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A series of short-duration (200 h) wear tests were conducted with two HERMeS technology 

demonstration units.  Front pole covers, cathode keeper, and discharge channel wear were 

characterized as a function of discharge voltage, magnetic field strength, and chamber 

pressure.  No discharge channel erosion was observed.  Inner pole cover erosion was shown to 

be a weak function of discharge voltage with most erosion occurring at the lowest value, 300 

V.  The TDU-3 keeper electrode eroded with each operating condition, with high magnetic 

field yielding the greatest erosion rate.  The TDU-1 keeper electrode exhibited net deposition 

suggesting its configuration is more consistent with meeting overall HERMeS service life 

requirements.  Ratios of molybdenum to graphite erosion rates suggests, with high 

uncertainty, that the sputtering ions are originating downstream of the thruster exit plane, 

striking the surface with small angles of incidence.  

Nomenclature 

AEPS = Advanced Electric Propulsion System 

HERMeS = Hall Effect Rocket with Magnetic Shielding 

IFPC = Inner Front Pole Cover 

Jb = Body Current, A 

Jd = Discharge Current, A 

OFPC = Outer Front Pole Cover 

TC = Test Condition 

TDU = Technology Demonstration Unit 

QCM = Quartz Crystal Microbalance 

Vcg = Cathode to Ground Voltage, V 

Vd = Discharge Voltage, V 

VF = Vacuum Facility 

Vk = Keeper Voltage, V 
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I. Introduction 

OR missions beyond low Earth orbit, spacecraft size and mass can be dominated by onboard chemical propulsion 

systems and propellants that may constitute more than 50 percent of spacecraft mass. This impact can be 

substantially reduced through the utilization of Solar Electric Propulsion (SEP) due to its substantially higher specific 

impulse. Studies performed for NASA’s Human Exploration and Operations Mission Directorate and Science Mission 

Directorate have demonstrated that a 40 kW-class SEP capability can be enabling for both near term and future 

architectures and science missions.1 Since 2012 NASA has been developing a 14 kW Hall thruster electric propulsion 

string that can serve as the building block for realizing a 40 kW-class SEP capability. NASA continues to evolve a 

human exploration approach to expand human presence beyond low-Earth orbit and to do so, where practical, in a 

manner involving international, academic, and industry partners.1 NASA publicly presented a phased exploration 

concept at the Human Exploration and Operations (HEO) Committee of the NASA Advisory Council meeting on 

March 28, 2017.2 NASA presented an evolutionary human exploration architecture, depicted in Fig. 1, to expand 

human presence deeper into the solar system through a phased approach including cis-lunar flight testing and 

validation of exploration capability before crewed missions beyond the earth-moon system and eventual crewed Mars 

missions. One of the key objectives is to achieve human exploration of Mars and beyond through the prioritization of 

those technologies and capabilities best suited for such a mission in accordance with the stepping stone approach to 

exploration.3  High-power solar electric propulsion is one of those key technologies that has been prioritized because 

of its significant exploration benefits. A high-power, 40 kW-class Hall thruster propulsion system provides significant 

capability and represents, along with flexible blanket solar array technology, a readily scalable technology with a clear 

path to much higher power systems. 

 The 14 kW Hall thruster system 

development, led by the NASA Glenn 

Research Center and the Jet Propulsion 

Laboratory, began with maturation of 

the high-power Hall thruster and power 

processing unit. The technology 

development work has transitioned to 

Aerojet Rocketdyne via a competitive 

procurement selection for the 

Advanced Electric Propulsion System 

(AEPS). The AEPS contract includes 

the development, qualification, and 

multiple flight 14 kW electric 

propulsion string deliveries. The AEPS 

EP string consists of the Hall thruster, 

power processing unit (including 

digital control and interface 

functionality), xenon flow controller, 

and associated intra-string harnesses. 

NASA continues to support the AEPS 

development leveraging in-house expertise, plasma modeling capability, and world-class test facilities. NASA also 

executes AEPS and mission risk reduction activities to support the AEPS development and mission application. An 

overview of the NASA and Aerojet development activities and mission application of the AEPS Hall thruster system 

is provided by Herman.4 

 With the introduction of the Hall-Effect Thruster with Magnetic Shielding (HERMeS),5,6 service life-limiting 

erosion of the boron nitride channel appears to have been eliminated.7,8,9,10  However, erosion of other surfaces was 

increased resulting in the incorporation of an engineering solution to mitigate the impact of the erosion which included 

incorporation of graphite front pole covers and thruster operation with the cathode electrically tied to the thruster body.   

Risk-reduction activities have continued to characterize the erosion of cathode-potential surfaces (including the 

cathode keeper).  These include, surface layer activated wear testing,11 extensive numerical modeling,12,13 assessment 

of the impact of carbon deposition on service-life assessment,14 laser-based characterization of near-field ions,15 and 

a series of short duration wear tests which are discussed in this paper. 

 All of the risk-reduction activities to date have identified erosion of the inner front pole cover as the (new) erosion-

based service life limit.  Before developing the HERMeS into an engineering-level configuration and entering the 

long-duration and environmental testing, a test campaign at NASA JPL was undertaken to characterize the erosion of 

F 

 
Figure 1.  Deep Space Gateway and Transport Plan depiction.3 
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the inner front pole cover as a function of thruster throttle point and facility pressure.  In order to conduct this campaign 

in a reasonable amount of time, surface activation of molybdenum pole covers was incorporated.  Results showed the 

pole cover eroded more at lower discharge voltages, lower discharge currents, higher magnetic fields, and lower 

facility pressures.11  Some of these trends were unexpected and numerical data suggested that some of the trends may 

not be observed in graphite pole covers because of graphite’s much higher sputtering threshold.13   

 Because understanding how throttle level impacts service life is of great value to mission planners, long-duration 

testing of a high-fidelity laboratory model thruster was deferred so that a series of short duration wear tests could 

characterize the erosion of graphite inner pole covers as a function of operating condition.    These tests would also be 

of sufficient length to characterize the impact of throttling on the erosion of other HERMeS surfaces such as the 

cathode keeper and the outer front pole cover.  Sufficient performance characterization had already been conducted 

yielding no erosion of the boron nitride discharge channel.  In addition to characterizing the thruster wear, the short-

duration test campaign was intended to fully characterize the performance of the thruster which incorporated design 

changes since the previous wear test and to provide additional characterization of the test facility in support of very-

long duration testing.   

 This paper presents the erosion trends of the HERMeS observed in seven short duration (~ 200 h) tests.  As 

discussed below, two thruster configurations were tested in two different vacuum facilities at NASA GRC.  While 

performance trends associated with the erosion measurements are provided to facilitate discussion, detailed 

performance characterization is provided in a companion paper by Kamhawi.16   A preliminary correlation of the 

graphite erosion with ambient plasma conditions (yielding the erosion) is provided by comparing these erosion rates 

with those of molybdenum surfaces placed on the graphite.  Comparisons to the SLA data and to prevailing plasma 

models are also made in the discussion of the data.  However, consistent correlation of the various measurements with 

plasma properties remains a work in progress and will likely require leveraging additional risk-reduction testing 

planned in the near future.  

II. Hardware and Technical Approach 

A. Technology Demonstration Units 

Two HERMeS technology demonstration units (TDU) were operated as part of this test campaign, TDU-1 and 

TDU-3.  Kamhawi16 provides full discussion of the changes incorporated into TDU-3 based on lessons learned from 

both TDU-1 and TDU-2 testing and from collaboration with Aerojet Rocketdyne in the development of the 

engineering design units (EDU).  Excepting, of course, the inner pole cover, TDU-1 was largely unchanged from its 

configuration as operated during the 2016 1700 h wear test.  A different cathode assembly was incorporated, as the 

one from the TDU-1 wear test was incorporated into TDU-3 in preparation for its long duration testing.  The electrical 

interfaces to both thrusters incorporated filtering which ensured that both thrusters operated at the same prescribed 

discharge voltage peak-to-peak values at 600 V, 12.5 kW operation. 

Differences of note between the two TDU configurations included cathode axial location, discharge channel 

material, control of thermal interfaces, and magnetic coil configuration.  Because the magnetic shielding configuration 

was predicted to result in higher erosion of the inner front pole cover than an unshielded configuration, thicker pole 

covers were incorporated on TDU-1 prior to its characterization and wear testing in 2016.  This resulted in the 

downstream surface of the cathode’s keeper electrode residing upstream of the downstream surface of the pole covers 

by roughly the thickness of the new pole covers.  While the hollow cathode assembly (HCA) changed from 2016 to 

2017 testing, its relative location in TDU-1 did not.  The HCA incorporated into TDU-3 was modified to allow its 

keeper face to be in the plane of the downstream surfaces of the pole covers.  The discharge channel in TDU-1 was 

unchanged from 2016, but that of TDU-3 was of a higher-fidelity grade of BN consistent with the EDU design.  No 

performance difference was expected nor seen.  Similarly, the magnetic coils of TDU-1 remained unchanged whereas 

TDU-3’s were of a higher fidelity design consistent with the planned EDU.  This resulted in different current settings 

to achieve the same magnetic field, but no change in the magnetic field shape for the same field strength.  TDU-3’s 

assembly reflected greater attention to minimizing surface contact thermal resistances which resulted in slightly lower 

steady-state temperatures. 

Thermocouples were incorporated into both TDU-1 and TDU-3 to measure the temperatures of characteristic 

surfaces to validate and support thermal modeling of the thrusters.  However, the HCA in TDU-3 incorporated two 

thermocouples providing temperatures of the cathode orifice plate and of the cathode tube at an upstream location.  In 

addition to providing an indication of the HCA’s insert life via numerical modeling17 the values also provide anchoring 

of the HCA wear testing ongoing in thruster simulators. 
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B. Space Simulation Facilities 

 TDU-3 was operated in Vacuum Facility 5 (VF-5) at GRC.  A base 

pressure of 2∙10-7 Torr (air) was achieved throughout the campaign.  

Prior to the start of testing, the laboratory feed system passed a point 

of use purity check in accordance with the GRC’s inspection and 

procedure document 305.  This provided greater confidence that rate-

of-rise tests ensured adequate purity of xenon delivered to the thruster.  

In all respects not otherwise noted, the test configuration was identical 

to that used during the 1700 wear test.9  Figure 2 shows TDU-3 

mounted in VF-5 during the test campaign. 

 TDU-1 was operated in Vacuum Facility 6 (VF-6) at GRC.  A base 

pressure of 9∙10-8 Torr (air) was achieved throughout the campaign.  

However, the pumping speed of VF-6 is roughly half that of VF-5 and 

TDU-1 operated at higher pressures than did TDU-3 in VF-5 for the 

same thruster operating condition.  VF-6 was modified to 

accommodate AEPS testing as described in Peterson.18  This included 

the fabrication of a thrust stand and assembly of a plasma probe rake 

identical to the one used in VF-5.  An improved data acquisition and 

recording software suite was developed for VF-6 testing and then 

incorporated at VF-5.  Figure 3 shows TDU-1 in VF-6 during the test campaign. 

 Electrical (plasma) paths to ground were eliminated within 1-m of the 

thruster in both facilities.  The beam dump in VF-5 was floated.  The equivalent 

surfaces in VF-6 were tied to ground.  (TDU-1 wear testing in VF-5 in 2016 was 

conducted with the beam dump grounded.) 

 Graphite paneling or flexible sheets were incorporated on all surfaces 

exposed to the beam in both chambers to minimize the amount of back-sputtered 

material on the thruster.  The internal surfaces of the stainless steel sleeves for 

the oil diffusion pumps were left exposed in VF-5 in anticipation of using the 

pumps during the course of the testing.  The pumps were not used, but the 

exposed surfaces did result in slightly (10% by mass) higher amounts of back-

sputtered material during this test campaign compared to the previous 17000 h 

wear test. 

C. TDU Wear-Test Operating Conditions 

 The test campaign was constrained by test windows in both VF-5 and VF-6 

and by the minimum time required to have reasonable signal to noise 

measurements of graphite erosion.  From the inner pole cover erosion observed 

in the TDU-1 1700 h wear test segments, a nominal test duration of 175 to 200 

h was established for the wear tests.  A slightly shorter duration was accepted 

for the first 300 V 6.3 kW test based on SLA data that showed the erosion to be several times higher than that at other 

conditions.11  A slightly longer duration was accepted for the 600 V, 12.5 kW test in VF-6 based on vacuum chamber 

availability and the expectation that the erosion at this condition would be the lowest of the series of tests.   

 Table 1 shows the seven tests that are included in this test campaign.  Note that all tests were conducted at the 

nominal discharge current of 20.83 A.  This corresponded to the nominal throttle curve developed for the now-

cancelled Asteroid Redirect Robotic Mission (ARRM).4  The performance characterization test (TC-4) is included  

* TC-4, 600 V data were collected during the comprehensive performance characterization of TDU-3 during which time the thruster was 

operated over a range of discharge voltages, discharge currents, and magnetic field settings. 

 
Figure 2. TDU-3 in VF-5 configured for 

short-duration wear testing.  

 
Figure 3. TDU-1 in VF-6 

configured for short-duration 

wear testing.  

Table 1. Thruster Operating Conditions (TC) 

 

TC TDU VF
Vd,            

V

Magnetic 

field

Vcg,           

V

Vcg, p-p, 

V

Vk,           

V

Vk, p-p,                

V

Jd,p-p,           

A

Vd, p-p,            

V

Jb,            

A

p,               

µTorr

QCM,              

µm/kh

Time,         

h 

Xe used,           

kg

0, 600 V 1 5 600 Nominal -9.2 28 2 10 14 19 1.6 4.6 1.8 250 20.6

1, 300 V 3 5 300 Nominal -9.2 14 2.3 7 7 12 0.92 5.0 2.2 165 12.3

2, 400 V 3 5 400 Nominal -9.6 15 2.2 7 8 12 1.2 4.9 2.2 193 14.5

3, 500 V 3 5 500 Nominal -9.3 27 1.8 12 15 24 1.5 4.9 2.2 196 15.6

4, 600  V 3 5 600* Nominal -8.8 28 2.1 10 15 29 1.7 4.9 2.2 182 15.2

5, 600 V 3 5 600 125% Nom. -10 35 2.0 12 14 32 2.1 4.9 2.2 192 15.8

6, 300 V 1 6 300 Nominal -9.5 14 1.2 7 7.2 13 0.94 11 0.45 191 14.2

7, 600 V 1 6 600 Nominal -11 28 1.2 11 16 25 1.0 9.5 0.45 281 23.2
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because a large fraction of the total thruster operation was at the 600 V, 12.5 kW nominal operation point.  Also 

included in the table is the first segment of the TDU-1 wear test from 2016 (TC-0).  It is included for reference as the 

erosion data for both Mo and graphite observed in the other tests are compared to the rates observed at this operating 

condition.   

 All wear testing and the vast majority of the performance characterization testing was conducted in the cathode-

tied electrical configuration.19  While it is a departure from previous flight Hall thrusters, this configuration is 

consistent with TDU-1 wear testing in 2016 and is the projected flight configuration.   

D. Modification of Surfaces to Measure Erosion 

 In order to better characterize the erosion of the keeper downstream face, the inner front pole cover, and the outer 

front pole cover, masks were incorporated to provide unexposed (no erosion, no deposition) surfaces for post-test 

measurements.  Molybdenum surfaces were also incorporated on each of these to provide accelerated erosion since 

the durations might not be sufficient to discern erosion on the keeper and outer front pole cover (based on TDU-1 

2016 data) and to provide correlation with the SLA data collected at JPL since only a handful of the conditions tested 

in that campaign are repeated in this one.  It was assumed that the masks would not impact the erosion rates of the 

masked surfaces. 

 

1. Cathode Keeper Electrode 

The keeper electrode in the TDU-1 1700 h wear test exhibited ambiguous erosion 

given there was no reference (unexposed) surface, but the erosion appeared to be small.  

The downstream surface of the keepers used in both TDU-1 and TDU-3 tests for this 

campaign were polished to provide a smooth surface to better capture the erosion over 

a short duration.  Molybdenum masks were employed with each test to provide both 

masking and an accelerated erosion surface.  The keeper was not removed after each 

test due to schedule constraints.     

Figure 4 shows a Mo mask that was used to characterize the erosion of the keeper 

electrode.  The mask incorporated a notch that exposed the underlying graphite surface 

and an orifice that was significantly larger than the keeper orifice to minimize the 

impact of the mask on the keeper’s operating characteristics.  The mask was replaced 

after each test and the notch was clocked to expose a different segment of the keeper 

electrode.  The mask was held in place by a tantalum sleeve that was spot-welded to the Mo mask and friction fit 

around the outer diameter of the keeper tube.  The tabs of the Ta sleeve that folded over the Mo mask and provided 

the point of attachment also provided unexposed surfaces on the Mo mask for measurement reference. 

 

2. Inner Front Pole Covers 

 As shown in Fig. 5, the inner front pole covers (IFPC) incorporated a number of 

components to characterize their wear. Four polished graphite inner pole covers 

(IFPCs) incorporated two notches for 1.5 mm thick Mo strips which lay flush with the 

graphite surface. Two of the pole covers also incorporated two bushings that simulated 

the fastener attachment configuration proposed for the EDU.  The Mo strips were 

machined flat and had inner and outer radii that matched those of the inner front pole 

cover.  Two 0.5 mm thick graphite masks covered the center third of each of the Mo 

strips and two similar masks covered graphite radii at 60-degree clocking.  New Mo 

strips were exposed in each test.  Graphite masks were reused test to test. 

 At the onset of the performance characterization test, only the IFPC used during 

the TDU-1 wear test (i.e. no polished, Mo-inlaid one) was available.  This was deemed 

sufficient since the wear would be impacted by the large degree of throttling inherent 

in the characterization test.  Graphite masks were incorporated nevertheless to provide 

reference surfaces.  A large fraction of the test segment was conducted as if it were a wear test at 600 V, 12.5 kW, and 

the wear associated with this one operating condition might be deduced using data obtained from the other wear tests.   

 Two of the seven tests incorporated “used” IFPCs.  The same IFPC was used for both segments of the testing in 

VF-6 because the tests were separated by sufficient time to allow full mapping of the eroded surface after the first test.  

The IFPC used during the 500 V test in VF-5 was also used for the last test, the 600 V, 12.5 kW, with increased 

magnetic field strength (125% nominal).   

 

 

 
Figure 4. Mo mask on 

keeper electrode.  

 
Figure 5. Mo strips on the 

IFPC.  Note graphite 

masks on both Mo strips 

and on IFPC. 
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3. Outer Front Pole Covers 

Figure 6 shows one of two 0.5 mm thick Mo surfaces attached to the outer front 

pole cover (OFPC) in each of the test segments.  No OFPC Mo surfaces were 

present during performance testing.  As with the Mo strips on the IFPC, 0.5 mm 

thick graphite masks covered roughly 1/3 the width of each of the Mo surfaces on 

the OFPC.  The Mo surfaces were attached at the same clocking on the graphite 

OFPC.  This provided an integrated erosion rate over the 1000 h of testing in VF-5 

and 500 h in VF-6.  The erosion rates observed in 2016 were small enough that no 

erosion was expected to be detected even with the integrated value.  Virgin Mo 

surfaces were incorporated for each of the tests while the masks were reused.   

Graphite pieces were machined to simulate the fastener configuration proposed for the EDU.  As with the bushings 

on the IFPC, these were incorporated to both verify that a non-flat surface would not impact TDU/EDU performance 

and to identify any erosion that might occur due to radially moving high-energy ions.   

E. Measurement of Erosion Profiles 

 All measurement of erosion depths (and deposition heights) were made using a chromatic, white-light non-contact 

bench-top profilometer.  This is the same technique used to characterize erosion following segments of the 2016 TDU-

1 wear testing.  The uncertainty in the absolute height measurements depended on both reflectivity of the interrogated 

surface and its degree of polish.  Typically, polished surfaces required less light to achieve a reliable measurement 

than eroded or coated surfaces.  This was particularly true of eroded graphite.  However, relative depths of a masked 

and eroded graphite surface were resolvable within 1 µm.  Relative depths of masked and eroded Mo surfaces were 

resolvable within 5 µm.  The difference was due to the roughness of the eroded Mo surfaces.  Sources of additional 

uncertainties are discussed in detail below. 

 

III. Results 

Results are presented beginning with performance trends, proceeding through erosion data associated with 

different components, and concluding with plume data.  Molybdenum erosion data is presented with the graphite data, 

but emphasis is placed on the graphite data since they directly represent the erosion of thruster components.  At the 

beginning of the presentation of the erosion data, a more thorough discussion of the uncertainties associated with these 

measurements is also presented. 

A.   General Observations 

No erosion of the BN channel was observed.  Deposition indicated by nearly uniform blackening of the channel 

occurred within the first 100 h of operation in VF-5.  Tens of hours of TDU-3 operation in VF-6 prior to the wear 

testing in VF-5 did not yield significant blackening.18  No cracking of the BN was observed at any time.  Spalling of 

carbon deposition on the downstream flats of the channel which was observed after 500 h on TDU-1 in 2016 was not 

observed on TDU-3 until the thruster was removed from VF-5.   

Post-test measurements of the TDU-3 anode showed the thickness of carbon deposition to be on the order of 2 µm, 

consistent with the QCM measurements.  Spalling of the deposition on the anode was observed after every facility 

opening following TC-2 (i.e. after 500+ h of total operation and 2 prior facility ventings).  The spalling was limited to 

the upper half of the anode and the spalling pattern changed with each entry. 

B. Performance Trends During Wear Testing 

Two sets of performance trends are discussed in relation to the wear test campaign.  The first is the repeatability 

of thruster performance at different operating conditions over the course of the test campaign which speaks to the 

consistency of the thruster’s configuration and adds confidence to the comparison of wear rates taken during different 

tests.  The second is the consistency of the thruster’s operation over the course of individual test segments and allows 

the comparison of various parameters such as discharge oscillations and background pressure. 

 

 

 

 

 

 

 
Figure 6. Mo strip on OFPC 

with graphite mask.  
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1. Reference Firing Conditions 

Six throttle conditions were selected as reference 

firing conditions (RFCs) to evaluate the consistency 

of the thruster over the test campaign.  Slightly 

different than the RFC’s of previous TDU testing, 

the conditions correspond to the five wear test 

operating conditions given in Table 1 (TC 1-5) with 

the addition of a 300 V, 3 kW condition.  In general, 

only one set of reference data was collected during 

each of the short duration wear tests to minimize the 

operating time spent away from the nominal wear 

test condition which might add additional 

uncertainty to the wear data. 

 Figure 7 shows the variation in power-corrected 

thruster efficiency as a function of time for the five 

tests conducted using TDU-3.  The slight variations 

likely result from the data being collected at 

different points during each short duration test (and 

thus corresponding to slightly different thermal 

conditions.   

 There were no significant variations in peak-to-

peak values of discharge current, Jd, and discharge 

voltage, Vd, over the course of the testing.  (Typical 

values are given in Table 1.)   

 As noted in Table 1, the keeper electrode floated 

roughly 2 V above cathode potential during thruster 

operation for all operating conditions.  Figure 8 

shows the variation in peak-to-peak values of the 

keeper voltage with respect to the cathode as a 

function of thruster operating time.  Note that the 

highest values are for TC-3, and TC-5.  The lowest 

values are for TC-2.  The peak-to-peak trends in Vk 

were also observed in the peak-to-peak values of the cathode to ground voltage, VCG. However, the values of the latter 

were roughly twice that of former.  The peak-to-peak values of Vk and VCG are determined and constrained by the 

cathode-tied configuration.  The body current runs from the plasma to all surfaces exposed to the plasma except the 

anode, discharge channel, and keeper through the cathode back to the plasma.   

Discharge current was maintained by operator-adjustment of the flow rates.  The discharge current varied by as 

much as 0.1 A (0.5 %) due to flow adjustments, noise in the anode flow controller, and thermal variations as the TDUs 

reached steady state. Significant variation in both JD and VD occurred during performance characterization testing (165 

to 350 h), but note that the majority of TDU-3’s operation during this segment was at 600 V, 20.8 A.  Roughly 3.5% 

of the nominally 300 V, 6.3 kW test in VF-6 operated at 600 V to accommodate thrust vector analysis.  With the 

exception of the performance characterization segment, the vast amount of operating time was spent at the nominal 

wear test condition and erosion profiles are assumed to be independent of the slight periods of deviation. 

Plume data consisting of Faraday probe, 

Langmuir probe, retarding potential analyzer (RPA) 

probe, and Wein filter (ExB probe) were collected 1.5 

m from the thruster exit plane in an arc ±115⁰ from 

thruster centerline.  Data were collected during each 

short duration wear test and during TDU-3 

performance testing.  Detailed discussion of this data 

is not included in this paper, but trends in the wings 

which could be correlated to the trends in erosion are 

presented.  Figure 9 compares the average energy in 

the plume as a function of angle from centerline. 

While the fluxes in the wings are small, Fig. 9 shows 

that a significant fraction of the ions have energies 

 
Figure 7. TDU-3 total efficiency as a function of time 

during wear testing. 

 
Figure 8. TDU-3 keeper voltage (peak-to-peak values) as a 

function of time during wear testing. 

 
Figure 9. Average ion energy in the wings of the plume of 

both TDU-1 and TDU-3 during wear testing. 
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above 60 eV, especially for cases TC-1, TC-5 and TC-7.  In contrast, TC-6 appears to have the least energetic ions in 

the wings of the plume. 

 

C. Uncertainties in the Erosion Measurements 

In addition to the resolving capabilities of the profilometer discussed above, there are several other sources of 

uncertainty in the erosion measurements.  As noted above, the uncertainties lie principally in the measured depths 

(µm) and not in the rates themselves.  The time of each wear test segment was known within a fraction of an hour, or 

within less than 0.5 % which would correspond typically to a graphite erosion depth of 0.04 µm, far less than the 

actual measurement uncertainties noted above and in what follows.  The actual uncertainties in the measured erosion 

rates then decrease with eroded depth (i.e. are less with greater erosion rates) and with longer test times (i.e. the 

measurement errors are not compounded by extrapolation to 1000 h). 

Carbon (and a small amount of stainless steel) was sputtered on the TDU surfaces from plume impingement onto 

facility walls at a rate of 2 µm/kh onto TDU-3 in VF-5 and 0.5 µm/kh onto TDU-1 in VF-6.  For an average test 

duration of 200 h, this amounts to a possible direct change in surface height of about 0.4 µm which is below the 

detection threshold of the profilometer (and well within the measured surface roughness).  The impact of carbon 

deposition on graphite erosion is assumed to be at worst additive (i.e. 1 µm of deposition would cancel 1 µm of 

erosion).  However, the impact of carbon deposition on Mo surface erosion rates has been shown to be more 

complicated resulting in the onset of no net erosion below a critical impingement current density for a given xenon 

ion energy.20  The measured Mo erosion rates appear to be of such high values on the IFPC that this effect can be 

neglected. 

The masked and eroded surfaces were compared within a few mm of each other to minimize the impact of surface 

variations resulting from pre-test polishing and mounting in the profilometer apparatus.  Both of these introduced 

further uncertainty if the surface was numerically flattened in post-processing of the profilometer data.  The impact of 

surface variations was minimized by comparing data taken on both sides of a masked region and on multiple masked 

regions (usually 180⁰ apart).  No azimuthal variation in wear of the graphite IFPC was observed in the 1700 h wear 

test,9 which suggests the azimuthal uncertainty is less than 0.6 µm/kh.  Variations across the surface or within 1 mm 

of a measured region introduced an average of 0.5 µm of uncertainty (±0.25 µm) in the graphite erosion rate 

calculations and up to 5 µm of uncertainty in the Mo erosion rate calculations.  Remeasuring of eroded surfaces, both 

Mo and graphite, yielded nearly identical results, suggesting that there were not additional systematic errors.   

Recalling that the measurement resolution uncertainty is 1.0 µm (±0.5 µm) the error in graphite erosion depth is 

roughly ±1.2 µm which corresponds to ±6.0 µm/kh for a 200 h test extrapolated to 1000 h.  Figure 10 compares the 

graphite erosion rates measured on the IFPC of TDU-1 during two segments of the 1700 h wear test in 2016.9  Note 

that the rates of the shorter duration have much larger uncertainties, but that the uncertainties are not sufficient to 

account for the difference in the rates measured in the two segments.  The potential of a much larger source of 

uncertainty, initial rates versus sustained rates, is discussed in Section IV below and is shown to not explain the 

differences in the two trends in Fig. 10. 

Additional uncertainty arose in the measurement of eroded depths of Mo surfaces.  The graphite masks on the Mo 

strips caused the strips to erode non-uniformly.  Modifications to the masking including reducing the mask width and 

testing without masking show that depths near the 

edges of the strips were most representative of 

unmasked Mo erosion.  There appears to be a 

correlation of the Mo erosion to the ExB drift of the 

near-field plasma.  However, this effect has not been 

fully characterized.  Also, there was unequal erosion 

on either side of the radial mask.  Together, these 

introduced a relatively consistent 10% uncertainty in 

the eroded depth.  Since the resolution uncertainty for 

Mo erosion measurements is ±2.5 µm, the overall 

measurement uncertainty for the Mo depths is ±5.0 

µm which corresponds to ±25 µm/kh for a 200 h test 

extrapolated to 1000 h.  Since the measured Mo 

depths were typically much larger than this, the 

relative uncertainty in the Mo data was taken to be 

±10%. 

   

 
Figure 10. Graphite erosion rates of the TDU-1 IFPC for 

two segments of the 2016 1700 h wear test.9  
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D. Keeper Erosion 

The keeper electrode in TDU-3 exhibited unexpectedly high 

levels of erosion.  Figure 11 shows an image of the keeper post test 

formed by profilometer measurements and indicates which region 

corresponds to a particular segment of the testing.  Note that there is 

a circular step forming an annulus around the inner aperture which 

was unmasked throughout the test campaign.  This is a region of 

erosion roughly 50 µm deep and represents aggregate erosion over 

the 996 h of TDU-3 operation.  An isometric image of the keeper 

face is given in Fig. 12 and shows the relative depth of the different 

regions.   

Figure 13 shows a profilometer image of the keeper face from 

TDU-1 which can be contrasted with that in Fig. 12.  Unlike the 

raised, reference regions in Fig. 12 which correspond to protected 

segments of the TDU-3 keeper, the raised region in Fig 13 is the exposed region--showing net deposition.  Note that 

the exposed segment was exposed for both wear tests in VF-6 in order to resolve the expected low erosion rates 

(measured on the keeper of TDU-1 in 2016 after 1700 h).  The exposed regions (cutout and inner annulus) show net 

deposition of 15 and 8 µm, respectively (with no discernable radial variation).  These correspond to deposition rates 

of 60 and 24 µm/kh, 50 to 100 times greater than the QCM-measured deposition rates from the facility.  High-

resolution imaging of the deposition shows the deposited graphite to be columnar and covering only ~ 30% of the Mo 

surface.  This is radically different from the deposition observed on the QCM crystals and on the OFPC of TDU-1 

which was densely packed.9  The difference in the 

morphology of the deposited graphite is likely due 

to the dense plasma near the keeper orifice.   

Figure 14 compares photos of the Mo keeper 

masks of the 300 V TDU-1 and TDU-3 short 

duration wear tests (TC-6 and TC-1, respectively).  

Note the net deposition (~ 8 µm thick) around the 

center of the TDU-1 mask.  Slight erosion was 

observed beyond the region of deposition on the 

TDU-1 mask with rates roughly 10% that of the 

TDU-3 mask.  The four tabs visible in each of the 

pictures correspond to the attachment points for the 

Ta collar that held the mask onto the keeper.  The 

surfaces protected by the tabs also provided zero-

erosion, zero-deposition surfaces for wear 

measurements. 

Figure 15 compares the erosion profiles of each 

exposed section of TDU-3’s keeper with respect to the two “reference” sections (see Fig. 11).  Note that the high-

 
Figure 12. Erosion of the TDU-

3 keeper during each of the short 

duration wear tests in VF-5.  

 
Figure 13. Deposition on the 

TDU-1 keeper following the two 

short duration wear tests in VF-6.  

 
Figure 11. Regions of TDU-3 

keeper exposed during each of the 

short duration wear tests in VF-5.  

 
Figure 14. Comparison of Mo keeper 

masks for TDU-1 and TDU-3 for similar 

operating conditions. 

 
Figure 15. Erosion rates of the TDU-3 keeper as a 

function of keeper radius each of the short duration wear 

tests in VF-5. 
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magnetic field case (TC-5) has a significantly different 

erosion pattern.  Except for the extreme outer radius, the 

rates for the other test conditions follow the same trends and 

nearly lay within the uncertainty of the measurement.  The 

depth of the step at the inner radius of the TDU-3 keeper is 

50 µm which corresponds to a time-weighted linear 

addition of the rates observed at the inner edges of the 

segments which were each exposed for only one of the tests.  

This implies there was no significant change in erosion rate 

over time and that the polished surface of the keeper did not 

accelerate the erosion observed in each segment. 

E. Inner Front Pole Cover Erosion 

The erosion of the inner front pole cover of TDU-3 as a 

function of discharge voltage is shown in Fig. 16.  All data 

is for the thruster being operated with the nominal magnetic 

field. For reference, the 250 h erosion pattern of TDU-1 

(TC-0) is also shown.  Error bars indicate that there is very 

little variation in erosion rates except for the 300 V data, 

which is between 50 and 100 % greater than those for other 

discharge voltages.  Exceptions to this rule occur at the 

extreme inner and outer radii.  For comparison, the erosion 

rates measured following the performance characterization 

test (TC-4) are included.    Figure 17 shows that the erosion 

trends of the Mo strips followed the same general trends as 

the graphite IFPC, though the rates, as discussed in detail 

below, were much higher, especially near the inner radius of 

the IFPC. 

Figure 18 shows that operating at a higher magnetic field 

had minimal impact on the IFPC (graphite) erosion rates 

except at the extreme inner radius.  This is in clear contrast to 

the erosion rates of the Mo strips with nearly 20 times greater 

near the inner radius as shown in Fig. 19.  (Note that no Mo 

data were collected for TC-4.)  The higher graphite erosion 

rate for TC-5 at the inner radius of the IFPC contrasts with 

the dip seen in the TC-0 and TC-4.  This may correlate with the higher erosion measured on the keeper which was 

much greater for this (TC-5) condition.    

 

 

 
Figure 17. Comparison of Mo strip erosion across the 

radius of the IFPC. 
 

Figure 16. Comparison of IFPC erosion as a function 

of discharge voltage. 

 
Figure 19. Comparison of IFPC Mo strip erosion 

as a function of magnetic field for Vd=600 V in VF-5.  

Note that TC-5 has a 125% higher B-field.. 

 
Figure 18. Comparison of IFPC erosion as a function 

of magnetic field for Vd=600 V in VF-5.  Note that TC-5 

has a 125% higher B-field.  
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Figure 20 shows that there is a clear, but inconsistent, 

impact of pressure on IFPC erosion rates.  As noted in Table 1, TC-0 corresponds to TDU-1 operation in VF-5, TCs 

1-5 correspond to TDU-3 operation in VF-5, and TCs 6-7 correspond to TDU-1 operation in VF-6.  However, 

performance variations were negligible for operation at the same discharge voltage and power regardless of TDU or 

facility.  Therefore, the significant changes are believed to be dominated by the change in facility pressures.  The 

erosion rate of the 600 V case is much higher at higher pressure (TC-7 vs TC-0 and TC-4) whereas the erosion rate of 

the 300 V case is significantly lower (TC-6 vs TC-1) at higher pressure.  However, the trends observed on Mo strips 

show consistently decreasing erosion rates with pressure.  Figure 21 compares data for 600 V, 12.5 kW operation in 

several test campaigns over a range of pressures.  The SLA data suggest a varied trend, with outliers on both the inner 

and outer IFPC radii.11 

F. Outer Front Pole Cover Erosion 

No erosion was measured on the outer front pole cover 

(OFPC) of TDU-1 during the 2016 wear testing.  No 

deposition was measured on it either, suggesting a nearly 

unchanged surface.  This was true for both graphite and 

alumina outer pole covers.9  Erosion of the outer pole cover 

was measured following the completion of the TDU-3 wear 

testing (after 996 h).  Figure 22 shows that the OFPC eroded 

at a rate between 2 and 10 µm/kh, with (slightly) greater 

erosion occurring on the inner channel-side of the OFPC.   

Figure 23 shows the erosion rates measured on the Mo 

strip on the OFPC for TC-1, 2, 5, and 7 wear tests.  These 

indicate that the erosion of the graphite OFPC varied with 

thruster operating condition and that the slightly greater 

erosion on the inner third of the OFPC (Fig. 22) occurred during 

the 300 V operation.  Small Mo erosion rates were observed on 

the Mo strips for the 600 V operating cases (TC-5 and TC-7; no 

Mo strips were incorporated for TC-4).  Comparing to IFPC and 

keeper erosion rates, these low Mo rates would likely result in 

very small graphite erosion consistent with Fig. 22 and the 

results of the 1700 h wear test.9 

Because the Mo erosion rates vary with operating condition, 

it’s is difficult to draw a conclusion from the ratio of the Mo 

rates to the aggregate graphite OFPC rates.  However, as can be 

seen in Fig. 6, there is shadowing of the OFPC (or its masks) 

by the fasteners.  The “shadowed region” appears as a wake on 

the far right-hand-side of the image,  

 

 

 
Figure 21. Comparison of Mo erosion as a function of 

facility pressure. 

 
Figure 20. Comparison of IFPC erosion as a 

function of facility pressure. 

 
Figure 22. OFPC erosion as a function 

normalized OFPC radius. 

 
Figure 23. OFPC Mo strip erosion as a function 

normalized OFPC radius for several test 

conditions. 
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Table 2:  Summary of erosion rates measured during TDU testing. 

 

 

extending from the fastener to the outer edge of the mask in the figure.  Post-test analysis showed the shadowed region 

consists of back-sputtered material from the facility—indicating that this small area is shielded from “cleansing ions” 

impinging the OFPC at relatively large angles from normal.9    There were no visual differences in the shape of the 

protected region over all TCs.  Similarly, the thicknesses of the films on the protected regions were beneath the 

detection threshold of the profilometer. 

IV. Discussion 

A. Trends in Erosion Rates 

Table 2 summarizes the erosion rates observed on the keeper and pole covers for the various TCs presented above. 

Actual component, i.e. graphite, rates are given for the keeper and IFPC.  However, since there were no test-to-test 

measurements of OFPC erosion, rates calculated for the Mo strips on the OFPC are given.  The rates can be cross-

referenced to the TDU performance parameters given in Table 1. 

 Maximum and typical values for the graphite erosion rates observed on the keeper are given.  For TC-0, the 

erosion rate was ambiguous and may have been deposition.  Deposition was seen in both TC-6 and TC-7, but there 

was no measurement at the end of TC-7 (which preceded TC-6).  Deposition was measured on the Mo masks for each 

test and showed the deposition rates were comparable.  Thus, all three of the TDU-1 tests showed negligible wear of 

or deposition on the keeper.  The five TDU-3 tests showed significant erosion of the keeper, especially for higher 

magnetic fields.    While the erosion of the keeper in the TDU-3 configuration was unexpected, the trends of the TDU-

1 keeper erosion were consistent both with expectations and prior wear test data.  It is likely that operating with the 

keeper in the TDU-1 configuration is sufficient to eliminate keeper erosion as a primary failure mechanism without 

impacting thruster performance. 

Inner pole cover erosion, identified as one of the primary AEPS failure mechanisms, appears to have a weak 

dependence on discharge voltage except near the cathode (inner IFPC radius).  However, as seen in Table 2, the highest 

erosion occurred near the channel (outer IFPC radius) for TC-1, 300 V operation which also had the highest overall 

beam divergence and highest flux of higher-energy ions in the wings of the plume.    Similar erosion rates were seen 

near the channel for TC-6, 300 V operation suggesting the erosion in this region is coupled to the discharge.  The 

variation in erosion rates for inner radius of the IFPC does not correlate well with TDU, VF, Vd (given in the TC), 

magnetic field or Vcg(peak-to-peak) values.  With the exception of TC-4, 600 V, the typical keeper erosion rates do 

trend with the inner IFPC rates which may suggest that the two are being eroded by the same flux of ions.  Significant 

higher Mo erosion rates near the inner radius of the IFPC (Fig. 17) are also comparable to the Mo rates on the outer 

radius of the keeper masks.  Note, however, that the erosion rates near the mid-radius of the IFPC are largely 

insensitive to TC, with the exceptions of TC-1, 300 V and TC-7, 600 V which are roughly double the other values. 

Indeed, as mentioned above, the (graphite) IFPC erosion rates measured for the TC-7, 600 V operation are 

completely inconsistent with all other data.  Remarkable agreement with TC-1, 300 V except at the inner IFPC radius 

appears to be purely coincidental.  The most probable explanation for the inconsistency is a loss in configuration 

control that led to an artificially high measurement of graphite erosion for TC-7, but this explanation has been 

eliminated through test documentation.  It should be noted, per Fig. 9, that the beam divergence of the TC-7, 600 V 

case is most comparable to the TC-1, 300 V case.  This does not resolve the disconnect between the trends in Mo data 

or the comparison of Mo to graphite rates discussed below.  It does, however, suggest that the graphite data are not 

completely spurious.   

TC TDU VF 
Vcg

p-p, 

V 

Magnetic 

Field 

Keeper, µm/kh IFPC, µm/kh OFPC, Mo 

µm/kh Maximum Typical Inner Mid-R Outer 

0, 600 V 1 5 28 Nominal ≤10 - 25 25 40 - 

1, 300 V 3 5 14 Nominal 75 75 75 60 120 85 

2, 400 V 3 5 15 Nominal 55 50 55 40 70 25 

3, 500 V 3 5 27 Nominal 210 75 90 30 60 40 

4, 600 V 3 5 28 Nominal 110 80 35 40 70 15 

5, 600 V 3 5 35 125% Nom 150 125 80 30 65 35 

6, 300 V 1 6 14 Nominal ≤20 depo - 15 40 120 50 

7, 600 V 1 6 28 Nominal ≤20 depo - 55 70 100 20 



 

 

The 35th International Electric Propulsion Conference, Georgia Institute of Technology, USA 

October 8 – 12, 2017 

13 

The common unexpected trend of the wear testing of TDU-1 and TDU-3 is that the first wear test of each thruster 

in a given test series (TC-0 and TC-1 in VF-5 and TC-7 in VF-6) resulted in graphite erosion rates twice that 

experienced in other tests.  One is tempted to infer that polished pole covers or other beginning-of-test conditions yield 

significantly higher IFPC rates.  If true, the results would be modified in ways that are desirable from both perspectives 

of thruster development and fundamental understanding of thruster erosion processes: 

 the change in TDU-1’s pole cover erosion rates in 2016 would be explained and the lower, later rate would 

be representative of future tests,  

 there would remain no significant variation in graphite pole cover erosion with either discharge voltage or 

facility pressure  

 the erosion of the IFPC during TC-5, higher magnetic field operation would be scaled higher, to compare 

with the erosion observed on the keeper.   

 the keeper erosion rates would all be reduced by the same rough factor of two since each segment began as 

a polished serface.   

   

However, there is no justification for this conclusion.  In particular, the unpolished, well-worn IFPC incorporated 

during the performance characterization testing yielded the same erosion rates as the other, polished IFPCs; and the 

polished surfaces of the TDU-1 250 h segment (TC-0, 600 V in Tables 1 and 2) which were exposed during the 1000 

h, fourth segment of the 1700 h test eroded at the same, reduced rate as the previously exposed surfaces.  The TC-7, 

600 V case operated for only a short duration (< 24 h) before an opening of VF-6 was required.  The polish had been 

removed from the surface after this short duration and the IFPC masks were adjusted which captured a small fraction 

of the partially eroded surface under a mask. The erosion depth was undetectable via profilometry, only the change in 

surface quality was measured.  In addition, it should be noted that the increase in IFPC erosion with pressure is noted 

between two polished IFPCs operating at 600 V (TC-0 and TC-7), not just between the 300 V and 600 V cases with 

the same IFPC.  Therefore, the unexpected trends cannot be dismissed simply on the basis of whether the IFPC erosion 

initiated on a polished, untested surface. 

TC-0, TC-1, and TC-7 were initiated with different amounts of back-sputtered material on the BN channel.  TDU-

1 (TC-7) retained the well-coated BN channel from the 1700 h test.  While TC-1 (TDU-3) testing did begin with a 

relatively clean channel, TC-0 (TDU-1) began after a 125 h of performance testing and the channel was, as for TC-7, 

well-coated.9  Moreover, there appears to be no physical path to increasing the graphite erosion while simultaneously 

decreasing the collocated Mo erosion.  As seen above and in the discussion below correlating Mo to graphite regression 

rates, TC-7’s graphite erosion is out of family with all of the other operating conditions.  No explanation is apparent 

at this time, but the IFPC erosion rates for TC-7 must be considered highly suspect. 

To some extent, the erosion rates of the Mo strips on the OFPC correlate with the ion fluxes in Fig. 9.  However, 

since the erosion rates appear to maximize near the channel (the inner radius of the OFPC), it is more probable that 

the rates in Table 2 correlate to the position of the ion acceleration zone.  TC-2, 400 V data do not fit into this trend. 

B. Correlation of Molybdenum and Graphite Erosion Rates 

Because of the differences in yields, the erosion rates of the Mo on the keeper, IFPC, and OFPC are of most value 

when correlated with the rates and trends of the erosion of the graphite components themselves.  The correlation may 

provide insight into the energies (and thereby source) of the eroding ions and the variation of ion flux with operating 

condition and location.   

 
Figure 24. Mo to C volumetric sputter yields as a 

function of normal-incident Xe II ion energies.21 

 
Figure 25. Ratios of Mo to C volumetric sputter 

yields as a function of incident Xe II ion energies. 
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An extensive assessment of the sputter yields of Mo and carbon, C, surfaces has been undertaken by Yim.21  

Leveraging the conclusions of this analysis which are subject to high uncertainties, a preliminary assessment of the 

ion flux to the IFPC has been undertaken.  Figure 24 shows the volumetric sputter yields  of Mo to C as a function of 

incident ion energies for normal-incident Xe II ions.  Volumetric sputter yields are of more value to this analysis than 

typical sputter yields in units of atoms per ion since the ratio of volumetric yields can be correlated to the ratio of 

regression (erosion) rates as are reported above.  Figure 25 shows the ratios of the yields, for various angles of 

incidence.  Note that the values for 0⁰ and 15⁰ overlap and that the impact of angle of incidence is largely independent 

of ion energy, yielding a consistent reduction from the value of the ratio at normal (0 deg) incidence.  Near the 

threshold energy of C sputtering, the ratio increases rapidly.  Due to the uncertainties in the erosion rate measurements, 

Fig. 25 does not provide sufficient information to draw quantitative conclusions regarding the ions eroding the TDU 

surfaces.21  However, the relative significance of ion energy and angle of incidence may be sufficient to draw some 

qualitative conclusions.  This is further complicated by the nature of graphite erosion due to low-energy ions as it is 

dominated by dimer and trimer removal.22 

Figure 26 compares the ratio of TDU-3 IFPC Mo to C (graphite) erosion rates as a function of discharge voltage.  

Uncertainties have been increased reflecting the uncertainties associated with both Mo and C rates themselves.  For 

TC-1, TC-2, and TC-3 data, the ratios are similar over the majority of the IFPC radius between values of 5 and 8.  

From Fig. 25, this suggests incident ion angles above 45⁰, with no resolution of the ion energies themselves.  However, 

protrusions on the IFPC including fastener heads, graphite masks, and bushings for the fasteners did not reveal any 

shadowed regions as were seen on the OFPC (Fig. 6).  Detailed profilometry near an IFPC bushing for TC-2, TC-3, 

and TC-5 showed masking where the bushing overlapped the IFPC but otherwise, in 360⁰, erosion consistent with the 

rest of the IFPC.  This suggests the eroding ions were nearly normal in incidence.  Unless the ions were in the high-

energy tail of a high-temperature (many eV) distribution with a hundreds of eV mean energy, there is no corresponding 

region in Fig. 25 that would have normally incident ions with that ratio of yields.  If, however, the curves are 

overestimating the ratio values, then there would be two populations of ions that could result in the erosion, low-

energy (sub 100 eV) and high-energy.  Without further measurement, it is impossible to determine which population 

is dominant.  However, the overlap of the curves suggest the same source and energy of ions are responsible for the 

IFPC erosion for TC-1, TC-2, and TC-3 (300 V to 500 V operation). 

Since there was no dedicated 600 V, 20.83 A test using TDU-3, assessing whether this operating condition falls 

along the same trends is problematic.  The ratio for TC-0 (TDU-1) is shown in Fig. 26.  Note that it has a fundamentally 

different trend.  This may result from either the configuration differences between TDU-1 and TDU-3.  A ratio of the 

graphite erosion observed during TC-4, 600 V and Mo erosion from TC-0, 600 V is also shown in Fig. 26.  Note that 

the ratio now trends with the other TC’s except near the IFPC’s inner radius.  The difference in Mo erosion rate near 

the cathode very likely follows from the differences in TDU-1 and TDU-3 cathode location. The convergence of the 

TC-4 data with the other data over the rest of the radius suggests that there is a fundamental difference in IFPC erosion 

between the two configurations.  Unfortunately, TC-7, 600 V ratios trend differently from both TC-0 and TC-4 data 

as shown in Fig. 27.  Lower graphite erosion relative to Mo erosion shown in Figs. 16, 17, and 26 suggest TDU-1’s 

IFPC was eroded by lower0energy ions (regardless of angle of incidence) than TDU-3’s IFPC. 

Figure 27 compares all four sets of 600 V data (TC-0, 4, 5, and 7).  TC-5’s higher magnetic field significantly 

increases the ratio of Mo to graphite erosion without significantly changing the graphite erosion rate itself (cf. Fig. 

 
Figure 27. Ratios of Mo to C IFPC erosion rates 

as a function of facility pressure and TDU 

configuration for Vd=600 V. 

 
Figure 26. Ratios of Mo to C IFPC erosion rates as a 

function of discharge voltage. 
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18). Indeed, the graphite erosion rates of TC-0, 4, and 5 are 

comparable except near the cathode.  The variation in the 

ratios shown in Fig. 27 indicate that there are more low-

energy ions near the cathode (inner radius of the IFPC) for 

the higher magnetic field of TC-5. The increase in low-

energy ions is also consistent with the ratio of regression 

rates shown in Fig. 25, where values above 15 would likely 

lie in an extrapolation (within the uncertainty) near the 

threshold region of the curves.  Again extrapolating within 

the uncertainties in Fig. 25, the very low values of TC-7 in 

Fig. 27 would suggest that the IFPC erosion is dominated 

by high-angle of incidence ions at higher pressures.  This is 

consistent with some previous investigations.10,13  

Unfortunately, regardless of whether this explanation is 

valid, the TC-7 data do not support a conclusion regarding 

differences in the IFPC erosion of the two TDU 

configurations since the Mo rates trend in the opposite direction. 

 Figure 28 compares the ratios of Mo to graphite (C) erosion rates for the two 300 V test conditions, TC-1 and TC-

6.  Recall from Fig. 20 that the rates of graphite erosion of TC-6 are roughly 50% of those of TC-1.  That the two sets 

of data in Fig. 28 lie on nearly on top of each other over the majority of the IFPC radius suggests that the reduction in 

erosion associated with the higher background pressure is due to a reduction in overall flux of eroding ions and 

independent of a change in angle of incidence or mean energy.  However, there could have been a proportional change 

in both that yielded the same values, but that is less likely.  The differences in the ratios in Fig. 28 near the outer radius 

suggest differences in the fluxes of low-energy ions.   

 That 300 V and 600 V erosion patterns vary differently as the pressure increases suggests that there is a 

fundamental difference in the plasma structure.  This is consistent with both the plume data shown in Fig. 9 and 

previous investigations.6,7,15  It is unclear, however, what role the TDU configuration played and whether the plasma 

differences would be expected to yield the changes in erosion trends.   

C. Implications of the Erosion Rate Measurements 

The TDU-1 cathode location yielded negligible keeper erosion in both high and low-pressure tests at 600 V (TC-

0 and TC-7) and for 300 V at elevated pressure (TC-6).  However, it remains undetermined if a higher magnetic field 

will result in keeper erosion also in the TDU-1 cathode configuration.  The TDU-1 location is to be preferred over the 

TDU-3 location as the keeper erosion is likely to be negligible for nominal magnetic field operation. 

Inner front pole cover erosion was shown to be relatively insensitive to discharge voltage which was the primary 

throttling mechanism for the AEPS missions.4,5  Erosion near the discharge channel did decrease with increasing 

discharge voltage.  This is consistent with the lower discharge voltage having higher energy ions in the plume at high-

angles from normal to the surface.  While a higher-than-nominal magnetic field was shown to have a substantial 

impact on keeper erosion, there was only minimal impact on the erosion of the IFPC.  Outer front pole cover erosion 

appears negligible for all operating conditions. 

Facility pressure appears to have a significant impact on the measured erosion rates.  However, the trend in graphite 

erosion rates is inconsistent both with themselves and with the trends in Mo erosion rates for different discharge 

voltages.  The 600 V (TC-7) case in VF-6 has several inconsistencies including comparable Mo and graphite erosion 

rates and significantly increased erosion with pressure whereas Mo rates decreased.  Consensus of the test team is that 

the trend of decreasing IFPC erosion with facility pressure is accurate.  This was seen with all Mo TDU-1 and TDU-

3 data, 300 V graphite TDU-1 and TDU-3 data, and (less clearly) Mo TDU-2 data.  (The TC-7 graphite erosion rates 

remain a topic for ongoing review.)  Regardless, the data do suggest that wear rates should be evaluated in the lowest 

pressure environment possible.  

Ratios of the Mo to graphite erosion rates of the IFPC may prove helpful in refining numerical models of the 

eroding processes.  However, the trends shown in the Mo data appear to not represent those seen in graphite data 

because of Mo’s higher sensitivity to low-energy ions.  Trends which do appear to be captured by Mo-only data are  

the relative insensitivity to IFPC erosion at mid-radius, an increase in inner-radius IFPC erosion with higher magnetic 

field, and a decrease in IFPC erosion with increasing chamber pressure (for 300 V discharge).  These trends are 

observed not only in the Mo data presented above but in the Mo data of surface layer activation tests.11  It is unclear 

from this test campaign whether the prediction of significantly higher (4x) IFPC erosion at lower discharge currents11 

 
Figure 28. Ratios of Mo to C IFPC erosion rates 

as a function of facility pressure and TDU 

configuration for Vd=300 V. 
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would be realized on graphite, but sensitivities to magnetic field and to discharge voltage were shown to be 

significantly smaller for graphite than Mo data would suggest. 

V. Conclusion 

A series of short duration wear tests were undertaken with two HERMeS technology demonstration units, TDU-1 

and TDU-3.  Wear and performance trends were characterized as a function of discharge voltage, magnetic field 

strength, facility pressure, and, to some extent, TDU configuration.  Each test was roughly 200 h in length. 

The keeper electrode in TDU-3 exhibited unexpected erosion which was largely independent of discharge voltage.  

Higher magnetic field strength increased keeper erosion rates.  However, the keeper in TDU-1 which was located 

slightly upstream of the location of that in TDU-3, did not erode and showed net deposition.  This is consistent with 

the lack of keeper erosion seen in the 2016 1700 h wear testing of TDU-1 and suggests the TDU-1 configuration 

should be used going forward.  Sensitivity of the TDU-1 configuration to magnetic field remains to be determined.   

Weak dependencies on discharge voltage and magnetic field were noted for inner front pole cover erosion.  

However a strong dependence on facility pressure was measured.  With one outlying set of data which shows several 

trends inconsistent with physical explanation, higher facility pressure was shown to significantly decrease IFPC 

erosion.  Comparison of Mo and graphite regression rates on the inner front pole covers suggests that the eroding ions 

are impacting with very high angles of incidence.  However, the erosion profiles themselves suggest the ions are 

impacting at near-normal angles of incidence.  It is likely that the uncertainties in the regression rate data are sufficient 

to accommodate extrapolation of the ratios of rates to regions of near-normal incidence and regions of larger angles 

of incidence which would coincide with the data.   

Other components exhibited wear consistent with expectations.  No erosion or cracking of the BN channel was 

seen.  The TDU-3 outer front pole cover exhibited erosion rates near the detection threshold of the measurement, but 

higher than that observed in the TDU-1 wear testing.  Deposition on the anode spalled during venting of VF-5 after 

about 500 h of operation.  This spalling was not observed on TDU-1 operation in either VF-5 or VF-6 operation.   
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