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Objectives 

Develop AM Processes to Reduce Costs/Schedules for Liquid Engine Components 

▪ Additive Manufacturing (AM) / Selective Laser Melting (SLM) GRCop-84 (Cu-8Cr-4Nb) 
    ◦ Also evaluating C-18150 (CuCrZr) and Glidcop 
▪ Direct Metal Laser Sintering (DMLS) Copper & Nickel Alloys 
▪ Bimetallic AM Chambers 
    ◦ Laser Cladding 

            Direct Metal Deposition (DMD) 
    ◦ Electron Beam Freeform Fabrication (EBF3) 
    ◦ Arc-based Deposition 
    ◦ Freeform Blown Powder Deposition/Directed Energy Deposition 

Techniques Evaluated: 

Approach: 
▪ Fabricate Various Thrust Chamber Designs with Multiple Techniques 

       - Develop Process Parameters with Samples & Components 
       - Characterize Material Properties 
       - Proof Test Samples & Components 
       - Apply Lessons Learned for Timely Design Mods 
▪ Hot-fire Test Chambers in Relevant Environments 

Transfer Technologies to Industry to Enable Long Term Supply Chains 

Reduce Overall Mission Costs 



Development of SLM GRCop-84 Material Processing 

 Challenges in SLM processing for copper-alloys 

 Copper is highly reflective in red and near-IR 

spectrums 

 High conductivity so heat is rapidly conducted away 

from melt pool 

 GRCop-84 was easily melted using SLM  

 (14 vol.% Cr2Nb) 

 SLM process did not result in segregation of Cr2Nb 

precipitates 

 Cr2Nb appears to have been refined in size 
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HIP process developed, well 
above annealing temperature 

(600˚C / 1112˚F) 



• Strength values similar to extruded GRCop-84, elongation 

increased significantly with HIP cycle 

– Differences observed in horizontal and vertical build orientations 

• LCF testing completed in as-built condition (simulated channel) 

– Cracking initiated in as-built surface 

– LCF of as-built surface is lower than extruded, not unexpected 
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Mechanical Properties of SLM GRCop-84 

LCF of as-built SLM GRCop-84, RT 

Avg. Stress-Strain curves of SLM GRCop-84, AS-built and HIP’d 

LCF Fracture surface 



Additively Manufactured SLM Material is Unique 
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SLM GRCop-84 Copper-alloy in the as-built condition (ASTS, Huntsville) 



Low Cost Upper Stage Propulsion (LCUSP) Program 

Multi-Center NASA Program under NASA STMD Game Changing 

MSFC 
•Project Management 
•Component Design 

•SLM GRCop-84 Chamber Liner  
•C-C Nozzle Development 

LaRC 
EBF3 development to direct deposit Inconel 

jacket onto SLM GRCop-84 Liner 

GRC 
Material Property & Characterization for 

SLM GRCop-84 & EBF3 Inconel 

Program Goal 
Advance select technologies  

by fabricating & hot-fire testing a 
35K lbf Regeneratively Cooled LOX/H2  

Thrust Chamber Assembly (TCA) 6 



LCUSP Chamber Fabrication 

Water flow Testing 

EBF3 Process; Pull Test Specimen for Bond interface 

Print samples evaluated 
 Hot wall thicknesses – successfully 

printed & proof tested 
 Channel sizes as small as 0.030” with 

+/- .001” print tolerances  
Mechanical evaluation samples 
 Developed process using Electron 

Beam Freeform fabrication (EBF3) to 
deposit Inco 625 directly onto SLM 
GRCop-84  
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LCUSP Chamber Fabrication 

SLM GRCop-84 – Concept Laser M2 at MSFC 
Aft & Throat Sections on Build Plate 

(with material samples) 

Wedge trial printed first – demo complex geometry 
Structured light scan to compare print to model 

Mid-section EB Weld 

Sections Stacked; Mid-section weld 
& EBF3 Applied 
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AM GRCop-84 Regen (LCH4) Cooled Chamber 

 SLM GRCop-84 at NASA-MSFC (Concept Laser M2) 
 Multiple prints and design modifications required to produce successful part 

 Reshaping open volume manifold with proper angles 
 Developing support features 

 Printed structure includes: 
Inlet/exit manifold volumes, inlet boss for threaded interface 
Integral instrumentation for discrete thermal and performance 
Forward flange welded post-SLM processing 
 

9 As-printed methane chamber Final machined methane chamber 



AM GRCop-84 LCH4 Cooled Chamber - Testing 

Hot-fire testing with LCH4 cooling – Chambers in excellent condition post-test 

Initial testing of throat section; data used to optimize full length chamber 

Full length – 4K-lbf thrust methane chamber 
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1.2K Additive Chamber Development 

Designed to replace vintage subscale thrust chamber  
used for development testing since 1960’s at MSFC. 

Overall size allows for one piece build in available SLM machines. 

Nominal Pc ~ 750 psig; Water cooled design supports LOX/H2, LOX/LCH4, LOX/RP1 injector testing. 
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1.2K AM Chamber Development – Hybrid Design 

AM used to create GRCop-84 liner 
to slip into SS housing 

Hybrid Chamber with AM Liner Installed 
at MSFC TS115 

During Subscale Nozzle Testing at MSFC 
AM GRCop-84 liner accumulated 

2365 seconds (23 starts) of  
LOX/H2 hot-fire exposure 

AM GRCop-84 Liner 

Hot-fire tested with Carbon-Carbon Extension 
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1.2K AM 1-piece chamber design transitioned to 2-piece 

v 

Designs will evolve with additive through print trials, testing 
and design and analysis tools 

Allowed for easier removal of powder, simplified design, 
easier inspections, and reduced overall processing time 

Printed at ASTS, Huntsville 
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Video of AM GRCop-84 Chamber Hot-fire Testing 
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Generic Flow for AM Chamber Fabrication Process 
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AM Chamber Lessons Learned – Design and Build 

► Optimized AM design may not be single-piece 

▪ Welding multiple AM pieces 

        reduces risk, eases powder removal, allows inspection of unique features 
▪ Inlet/outlet ports can easily be welded on; 

        protruding features often experienced print failures 

► Design copper EB weld joints for excess penetration and material heating 

► Coolant channels – 
      ▪ Leave access for powder removal 
      ▪ Increase effective area to account for rough surfaces… 

                600-800 min are possible, although 200-300 min is being demonstrated 
      ▪ Maintain access for interior powder removal 

► Minimize thick areas to eliminate residual stresses (thick flanges can lift off the build plates) 

► Part orientation is critical for coater blade, so optimize design to minimize potential damage 

► Include enough stock for secondary bonding ops, run-outs, &/or final machining 

► Compare exported CAD files back to original model 

► Builds can deform as vertical height increases further from the build plate 

► Structured Light (3D scanning) continuously throughout process 

► Features maintain maximum 45˚ from vertical, less angle enables more successful builds 
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► Powder dose factor is critical as parts get taller. 

▪ Alcohol evaporates and helped remove powder from select channels 

      (although residual powder might clump when exposed to this fluid). 

▪ High pressure (>500 psi) air/GN2 aided in powder removal  

▪ CT scan continuously to verify powder removal. 

▪ Include threaded ports that can be blocked off during powder removal to  

    seal air flow properly (dry state/no oils).  

Mallet blows created microcracks in some components prior to HIP 

► Build direction is critical and overhangs may fail; 45 deg max build angles appear possible. 

► Creating plastic models or building small wedges/slices to demonstrate parameters prior    

    to metal designs can be helpful; identify potential issues prior to actual component builds. 

► TIG braze repairs for debonds worked well; identical filler material is ideal. 

     Include weld wire within SLML builds. 

▪ Removing prior to HIP is ideal, but it can be removed after, since it does not all consolidate. 

► Design for shrinkage/deformation in all process steps, such as welding and metal deposition. 

► Design for Powder Removal 

▪ Physical efforts for powder removal can cause stress on the part. 

AM Chamber Lessons Learned – Design and Build 
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Summary and Future Work for AM Copper Chambers 

 NASA has successfully demonstrated additive 
manufacturing of copper-alloy combustion chambers for 
liquid rocket engines 

 Processing time and cost reductions have been demonstrated 

 NASA has completed parameter development for GRCop-84 using 
additive manufacturing / selective laser melting 

 Parameters are available for industry use 

 Property development complete and reports will be available 

 Design for additive manufacturing techniques have advanced with 
development of AM copper-alloys 

 NASA has completed hot-fire testing of chambers in LOX/H2 and 
LOX/CH4 

 2365+ seconds accumulated on LOX/H2 chambers 

 35K LCUSP chamber tested in 2017 

 Methane chambers being continuously hot-fire tested 

 Additional development to evaluate C-18150 and Glidcop 

 Increase scale available for chamber fabrication 
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QUESTIONS 

GRCop-84 AM Chamber Accumulated 2365 sec  
hot-fire time at full power with no issues 

LOX/Methane Testing of 3D-Printed Chamber 
Methane Cooled, tested full power 

GRCop-84 3D printing process developed at NASA and infused into industry 
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