

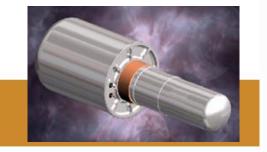
Selection of High Temperature Organic Materials for Future Stirling Convertors

E. Eugene ShinOhio Aerospace Institute (OAI)/NASA-GRC15th IECEC/AIAA Propulsion & Energy, 10 - 12 July, 2017

15th IECEC/AIAA Propulsion & Energy, 10 - 12 July, 2017 Atlanta, Georgia

Collaborators and Contributors

This paper presents an overview of extensive work started at 2012 which involved numerous dedicated collaborators and contributors:


- Dan Scheiman, Paula Heimann, Andrew Ring, OAI/NASA-GRC; Robert Pelaez, Sal Oriti, NASA-GRC; Chris Burke, Tim Ubienski, Tony Kapucinski, SLI/GRC-FTH; D. Jordan McCrone, GRC-LMA/VPL; and Samuel Slingluff, summer interns at NASA-GRC.
- Mike Gorbulja, KOL-CAP Manuf.; Kerry Arnold, Cliff Fralick et al., Sunpower, Inc.; Mike Booker, CTL Inc.; Steve Hassman, Long-Lok Corporation.
- Scott Wilson, Wayne Wong, Terry O'Malley, Jim Withrow, Lee Mason, NASA-GRC, for project guidance and management,
- Tiffany Williams, NASA-GRC, for reviewing various reports and this paper.
- This work was sponsored by the GRC-Radioisotope Power System (RPS) program office with funding from Science Mission Directorate (SMD).

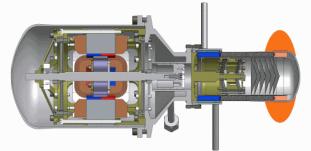
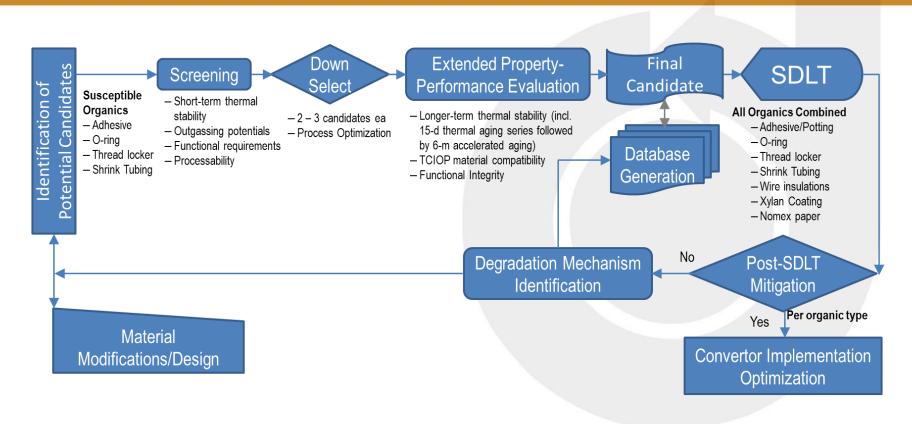


Table of Contents

- Backgrounds; Objectives; Overall Program Plan
- Materials and Processes
- Experimental
 - Material Property Testing; Thermal Aging; TCIOP Testing
- Results and Discussion
 - Initial Screening and Down-selection
 - Extended Property-Performance Evaluations
 - Functional Performance
 - Long-term Thermal Stability
 - TCIOP Material Compatibility
- Summary and Conclusions
- Future Work Plan

Backgrounds

- Organics in Stirling convertors for design flexibility or unique properties and functionalities, such as bonding, potting, sealing, thread locking, insulation, and lubrication: a total of ~ 22 gram
- SOA Convertor operating environment
 - Pressurized with dry inert gas and hermetically sealed, but potential outgasses from organics or residual contaminants
 - Elevated temperatures, ~90 120 °C, and radiation exposures
 - Long mission cycles up to 17 years, such as deep space explorations
- In future convertors, much higher operating temperature, ~ 165 200 °C, for improved efficiency & performance
- → HT organics should be screened & evaluated!



Objectives

- Screen, evaluate, and validate high temperature organic materials for future Stirling convertor applications, more specifically in terms of
 - Performance, durability, and reliability
 - Material compatibility
- Identify application limits of the candidate materials, and develop their performance and lifetime predictions

Overall Program Plan

- The initial efforts focused on the most susceptible organics
 - → the plan completed up to the "Final Candidate" step as of today

Materials and Processes

Candidate materials investigated, all commercially available

Material Class	Brand	Maker	Max. T	Install T °C	Product properties
Adhesive/	Potting Ca	ndidadates	3		
Ероху	Hysol EA9394 C-2	Henkel	232	93/115	Two part epoxy paste filled with aluminum particle; long pot-life (8 hours at 25 °C)
Cyanate	FM2555	Cytec	232	177/227	Supported film adhesive on structural carrier; 0.06 psf film
ester	RS-4A	YLA		177	Unsupported film adhesive; 0.03 psf film
Ероху	L-313U	JD Lincoln	204	135/213	Unsupported film adhesive; 0.05 psf film
Гъ	AF191K AF191U	3M	204	177/204	Supported (0.08 psf) or
Ероху					unsupported (0.055 psf) film adhesive
Ероху	AF131-2	3M	232	177	Flexible scrim supported film adhesive, 0.075 psf
Thread Lo	cker Candi	dates			
Dimethacryl	Loctite 266	Henkel	232	25 – 40	One part, surface insensitive, high strength, high temperature anaerobic material
ate ester	Loctite 294	Henkel	204	25 – 40	One part, low viscosity, high temperature anaerobic locking and sealing material
Ероху	Resbond 507TS	Cotronics	260	25	Two parts epoxy-based thread locker & sealant, filled with PTFE particle for lubricity
Ceramic	Resbond 907TS	Cotronics	1148	25/121	Water-based proprietary material, cured by moisture removal
PET	Poly-Lok Patch	Long-Lok Fasteners	204	25	Solidified plastic locker patched on fastener at predetermined locations with optimum amount

•		_			
Material Class	Brand	Maker	Max. T	Install T °C	Product properties
Shrink Tul	bing Candi	dates			
Polyimide	208X	Dunstone	220– 400	350	Shrink ratio > 1.12:1; highest temperature shrinkable film commercially available
PEEK	PEEK	ZEUS	260	330	Shrink ratio > 1.4:1; excellent abrasion resistance and radiation resistance
Teflon copolymer	PFA	ZEUS	260	340	Shrink ratio > 1.4:1; improved thermal stability and radiation resistance
ETFE	RT-555	Raychem	200	220	Shrink ratio > 2:1; extremely resistant to hydrocarbons, low outgassing
Silicone	SRFR	Raychem	200	175	Shrink ratio > 1.5:1; extremely flexible
O-ring Car	ndidates				
Silicone	70SLR	Marco	200	n/a	Baseline material for current SOA convertors
	S1151	Marco	315	n/a	High temperature formulation
Perfluoro- elastomer/	Kalrez	DuPont	260	n/a	Excellent chemical and temperature resistance
Fluoro- carbon	Markez Z1028	Marco	300	n/a	Black, excellent chemical compatibility and high temperature capabilities
Rubber (FFKM)	Markez Z1307	Marco	275	n/a	Translucent, semi-crystalline nano-filled; low out-gassing; high temp capabilities

Materials and Processes, Cont'd

Adhesive/potting candidates

- Processed in a hot press or autoclave after conventional vacuum-bagging
- Initial cure conditions per manufacturer's recommendations → optimized for final
- Optimum mixing in a Thinky mixer for two part systems
- Various sheet samples: thick (~ 1.5 mm) to mimic the potting; thin (~0.1 mm) or the thin sample but laminated between metal substrate to mimic bonding

Thread locker candidates

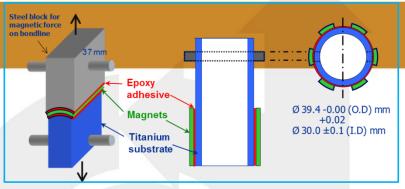
Cure conditions optimized during initial screening evaluations

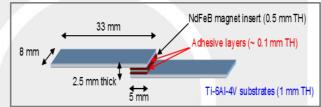
Shrink tubing candidates

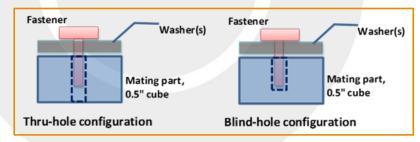
■ 3/16" OD – 1.12" (30 mm) long sections; shrunk snugly without metal core

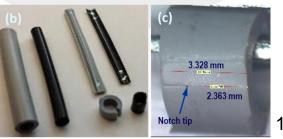
O-ring candidates

Nominal, 7/16" ID - 9/16" OD – 1/16" CS (Actual, 0.426" ID - 0.070" CS)


Experimental: Material Property Testing


- Extensive and systematic material property characterizations (i) to compare candidates and (ii) to identify the degree of degradation and its mechanisms as a function of exposure conditions:
 - Physical properties, e.g., weight, dimensions, color, and surface microstructures
 - Thermal properties T_m, T_g, T_γ, T_r, T_t, T_{end}, T_{exo}, ΔH, ΔWt%, G', G", and % cure via mDSC, TGA, and DMA or TMA;
 - Other outgassing characteristics by isothermal TGA analysis, typically at 120, 150, or 200 °C for 7 hours: initial wt loss, dwell wt loss, and wt loss rate at the last 100 minutes related to ASTM outgassing database
 - Molecular/chemical structural properties via FT-IR spectral analyses



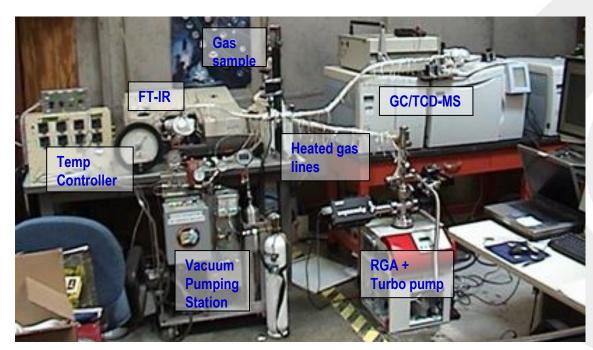

Material Property Testing, Cont'd

- Mechanical properties based on the functional requirements of the organics
 - Adhesive: bonding integrity in shear and <u>FWT</u> mode using either <u>component-level full-scale</u> or <u>subscale</u> <u>sandwich lap shear</u> specimens for both <u>static</u> and <u>fatigue</u> loading modes,
 - Thread locker: torque strengths in 3 4
 representative joint types using the same materials,
 same dimensions, and configurations (esp. thru-hole
 vs. blind-hole) as the actual convertor components,
 based on the BS EN 15865 Standard,
 - Shrink tubing: notched tensile properties, in both axial and radial directions
 - O-ring: compression-set; hardness; tensile properties followed by the ASTM standards, D395, Method B; D2240, Shore A scale; D1414, Method B, respectively

Experimental: Thermal Aging

- SOP for start-up & shut-down
- Inert gas environment, N₂ gas
 - Temperature & gas flow rate monitored and adjusted daily
- 15-day thermal aging up to 260 °C
 - Two phases at 4 temperature ea.
- 6-month accelerated aging
 - Adhesive, shrink tubing, and o-ring candidates run together at 175, 200, and 225 °C
 - Thread locker at 190 and 220 °C

1 Blue M #5 or #6 or PC Oven for


175, 205, 220 & 260 °C Aging

Experimental: TCIOP Testing

Integrated RGA-GC/TCD-MS-FTIR gas analysis system

 Systematic residual property characterizations of the TCIOP exposed samples → outgas-induced degradation and its mechanisms

Standardized test procedure:

- 1. loaded samples into PV, pulled vacuum
- 2. baked @ 90 °C for 1 day under vacuum
- 3. charged with the pre-mixed gas, typical Stirling gas sample, to ~ 400 psi @ RT
- 4. leak-checked for 1 day
- 5. analyzed gas sample @ RT by all
- 6. heated to 100 °C; dwelled 3 days
- 7. heated to 150 °C; dwelled 2 days
- 8. heated to 200 °C; dwelled 7 days
- heating rate @ 1 °C/min
- during heating, outgas analysis only by FT-IR every 20 min
- during dwell, outgas analyses by all per day

Results & Discussions: Initial Screening and Down-selection

Overall ratings of adhesive/potting candidates

J J										
Material type Properties	L-313	RS-4A	F M2555	AF131-2	AF 191K	EA9394C-2				
Cure Condition	_	_	-	_	-	/ +				
Processability/Applicability	0	_	_	0	0	+				
Multi-purpose Application	+	_	_	_	-/	+				
Thermal Degradation Temperature/TGA	+	+	+	+	+	+				
Weight loss/outgssing potential	_			+	0	0				
Thermal Transisiton/mDSC	0	0	0	0	0	0				
Shear Bond Strength	+	_	_	+	+	+				
FWT Bond Strength	_			+		+				
Final Selection				✓		✓				

Note: 0, neutral or insignificant effect; +, positive performance; ¬ negative performance

- Superior thermal performance and stability for AF131-2
- Best multi-purpose system and large supportive database from the basic formulation, EA9394, for EA9394C-2

Overall ratings of thread locker candidates

<u>V</u>				
Material type Properties	Loctite 266	Loctite 294	Resbond 507TS	Resbond 907TS
Cure Condition	+	+	+	+
Processability	0	0	0	0
FT-IR @ RT	0	0	0	0
Thermal Degradation Temperature/TGA	+	+	+	+
Weight loss/outgssing potential/iso-TGA	0	0	+	_
Thermal Transisiton/mDSC	0	0	0	0
Breakaway Torque	0	0	+	+
Max. Prevailing Torque	1	+	+	0
Final Selection		✓	✓	

Note: 0, neutral or insignificant effect; +, positive performance; -, negative performance

- Torque strength tested on M10 steel nuts & bolts at RT as a function of cure conditions
- Poly-Lok PET was also selected as an alternative because of its potential as a solid patch system

Results & Discussions: Initial Screening and Down-selection

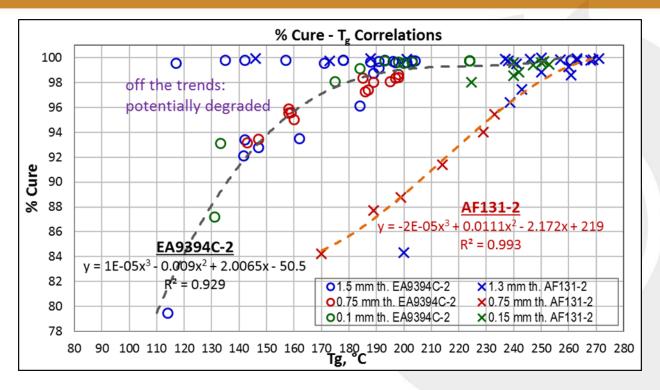
Overall ratings of shrink tubing candidates

Material type	Viton (a)	PFA	SRFR	ETFE	PEEK	PI
Properties	vitori (a.)	117	OKTIK			
Shrinking Temperature	+	+	+	+	- /	_
Shrinking Ratio	+	_	+	+	-/-	-
FT-IR @ RT: on both OD and ID	0	0	0	0	0	0
Thermal Degradation Temperature/TGA	+	+	+	+	+	+
Weight loss/outgssing potential/iso-TGA	+	+	+	+	/ -	-)
Thermal Transisiton/mDSC	0	0	0	0	0	0
Modulus-Drop Ratio <u>Axial</u>	_	_	0	0	+	+
at Temperature/DMA Radial	_	_	0	0	+	+
Notched Tensile strength: Axial	_	0	0	0	+	+
Notched Tensile strength: Radial	_	0	0	0	+	+
Final Selection			✓	✓		

- Shrinking process conditions optimized for each candidate
- Final candidates selected with less negative performance, thus need more thorough extended evaluations

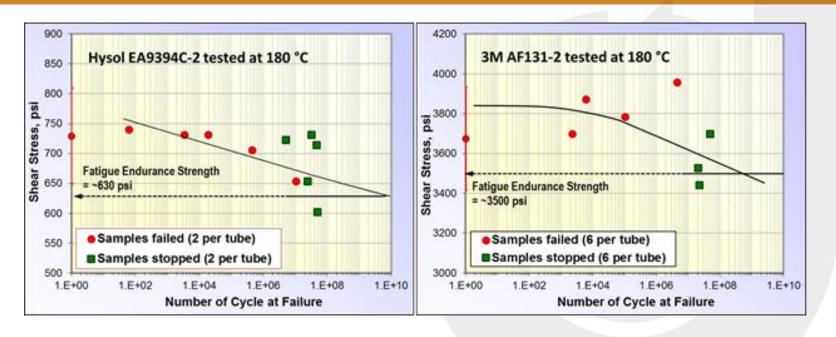
Overall ratings of o-ring candidates

O-ring type Properties	70SLR	S1151	Kalrez	Z1028	Z1307
FT-IR	0	0	0	0	0
mDSC/DSC - Thermal transitions	0	0	0	0	0
TGA - Thermal degradation onset	+	+	+	+	+
TGA & Iso-TGA - Outgassing potential	_	_	+	+	+
DMA - Compression Storage Modulus	0	+	+	+	_
Compression-set	0	0	0	+	+
Tensile properties: Modulus	0	+	_	_	_
Tensile strengt	0	0	_	+	_
Ultimate elongation	0	0	0	0	0
Max use Temp by Manufacturer	0	+	+	+	+
Final Selection		✓		✓	


Extended Evaluations: Functional Performance

- Adhesive for magnet bonding identified as the most critical organic for the Stirling convertor due to its single point failure reliability assessment
- Extensive cure kinetics-% cure-property relations ascertained for optimizing cure conditions
 - investigated broad cure/postcure temperature-time conditions including the results from both 15-day thermal aging and 6-month accelerated thermal aging tests,
 - targeted the degree of cure higher than 99.5%
 - identified under-cured state or thermal degradation via. systematic property characterizations
 - → The optimum conditions typically required higher cure temperatures or much longer cure time than the manufacturer's recommended conditions.
 - → Increasing the postcure temperature to 190 205 °C for up to 360 hours improved thermal stability of both candidates.

15

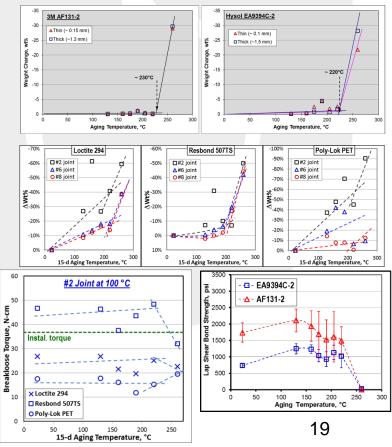

Extended Evaluations: Functional Performance

- \checkmark Distinctive % cure-T_q correlation regardless of sample thickness \rightarrow used for performance predictions
- ✓ The highest T_g achieved was fairly close for both adhesive candidates, 260 °C vs. 270 °C, but non-linear relationship for EA9394C-2 vs. linear relationship for AF131-2
- ✓ The initial cure conditions determined by the manufacturer's recommendations were acceptable.

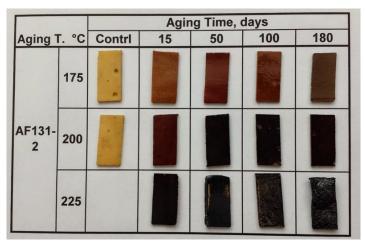
Extended Evaluations: Functional Performance

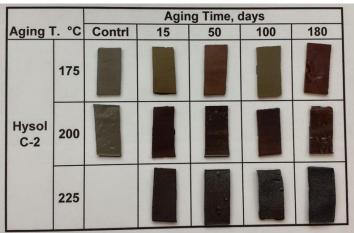
- ✓ Bonding performance via fatigue testing of full-scale component size coupons @ 180 °C
- ✓ AF131-2 outperformed EA9394C-2, but their fatigue strengths were much higher than the theoretical strength needed
- ✓ Fatigue performance of the EA9394C-2 at 180 °C was comparable to that of the regular EA9394 at 115 °C, i.e., improved thermal stability

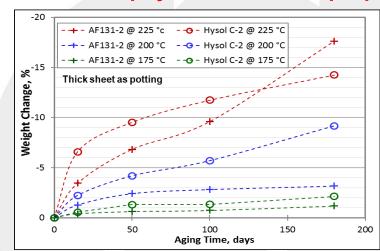
17

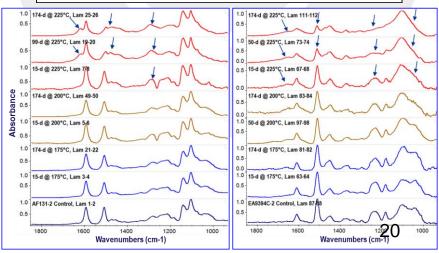

Long-term performance and thermal stability

- ➤ 15-day thermal aging tests as a function of temperature up to 260 °C Specific objectives:
 - to assess more meaningful but practical short-term thermal stability of downselected candidates and
 - to determine the aging mechanism-based maximum temperatures for the 6month accelerated thermal aging tests
- ➢ 6-month accelerated thermal aging tests at 2 − 3 temperatures Specific objectives:
 - to assess longer-term thermal stability and integrity for life predictions
 - to determine the application limits of the down-selected candidates via extended and systematic property-performance characterizations, and subsequently select the final candidate

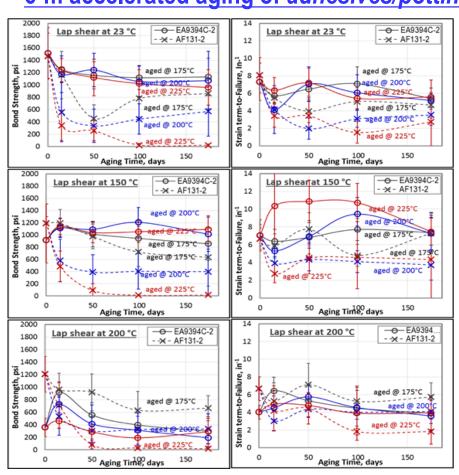

- From the systematic physical-thermal-chemical-mechanical property characterizations as a function of 15-day aging temperature,
 - Good short-term thermal stability up to:
 - 220 230 °C for both adhesives
 - 220 °C for all TL candidates
 - and a distinctive change in aging mechanism
- T_{max} for the accelerated aging tests
 - 175, 200, and 225 °C for adhesives, also for shrink tubing and o-ring candidates*
 - 190 and 220 °C for TL candidates

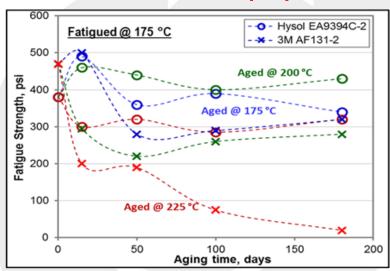

^{*} Not tested due to logistics issues, but based on the initial screening test results, manufacturer's technical data, and max use temperature ratings



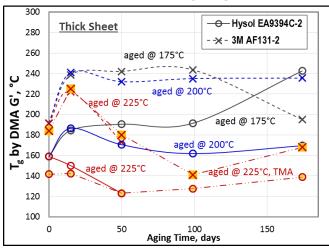


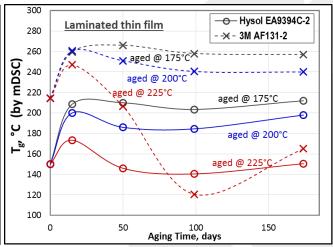
6-m accelerated aging of adhesives/potting candidates: physical, chemical properties

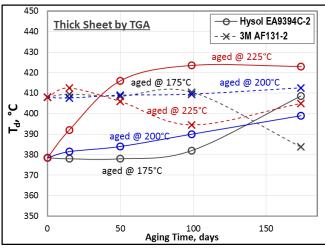


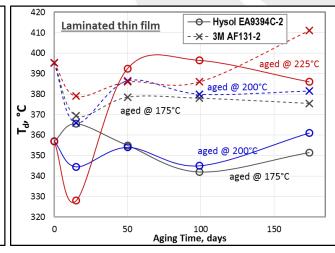


6-m accelerated aging of adhesives/potting candidates: mechanical properties

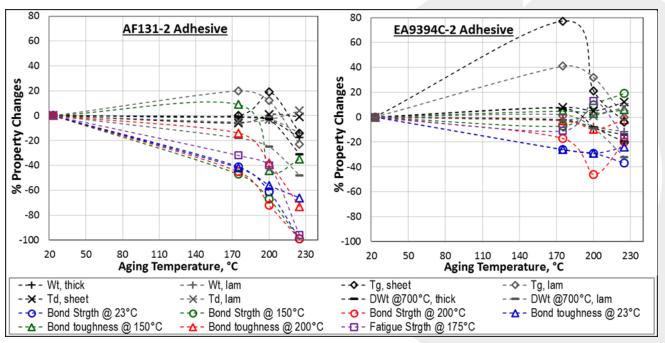




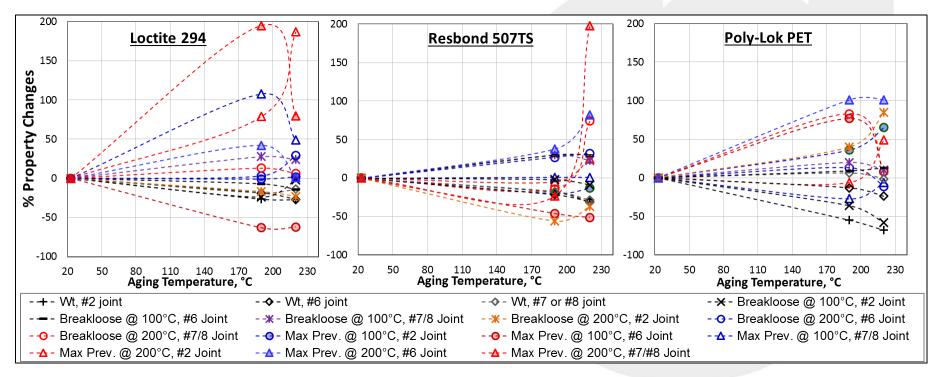

- Significant property degradation in AF131-2 when aged above 200 °C
- Better thermal stability from EA9394C-2 regardless of aging or test conditions
- But, when aged below 200 °C, bond strengths of both candidates were considerably higher than the required strength for the magnet bonding.



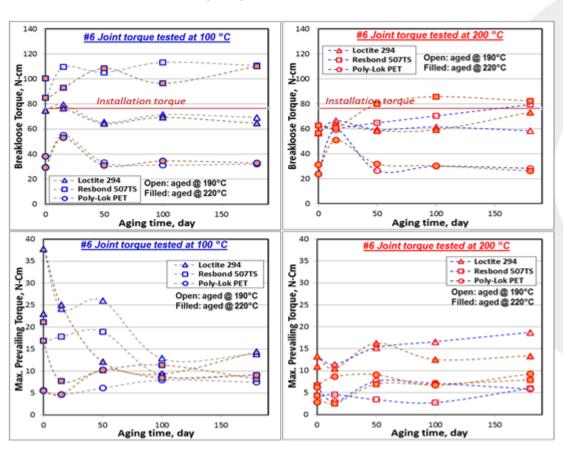
6-m accelerated aging of adhesives/potting candidates: thermal properties



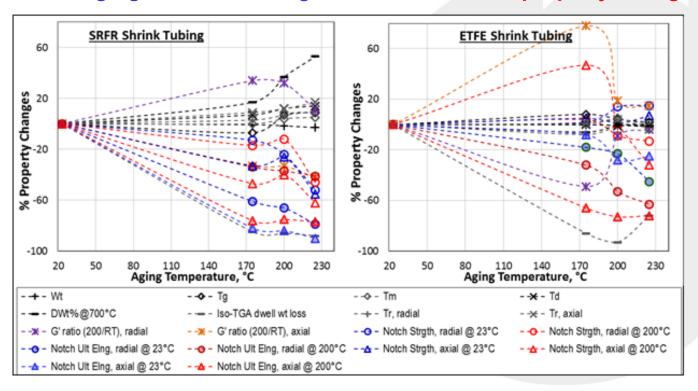
- Most visible property degradation occurred when aged at 225 °C in both candidates.
- The changes were greater for the AF131-2 in most cases.


6-m accelerated aging of adhesives/potting candidates: overall property changes

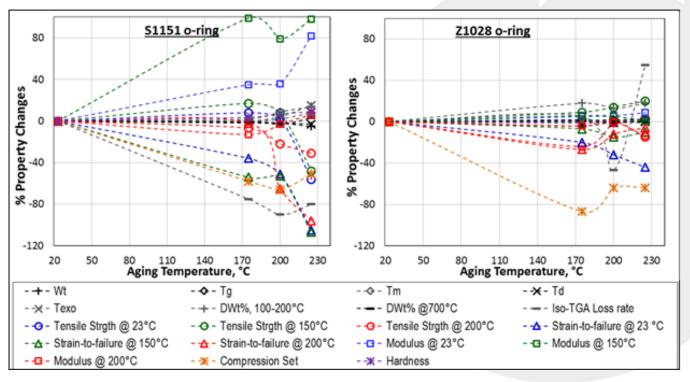
- In most cases, changes in properties leveled-off or stabilized after 180 day regardless of aging T.
- AF131-2 suffered greater reductions in most properties than EA9394C-2, with sharper, more distinctive transitions at 175 − 200 °C → Better thermal stability from EA9394C-2.
- Larger changes indicate greater effects of the thermal aging, esp., negative changes.


6-m accelerated aging of TL candidates: overall property changes

 More positive changes in Loctite 294 and Poly-Lok PET, but better thermal stability from Resbond 507TS


6-m accelerated aging of TL candidates: mechanical properties

- Resbond 507TS outperformed other candidates regardless of aging condition, joint type, or test temperature.
 - → the only candidate generating 100 °C breakloose torques greater than the installation torques in all three joint types
- At 200 °C, the Resbond 507TS suffered the most loss of breakloose torque even though its strength was still higher than others.


6-m accelerated aging of shrink tubing candidates: overall property changes

 ETFE performed significantly better in most mechanical properties and more thermally stable than SRFR regardless of sample direction (either axial or radial) and test temperature.

6-m accelerated aging of o-ring candidates: overall property changes

- Overall, Z1028 was more thermally stable than S1151.
- Z1028 outperformed S1151 in most mechanical properties.
- Signs of thermal degradation in S1151 when aged above 200 °C

Extended Evaluations: TCIOP Material Compatibility

Temperature-alone Combined In-situ Outgassing (TCIO) Test with Pre-mix gas

Specific objectives:

- to determine outgassing behavior of the down-selected candidates under the typical Stirling convertor pre-mix gas environment and its effects on their properties and performance
- to assess material compatibility for the Stirling application.
- → Material compatibility assessment made with two step process:
 - (i) in-situ outgas analyses and (ii) residual property characterizations

Extended Evaluations: TCIOP Material Compatibility

Outgas Analysis Summary

Pre-mixed g	Pre-mixed gas: 107 ppm H ₂ , 1,060 ppm O ₂ , 3,081 ppm N ₂ , 312 ppm CO ₂ , and the balance of He								
Exposure temperature, °C		100 150				150	200		
Exposure time, day		1		3	1	2	1	7	
Adhesive	EA9394C-2				СН	-O-H↑	$H_2\downarrow$; $O_2\downarrow$; $CH_4\uparrow$; $H_2O\uparrow$; $CO\uparrow$; $CO_2\uparrow$		
/potting	AF131-2	no sig				no si	gnificant changes		
Thread	Loctite 294						$O_2\downarrow$; $H_2O\uparrow$; $CO\uparrow$; $CO_2\uparrow$; -CH3/-CH ₂ - \uparrow		
Locker	Resbond 507TS						$O_2\downarrow$; $H_2O\uparrow$; $CO\uparrow$; $CO_2\uparrow$; $-CH_3/-CH_2-\uparrow$		
Shrink	ETFE						CO^{\uparrow} ; $-CH_3/-CH_2-^{\uparrow}$; $C-F^{\uparrow}$		
Tubing	SRFR						$O_2\downarrow$; $CH_4\uparrow$; $H_2O\uparrow$; $CO_2\uparrow$; $-CH_3/-CH_2-\uparrow$; Silicone vapor \uparrow		
O ring	S1151						CO [↑] ; -CH ₃ /-CH ₂ - [↑] ; Silicone vapor [↑]		
O-ring	Z1028					no si	gnificant changes		

^{*} Outgassing from trapped volatiles vs. chemical reaction by-products vs. thermal degradation

Extended Evaluations: TCIOP Material Compatibility

Residual Property Characterizations Summary

	Properties*	Physical	Chemical	Thermal	Mechanical
Adhesive/	EA9394C-2	∆Wt% [↑]	-	T _g ↑; % cure↑; G'↑; T _d ↑	Bond strength↓
potting	AF131-2	∆Wt%↓	-	T_g^{\uparrow} ; % cure \uparrow ; G' \uparrow ; T_d^{\downarrow}	Bond strength [↑]
Thread	Loctite 294	∆Wt%, joint #8 <mark>↑</mark>	-	n/a	Torque strength↑
Locker	Resbond 507	∆Wt%, joint #8 <mark>↑</mark>	-	n/a	Torque strength↑
Shrink	ETFE	n/a	-	T _d ↑	Notch strength↑
Tubing	SRFR	n/a	Δ^{\uparrow} , oxidation, side-chain	$T_{m}\downarrow$; $T_{d}\downarrow$; $T_{t}\uparrow$	Notch strength↓
O-ring	S1151	n/a	∆↑, oxidation, side-chain	$T_{exo}\downarrow$; $T_{d}\downarrow$; $T_{t}\uparrow$	$C_B \downarrow$; $E_Y \uparrow$; $\sigma_f \downarrow$; $\varepsilon_f \downarrow$
39	Z1028	n/a	-	$T_{exo} \!\!\downarrow$	$C_B \downarrow$; $\varepsilon_f \downarrow$

^{*} TCIOP exposed against Temperature-only exposed under inert gas environment

Summary and Conclusions

- Multi-step evaluation process was successfully performed to screen and down-select the best HT candidates for various organic materials for future Stirling convertor application.
- As a part of the evaluation, processing and installation conditions of the candidates have been optimized for their applications.
- The application limits of all material candidates were also identified based off the extensive property and performance data.
- The highest service temperature of the final candidates shall be further validated by the synergistic durability life testing (SDLT)

Summary and Conclusions, Cont'd

Organic Type	Down-selected Candidates	Application limit	Strength	Final Selection
Adhesive	EA9394C-2	~ 225 °C	Thermal stability	$\sqrt{}$
/potting	AF131-2	180 – 200 °C	Material compatibility	
	Loctite 294	~ 225 °C	Thermal stability	
Thread Locker	Resbond 507TS	~ 200 °C	Locking performance	√
LOCKO	Poly-Lok PET	~ 225 °C	Thermal stability	
Shrink	ETFE	~ 200 °C	Thermal stability, material compatibility	√
Tubing	SRFR	~ 200 °C		
	S1151	< 200 °C		
O-ring	Z1028	~ 225 °C	Thermal stability, material compatibility	

Future Work Plan

- Selection of the best candidates thus far was primarily based on the extended thermal aging experiments performed under an inert gas environment and a short-term TCIOP test under a typical Stirling convertor gas environment.
- As per the overall program plan, the final candidates shall be further evaluated and validated via the synergistic durability life tests (SDLT) after combining all convertor organic materials in a simulated Stirling service environment. The tests will consist of radiation exposures (gamma and neutron) and subsequent thermal aging up to 3 years at three temperatures tbd. Three - four aging intervals, also tbd, are planned for outgas analyses and the extensive residual property characterizations.
- Once they are validated, the final process and installation optimizations, and implementation optimizations will be also followed.

Thank You for your attention!

Any Questions?

