
1

Introducing Object-Oriented Concepts into GSI

Enhancements are now being made to the Grid-point Statistical Interpolation (GSI) data
assimilation system to expand its capabilities and open the way for broadening the scope of its
applications. These represent a starting point for the so-called GSI refactoring, which is to take
shape as part of the Joint Effort for Data-assimilation Integration (JEDI) project coordinated by
Thomas Auligné and Yannick Trémolet of the JCSDA.

Our initial contribution amounts to introducing object-oriented concepts to: (1) improve the GSI
handling and expandability of the various observation types associated with the forward
observation operators (FOO), (2) generalize the interface to the background (guess) states
interpolations needed by the FOO, and (3) provide aframe work to allow for addition of
user-specific subcomponents without need of changes to the actual GSI software. These
implementations follow a bottom-up strategy so the refactored software never loses operability,
thus remaining ready for use all along in currently supported GSI applications. A top-down
approach to develop a Unified Forward Operator is concurrently underway, benefiting from
contributions from many other collaborators; this, however, is not part of the present discussion.

Concepts of object-oriented (OO) programming have been around for a while and are supported
by languages such as C++, Java, and many others. In general, OO programming enforces three
main concepts: (1) abstraction; (2) encapsulation; and (3) polymorphism. From a scientific
developer’s point of view, abstraction allows for high-level code components to look simple,
mimicking generic algorithmic concepts, similar to using mathematical symbols in equations;
encapsulation allows the symbols to be defined in full details with separate expressions; and
polymorphism allows for use of a single abstract entity with generic interfaces to represent
specific entities of different types, while simultaneously managing encapsulated implementation
differences between types as extensions. Fortran, the programming language of most codes used
by our community, and in particular GSI, has slowly incorporated OO functionalities: Fortran 90
has supported abstraction and encapsulation since its initials tages. More recently, Fortran 2003
and 2008 bring in polymorphism, thus expanding the OO capabilities in the language.

The path we chose to introduce advanced programming concepts in GSI represents a mild
version of refactoring, where, to a large extent, the familiar code remains recognizable. What
follows provides examples of how modifications are being made to GSI’s observation handling,
guess interpolators, and hooks to user-specific components.

Extensible Observation Types
At the time of this writing, the official release of GSI incorporates a polymorphic observation
operator. At its initial stage, polymorphism has been introduced without strict encapsulation (see
below). This has been done to allow users to familiarize themselves with the code changes

https://ntrs.nasa.gov/search.jsp?R=20170008029 2019-08-29T23:38:47+00:00Z

2

before further changes take place, which will involve considerable shuffling of software. The
original GSI implementation of the ability to handle multiple observation types can be labeled
procedural, since the code is grouped by functionality instead of datatypes. This is illustrated in
Figure 1, where obsmod controls initialization, finalization, and referencing to all observation
types, whereas its “methods” (not treated as such in original code) are placed elsewhere and
remain separated from other methods of the same type: the nonlinear observation operators
(setupX), their linearized counter parts (intX), their conjugate-gradient step calculations (stpX),
and I/O-related procedures are placed independently from the type they relate to, namely,
X_ob_type.
[Fig 1 near here please]

In an OO world, these procedures should be thought of as methods of a particular type (object).
Each self-contained type controls its own methods. For example, the nonlinear and linearized
operators related to the radiance observation type should be among the methods controlled by
the radiance type. There is also an abstract observation type that represents any concrete
observation type under consideration of a generic algorithm implementation. A generic
implementation then dispatches to concrete type-bound-procedures on the fly, at run-time. A
schematic illustration of a modular encapsulation of the methods of each type into separate
components is seen in Figure 2. Notice the horizontal arrangement of the blocks in this figure
compared the vertical arrangement of those in Figure 1.
[Fig 2 near here please]

This particular restructuring of the observation types reveals the similarities among different
types. More important, modularization of the types allows for simplification of the writing of
many of them by exploiting their similarities and letting the compiler create the contents of
similar required types on the fly. This is done in Fortran by defining a type as an extension of
another existing type. Figure 3 provides code snippets illustrating this case. Examination of the
code reveals that the methods associated with observation types pm2.5 (top) and pm10 (bottom),
which are aerosol-like observations related with different particle sizes, are largely the same.
Therefore, the type for pm10 (bottom right) can simply extend the type for pm2.5, with minor
differences between the two being accommodated by creating exceptions within the context of
pm10 (not shown).
[Fig 3 near here please]

Interface to Guess Interpolation
Use of polymorphism concepts can also be applied to design a flexible (general) handling of the
guess (background) interpolations required by the observation simulator (part of the FOO that
converts the background to the observable). Just as in the rewrite of the observation operators in
modular OO-like framework, the guess interpolations can be handled (1) by development of an
interface layer to virtually support generic (abstract) GSI guess state interpolation applications,
and (2) by recognizing that every interpolator can be implemented as an extension of
corresponding abstract interpolators.

3

At this stage, the discussion that follows is part of a prototype under test at NASA’s Global
Modeling and Assimilation Office (NASA/GMAO). The snippets of code shown below are not
final, and consideration is taking place with feedback from other members of the JEDI team to
establish consensus on the approach presented here. Nevertheless, discussions have been rather
positive and favorable toward what follows, so we feel confident that only minor adjustments
will be necessary.

A key component to the present design of an abstract interface is the realization that things like
the grid, resolution, partition, choice of variables, and specific partition information related to
the state vector should not appear in the interface. This makes the interface rather generic. The
only things exchanged between the calling programs and the underlying interfaces are physical
quantities, such as variables, 2D or 3D spatial locations, time of observations, and in certain
cases, the processor identifiers. A code snippet of possible calls from within a general
(setupXYZ) nonlinear GSI operator is given in Figure 4. The abstraction layer is designed to
honor all current GSI use-cases and functionalities. Very few assumptions are needed about the
guess-state for the interpolations, so the approach here leaves sufficient room for expansion of
functionality.
[Fig 4 near here please]

User-Specific Subcomponents
There are multiple examples in GSI where its internal components maybe specific to a particular
application. One of the simplest examples is the placement of timers. A particular user, or group
of users, might prefer using their own timer utility library to assess performance of internal
subcomponents of the code. GSI is presently enabled with calls to start, end, and summarize
timings obtained by user-provided timing library. In its default use by the National Centers for
Environmental Prediction Environmental Modeling Center (NCEP/EMC), a timing library is not
typically provided when the executable of GSI is created; others, such as NASA/GMAO, may
provide one or another library that automatically supplies timing information after each
execution of GSI.

To avoid unnecessary code localization, presently, a default do-nothing stub timer is provided in
GSI through a set of Fortran implicit interfaces, so that without GSI code changes, each user
application can choose to swap at the linkage stage with a functioning timer. The same concept is
also used by several GSI stubs as a crude approach of managing complex user-specific extensions,
including a stub of tangent-linear and adjoint models for 4DVar, and a stub of ensemble background
fields, etc. With true polymorphism, stub-swapping by users can be avoided by bringing minor
enhancements to the current stub mechanism, where user-specified stub replacements can be
implemented and configured as formal extensions.

In Summary
The bottom-up, initial steps toward refactoring of GSI discussed above are expected to facilitate
maintainability, extensibility, and scalability of the software. The approach turns GSI into a code

4

that is as object-oriented as any Fortran code can be at this stage in the language support to OO
concepts. Abstraction and encapsulation are expected to be the main contributors to enhanced
maintainability. The polymorphic implementation of some of its main functionalities will
contribute to facilitate extensibility. An easier-to-maintain and easier-to-extend software will
facilitate identification of computational bottlenecks and consequent improvement in software
scalability.
Acknowledgements: We would like to thank the GSI Committee for supporting the introduction
of the concepts discussed here in the GSI software. We thank Thomas Aulign´e for his energetic
enthusiasm to refactor GSI using modern software concepts. And we thank Yannick Tr´emolet
for discussions related to the implementation of a generalized interface to guess-interpolators.

Jing Guo1 and Ricardo Todling, NASA Global Modeling and Assimilation Office
1Additional Affiliation: Science Systems and Applications, Inc., Lanham, MD

5

Figure 1. Schematic view of original procedural coding of components related to the
observation operators in GSI. Left-most rectangle (obsmod): initialization, finalization and
general management of various observation types; middle rectangles: non-linear (setupX) and
linearized observation operators (intX), and conjugate-gradient step calculations (stpX) for each
observation type; two right-most rectangles: writes and reads of the observation types. Note the
vertical (procedural) organization separates an observation type from its methods.

6

Figure 2. Schematic view of current polymorphic implementation related to the observation
operators in GSI. In this new construct, each given observation type (e.g., the temperature
operator tNode) controls its own operations: initialization, finalization, read, write (highlighted
in colored horizontal blocks), with additional procedures (setupX, intX, stpX) to be encapsulated
soon in the future.

7

Figure 3. Within OO concepts, one can recognize similarities among different components, thus
allowing for code reuse, improvement for readability, and easier management of differences for
extensibility. As an example, the figure compares the type controlling observations from the
abstract to pm2.5 (top), and then to pm10 (bottom). Blue-colored headers of three panels
highlight different approaches to create a new type. Exploitation of their similarities means
simplification of, say, pm10 by turning it into an extension of pm2.5 (bottom right); in other
words, using pm2.5 as a template created on the fly by the compiler.

8

Figure 4. With abstraction m_guessInterp, (UC-1; left) is a GSI use-case of guess interpolators
with distributed observations, while (UC-2; right) is a GSI use-case of inquiring for processor
destinations with respect to guess interpolators. Both use-cases are schematically shown in the
code snippets of planned implementations. These are very close to the current GSI
implementation, but generic. Blue-colored statements highlight complete life cycles of
individual interpolators created by m_guessInterp, with few assumptions about concrete
implementation of specific interpolators.

