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A 1722-hr wear test campaign of NASA’s 12.5-kW Hall Effect Rocket with Magnetic 

Shielding was completed. This wear test campaign, completed in 2016, was divided into four 

segments including an electrical configuration characterization test, two short duration tests, 

and one long wear test. During the electrical configuration characterization test, the plasma 

plume was examined to provide data to support the down select of the electrical 

configuration for further testing. During the long wear tests, the plasma plume was 

periodically examined for indications of changes in thruster behavior. Examination of the 

plasma plume data from the electrical configuration characterization test revealed a 

correlation between the plume properties and the presence of a conduction path through the 

front poles. Examination of the long wear test plasma plume data revealed that the plume 

characteristics remained unchanged during testing to within the measurement uncertainty. 
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AEPS = Advanced Electric Propulsion System 

CEX = Charge-exchange 

ECCT = Electrical Configuration 

Characterization Test 

FP = Faraday Probe 

GRC = Glenn Research Center 

HERMeS = Hall Effect Rocket with Magnetic 

Shielding 

IPS = Ion Propulsion System 

JPL = Jet Propulsion Laboratory 

LP = Langmuir Probe 

MCD = Mean Channel Diameter 

RFC = Reference Firing Condition 

RPA = Retarding Potential Analyzer 

SEE = Secondary Electron Emission 

SEP = Solar Electric Propulsion 

STMD = Space Technology Mission Directorate 

TDM = Technology Demonstration Mission 

TDU = Technology Demonstration Unit 

VF = Vacuum Facility 

WFS = Wien Filter Spectrometer 

WT = Wear Test 

 

I. Introduction 

OR missions beyond low Earth orbit, spacecraft size and mass can be dominated by onboard chemical 

propulsion systems and propellants that may constitute more than 50 percent of spacecraft mass. This impact can 

be substantially reduced through the utilization of Solar Electric Propulsion (SEP) due to its substantially higher 
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specific impulse. Studies performed for 

NASA’s Human Exploration and 

Operations Mission Directorate (HEOMD) 

and Science Mission Directorate have 

demonstrated that a 40 kW-class SEP 

capability can be enabling for both near 

term and future architectures and science 

missions.1  

Since 2012 NASA has been developing 

a 14-kW Hall thruster electric propulsion 

string that can serve as the building block 

for realizing a 40-kW-class SEP capability. 

NASA continues to evolve a human 

exploration approach to expand human 

presence beyond low-Earth orbit and to do 

so, where practical, in a manner involving 

international, academic, and industry 

partners.2 NASA publicly presented a 

phased exploration concept at the HEOMD 

Committee of the NASA Advisory Council 

meeting on March 28, 2017.3 NASA 

presented an evolutionary human exploration architecture, depicted in Fig. 1, to expand human presence deeper into 

the solar system through a phased approach including cis-lunar flight testing and validation of exploration capability 

before crewed missions beyond the Earth-Moon system and eventual crewed Mars missions. One of the key 

objectives is to achieve human exploration of Mars and beyond through the prioritization of those technologies and 

capabilities best suited for such a mission in accordance with the stepping stone approach to exploration.4 High-

power solar electric propulsion is one of those key technologies that has been prioritized because of its significant 

exploration benefits. A high-power, 40 kW-class Hall thruster propulsion system provides significant capability and 

represents, along with flexible blanket solar array technology, a readily scalable technology with a clear path to 

much higher power systems.  

The 14-kW Hall thruster system development, led by the NASA Glenn Research Center (GRC) and the Jet 

Propulsion Laboratory (JPL), began with maturation of the high-power Hall thruster and power processing unit. The 

technology development work has transitioned to Aerojet Rocketdyne via a competitive procurement selection for 

the Advanced Electric Propulsion System (AEPS). The AEPS contract includes the development, qualification, and 

multiple flight 14-kW electric propulsion string deliveries. The AEPS Electric Propulsion string consists of the Hall 

thruster, power processing unit (including digital control and interface functionality), xenon flow controller, and 

associated intra-string harnesses. These components are also collectively known as the Ion Propulsion System (IPS). 

NASA continues to support the AEPS development leveraging in-house expertise, plasma modeling capability, and 

world-class test facilities. NASA also executes AEPS and mission risk reduction activities to support the AEPS 

development and mission application. 

Risk reduction activities are being carried out on the precursor to AEPS known as the Hall Effect Rocket with 

Magnetic Shielding (HERMeS).6, 7 The specifications for the 12.5-kW HERMeS are enhanced compared to the 

current state of the art.6 Characteristics of the thruster include high system efficiency (≥57%), high specific impulse 

(up to 3000 s), and high propellant throughput capability (3400 kg). Additionally, HERMeS was designed to deliver 

similar system efficiency at a more modest specific impulse of 2000 seconds. High specific impulse operation 

supports mission concepts with high total-impulse requirements like deep-space exploration missions, while the 

modest specific impulse operation is beneficial for time-critical operations like LEO to GEO orbit raising. 

A series of tests are being performed on three HERMeS Technology Development Units (TDUs).7 Figure 2 

shows a diagram of the testing on the HERMeS TDUs thus far as well as tests that are planned. Testing on the 

TDU1 included the propellant uniformity test,8 magnetic shielding characterization test,9 performance 

characterization test (PCT),10-12 thermal characterization test (TCT),13, 14 facility effect characterization test 

(FECT),10, 12, 15 and the first wear test (WT) campaign. The PCT, TCT, and FECT were performed with a single test 

setup. The first wear test campaign, completed in 2016, included the electrical configuration characterization test 

(ECCT),16 two short duration tests,17 and a long wear test.17 TDU2 underwent an acceleration zone characterization 

test18 and a pole erosion characterization test.19 TDU2 will undergo the environmental test campaign. TDU3 was 

used in a second performance characterization test20 and, together with TDU1, in a second wear test campaign.21 

 
Figure 1. Deep Space Gateway and Transport Plan depiction.5 
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Figure 2. A diagram of the TDU test campaign. 

 

Additionally, Glenn Research Center (GRC) Vacuum Facility 6 (VF6) was upgraded to perform high-power 

electric propulsion testing. The upgrade included an enhanced version of the VF5 diagnostics system, which was 

used for much of the aforementioned TDU1 testing. A series of verification and validation tests, including 

performance, stability, and plume characterization, were performed to determine the readiness of VF6 for testing.22 

Once VF6 was determined to be operational, it was used for parts of the second wear test campaign.21 

This paper will focus on the plasma plume characterization performed during the first wear test campaign. 

Specifically, this paper will begin by picking up where Peterson, et al.,16 left off on ECCT plasma plume data 

analysis, then continue onto the evolution of the plasma plume characteristics over the course of the first wear test. 

Whereas Peterson, et al.,16 focused more on performance and stability analysis that demonstrate the viability of 

cathode-tied configuration for magnetically shielded thrusters, this paper focuses more on plasma physics trends 

deduced from plasma plume data. 

II. Experimental Setup 

To simplify plot labeling, throttle points are labeled as vvv-kk.k, where vvv is the discharge voltage in volts and 

kk.k is the discharge power in kilowatts. 

Unless otherwise noted, all spatial positions presented in this paper have been normalized by the mean channel 

diameter (MCD) of the thruster. MCD is defined as the average of the inner and outer discharge-channel wall 

diameters. Furthermore, thruster-centric polar axis (θ axis) is defined as 0° when viewing directly downstream from 

the thruster, is negative to the left of the thruster, and is positive to the right of the thruster.  

A. Thruster and Test Matrix 

All data presented in this work were collected with the HERMeS TDU1. The HERMeS TDU was designed to be 

a 12.5 kW, 3000 s, magnetically-shielded Hall thruster. The thruster had been operated over discharge voltages 

ranging from 300 to 800 V, corresponding to a specific impulse range of 2000 to 3000 s at full power. The thruster 

had also been power throttled over discharge powers ranging from 0.6 to 12.5 kW.10 The cathode mass flow rate was 

maintained at 7% of the anode mass flow rate. 

Thruster magnet coils were energized so that the magnetic shielding topology was always maintained. The only 

degree of freedom in the magnetic field setting was the strength of the magnetic field. Peak radial magnetic field 

strength along the discharge channel centerline was chosen as the reference when referring to the strength of the 

magnetic field. A single magnetic field strength value was used for all tested conditions. This value was set to 

provide peak thruster efficiency while maintaining margin against oscillation mode transitions. Figure 3 shows a 

picture of the NASA HERMeS TDU1 with various test equipment. 

The specifications for the TDUs included seven Reference Firing Conditions (RFCs), which were throttle points 

that would be used in all TDU testing. Though the full operational range of the TDUs expands well beyond the 

RFCs, testing at all throttle points was deemed impractical and too resource intensive. Given limited time and 

resources, the tests described in this paper were focused on two of the RFCs. Table 1 lists the RFCs. The two RFCs 

that were the focus of the described tests are marked with asterisks. 
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During the ECCT, a total of three electrical 

configuration and two front pole cover materials were 

tested. The electrical configurations were grounded body, 

floating body, and body tied to cathode. The front pole 

cover materials were graphite and aluminum oxide (a.k.a. 

alumina). The pole covers were polished to provide as flat 

of an initial surface as possible. Note that although 

graphite is an electrical conductor and alumina is an 

electrical insulator, having graphite as the pole cover 

material is not the same as having a conduction path 

through the front poles. Specifically, in the case of 

graphite covers with a floating body, the front pole covers 

floated to a sufficiently negative voltage so that equal 

amounts of electrons and ions were collected by the front 

poles and no net current was conducted. Table 2 shows 

which of the six combinations of electrical configurations 

and pole cover materials created an electrical conduction 

path through the front poles. Peterson, et al., provide a 

more detailed description of the test setup for the 

ECCT.16  

The two short wear tests were each approximately 350 

hours in duration.17 The long wear test was 996 hours in 

duration and was performed at the 600-12.5 RFC. 

B. Test Facility 

Testing was performed in Vacuum Facility 5 at 

NASA GRC. This cylindrical facility is 4.6 m in 

diameter, 18.3 m long, and was evacuated with a set of 

cryo-panels. The thruster was mounted on a thrust stand 

located close to the cryo-panels, with the thruster firing 

away from the panels. Figure 3 shows the thruster and the 

plasma diagnostics, along with other test equipment in the 

vicinity of the thruster. Background pressure near the 

thruster was monitored with a set of ion gauges.  

Correction of gauge readings for effective sensor 

sensitivity was obtained by calibrating the ion gauges 

against a spinning rotor gauge in a controlled setup using 

research grade xenon. Correction of gauge readings for 

effects of local temperature and direction of the gauge 

openings relative to the background flux were obtained through a series of modeling studies and verified by 

experimental data.23 Uncertainty in the calculated pressure was dominated by electrical and electronic noise, which 

was estimated by the manufacturer to be ±6% of the reading. The background pressure near the thruster for the two 

RFCs described in this paper was 4.2x10-6 Torr. 

Research-grade xenon propellant was supplied via commercially available mass flow controllers to the thruster, 

cathode, and auxiliary flow line. These mass flow controllers were calibrated using research-grade xenon prior to 

testing. Typical uncertainty of measurement was ±1% of reading. 

Electrical power was supplied to the thruster with commercially available power supplies. Separate power 

supplies supported the main discharge, cathode heater, keeper, inner magnet, and outer magnet. An electrical filter 

was placed between the thruster and the discharge power supply. All power supplies and the filter were located 

outside of the vacuum facility. 

C. Diagnostics 

This section describes the plasma diagnostics deployed during the first wear test campaign. The plasma 

diagnostics deployed included a Faraday probe (FP), a Langmuir probe (LP), a retarding potential analyzer (RPA), 

and a Wien filter spectrometer (WFS). All probes were biased with commercially available power supplies. 

Table 1. Table of Reference Firing Conditions. 

Label Discharge 

voltage, 

V 

Discharge 

power, 

kW 

300-2.7 300 2.7 

*300-6.25 300 6.25 

400-8.3 400 8.33 

500-10.4 500 10.4 

500-12.5 500 12.5 

*600-12.5 600 12.5 

700-12.5 700 12.5 

*RFCs that were the focus of the testing described in 

this paper. 

 

Table 2. A table of configurations that create a 

conduction path for plasma through the front poles. 

Config→ 

Cover mat’l↓ 

Grounded Floating Cathode-

tied 

Graphite Conduction 

path 

No path Conduction 

path 

Alumina No path No path No path 

 

 
Figure 3. NASA HERMeS TDU1 and thrust stand 

setup. 
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Figure 4 shows a photograph of the probe 

package and the relative position of the four 

probes in the package. Spatial offsets 

between the probes were accounted for when 

positioning the probes so that data from 

different probes can be correlated. Both the 

RPA and WFS were protected by 

independent shutters. The probe package was 

mounted on a boom arm, which was 

mounted on a set of commercially available 

motion stages that provided polar and radial 

motion. Positioning accuracy of this motion system was <1 mm for the radial axis and <0.2° for the polar axis. The 

probe package, boom arm, and the bottom of the motion stages were shielded with Grafoil to reduce the amount of 

backsputtered material. 

The FP was of GRC design24, 25 and was used to measure ion current density in the far-field plume. Figure 5 

shows a cross-sectional diagram of this FP. The collector and guard ring were made of molybdenum and the 

insulating back was made of Macor. Angular resolution of the FP data was ~0.5°. At each operating condition, the 

FP was azimuthally swept at five different distances, 4.2, 5.2, 6.1, 7.0, and 7.9 MCD. An additional sweep at 7.9 

MCD was conducted to make sure the data was not dependent on the sweep direction. During testing, measurements 

were made at different bias voltages in increments of 10 V. The results indicated that -30 V bias with respect to 

facility ground was sufficient to repel incoming electrons for all operating conditions. 

The LP consisted of a single tungsten wire protruding from an alumina tube. This probe was used to obtain the 

local plasma potential needed to correct the RPA data. The LP was swept at 3 Hz for 1 second at each location. FP 

and LP data were acquired by a data acquisition device. 

The RPA was of AFRL design.24, 25 During testing, the electron suppression and repelling grids were biased 

to -30 V with respect to facility ground while the ion retarding grid voltage was swept. The ion retarding grid was 

biased by a sourcemeter while the collected current was measured by a picoammeter. Data were taken at polar 

angles of ±105°, ±90°, ±75°, ±70°, ±65°, ±60°, ±55°, ±50°, ±45°, ±40°, ±30°, ±15°, and 0°. For testing with the 

alumina covers, additional data were taken at ±85° and ±80°. 

The WFS was a commercial product and was used to measure charged species current fractions. The WFS was 

the product from a Small Business Innovation Research contract and has a prior history of usage.24-26 The electron 

suppression plate was biased at -30 V with respect to facility ground to suppress secondary electron emission (SEE) 

from the collector. The main bias plate voltage was swept by a picoammeter, which also measured the collector 

current. Data was taken at 0°. 

The experiment was conducted via a LabVIEW program from a dedicated data acquisition computer. The 

computer interfaced with the motion stages via a set of motion controllers. The computer also directly interfaced 

with the data acquisition device, picoammeters, and sourcemeter. During the experiment, the computer 

automatically activated the various motion stages, shutters, and probes in the proper sequence. 

III. Data Analysis 

A. Faraday Probe Analysis 

FP data were used to calculate the charge-weighted divergence angle and total ion beam current. The cosine of 

the momentum-weighted divergence angle is defined as the average axial velocity of the particles divided by the 

average total velocity of the particles. However, momentum-weighted divergence angle is difficult to measure. The 

typical approach is to measure the charge-weighted divergence angle, which is approximately equal to the 

momentum-weighted divergence angle if the multiply-charged current fractions are roughly constant across the 

interrogated domain. For the remainder of the paper, divergence angle refers to the charge-weighted divergence 

angle. For a polarly-swept probe, Eq. (1) can be used to calculate the charge-weighted divergence angle. 
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Figure 4. The probe package. 

 
Figure 5. Diagram of the 

Faraday probe. 
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Where θ is the polar angle and is equal to 0° for particles traveling parallel to the firing axis, and j(θ) is the ion 

current density as a function of the polar angle. RFP is the distance from the Faraday probe collector to the thruster 

center at the exit plane and is constant for a polarly-swept probe. The denominator is equal to the total ion beam 

current. 

A number of effects associated with the use of FP must be accounted for when performing FP analysis. To 

account for these effects, the FP analysis was divided into three steps. This three-step approach is a simplified 

version of a four-step approach validated in a previous test.15 Whereas the four-step approach involves data from 

different background pressure, the three-step approach is for tests where only one background pressure was tested. 

In step one, the effect of FP gap current was accounted for. For a FP with a guard ring like the one presented in 

this paper, the effective collection area was not exactly equal to the collector frontal surface area. Current that enters 

the gap between the collector and the guard ring can be collected by the side surfaces of the collector.27 According to 

work by Brown, the current entering the gap is collected by the collector and the guard ring in a ratio proportional to 

the ratio of exposed gap area.27 For the probe design used in the present study, the area inside the gap was dominated 

by guard ring surfaces (see Fig. 5). However, there was enough area connected to the collector that some level of 

correction was needed. Only the part of the gap with direct exposure to the incoming ion beam was used in the gap 

area calculation. Using the approach recommended by Brown, the effective collection area was ~4% greater than the 

collector frontal area. The effective collection area was used for all FP analysis.  

In step two, the effect of SEE on FP current was corrected. Although the FP was constructed of molybdenum, 

which is considered a low SEE yield material, some correction for SEE effect was still needed. Secondary electrons 

born on a negatively biased probe will accelerate away from the probe. This effect adds extra current to the probe 

measurement that is indistinguishable from the collected ion current. While singly-charged xenon-induced SEE 

yield for molybdenum is very low (0.022) the doubly-charged xenon-induced SEE yield is roughly 10 times that of 

the singly-charged yield, and the triply-charged SEE yield is roughly 35 times that of the singly-charged yield.28-30 

Since the amount of multiply-charged species in the plume of a Hall thruster is typically not negligible, correction 

for SEE effect is needed.  

Data published by Hagstrum was used to correct for the effect of 

SEE on the FP measurements. Table 3 summarizes the SEE yield 

values used in the data analysis of the present study. The singly-

charged and doubly-charged xenon-induced yields were averages of 

the SEE yield data for ion energies in the range of 200 to 800 eV in 

Hagstrum’s 1956 work on molybdenum.29 For both of these 

parameters, the value measured by Hagstrum varied by no more than 

10% of the listed average. A value for the triply-charged xenon-

induced yield of molybdenum could not be found in open literature. The value in Table 3 is an extrapolated value 

based on the similarity in yield between tungsten and molybdenum. The ratio of triply-charged induced yield to 

doubly-charged induced yield for tungsten is 3.5, so the yield for molybdenum is extrapolated to be 3.5 * 0.2, or 0.7. 

Equation (2) shows the relationship between the actual ion current density and the ion current density measured 

by the Faraday probe due to the SEE effect. 

 

 








k k

kkFP

Z
1

1

J

J
 

(2) 

 

Where J is the true ion current density, JFP is the current density measured by a nude Faraday probe, and k is the 

SEE yield in number of electrons per ion associated with bombardment by the k-th species. For the present study, 

the SEE correction factor varied from 0.89 to 0.95.  

Hagstrum also discovered that metastable singly-charged xenon induces roughly the same SEE yield as doubly-

charged xenon.31 In that experiment, Hagstrum varied the energy of the electrons used to generate his singly-charged 

ion beam from 10 to 70 eV. The SEE yield measured increased from 0.022 to 0.025 when the electron energy was 

ramped up from 25 to 30 eV, and then plateaued at 0.025 for higher energies. While the Hall thruster ionization zone 

and an ion beam discharge chamber are not exactly the same, they do share many of the same operating principles, 

including a reliance on impact bombardment ionization. Since the amount of metastable ions was so small that the 

SEE yield increased by only 0.003 for Hagstrum’s experiment, one can assumed this effect was of similar magnitude 

in a Hall thruster and was negligible. 

Table 3. Summary of SEE data for xenon 

ion bombardment of molybdenum.28, 29 

Bombarding 

particle 

SEE yield of 

molybdenum 

Xe+ 0.022 

Xe2+ 0.20 

Xe3+ 0.70 
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Ideally, SEE correction would have been calculated as a distribution of polar angle and applied to the FP sweeps. 

However, past studies have shown that variations in charged species composition with polar angle are relatively 

small. Data from a prior study places variation in SEE correction factor with polar angle at ~0.01.15 For 

convenience, a single SEE correction factor was applied for each operating condition.  

Another factor in FP analysis is charge exchange (CEX) effect. However, not all CEX should be removed from 

FP data because the thruster will generate CEX ions when in space. In order to remove the influence of facility CEX 

without removing the signal from thruster CEX, the approach in this study was to record FP data at multiple 

distances.  

In step three, two calculation methods were used to calculate divergence angle while removing the effect of 

facility CEX. In the first method, the divergence angle was calculated at each distance and plotted against distance. 

A linear fit was performed to determine the divergence angle at the thruster. In the second method, the current 

density profiles at different distances were used to extrapolate to the current density profile at the thruster, also 

called the “source” profile. The source profile was then used to calculate the divergence angle. The two methods 

yielded results that were within 0.1° of each other. From a prior study, a discrepancy of 0.1° meant the background 

pressure was low enough that the facility CEX effect could be corrected in the manner described here. More details 

about the FP analysis and how it was validated can be found in a prior publication.15 

B. Langmuir Probe and Retard Potential Analyzer Analysis 

LP analysis was carried out using simple Langmuir probe theory.32 LP data were ensemble averaged then 

smoothed using a Savitzky-Golay filter.33, 34 Plasma potential was set to the probe voltage where the derivative of 

the probe current with respect to the probe voltage was at its maximum. This plasma potential was used to correct 

the RPA reading because the RPA ion retarding grid was biased with respect to the facility ground. The true filter 

voltage was equal to the ion retarding grid bias voltage minus the local plasma potential. 

RPA analysis was carried out by first smoothing the RPA trace using a Savitzky-Golay filter, then taking the 

negative of the derivative of the collector current with respect to the ion retarding grid bias voltage. The result, 

plotted against the bias voltage, is proportional to the ion energy per charge distribution function.35 The average ion 

energy per charge was calculated by averaging only the part of the trace where the amplitude exceeded half of the 

maximum amplitude. This averaging approach will be referred to as the threshold-based averaging approach with a 

50% threshold. Figure 6 shows an example of applying the threshold-based averaging approach to an RPA trace. 

The black dashed vertical line indicates the location of the most probable voltage, the red solid vertical line indicates 

the result of using the threshold-based averaging approach with the 50% threshold, and the red dashed horizontal 

line indicates the 50% of maximum threshold. 

In theory, the most accurate result would have been obtained by ensemble-averaging the entire RPA trace. 

However, doing so would have produced unphysical results because the ion energy per charge distribution as 

measured by the RPA was typically much broader than the real distribution due to the wide acceptance angle of the 

RPA. Using the 50% threshold-based averaging approach provided a balance between excluding the broadened data 

and maintaining noise insensitivity. 

C. WFS Analysis 

The WFS was used as a velocity filter to separate charged species. Since different charged species in a Hall 

thruster are accelerated to different velocities, they will show 

up as different peaks when interrogated by the WFS. If the 

WFS velocity resolution is at least several times smaller than 

the width of the ion velocity distribution function (VDF), the 

preferred method for analyzing WFS data is via integration. 

The exact integration method used in this study was 

thoroughly discussed in a prior publication.36 The curve-fit 

form used was the skew-normal distribution. Corrections for 

CEX effect were also performed in accordance to prior 

publications.36, 37 

 
Figure 6. Example RPA analysis plots. 
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Figure 7 shows an example of 

the Wien filter spectrometer 

analysis program results. For 

convenience, the subplots are 

labeled, top to bottom, from left 

to right, as (a) to (f). Subplot (a) 

shows the raw WFS data as black 

data points with red dashed 

vertical lines showing the 

approximate location of the first 

four peaks. Subplot (b) shows the 

end result from the curve-fitting 

process in red solid line overlaid 

on the raw data in black dots. 

Subplots (c) to (f) show the 

individual curve-fit steps starting 

from the 1st peak, then the 2nd 

peak, and etc. The data prior to 

the fit at each curve-fit sub-step are shown as black dots, the red solid line shows the curve-fit, the magenta dashed 

vertical lines show the curve-fit boundaries, and the blue dashed line shows the residual result after subtraction. 

D. Uncertainty Analysis 

For the calculation of the divergence angle, the primary sources of error were the axial alignment error and error 

induced by shift in support structure associated with facility operations. Axial alignment error was estimated to be 

<3 mm while shift in support structure was estimated to be <5 mm. Propagating this error through the divergence 

angle calculation yields an estimated error of ±0.4° for the presented data. 

For the current density measurement in the FP trace, the primary sources of error on the current measurement 

were electronic non-linearity and noise. This error was estimated at 1%. 

For the ion energy per charge derived from RPA measurements, uncertainty in the 50% threshold-based average 

was driven by measurement noise. This source of noise was mostly the result of plasma oscillations. The associated 

uncertainty was random and was characterized to be no more than ±8 V. The Langmuir probe measurement 

contributed an additional 4 V of random error to the final result. Standard error propagation yielded a total random 

error of no more than ±10 V. 

For WFS results, the uncertainty analysis procedure described in a prior publication was used.36 The values of 

the uncertainty greatly varied between RFCs with uncertainty being high for 300-6.25 and low for 600-12.5. Actual 

values of the uncertainties are shown in the Section IV. 

IV. Results 

A. Electrical Configuration Characterization Test Plume Results and Analyses 

This section begins with an examination of the ion current density, charge species fraction, and high-energy 

content results, in that order. Figures 8 and 9 show ion current density profiles for the 300-6.25 and 600-12.5 RFCs, 

respectively. The differences between the six combinations of electrical configurations and pole cover materials 

were small with the differences at 600-12.5 being more noticeable. Specifically, there was less ion current collected 

between 30° and 70° for all alumina covers conditions as well as for graphite covers with floating body. Also, more 

current was collected at 70+° for graphite covers with floating body than for other conditions. Tables 4 and 5 show 

the divergence angles calculated for each configuration for the 300-6.25 and 600-12.5 RFCs, respectively. As these 

two tables show, the differences in divergence angle between configurations were on the order of or less than the 

measurement uncertainty of ±0.4°. 

 
Figure 7. Example of analysis plots for Wien filter spectrometer analysis. 
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Figures 10 and 11 show the raw WFS data for the 300-6.25 and 600-12.5 RFCs, respectively. As shown in these 

figures, the compositions of charged species were identical to within the uncertainty of the WFS for all tested 

configurations.  

For the 300-6.25 RFC, the overlap between peaks were too large for the analysis program to work properly. 

Attempts at analysis revealed the associated uncertainty was well in excess of typical acceptable levels. No further 

analysis was carried out for WFS data at the 300-6.25 RFC. Table 6 summarizes the WFS analysis results for the 

600-12.5 RFC in different configurations. This table shows clearly that the differences in charge species 

compositions between different configurations were negligible. 

To examine the high-energy contents, RPA traces at many angular positions were taken. To assess the 

divergence of the high-energy contents, this study determined the angle at which the high-energy peak became 

undetectable relative to the noise floor. For example, at the 600-12.5 RFC, for the configuration with graphite covers 

 
Figure 8.  Ion current density profiles for all 

configurations at the 300 V, 6.25 kW RFC. 

 

 
Figure 9. Ion current density profiles for all 

configurations at the 600 V, 12.5 kW RFC. 

 

Table 4. Divergence angle for the six tested 

configurations at the 300 V, 6.25 kW RFC. 

Config→ 

Cover mat’l↓ 

Grounded Floating Cathode-

tied 

Graphite 24.6° 23.9° 24.2° 

Alumina 24.1° 24.2° 24.2° 
 

Table 5. Divergence angle for the six tested 

configurations at the 600 V, 12.5 kW RFC. 

Config→ 

Cover mat’l↓ 

Grounded Floating Cathode-

tied 

Graphite 19.5° 19.4° 19.5° 

Alumina 19.5° 19.8° 19.6° 
 

 
Figure 10. Raw Wien Filter spectra for all 

configurations at the 300-6.25 RFC. 

 
Figure 11. Raw Wien Filter spectra for all 

configurations at the 600-12.5 RFC. 

 

Table 6. Charged species fraction for all configurations and at the 600-12.5 RFC. 

Config→ 

Species↓ 

Graphite, 

Grounded 

Graphite, 

Floating 

Graphite, 

Cathode-tied 

Alumina, 

Grounded 

Alumina, 

Floating 

Alumina, 

Cathode-tied 

Xe+ 0.83 ±0.02 0.86 ±0.02 0.85 ±0.02 0.87 ±0.02 0.86 ±0.02 0.86 ±0.01 

Xe2+ 0.13 ±0.02 0.10 ±0.02 0.11 ±0.02 0.09 ±0.02 0.10 ±0.02 0.10 ±0.01 

Xe3+ 0.04 ±0.02 0.04 ±0.02 0.04 ±0.02 0.04 ±0.02 0.04 ±0.02 0.04 ±0.01 
 



 

 

The 35th International Electric Propulsion Conference, Georgia Institute of Technology, USA 

October 8 – 12, 2017 

 

10 

and cathode-tied, the high-energy peak (~600 V) was detectable in the θ = -70° trace but not in the θ = -75° trace. 

The maximum high-energy polar angle was defined as the average of the two θ values with an uncertainty that spans 

the two θ values, which was 72.5° ±2.5° in this example. Negative polar angle traces were used to calculate the 

high-energy content properties because the RPA had a better field of view to the thruster when the probe package 

was on negative θ side. Figure 12 shows the two aforementioned traces of ion energy per charge. Additional 

visualization of the RPA data can be found in the appendix. 

Tables 7 and 8 summarize the maximum high-energy polar angles for the tested configurations at the 300-6.25 

and 600-12.5 RFCs, respectively. Note that for Table 7, although the angles for the graphite cases appear to be 

smaller than the angles for the alumina cases, in reality the two sets of measurements overlap due to the large spatial 

uncertainty in the graphite measurements. The graphite data was measured with a coarse spatial grid (±75° and 

±90°) that was refined for the alumina measurements (every 5° in the same region). Most likely, high-energy content 

did not appear at 90+° because the outer front pole cover blocks the line-of-sight of the discharge plasma to higher 

polar angles. As such, the 300-6.25 data did not necessarily indicate any plasma physics trend with respect to cover 

material and electrical configuration. Instead, the 300-6.25 data indicated that the high-energy content reached the 

highest polar angle possible given line-of-sight restrictions. The presence of high-angle high-energy ions was also 

found in the SPT-100, which operated at 300 V.38 

From Table 8, one can see that the high-energy content during operation with graphite covers and floating body 

behaved very much like the alumina covers configurations and not like the other two graphite covers configurations 

for the 600-12.5 RFC. Though less obvious, this trend can also be seen in the FP data in Fig. 9. If one were to look 

at the data at polar angle less than 65°, where the high-energy content can be found, the ion current density profiles 

for the configurations with conduction path are slightly more divergent than the configurations without conduction 

 
Figure 12. Example of ion energy per charge 

distributions used to determine the maximum high-

energy polar angle for the 600-12.5 RFC with 

graphite covers and cathode-tied configuration. 

Table 7. Maximum high-energy polar angles for the 

300-6.25 RFC. 

Config→ 

Cover mat’l↓ 

Grounded Floating Cathode-

tied 

Graphite 82.5°±7.5° 82.5°±7.5° 82.5°±7.5° 

Alumina 87.5°±2.5° 87.5°±2.5° 87.5°±2.5° 

 

 

 

Table 8. Maximum high-energy polar angles for the 

600-12.5 RFC. 

Config→ 

Cover mat’l↓ 

Grounded Floating Cathode-

tied 

Graphite 82.5°±7.5° 62.5°±2.5° 72.5°±2.5° 

Alumina 62.5°±2.5° 62.5°±2.5° 57.5°±2.5° 
 

 
Figure 13. Correlation analysis 

for max high-energy polar angle 

versus pole cover material for 

the 600-12.5 RFC. 

 
Figure 14. Correlation analysis for 

max high-energy polar angle versus 

electrical configuration for the 600-

12.5 RFC. 

 
Figure 15. Correlation analysis 

for max high-energy polar angle 

versus presence of conduction 

path through the front poles for 

the 600-12.5 RFC. 
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path. Correlation analysis was performed to further clarify this trend. Figures 13, 14, and 15 show the results of 

correlating the maximum high-energy polar angle to pole cover material, electrical configuration, and presence of 

conduction path through the front poles, respectively. The R-squared value (a.k.a. coefficient of determination) 

indicates how much better the linear curve fit is than a simple horizontal line. An R-squared of 0 means the fit 

provides no predictive value while an R-squared of 1 means the fit provides perfect predictions. The correlation 

analysis showed clearly that the polar-angle of the high-energy content had a much stronger correlation with the 

presence of a conduction path than with either the pole cover material or the electrical configuration. While more 

data will provide a more definitive result, the difference in R-squared values were large enough to indicate statistical 

significance. The divergence of the high-energy ions was driven by whether the plasma can conduct through the 

front poles and not by any specific pole cover material or electrical configuration. 

There are at least two physical explanations for the correlation between the maximum high-energy polar angle 

and the presence of a conduction path through the front poles. One explanation is that when no conduction path was 

present, a highly negative sheath developed to repel electrons. This is supported by thruster body voltage 

measurements which showed the body voltage reached -45 V for graphite covers with floating body but was only 0 

and -9 V for grounded and cathode-tied electrical configurations, respectively.16 The highly negative surface voltage 

caused some of the high-energy ions that would normally leave the thruster to instead strike the front pole surfaces. 

Ions that normally leave the thruster at high polar angles were more susceptible to this effect as their trajectory 

brought them closer to the front pole surfaces. With these ions now striking the front pole, the overall divergence of 

the high-energy ions was reduced. Indeed, reducing front pole erosion by reducing the energy of ions striking the 

front pole was the primary motivation for developing the cathode-tied electrical configuration.16 The data presented 

here suggest the possibility that reducing front pole sheath voltage also reduced the number of high-energy ions 

striking the front poles. 

Another possibility was that the presence of the conduction path through the front poles changed (slightly) the 

oscillation behavior of the near-field plume. Properties of many plasma oscillation modes can be altered by changing 

the boundary conditions; a change in the sheath voltage on the order of tens of volts can in theory alter the 

magnitude of the oscillations. This possibility was supported by discharge current root-mean-squared (RMS) 

measurements, which were 4.0 A for graphite covers with grounded and cathode-tied configuration and 3.2 to 3.5 A 

for the graphite covers with floating body and for the alumina covers configurations.16 A higher oscillation 

amplitude could have increased the divergence of the high-energy content without changing the number of ions 

striking the front poles. Periodic increases in plasma density create gradient-driven electric fields that tend to push 

the plasma plume radially outward. In this scenario, the disparity in maximum high-energy polar angle would have 

been due to the transient increase in high-energy ions at high angles as opposed to a reduction in high-energy ions 

striking the poles. The two explanations are associated with slightly different physical characteristics that can be 

investigated in a future study. 

B. Wear Test Plume Results and Analyses 

As with the ECCT results, this section will examine the ion current density, charge species fraction, and high-

energy content results, in that order. Figure 16 shows the ion current density profiles measured over the course of the 

996-hour wear test. Figure 17 shows the Wien Filter spectra measured over the course of the 996-hour wear test. 

Figures 18 and 19 show the raw RPA traces measured over the course of the 996-hour wear test at θ = 0° and -75°, 

respectively. Over the course of the long wear test, the mask in front of the RPA warped and blocked the RPA 

shutter from fully opening. For this reason, signal-to-noise ratio for high angle data taken at 769 and 996 hours into 

the test were too low and will not be shown. From these four figures, one can see that the properties of the plasma 

plume underwent negligible change over 996 hours of operation at the 600-12.5 RFC.  
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Figure 16. Ion current density profiles measured at 

various points during the 996-hour wear test.  

 

 
Figure 17. Wien Filter spectra measured at various 

points during the 996-hour wear test. 

 

 
Figure 18. Raw RPA traces at θ = 0° measured at 

various points during the 996-hour wear test. 

 
Figure 19. Raw RPA traces at θ = -75° measured at 

various points during the 996-hour wear test. 

V. Conclusions 

Analysis of the plasma plume characteristics during the first wear test campaign of the HERMeS TDU was 

completed. During the electrical configuration characterization segment of the campaign, the cathode-tied 

configuration was tested to ensure the thruster operated nominally while the energy of ions eroding the front poles 

was reduced.16 Examination of the plasma plume data at the 300-6.25 and 600-12.5 RFCs show that the plume 

properties were largely unchanged across two pole cover materials (graphite and alumina) and three electrical 

configurations (grounded, floating, and cathode-tied). Close examination revealed that there was a noticeable 

difference in high-energy content behavior between graphite covers with floating body and the other two graphite 

covers configurations when operating at the 600-12.5 RFC. Correlation analyses revealed that the difference was 

driven by the presence of a conduction path through the front poles. This physical phenomenon can be explained by 

the possibility that reducing the magnitude of the sheath voltage by using cathode-tied configuration also reduced 

the number of ions striking the front poles. This physical phenomenon can also be explained by a change in plasma 

oscillation characteristics in the near-field plume. 

Analysis of the plasma plume characteristics for the long wear test revealed that the plume underwent negligible 

changes over 996 hours of operation at the 600-12.5 RFC. Since the purpose of the 996-hour wear test was to 

uncover any unexpected failure modes, the aforementioned result was a success for this test. 
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Appendix 

Figures 20 to 25 show the ion energy per charge distributions as functions of the polar angles for the six tested 

configurations at the 300-6.25 RFC. These plots show polar angle on the x-axis and ion energy per charge on the y-

axis. Each vertical slice is an ion energy per charge distribution normalized to its peak value. Space in between 

slices was interpolated to provide smooth coloring for visualization purpose. 

 
Figure 20. Plot of ion energy per charge distribution 

versus polar angles for the graphite covers with 

grounded configuration at the 300-6.25 RFC. 

 
Figure 21. Plot of ion energy per charge distribution 

versus polar angles for the alumina covers with 

grounded configuration at the 300-6.25 RFC. 

 
Figure 22. Plot of ion energy per charge distribution 

versus polar angles for the graphite covers with 

floating configuration at the 300-6.25 RFC. 

 
Figure 23. Plot of ion energy per charge distribution 

versus polar angles for the alumina covers with 

floating configuration at the 300-6.25 RFC. 

 
Figure 24. Plot of ion energy per charge distribution 

versus polar angles for the graphite covers with 

cathode-tied configuration at the 300-6.25 RFC. 

 
Figure 25. Plot of ion energy per charge distribution 

versus polar angles for the alumina covers with 

cathode-tied configuration at the 300-6.25 RFC. 
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Figures 26 to 31 show the ion energy per charge distributions as functions of the polar angles for the six tested 

configurations at the 600-12.5 RFC.  

 
Figure 26. Plot of ion energy per charge distribution 

versus polar angles for the graphite covers with 

grounded configuration at the 600-12.5 RFC. 

 
Figure 27. Plot of ion energy per charge distribution 

versus polar angles for the alumina covers with 

grounded configuration at the 600-12.5 RFC. 

 
Figure 28. Plot of ion energy per charge distribution 

versus polar angles for the graphite covers with 

floating configuration at the 600-12.5 RFC. 

 
Figure 29. Plot of ion energy per charge distribution 

versus polar angles for the alumina covers with 

floating configuration at the 600-12.5 RFC. 

 
Figure 30. Plot of ion energy per charge distribution 

versus polar angles for the graphite covers with 

cathode-tied configuration at the 600-12.5 RFC. 

 
Figure 31. Plot of ion energy per charge distribution 

versus polar angles for the alumina covers with 

cathode-tied configuration at the 600-12.5 RFC. 
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