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ABSTRACT 
It is well-known that the natural frequencies of structures 

immersed in heavy liquids will decrease due to the fluid 

“added-mass” effect.  This reduction has not been precisely 

determined, though, with indications that it is in the 20-40% 

range for water.  In contrast, the mode shapes of these 

structures have always been assumed to be invariant in liquids.  

Recent modal testing at NASA/Marshall Space Flight Center of 

turbomachinery inducer blades in liquid oxygen, which has a 

density slightly greater than water, indicates that the mode 

shapes change appreciably, though.  This paper presents a 

study that examines and quantifies the change in mode shapes 

as well as more accurately defines the natural frequency 

reduction.  A literature survey was initially conducted and test-

verified analytical solutions for the natural frequency 

reductions were found for simple geometries, including a 

rectangular plate and an annular disk.  The ANSYS© 

fluid/structure coupling methodology was then applied to 

obtain numerical solutions, which compared favorably with the 

published results.  This initial study indicated that mode shape 

changes only occur for non-symmetric boundary conditions.   

Techniques learned from this analysis were then applied to the 

more complex inducer model.  ANSYS numerical results for 

both natural frequency and mode shape compared well with 

modal test in air and water.  A number of parametric studies 

were also performed to examine the effect of fluid density on 

the structural modes, reflecting the differing propellants used in 

rocket engine turbomachinery.  Some important findings were 

that the numerical order of mode shapes changes with density 

initially, and then with higher densities the mode shapes 

themselves warp as well.  Valuable results from this study 

include observations on the causes and types of mode shape 

alteration and an improved prediction for natural frequency 

reduction in the range of 30-41% for preliminary design. 

Increased understanding and accurate prediction of these 

modal characteristics is critical for assessing resonant 

response, correlating finite element models to modal test, and 

performing forced response in turbomachinery. 

NOMENCLATURE 
 

IP   In Phase 

OP  Out of Phase 

MAC   Modal Assurance Criterion 

MN    Mode Number 

MS    Mode Shape 

LH2   Liquid Hydrogen 

LOX   Liquid Oxygen 

 

INTRODUCTION 
 During the design of the J2-X rocket engine in 2012, 

preliminary analysis of the two inducer blades in the Liquid 

Oxygen (LOX) turbopump (Figure 1) predicted high stresses 

from a possibly resonant dynamic forcing function. It is well-

known that the natural frequencies of a structure decrease when 

it is immersed in a fluid due to the effective added-mass, so a 

“knockdown factor”, which is the percentage that the natural 

frequencies decrease, was applied to the frequencies in the 

Campbell Diagram, but previously-used factors based on 

anecdotal experience was tremendously inconsistent, with a 

range of between 20 and 40%.  A modal test was therefore 

performed to find the natural frequencies of the J2-X inducer 

blades immersed in water, which has a density slightly greater 

than LOX, to enable accurate prediction of resonance and for 

the model verification critical for forced response analysis. 

The blades were tested in both air and water, and in several 

different housing configurations to examine the effects of tip 

clearance and grooves in the housing.  The results indicated that 

in addition to the natural frequency change in water, which was 

expected, the modes shapes changed as well.  There was no 

indication in initial literature surveys or previous experiments 

that this would occur, so the result was surprising.   These 

changes made both correlation with the finite element model 

and use of the model for forced response analysis problematic. 

An attempt at implementation of a new acoustic/structure finite 
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element formulation was made, but there were some limitations 

in the software at that time preventing complete reliance on that 

technique. 

 

 
Figure 1. J2-X LOX Turbopump Inducer (not to scale) 

 

There has been some research in this field, but the only 

research found provides analytical and numerical data on the 

“knockdown factor”, without any mention of mode shape 

alteration.  One of the first studies was by Lindholm [1] in 1965, 

which presented experimental results for the natural frequencies 

of a cantilever plate in fluid.  No mention is made of a change 

in the mode shapes, though.  Kwak [2] presents an excellent 

study with both theoretical and experimental results of an 

annual disk, and Askari [3] develops a more extensive theoretical 

basis for the frequency reduction for the same geometry.  

Kerboua [4] develops exact analytical expressions for the fluid 

added-mass for a flat plate in order to develop the frequency 

knockdown using some advanced thin-shell theories, but again 

does not identify the loss of mode shape consistency.  Hosseini-

Hashimi [5] state that the “simplifying hypothesis that the wet 

and dry mode shapes are the same, is not assumed in this paper” 

in their study of Mindlin plates in a fluid, but do not present any 

investigation into or results for the mode shape change. 

This change in the mode shapes has motivated the current 

study discussed in this paper.  The focus is on quantifying the 

change in mode shapes, developing a methodology to 

accurately predict the changes, and to attempt to learn why the 

changes take place.  In addition, a more refined quantification 

of the natural frequency change is sought.  In particular, the 

effect of density on the structural modes of the inducer blades is 

evaluated for its effect on the modal characteristics. 

 

METHODOLOGY  

The general purpose multi-physics/finite element code 

ANSYS WorkBench 17.0 with the ACT fluid/structure coupling 

extension is the primary numerical tool used in this study to 

obtain the modal characteristics of structures immersed in 

fluids.  To gain an understanding of the fluid/structure coupling 

methodology, simpler geometries are first used to verify that the 

ANSYS settings accurately represent the physics and that the 

modal characteristics match results obtained from analytical 

solutions found in the literature. These geometries include a flat 

rectangular plate and an annular disk, and are discussed in more 

detail in the next section.  Afterwards, a parametric study is 

performed for the annular disk to identify the effect of fluid 

density on its modal characteristics.  

After these analyses are completed, the same numerical 

techniques and settings can be applied to analyze the inducer 

blades. However, since there is no analytical solution, modal 

test results are used as a comparison to see if the natural 

frequencies from the numerical model are in good agreement 

with these test frequencies. If there is a good match on the 

modal characteristics, the same parametric study done for the 

annular disk can now be performed for the inducer blades.  

Observations and conclusions can then be drawn about how 

fluid density affects the natural frequencies and mode shapes of 

the inducer blades.  It is important to note that the analyses were 

performed at room temperature, so the temperature effects on 

the modal characteristics of the structures are not taken into 

account. These effects are ignored to isolate the effect of the 

fluid-added mass on the mode shapes.  

 

FLAT PLATE 
The first of the simple geometries examined is a flat 

rectangular plate with one fixed end.  The analytical solutions 

for the natural frequencies of this configuration in vacuum are 

shown in equation (1) below, from Blevins [6] 

 

  (1)         

 

where a and h are the length and thickness of the plate, 

respectively, i and j are the numbers of half-waves in the mode 

shape along its longitudinal and transverse axes, respectively, E 

is the modulus of elasticity, v is Poisson’s ratio,  is the mass 

per unit area, and  as a function of a, b, i, and j is a constant 

found in Table 11-4 of the Blevin’s text.  If the structure is 

immersed in fluid, the frequencies are adjusted using equation 

(2), also from Blevins 

 

           (2) 

 

where  is the mass of the plate, and  is the “added mass”, 

which is a quantification of the fluid that moves with the blade 

during its modal deformation. The added mass is a function of 

the fluid and mode shape and is tabulated in Table 14-4 of the  

Blevins text.  
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The next step in the process is a numerical analysis.  A 

solid geometry model is initially created with a geometric 

modeling software such as ANSYS DesignModeler© or 

SpaceClaim©. A fluid domain is also created using the 

“enclosure” feature in SpaceClaim©. A transparent view of the 

model is shown in Figure 2. 

 

 
Figure 2. Transparent View of Cantilever Plate Inside Fluid 

Domain 

 

The model is then imported into ANSYS Mechanical and a 

modal analysis is performed. The properties of the plate and the 

fluid domain are listed in Table 1. 

Table 1. Properties for Rectangular Plate Analysis 

Plate Fluid Domain 

Length=46.736 cm (18 in)  Length =68.58cm (27 in) 

Width=30.48 cm (12 in) Width =53.34 cm (21 in) 

Thickness = 0.127 cm (0.05 

in) 

Height =23.0 cm (9.05in) 

Density: 8193 kg/m3 (7.67e-

4 slinch/in3) 

Density =1.06e-5 kg/m3 

(9.36 x 10-5 slinch/in3) 

E (Young’s Modulus) = 

206.84 GPa (3e7 psi) 

c (Speed of sound)=148e3 

cm/s (58346.46 in/s) 

 (Poisson’s Ratio) = 0.27  

 

ANSYS [7] advises using a fluid domain that is at least half the 

size wavelength of the fluid as determined in equation (3)  

    (3) 

where  is the wavelength of the fluid, c is the speed of sound, 

and f is the highest natural frequency of interest.  Setting this 

size is important, as the modes of the coupled 

acoustic/structural system are highly dependent upon it, and the 

goal is to avoid acoustic modes if structure-only modes are 

being sought.  However, too large of a domain will make the 

solution computationally intensive, so some iteration is required 

to establish convergence without too much expense.  

Convergence in this case was reached with the dimensions as 

shown, which are only about half of the recommended size for 

water. 

If it is known a-priori that coupled acoustic-structure 

modes are not of interest, then the speed of sound can be set to 

a very high value, or equivalently, an “incompressible” flag in 

the software can be set to move the acoustic modes well out of 

the range of the structural modes while maintaining the mass-

added effect of the fluid.  Of course, this uncoupled assumption 

must be carefully made, as studies have shown significant and 

unanticipated effects of structural-acoustic coupling in 

turbomachinery, particularly in LH2 [8]. 

The next step is to perform the pre-processing for the finite 

element model of the fluid and structure. A high-density 

tetrahedral mesh option is used for the fluid elements, and 

three-element thick hexagonal elements are used for the plate. 

For the fluid and the structural domains to be coupled 

successfully, the nodes of the plate must be coincident with 

nodes of the fluid, as shown in Figure 3. The acoustic body 

condition is then specified for the fluid domain, enabling the 

application of fluid elements, and the fluid/structure interface is 

identified at all the faces of the plate.  

 

 
Figure 3. Coincident Nodes at Fluid/Structure Interface 

 

At this point the modal characteristics of the cantilever 

plate can be obtained.  Two analyses are performed to compare 

the natural frequencies and mode shapes in vacuum and then in 

water.  We use Blevin’s categorization scheme in which each 

mode shape is identified by the number of half waves along the 

length followed by the number of half waves along the width, 

e.g., mode 1,3 has one length-wise half wave and three width-

wise half waves. To enable a consistent relationship between the 

modal characteristics and fluid density independent of the use 

of the acoustic fluid/structure formulation, the vacuum case was 

always performed using fluid elements with a negligible density.  

The natural frequencies found using the analytical solution are 

in good agreement with the natural frequencies found using the 

numerical model for this vacuum case; five of the first six 

natural frequencies have relative error percentages less than 1% 

and the sixth is under 1.5%.  On the other hand, most of the 

natural frequency values for water had relative errors between 

the numerical and analytical results of well over 10%, as shown 

in Table 2.   

 

Table 2. Nat. Frequency Comparison, Water 

Mode Shape  1,1 1,2 2,1 2,2 1,3 3,1 

analytical nat. 

freq’s (hz) 

1.03 5.48 6.43 18.54 27.09 18.4

3 

FEA nat. freq’s 

(hz) 

1.24 5.85 8.82 20.86 31.74 28.2

8 

relative error 

(%) 

20.5 6.7 37.3 12.6 17.1 53.4 

 

Upon close examination, it appears that the mode shapes 

themselves change when submerged in water, as shown by 
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modes 5 and 6 in Figure 4.  These changes probably explain the 

frequency discrepancy to some degree.   

Even though the modal categorization stays the same, it can 

be clearly seen that the character of the mode has changed.  It is 

therefore necessary to use the more quantitative measure of the 

change in character of the modes shapes expressed by the 

Modal Assurance Criteria, which is obtained automatically 

using an extension in ANSYS. 

 

   (4) 

 

The MAC  describes the degree of consistency (linearity) 

between one mode and another reference mode, with a value of 

one indicating perfect agreement.   

 

 

 
Figure 4. VA Mode Number 6 (Mode Shape 1,3) on top, 

Water Mode Number 5 (Mode Shape 1,3) on bottom 

 

Table 3. MAC Values for Cantilever Plate 

 Mode Shapes for Vacuum 

Mode 

Shapes 

for 

Water 

 1 2 3 4 5 6 

1 1 0 0 0 0 0 

2 0 1 0 0 0 0 

3 0.116 0 0.882 0 0.001 0.001 

4 0 0.022 0 0.976 0 0 

5 0.003 0 0.106 0 0.407 0.471 

6 0.063 0 0.001 0 0.623 0.311 

 

Comparisons between the first six modes in water and vacuum 

are shown in Table 3, where values larger than 0.9 are 

highlighted. The qualitative observation concerning the 

differences in vacuum mode 6 and water mode 5 previously 

mentioned is supported by the MAC calculation of only 0.471.  

It appears that the mode number (or order) mismatch and 

mode shape change may have caused the error between the 

analytical and numerical natural frequencies.  Blevins does not 

mention mode shapes changing in equation (2), though the 

mode number mismatch may be explained through the fact that 

different plate added masses are used for different mode shapes 

in his theoretical formula; the increase in fluid density may lead 

to mode number mismatch, as the natural frequency for one 

particular mode shape may change faster than for another mode 

shape. As the fluid density becomes larger, this change in added 

mass may become significant enough for a mode number to 

switch with another mode number, which is the case for the 

cantilever plate. 

 

Fixed-Fixed Plate 

To examine the effect of boundary conditions on the 

change in mode shapes, a fixed support is applied to both short 

ends of the plate and an analysis performed.  The resulting 

analytical/numerical frequency errors are much lower, being 

under 1% for all vacuum modes and only one case over 11% for 

the water modes.   

 

 
Figure 5. Vacuum Mode Number 4 (Mode Shape 1,3) on 

top, Water Mode Number 5 (Mode Shape 1,3) on bottom 
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The modal results show mainly mode number mismatches, with 

no changes in the essential modes shapes, although there is a 

small change in the relative magnitudes of the mode shapes, as 

shown in Figure 5.  This can be attributed to the different rates 

that the added mass increases by depending on the mode shape, 

which is the same case for the cantilever plate. 

MAC results also clearly show this result, with qualitatively 

well-matching mode pairs yielding values very close to one, but 

these numbers not always being on the diagonal, indicating the 

modal number mismatch.  Comparing these results with those 

from the cantilever plate, it appears that symmetry plays a role 

in whether the mode shapes change or not, as the mode shapes 

change for a non-symmetric cantilever plate but do not for the 

symmetric fixed-fixed plate. 

 

ANNULAR DISK 
An examination is now performed based upon the work by 

Kwak described previously.  He develops the following 

equation for this geometry submerged in a liquid: 

 

    ,  
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  (5) 

where  is the natural frequency in water,  is the natural 

frequency in air,  is the Nondimensionalized Added Virtual 

Mass Incremental (NAVMI) factor,  is the thickness correction 

factor,  is the density of water,  is the mass density of the 

disk,  is the outer radius of the disk, and  is the thickness of 

the disk.  An experiment is also presented in the paper for a 

steel disk of 200 mm outer diameter, 60 mm inner diameter, and 

1.5 mm thick, immersed in a cylindrical tank of water with a 

diameter of 500 mm by 180 mm high, with the annular disk 80 

mm below the free surface of the water.  The disk is placed on a 

compliant suspension such that the first disk mode is enough 

above the suspension mode to simulate a free-free boundary 

condition.  The test is used to generate the NAVMI factors; 

Figure 6 (from Kwak) plots these for the plate resting on the 

surface of the liquid, where  (ratio of inner radius to outer 

 
Figure 6. NAVMI factors versus ; (s, n) = (0,1), (0,2) 

radius), s is the number of nodal diameters, and n is number of 

nodal circles.  These values are multiplied by 2.0 for full 

immersion in the liquid.  Similar charts are presented for (s, n)= 

(1,1), (2,1), and (s,n)=(2,0), (3,0).  

A numerical analysis is now performed for the annular disk 

using the same process as that followed for the rectangular 

plate.  The properties used for the disk are the same as used by 

Kwak.  The results agree well with the theoretical values using 

Kwak’s equation, as the relative error is less than 3% for both a 

semi-infinite theoretical boundary case and the experimental 

cases for all mode shapes.  This agreement helps to validate the 

numerical analytical procedure.   

A parametric study is then undertaken to see the effect of 

density on the modal characteristics of the annular disk.  In 

addition to air and water, typical rocket engine fluid media such 

as LH2, kerosene, and LOX are used to get a wide range of 

fluid densities. The results of this study are shown in Figure 7, 

where the mode shapes are identified by their number of nodal 

diameters (ND) and nodal circles (NC), and the marks on the 

curves correspond to the density of the previously mentioned 

propellants, respectively. 

The results show that the modal order is generally not 

mismatched (i.e., the curves do not intersect), although there are 

two exceptions, the 3 ND, 1 NC mode shape and the 0 ND, 2 

NC mode shape.  These results support the hypothesis that 

mode number switching is dependent on the symmetry of the 

structure and its boundary conditions, since this case is 

completely symmetric. 

 

LOX PUMP INDUCER 
As the inducer is a complicated geometry, no analytical 

solution for the modal characteristics in fluid exists.  However, 

the numerical modeling procedures developed and verified 

using the simpler geometries can be applied, and the results 

compared with modal testing in both air and water.  The basic 

material properties of the blade are a density of 8193 kg/m3, 

Young’s Modulus of 202.71 Gpa, and Poisson’s Ratio of 0.29.   

The fluid domain is defined to match the cylindrical enclosure 

used for the immersed modal test (Figure 8), which has a 19.53 

cm diameter and 24.769 cm height.  The structural mesh was 

generated using a CAD model with a number of detailed 

features inside the hub (not in contact with the fluid) removed 

to reduce the model size, a high mesh density used for the 

inducer blades, and the base of the inducer hub fixed (see 

Figure 9).  The fluid/structure interface surfaces were specified 

at all inducer/hub locations except for the fixed hub surface. 

As a first step, a modal analysis in vacuum is now 

performed and the results compared with the modal test in air.  

For the first 18 modes up to 2900 Hz, the error is less than 2% 

and only two of the frequencies have an error of more than 5%, 

suggesting that the model is accurate.  Next, a modal analysis in 

water is performed and compared with the analogous modal 

test.  Numerous problems had to be overcome to achieve 

reproducible results in this submerged modal test, including air  
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Figure 7. Annular Disk Natural Frequency vs. Immersed Fluid Density 

 

 
Figure 8. Setup of immersed modal test 

 
Figure 9. Cross-section of inducer solid mesh and 

surrounding fluid domain 

 

bubbles and accessibility of the laser measurement system to the 

blades.  These will tend to increase the error.  Because of the 

limited access issue, only the frequencies from the test were 

obtained, and these are compared with the analytical 

frequencies in in Table 4.  These results show excellent 

agreement, with the first 7 modes having an error of less than 
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2% and no errors above 10%.  Mode 11 is omitted as it was not 

able to be identified in the modal test. 

A parametric study is then performed to see the effect of 

density on the inducer blades, and the procedure is the same as 

the parametric study for the annular disk, except an additional 

fluid, methane, is added, which has a density of 421 kg/m3 and 

sound speed of 1420 m/s.  The runtime on a standard desktop 

Windows workstation was 20-30 minutes for each fluid. 

 

Table 4. Comparison of FEA and Modal Test Natural 

Frequencies in Water 

 Natural Frequency 

(Hz) 

 

Mode Water (FEA) Modal 

Test 

Relative 

Error (%) 

1 1020.4 1005.032 1.529106 

2 1040 1036.007 0.385422 

3 1075.2 1057.811 1.643866 

4 1095.2 1090.148 0.463423 

5 1152.4 1144.761 0.667301 

6 1168.7 1189.042 1.710789 

7 1187.6 1206.456 1.562925 

8 1237.6 1287.035 3.840999 

9 1253.2 1375.243 8.874286 

10 1294.6 1414.22 8.458373 

12 1431.9 1542.136 7.148267 

13 1564.9 1593.773 1.811613 

 

As with the studies using the simpler geometries, a method 

for qualitatively characterizing the modes is critical to enable 

successful tracing of the modes through different analyses for 

different densities.  However, characterizing the mode shapes 

for the inducer is more difficult, as the mode shapes do not have 

clear, distinct shapes like the annular disk.  Three elements of a 

mode shape are used for this characterization; a numerical value 

representing the amount of wavelengths along one blade, 

assessment of whether the shape is either sinusoidal, parabolic, 

or a combination of both, and whether the shape is in-phase (IP) 

or out-of-phase (OP), which refers to one blade with respect to 

the other. Examples of these different descriptive parameters are 

shown in Figures 10 through 13. Figure 11 can be used to 

explain the difference between sinusoidal and parabolic motion. 

It can be seen that in both shapes, the middle of the blade has 

either zero or very little displacement. However, in sinusoidal 

motion, the sides of the blades move 180 degrees out-of-phase 

with each other, as seen in the top picture, while in parabolic 

motion, both sides of the blade move up or down in-phase, 

which is seen in the bottom picture. 

In addition, there are some mode shapes that could not be 

described using the same method detailed above, as there is 

some hub movement in the mode shape and the number of 

wavelengths associated with the hub movement is not consistent 

throughout the fluids. The hub may move from one direction to 

another or it may twist as well.  All of the descriptions are used 

to create a plot (Figure 14) that traces the natural frequency 

variation with respect to density; mode shapes with hub 

movement or parabolic motion are not seen in all the density 

cases and so are omitted from the graph. 

 

 

 
Figure 10. Example of 1.5 Wavelength Mode Shape (top), 4 

wavelength shape (bottom) 

 

 

 
 

 
Figure 11. Sinusoidal motion (top), parabolic (bottom) 
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Figure 12. Example of Blades Moving In-Phase 

 

By comparing Figure 14 to Figure 7, it is clear that there 

are more frequency crossings between mode shapes for the 

inducer blades compared to the annular disk.  The crossings 

appear to occur only when an IP mode switches with an OP 

mode, which have very close frequencies.  The modal number 

mismatching also appears to occur generally at the lower values 

of density.  Table 5 shows a qualitative comparison of the first 

20 modes.  These show that the shapes themselves do not vary 

significantly, but that the relative numerical order of their 

associated natural frequencies do change with density. These 

changes in order and/or shape are highlighted.  A notable 

 

 
Figure 13. Example of Blades Moving Out of Phase 
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Figure 14. Natural Frequency vs. Density for Different Mode Shapes
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observation is that for most of the mode shape pairs, the out-of-

phase mode shape is usually the one with lower frequency when 

the blades are immersed in a fluid as compared with vacuum, 

where the in-phase mode usually has the lower frequency (an 

exceptions is the 4.5 and 5.5 wavelength pairs). 

MAC analysis was also performed on the LH2-Vacuum 

combination and the LOX-Vacuum combination, and verify the 

qualitative assessments.  The values for the first comparison are 

all close to 1.0 along the diagonal with the exception of mode- 

swapping between modes 4 and 6 and modes 7 and 8, which are 

on the corresponding off-diagonal location.  In contrast, the 

LOX-Vacuum MAC has only a single high value, showing the 

significant change in the mode shapes (see Table 6), although 

there are some other values above 0.7 within the first 30 modes, 

indicating a partial shape change.  

As much of the change in mode number mismatching 

occurs in the lower density range, several supplemental cases in 

the mid-density region that are not for realistic propellants are 

added to the analysis.  These cases are at  = 150, 275, and 300 

kg/m3.  Examination of the mode shapes, which shows total 

deformation, (Figure 15) shows that the one-wavelength sine 

occurs between 150 and 200 kg/m3, with the half-wave in the 

1.5 sine at lower densities gradually disappearing. In the top 

picture, it can be seen that the blue area on the blade shifts 

upward when comparing to the bottom picture. The blue area 

signifies no movement on the blade, so as it reaches the top of 

the blade, the mode shape of the blade is 1 sine wave and not 

1.5 sine waves anymore. This mode also eventually becomes 

mode number 1. Another observed trend is that as the density 

increases, the number of parabolic and sine wave modes 

decrease, from four for vacuum, three for =150, and to two for 

=275 and higher.  Finally, hub bending and twisting start, 

which do not move much fluid, becoming noticeable for higher 

modes, thereby playing a role in the mode number switching 

and lessening the frequency reduction for these modes. 

Another valuable result from this study is obtaining a more 

thorough quantification of the “knockdown” factor mentioned 

in the introduction.  This factor as a function of density is 

plotted is plotted in Figure 16. In general, these factors decrease 

going from the lower frequency mode shapes to the higher 

frequency mode shapes, e.g., the lowest knockdown rate for 

almost all of the fluids is the 7 sine, IP mode shape, which 

occurs at the highest frequency out of all of the mode shapes 

calculated. On the other hand, the 2 sine, OP mode shape has 

the highest knockdown factor for the higher density fluids.  

Table 7 shows the range of factors and the average values per 

propellant case; it is also apparent from this table that the range 

of factors increases with the density.  These ranges are all less 

than the 20% range (20-40% knockdown) estimate used before 

this study. 

 

 

 
Figure 15. MN 2, top LH2, bottom =200 kg/m3 

 

CONCLUSIONS AND FUTURE WORK 

A number of valuable conclusions can be drawn from this 

study.  First, knockdown factors for a specific fluid are not 

constant but instead are dependent on the mode shape, although 

the largest this variability gets is about 10% for LOX, the 

densest fluid.  The factors decrease the most for lower 

frequency shapes and less for higher ones.  It follows, therefore, 

that mode number mismatch between air and fluid operation 

becomes not only possible, but common, as a knockdown factor 

for a particular mode shape may be higher than for another 

mode shape.  Since this is a function of added mass, the 

mismatch is more prevalent for higher density fluids, but it 

initiates even for very low density ones.  

Another important conclusion reached is that it appears that 

the basic mode shapes of a structure do not change if it is fully 

symmetric, which includes its geometry and boundary 

conditions.  There is some indication of small changes in the 

relative magnitudes within the mode shape.  This conclusion is 

evident in the results from the cantilever rectangular plate and 

the inducer, which are not symmetric, and the fixed-fixed plate 

and the annular disk, which are.  For non-symmetric structures, 

though, the mode shapes almost universally change for dense 

fluids, as shown by the very low MAC calculations.  For the 

inducer in particular, the changes follow a trend of reduced 

parabolic and sine wavelengths with increasing density. 
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Table 5. Modal Trace with Density Variation 

#  Vacuum  LH2  Methane   Kerosene LOX 

1 

1.5 sin 

w/lengths, 

OP 

1.5 sin, 

OP 
1 sin, OP 1 sin, OP 1 sin, OP 

2 

1.5 sin 

w/lengths, 

IP 

1.5 sin, 

IP 

1.5 sin, 

OP 

1.5 sin, 

OP 

1.5 sin, 

OP 

3 

1 

Parabolic,  

1 Sin, IP 

1 

Parabolic,  

1 Sin, IP 

1.5 sin, 

OP 

1.5 sin, 

OP 

1.5 sin, 

OP 

4 2 sin, IP 

1 

Parabolic,  

1 Sin, OP 

2 sin, OP 2 sin, OP 2 sin, OP 

5 2 sin, OP 2 sin, OP 
1.5 sin, 

IP 

1.5 sin, 

IP 

1.5 sin, 

IP 

6 

1 

Parabolic,  

1 Sin, OP 

2 sin, IP 2 sin, IP 2 sin, IP 2 sin, IP 

7 2.5 sin, IP 
2.5 sin, 

OP 

Parabolic,  

Sin, OP 

Parabolic 

,  Sin, OP 

Parabolic,  

Sin, OP 

8 
2.5 sin, 

OP 

2.5 sin, 

IP 

2.5 sin, 

OP 

2.5 sin, 

OP 

2.5 sin, 

OP 

9 

1.5 

Parabolic, 

1 Sin, OP 

1.5 

Parabolic,  

1 Sin, OP 

Parabolic,  

Sin, IP 

Parabolic,  

Sin, IP 

Parabolic,  

Sin, IP 

10 

1.5 

Parabolic,  

1 Sin, IP 

1.5 

Parabolic,  

1 Sin, IP 

2.5 sin, 

IP 

2.5 sin, 

IP 

2.5 sin, 

IP 

11 3 sin, IP 3 sin, IP 3 sin, OP 3 sin, OP 3 sin, OP 

12 3 sin, OP 3 sin, OP 3 sin, IP 3 sin, IP 3 sin, IP 

13 
3.5 sin, 

OP 

3.5 sin, 

OP 

3.5 sin, 

OP 

3.5 sin, 

OP 

3.5 sin, 

OP 

14 3.5 sin, IP 
3.5 sin, 

IP 

3.5 sin, 

IP 

3.5 sin, 

IP 

3.5 sin, 

IP 

15 4 sin, OP 4 sin, OP 4 sin, OP 4 sin, OP 4 sin, OP 

16 4 sin, IP 4 sin, IP 4 sin, IP 4 sin, IP 4 sin, IP 

17 

4.5 sin, 

OP, hub 

bend 

4.5 sin, 

OP, Hub 

Bend 

4.5 sin, 

IP 

4.5 sin, 

IP 

4.5 sin, 

IP 

18 

4.5 sin, 

IP, Hub 

Bend 

4.5 sin, 

IP, Hub 

Bend 

4.5 sin, 

OP 

4.5 sin, 

OP 

4.5 sin, 

OP 

19 
4.5 sin, 

OP 

4.5 sin, 

OP 

5 sin, IP, 

W to E 
5 sin, OP 5 sin, OP 

20 4.5 sin, IP 4.5 sin,IP  5 sin, OP 5 sin, IP 5 sin, IP 

 

 

 

 

 

 

Table 6.  MAC between LOX and Vacuum 

LOX Vac/1 2 3 4 5 6 7 8 9 

1 0.00 0.14 0.00 0.01 0.00 0.71 0.00 0.13 0.00 

2 0.66 0.00 0.19 0.00 0.02 0.00 0.00 0.00 0.07 

3 0.00 0.47 0.00 0.30 0.00 0.00 0.00 0.10 0.00 

4 0.00 0.00 0.05 0.00 0.90 0.00 0.01 0.00 0.00 

5 0.26 0.00 0.68 0.00 0.05 0.00 0.01 0.00 0.00 

6 0.00 0.45 0.00 0.38 0.00 0.13 0.00 0.00 0.00 

7 0.14 0.00 0.10 0.00 0.01 0.00 0.12 0.00 0.34 

8 0.00 0.03 0.00 0.28 0.00 0.16 0.00 0.43 0.00 

9 0.00 0.00 0.00 0.09 0.00 0.04 0.00 0.16 0.00 

 

 

 

Table 7. Knockdown Factor Ranges and Averages 

Fluid Factor Range Average 

Factor 

LH2 2.8 – 5.3% 3.9% 

Methane 14.8 – 22.6% 18.1% 

Kerosene 24.0 – 33.5% 28.0% 

Water 27.6 – 38.0% 32.0% 

LOX 29.9% – 40.5% 34.4% 

 

It is critical to recognize the change in mode shape for 

several reasons.  First, model updating with modal test becomes 

problematic if the shapes change.  Second, design to avoid  

resonance is highly critical on the mode shape for modes other 

than the primary ones, as resonance is only a factor when the 

excitation shape matches the mode shape.  Finally, application 

of the modal superposition method of forced response analysis 

is dependent on the use of accurate mode shapes. 

A more-refined assessment of the “knockdown” factor 

values and ranges than any previously reported in the literature 

for a realistic engineering structure is also presented in this 

paper.  This data is of tremendous benefit for preliminary 

analysis and design, where a quick estimate is necessary.  These 

results are important not just for rocket engine turbomachinery, 

but for water pumps and turbines, propellers, and any other 

structure operating in a heavy fluid with dynamic excitation.  
The clear avenue for future work for this endeavor is to 

expand the analytical techniques discussed in the literature to 

develop analytical expressions and justification for the mode 

shape changes and associated frequency knockdowns.  These 

expressions must be able to accurately predict the functional 

relationship to the shapes, which will enable accurate tracing of 

the mode number from vacuum analysis (or testing in air) to 

analysis and operation in the intended fluid environment. 
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Figure 16. Knockdown Factor vs. Density 
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