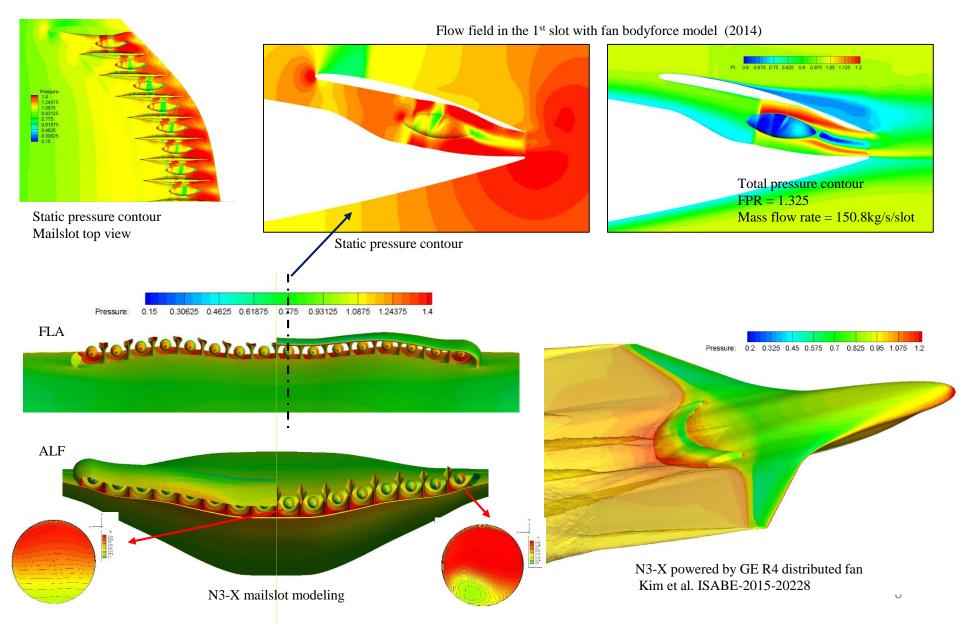
- Turboelectric Distributed Propulsion (TeDP)
 - Mail-slot nacelle near trailing edge
 - Boundary Layer Ingestion into embedded propulsor fans
 - Propulsor fans driven by superconducting electric motors
 - Wingtip mounted superconducting turbo-generators

Propulsor and inlet-nozzle systems

Felder, J., Kim, H. D., Brown, G. V., and Chu, J., "An Examination of the Effects of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems," AIAA–2011–0300

Development of Technologies for Hybrid Wing/body with Distributed Electric Propulsion

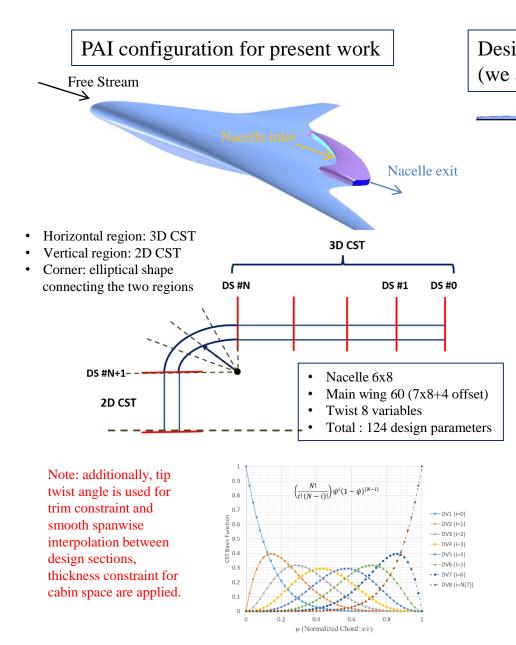
	-2013	2014	2015	2016	2017	
PAI Configurations	N3-X conceptual design [*] N+2B inlet shape optimization	N3-X with mailslot nacelle		N3X-Dep300 clean wing, 300 passenger cabin ^{**}	N3X-Dep300 with nacelle (PAI)	
Inlet	inlet A – BLI wall shaping crosswind analysis	mailslot		mailslot mailslot nacelle cowl surface design		
Propulsor	sizing/conceptual	GE R4 scaled single stage fan, conceptual study of counter rotating fan			electric fan design	
Mesh	unstructured iso – spring analogy			unstructured aniso mesh		
	overset			crosschecked with o	overflow	
Parameterization	NURBS		CST/ pla	nform/inlet/nacelle	NURBS	
CFD Modeling	Roe/AUSM+UP SA/2-eqs. turbulence LUSGS & GMRE	models	N3X-Analysis with body-force model		drag decomposition trim modeling	
Optimization Method	GBOI	۸ based on adjoint approach			adjoint/NSGA-II	

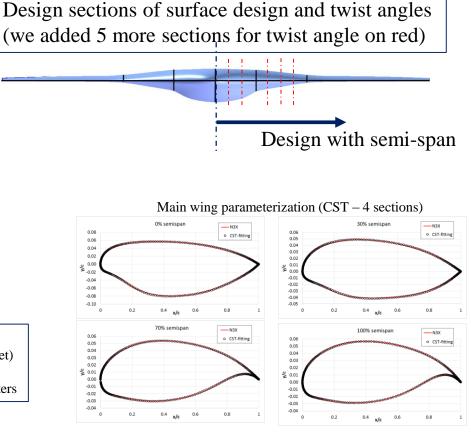

Completed

Current

*Jim Felder et al. AIAA–2011–0300 **Craig L. Nickol AIAA-2012-0337

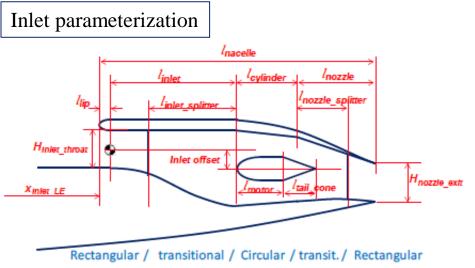
CFD flow-field of N3-X with Fan Propulsor


Objective of the Present Work

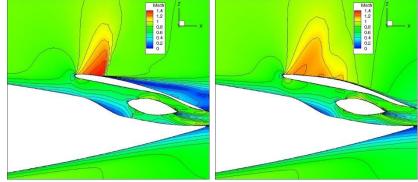


- Further refine parameterization strategy for general complex integrated propulsion-airframe system.
- Aerodynamic design under static stability constraints.
- Analysis and understanding of simulated flow-field of the optimized configuration

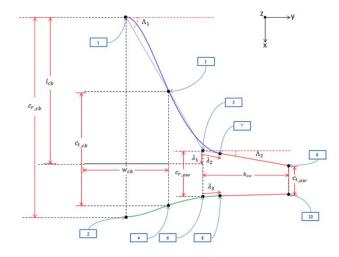
Parameterization of Wing and Nacelle

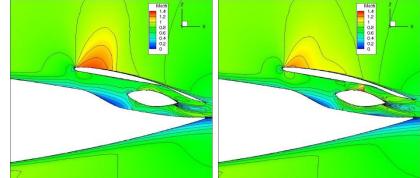


Section surface parameterization (CST)


- 8 parameters for each of upper & lower surfaces
- Minimization of L2 norm
- CST basis function (RHS)
- Kulfan, B., "Universal Parametric Geometry Representation Method," JA vol.45, No.1, 2008

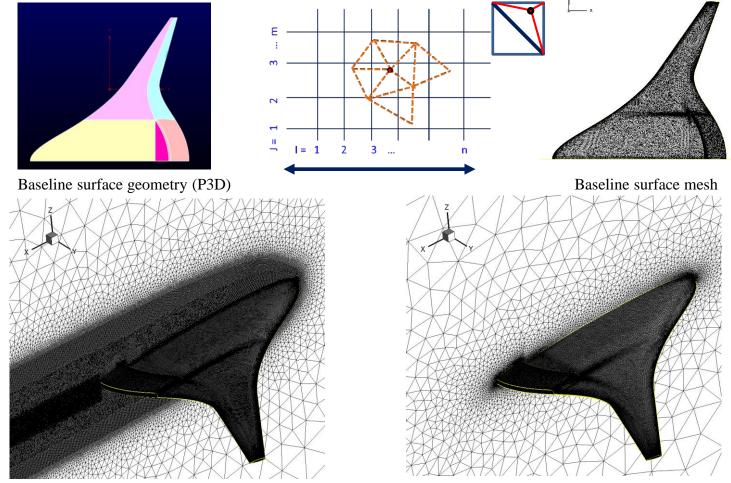
Parameterization of Airframe and Inlet




Example of aerodynamic shape optimization of nacelle

Passage 1

Planform parameterization


Passage 4

N3-X cowl shape design results: Comparison of sectional local Mach contours, Left: initial, Right: design. (Kim et al. AIAA 2015-3805)

Note: Theses inlet/nozzle and planform parameters are not used in the present work, it is used for previous design for the current baseline model and will be refined in the future study.

Mesh Generation & Deformation

- Mapping unstructured surface meshes on structured p3d (output of PAI configuration generator)
- Spring analogy from surface mesh deformation to volume mesh deformation

Mesh for RANS analysis

Mesh for inviscid flow analysis

Longitudinal trim & static stability

Trim : $\sum F_x = 0$; $\sum M_{cg} = 0$ *i.e.* Drag = Thrust & Pitching moment at c.g. is zero.

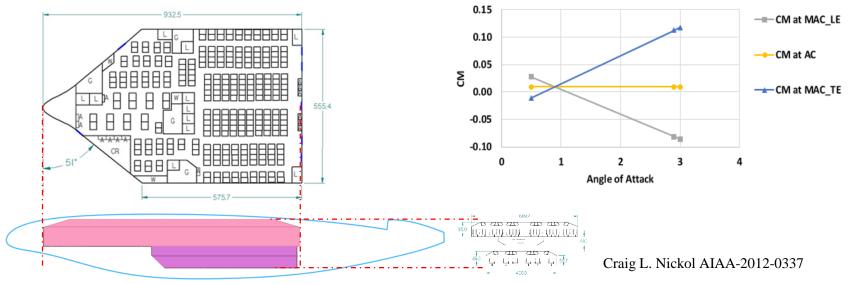
Federal Aviation Regulations (FAR), Section 161 of PAR 23: *The airplane must maintain longitudinal trim under each of the following conditions:* (1) A climb, (2) Level flight at all speeds, (3) A descent, (4) Approach.

Static margin: Pitching moment arm - Distance between Xc.g. and the Xa.c.;

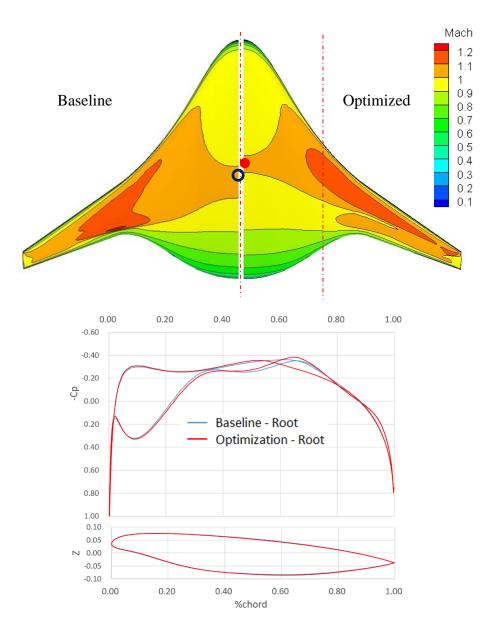
Mathematical expression - $K_n = -\frac{C_{M\alpha}}{C_{L\alpha}}$

Static stability: pitching moment changes caused by the perturbation in AOA revert the aircraft back into trim, i.e. $C_{M_{\alpha}} < 0 \longrightarrow K_n > 0$

Optimization : Aero Performance & Constraints

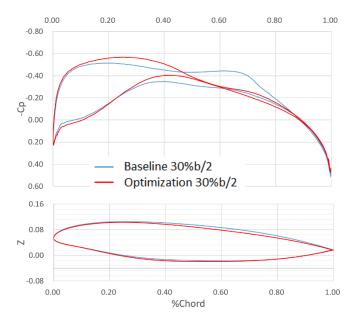


Aerodynamic Center - Baseline

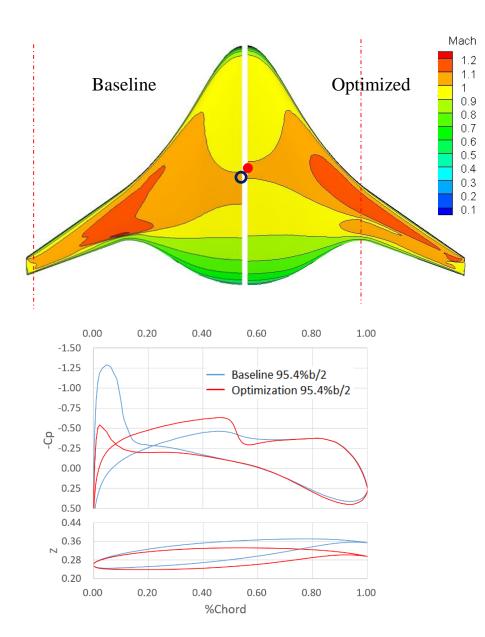

Minimize: C_D Subject to: $C_L = C_{L_T}$, $C_M = C_{M_T} = 0$, Specified SM (baseline 4%MAC) $R_{LE,nacelle} \ge R_{LE,baseline nacelle}$ $(t/c)_{max} \ge (t/c)_{max,baseline}$ for each design section

Minimize:
$$C_D = C_{D_0} + C_{D_\alpha} \Delta \alpha + C_{D_\theta} \Delta \theta_{wt}$$

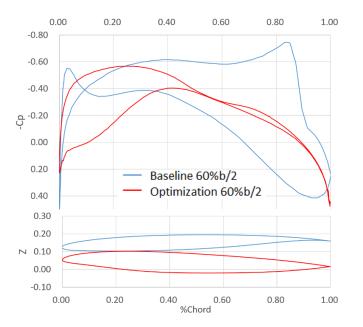
 $\begin{pmatrix} \Delta C_L \\ \Delta C_M \end{pmatrix} = \begin{pmatrix} C_{L_\alpha} & C_{L_\theta} \\ C_{M_\alpha} & C_{M_\theta} \end{pmatrix} \begin{pmatrix} \Delta \alpha \\ \Delta \theta_{wt} \end{pmatrix}, \quad \begin{pmatrix} \Delta \alpha \\ \Delta \theta_{wt} \end{pmatrix} = \begin{pmatrix} C_{L_\alpha} & C_{L_\theta} \\ C_{M_\alpha} & C_{M_\theta} \end{pmatrix}^{-1} \begin{pmatrix} \Delta C_L \\ \Delta C_M \end{pmatrix}$


Cabin (301 Passengers) layout for thickness constraint

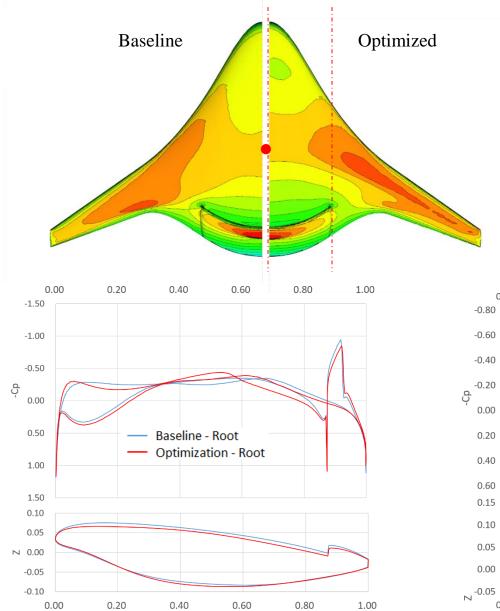
Clean-wing Design

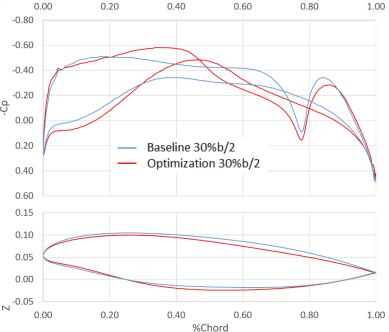

- Front loaded optimized wing
- X_{CG} moved from 38.21%c (○) to upstream (36.73%c●)
- SM=9%MAC
- Shock strength at TE is reduced

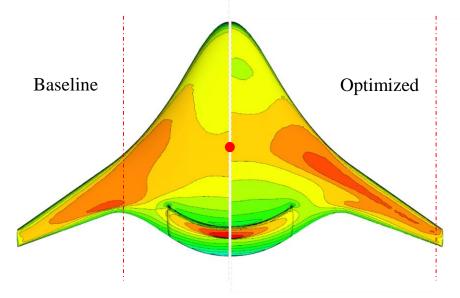
Clean-wing Design

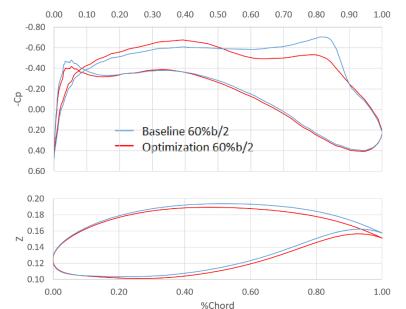


- Baseline (26.3cnts) : (Induced drag): (wave drag) =87%:13%
- 15% (-3.4 cnts) induced drag reduction
- 85% (-2.9 cnts) wave drag reduction

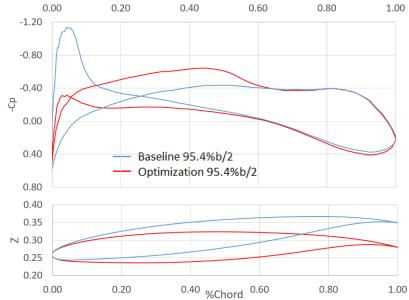

	C _{Di}	C_Dw	C _{Di} +C _{Dw}
Baseline	87.24%	12.76%	100.00%
Optimized	74.36%	1.87%	76.23%
delta	-12.88%	-10.89%	-23.77%
			<u> </u>


Propulsion Airframe Integration Design


%Chord

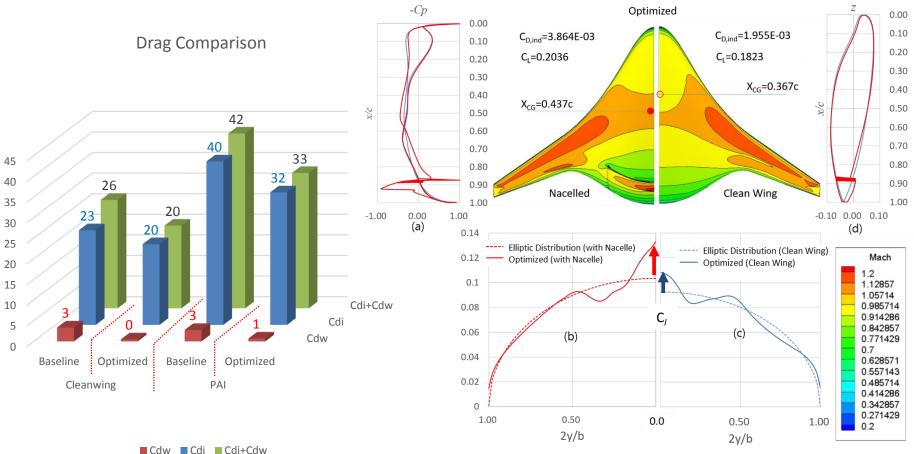

- Baseline (43cnts) : (Induced drag): (wave drag) =93%:7%
- SM=4%MAC
- X_{CG} almost not changed even though the center of pressure changed significantly at outboard.
- Nacelle and inboard area dominate the longitudinal stability.

Propulsion Airframe Integration Design

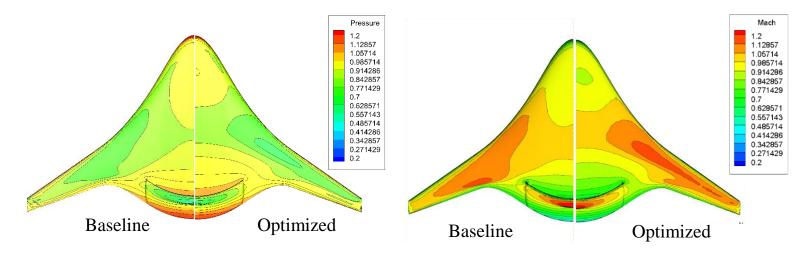


- Baseline (43cnts) : (Induced drag): (wave drag) =93%:7%
- 19% (-7.5cnts) induced drag reduction
- 75% (-2.1cnts) wave drag reduction

	C _{Di}	C _{Dw}	C _{Di} +C _{Dw}
Baseline	93.47%	6.53%	100.00%
Optimized	75.75%	1.64%	77.39%
Delta	-17.72%	-4.89%	-22.61%
		0	50


-9.59 counts

Clean-wing vs PAI

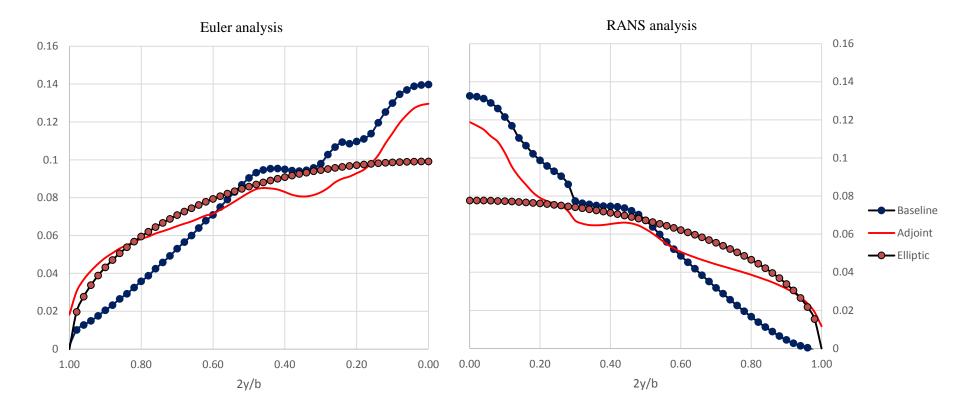

- Lift contribution of nacelle affects longitudinal stability at inboard area.
 - PAI baseline 12% more lift, 35~39% more drag (vs. Cleanwing baseline)
 - X_{CG} is predicted further downstream around 43.7%c while clean wing has CG at 36.7%c.
- More induced drag dominant design.

Viscous Effects on Aerodynamic Performance

- Inviscid analysis is used for fast design optimization.
- RANS analysis for optimized PAI configurations.

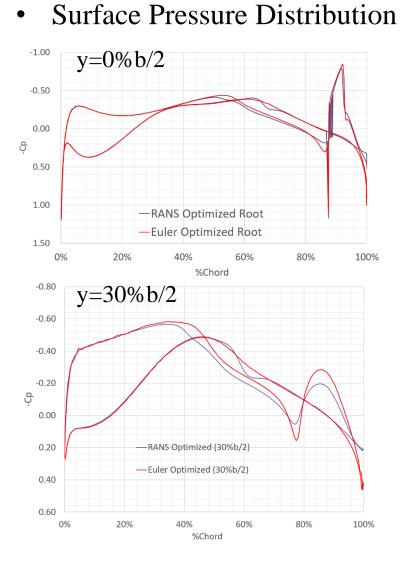
RANS analysis – Ps Contour

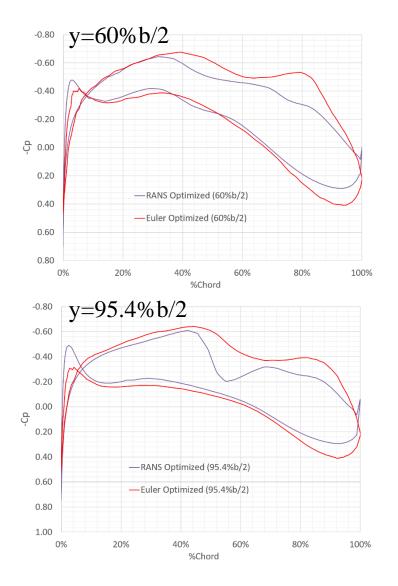
Euler Analysis – Mach Contour


RANS	C_L	C _{Di}	C_Dw	C_Dv	$C_{Di}+C_{Dw}+C_{Dv}$	Euler	CL	C _{Di}	C_{Dw}	$C_{Di}+C_{Dw}$
Baseline	0.1503	35.7	3.85	57.5	97.1	Baseline	0.1934	39.64	2.77	42.41
Optimized	0.1520	22.9	0.70	56.6	80.5	Optimized	0.1934	32.12	0.70	32.82
Delta	+0.0017	-12.8	-2.89	-0.92	-16.6	Delta	0.00	-7.52	-2.07	-9.59
Delta%	+1.3%	-35.86%	-74.96%	-1.59%	-17.10%	Delta%	0%	-18.96%	-74.88%	-22.6%

RANS	C _{Dw} -cowl
Baseline	1.96
Optimized	0.78
Delta	-1.19
Delta%	-60.49%

Euler	C _{Dw} -cowl
Baseline	1.29
Optimized	0.53
Delta	-0.76
Delta%	-58.72%


Viscous Effects on Aerodynamic Performancecont'd


• Span-wise Lift Distribution

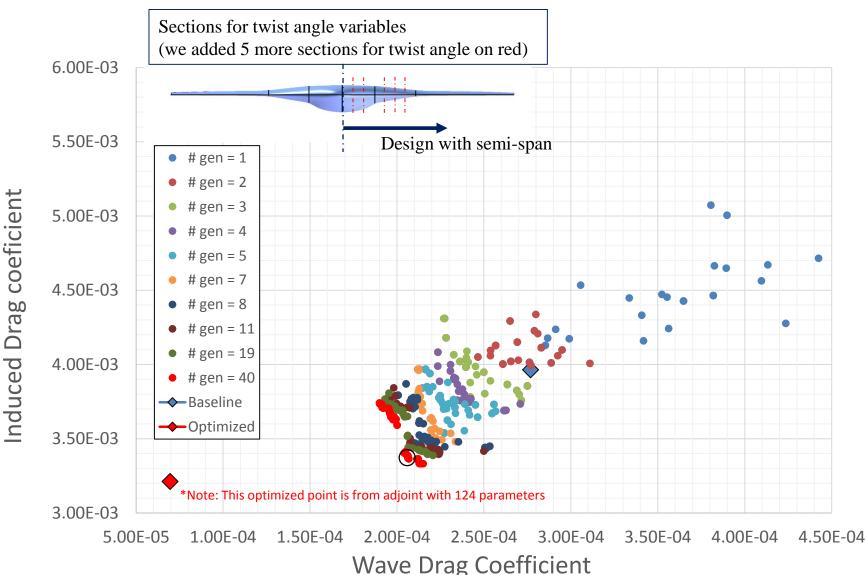
Viscous Effects on Aerodynamic Performancecont'd

Conclusion

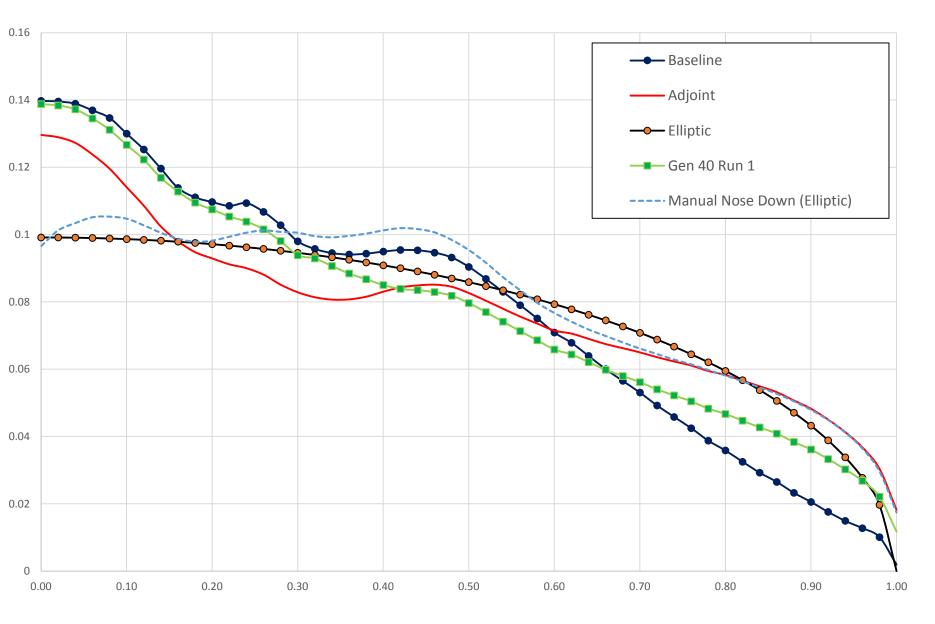
- A design analysis tool for efficient geometry generation and optimal shape design of the hybrid wing body propulsion airframe integration (PAI) has been developed
- Preliminary PAI configurations of HWB are designed with Euler analysis for fast turn around and rigorously investigated with RANS analysis.
 - The RANS analysis results carries the improvement of performance consistently as Euler analysis predicted.
- Aerodynamic optimization with lift, pitching moment constraints was conducted ; the first trim, longitudinal stability consideration for HWB PAI configuration
 - Almost 10 counts of drag reduction could be achieved.
 - Design starting from PAI concept is required due to that nacelle installation has significant impact on aerodynamics, trim and longitudinal stability.

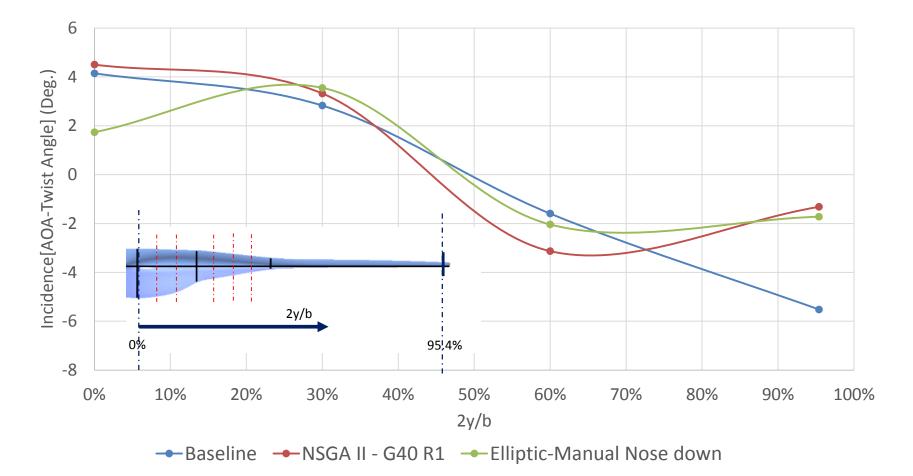
Future Works

	-2013	2014	2015	2016	2017	2018-
PAI Configurations	N3-X conceptual design* N+2B inlet shape optimization	NIX-X WITH MAIISIOT		N3X-Dep300 clean wing, 300 passenger cabin**	N3X-Dep300 with nacelle (PAI)	N3X-Dep300 with nacelle and propulsor
Inlet	inlet A – BLI wall shaping crosswind analysis	mail	slot	mailslot nacelle cowl surface design	mailslot wall shaping	propulsion system sizing with fan/nozzle
Propulsor	sizing/conceptual		R4 scaled sin ual study of co	gle stage fan, ounter rotating fan	electric fan design	BLI tolerant fan
Mesh	unstructured iso – sprin overset	g analogy		unstructured aniso crosschecked with o		unstructured – airframe/inlet/nozzle structured - propulsor
Parameterization	NURBS		CST/ pla	nform/inlet/nacelle	NURBS	fan blade parameterization (CST)
CFD Modeling	Roe/AUSM+UP SA/2-eqs. turbulence models LUSGS & GMRES		N3X-Anal	lysis with body-force model	drag decomposition trim modeling	through flow model – axi-symmetric (CSTALL) multi-stage CFD (SWIFT)
Optimization Method	GBON	M based on adjoint approach			adjoint/NSGA-II	adjoint/NSGA-II
Completed Current On-going & future works				e works		t al. AIAA–2011–0300 kol AIAA-2012-0337

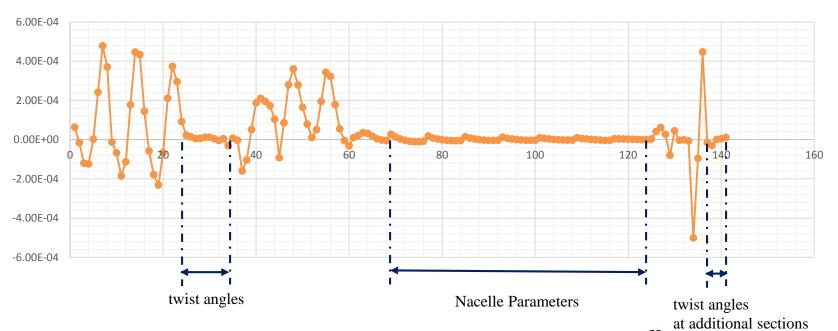

Acknowledgement

This work was supported by NASA's Advanced Air Transport Technology (AATT) Project.


NSGA-II – 8 twist angles (PAI)


NSGA-II – 8 twist angles

Local Incidence Angle Comparison



Scaled Sensitivity of Nacelle Parameters

Prime Optimized

ADJ

Nacelle Scaled

- The sensitivities of nacelle parameters scaled by 5 times and twist angle by 1.25 for both optimized cases.
- The shock strength on the nacelle scaled sensitivity case got weaker than the prime optimized design but the geometry resulted marginally larger drag due to increase of induced drag.

	C _{Di}	C _{Dw}	$C_{Di}+C_{Dw}$
Baseline	93.47%	6.53%	100.00%
Optimized	-17.72%	-4.89%	-22.61%
Nacelle SCLD	-14.36%	-6.14%	-20.50%