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I. Introduction 
 

The purpose of this test is to determine the heavy ion-induced single-event effect (SEE) 
susceptibility of the LTC6268-10 from Linear Technology Corp.    
 

II. Test Goals 
 

The primary goals of the heavy ion test are summarized below. 

1. Determine single-event transient (SET) characteristics 
a. Determine SET linear energy transfer (LET) threshold 
b. Obtain worst case SET waveform for applicable operating condition 
c. Map out SET cross section for rate prediction 

2. Determine other SEE characteristics 
a. Evaluate potential susceptibility to single-event latchup (SEL), burnout (SEB), 

and/or dielectric rupture (SEDR). 
b. Evaluate potential susceptibility to dropout 

 
III. Device Under Test 

 
The LTC6268-10 is a single/dual 4 GHz FET-input operational amplifier. It operates 

on 3.1 V to 5.25 V supply and consumes 16.5 mA per amplifier. There is a shutdown 
feature that can be used to lower power consumption when the amplifier is not in use.  
 Figure 1 shows a functional schematic diagram of the device. Table I shows the basic 
part and test details. Detailed device parameters and functional descriptions can be found 
in the datasheet [1].  
 

 
Figure 1. Schematic block diagram. 
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Table I 
Part and test information. 

Generic Part Number: LTC6268-10 
Procured Part Number: LTC6268HS8-10PBF 

Lot Date Code (LDC): 1433 
Quantity Tested: 7 

Serial Numbers of Control Sample: 1, 2 
Serial Numbers of Radiation Samples: 3, 4, 5, 6, 7, 8, 9, 10 

Part Function: Operational amplifier 
Part Technology: BiCMOS 

Package Style: 8-Lead Plastic Small Outline 
Test Equipment: Keithley 2400 current source 

Digital oscilloscope 
Power supply 
PC 

 
 

IV. Test Facility 
  

The heavy-ion testing was carried out at the Texas A&M University Cyclotron Facility 
with a K500 source. The irradiation was carried out in air. A second heavy ion test was 
carried out at the Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator 
Space Effects (BASE) Facility utilizing an 88-inch cyclotron. The irradiation was carried 
out in vacuum at LBNL. 
 
Facility: TAMU and LBNL 
Cocktail:   15 MeV/amu (TAMU) 10 MeV/amu (LBNL) 
Flux: < 1 × 105 ions/(cm2·s) 
Fluence:  ≤ 1 × 107 ions/cm2 
Ions:  Shown in Table II 

 
Table II 

Heavy-ion specie, linear energy transfer (LET) value, range, and energy. 

Ion Initial LET in air 
(MeV·cm2/mg) 

Range in Si 
(µm) 

Energy 
(MeV) 

Ne 2.5 316 300 
Ar 7.7 229 599 
Kr 25.4 170 1259 
Au 80.2 155 2955 
Au 

(LBNL) 85.8 90 1956 
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V. Test Method 
 

A. Test Setup 
Figure 2 shows the schematic diagram of the test circuit. Four parts were mounted on 

each board. The input and output signals for each part were accessed via BNC connectors. 
Also, the parts on a board shared common supply voltages. However, jumper connectors 
allowed for isolation of the supply voltage to each part.  

We supplied the input with a current source (10 or 100 nA). The output was monitored 
using an oscilloscope. The output triggered when the signal exceeded the preset trigger 
level which was set above the noise floor. A LabView program interfaced with the current 
source and scope. The program allowed the user to remotely control the test setup. The 
program also captured and recorded each triggered event. Additionally, a separately 
LabView program controlled the power supply. The supply current levels were recorded 
for each run. 

Figure 3 shows a schematic block diagram of the irradiation test setup. The PC is 
located in the control room, directly above the irradiation chamber. The power supply, 
oscilloscope, and current source were located inside the irradiation chamber. However, the 
equipment were out of the beam source. One part was irradiated at one time. The other 
parts on the same board were shielded from the beam. Figure 4 shows a photograph of a 
test board mounted with four delidded parts.  
 

 
Figure 2. Circuit schematic diagram of the test board. 
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Figure 3. Schematic block diagram of the test setup. 
 

 
Figure 4. Photograph of a test board mounted with four delidded parts. Electrostatic discharge tape attached 
lids are located below the parts. 
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B. Irradiation procedure 
The fluence for each run were set high enough to record a statistically meaningful 

number of upsets (≥ 100) up to a fluence of 2 × 106 cm-2. The flux was maintained low 
enough to avoid multiple ion strikes which can lead to bus contention.  

Beam dosimetry information was recorded for each run, including the beam energy, 
ion specie, ion energy, ion range in silicon, LET at Braggs peak, fluence, flux, and exposure 
time. Total-ionizing dose from the heavy ion irradiation was calculated from the LET and 
fluence.  

 
i. Single-event transient 

A list of the irradiation procedure is as follows. 

1. Set up DUT. Position board to ensure that the stage has full movement capability. 
Ensure proper functionality of DUT 

2. Note the effect of background noise on the signal integrity. Set trigger level 
slightly higher than the noise level to avoid false triggering 

3. Close the irradiation cave 
4. Once again ensure functionality including 
5. Select appropriate ion specie 
6. Set run conditions including the fluence and flux 
7. Start irradiation 
8. Irradiation can be stopped once adequate number of SEU (typically ≥ 100 events) 

is captured or up to a fluence of approximately 1 × 106 cm-2 to 2 × 106 cm-2 for 
statistical confidence 

9. Change the device operating condition (i.e. input current level, etc.), and repeat 
irradiation 

10. Change the beam characteristics and repeat irradiation for each set of device 
operating condition  

11. Map out a cross section vs. LET plot 
 

ii. Single-event latchup 
For single-event latchup evaluation, the DUT was irradiated to 1 × 107 cm-2 at room 

temperature. The supply current was monitored in-situ during the irradiation. An 
exponential increase in the supply current can potentially signal the onset of SEL. In the 
event of a SEL, the procedures are as follows. 

1. Shut off the beam immediately, and record the fluence 
2. If the current is in a stable state, allow the DUT to dwell in the latched condition 

for at least 5 minutes 
3. Attempt to recover operation by first reset then power cycle 
4. After the device recovers functionality, the operator should perform parametric 

characterization to examine for degradation (i.e. input bias current, etc.) 
5. If the part shows no degradation, then irradiation can continue 
6. Determine the SEL LET threshold, and map out a cross section 
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C. Test Conditions 

Test Temperature: Ambient temperature 
Operating Frequency: DC  
Input Current:               10, 100, and 200 nA 
Output impedance: 1 kΩ 
Gain:  100 dB 
Supply Voltage:  V+ = 2.5 V, V- = -2.5 V 
Angles of Incidence:  0o (normal) to 60o (or maximum allowable) 
Parameters: 1) Output voltage 
 2) Supply current 
 3) Supply voltage 

4) Input Bias Current 
  
 

VI. Results 
 

We found that the LTC6268-10 is susceptible to heavy ion-induced SET. We did not 
observe any other type of SEE up to a LET of 85.6 MeV∙cm2/mg. Figure 5 shows the 
SET cross section vs. effective LET for various input currents. Note that we did not 
include the cross section for a LET of 85.6 MeV∙cm2/mg in Figure 5, since some 
transients were not captured or counted, given the higher than normal flux level required 
for a higher fluence (1 × 107 cm-2). We performed the irradiation at that LET to primarily 
examine the hardness to potentially destructive events, which we did not observe. The 
output trigger was set to 200 mVpp to compensate for the level of facility background 
noise. Figure 6 shows a SET amplitude vs. duration distribution plot. The figure shows 
that the SETs can be generally divided into two categories: 1) SETs with a short duration 
on the order of microseconds, and 2) SETs with long duration on the order of 
milliseconds. The majority of SETs have duration less than 7 µsec.  

While the cross section did not vary significantly with the input level, the distribution 
of the SET magnitude showed a clear dependence on the input current. Figure 7 shows a 
column bar chart of the SET count for small and large events at input currents of 10, 100, 
and 200 nA. The SET count generally increases with decreasing input current for both 
small (< 1 msec) and large (≥ 1 msec) events. Furthermore, the number of small events 
increases exponentially with decreasing input current. The SET count for small events is 
significantly higher at 10 nA input current, and the proportion of small to large events is 
enhanced at 10 nA relative to 100 and 200 nA.  

Table III shows the Weibull fit parameters at 95% CL. Table IV shows the PACE 
mission on-orbit upset rates derived from the Weibull fit. The last row in Table IV is the 
solar event rate scaled according to a probabilistic model estimating the likelihood of 
seeing an event of similar magnitude as the October 1989 solar event [2].  Figures 8 – 11 
show examples of SETs.  
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Table III 
SET cross section Weibull parameters at 95% CL. 

Parameter 95% CL Unit 
LET0 1 MeV∙cm2/mg 
Sigma  1.50E-03 cm2 
Exponent  0.8 NA 
Width  14 MeV∙cm2/mg 

 
Table IV 

SET event rate at 95% CL for background GCR and solar event.  
The solar flare rate is also given in events per active year using a probabilistic model [2]. 

Environment 95% CL Unit 1000 mils Al 
Background GCR 2.79 Per device-year 

Solar event 1.02 × 10-1 Per device-week 
Solar flare rate scaled by event per 

active year [2] 3.57 × 10-3 Per device-year 

 
 

 
Figure 5. SET cross section vs. effective LET for the LTC6268-10 irradiated with 15 MeV/amu heavy ions 
in air.  
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Figure 6. SET amplitude vs. width plot for the LTC6268-10 irradiated with 15 MeV/amu heavy ions in air.  
 
 

 
 
Figure 7. SET count vs. input current for the LTC6268-10 irradiated with 15 MeV/amu heavy ions in air. 
The SETs are divided into two categories with respect to its duration: < 1 msec, and ≥ 1 msec.  
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Figure 8. SET characteristics for the LTC6268-10 irradiated with 15 MeV/amu heavy ions in air.  
 

 
Figure 9. SET characteristics for the LTC6268-10 irradiated with 15 MeV/amu heavy ions in air.  
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Figure 10. SET characteristics for the LTC6268-10 irradiated with 15 MeV/amu heavy ions in air.  
 

 
Figure 11. SET characteristics for the LTC6268-10 irradiated with 15 MeV/amu heavy ions in air.  
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