## Mission Assurance and Residual Risk:



# The Performance Verification Challenge for Technology Infusion



Peter Gage

Neerim Corp, NASA Research Park, Moffett Field CA

NASA Ames Research Center, Moffett Field CA

Ethiraj Venkatapathy

#### RISK IS INTENTIONAL INTERACTION WITH UNCERTAINTY [1]

#### **EXPLORATION MISSIONS ARE RISKY**

- Exploration is venturing into unknown environment
- Unknown is uncertain
- NASA's Policy on Mission Assurance [3]
  - Accept residual risk
    - Remaining risk that exists after all mitigation actions have been implemented or exhausted in accordance with the risk management process

#### **NEW FRONTIERS** ANNOUNCEMENT OF OPPORTUNITY [2]

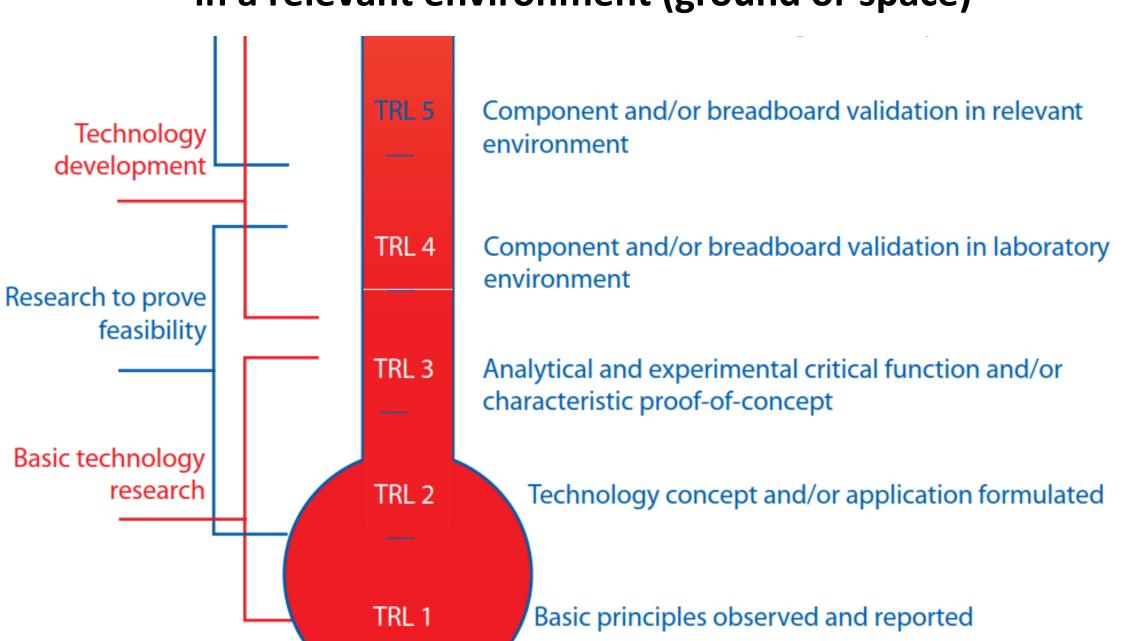
- No target is specified for mission residual risk
- Limited number of less mature technologies and/or advanced engineering developments are permitted
  - Must contain a plan for maturing systems to TRL 6 ... by no later than Preliminary Design Review (PDR)
- Proposers will likely concentrate on technology risk vs mission residual risk

#### TECHNOLOGY DEVELOPMENT IS RISKY

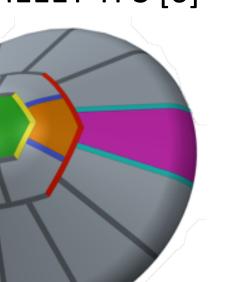
- Development means creating new behavior
- New is uncertain
- NASA's Systems Engineering Handbook [4]
  - Technology infusion is
  - Very complex process
  - Ad hoc approaches for different projects have varying degrees of success
  - Failure contributors are related to level of uncertainty at project inception

#### QUALITY OF DEMONSTRATION AND ENVIRONMENT

- Nominal vs bounding loads
- Confirming success vs exploring failure
- Individual loads vs combined loading
- Scale of test article
- Gap between demonstration environment and operational environment
- Thermal Protection System cannot test in fully relevant environment
- Single demonstration vs
- statistically relevant data set Pass/fail vs model correlation
- Attack Unknown and Under-Appreciated Risk [5]
  - Likely a factor of 2-5 higher than estimated risk at start of system operation
  - Affected by
    - Pace of development
    - Prioritization of safety vs cost and schedule

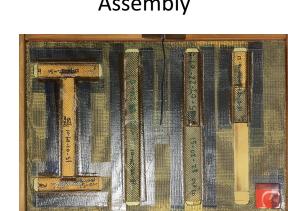

### TRL 6 CAN CORRESPOND TO A WIDE RANGE OF MISSION RISK Example: HEEET TPS [6] System test, launch, and operations System/subsystem Combined thermal and mechanical loading of seams development High shear testing of complete seam **Technology**

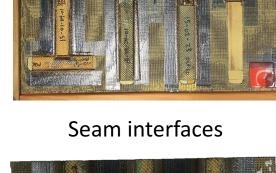
Actual system "flight proven" through successful mission operations


Actual system completed and "flight qualified" through test and demonstration (ground or flight)

System prototype demonstration in a target/space environment

System/subsystem model or prototype demonstration in a relevant environment (ground or space)





#### Example: HEEET TPS [6]



Complete heatshield







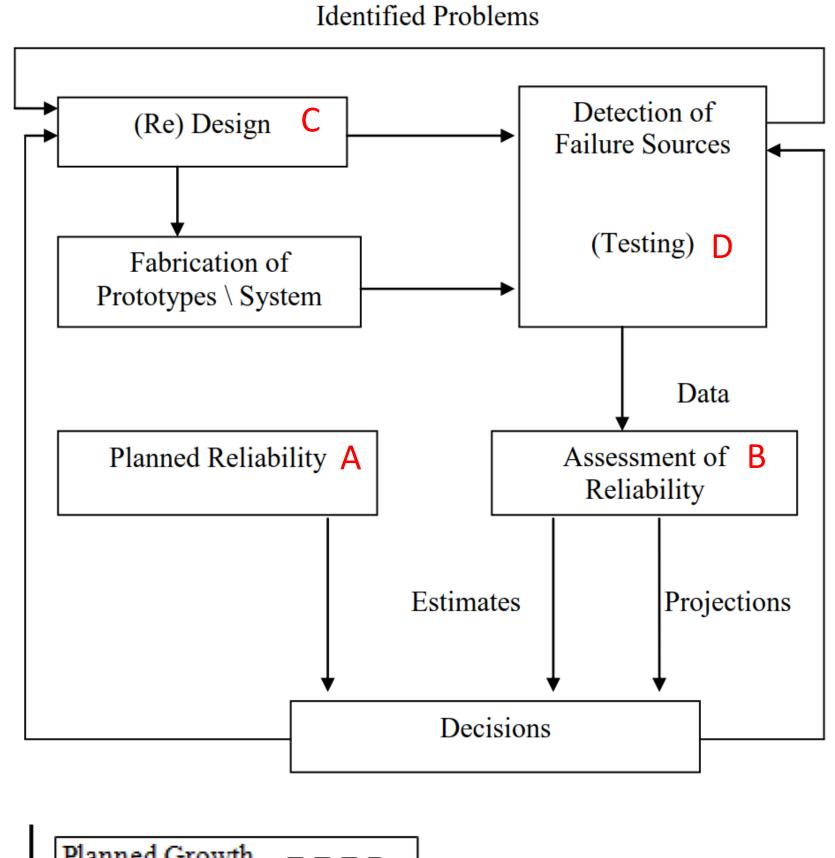
Seam assembly

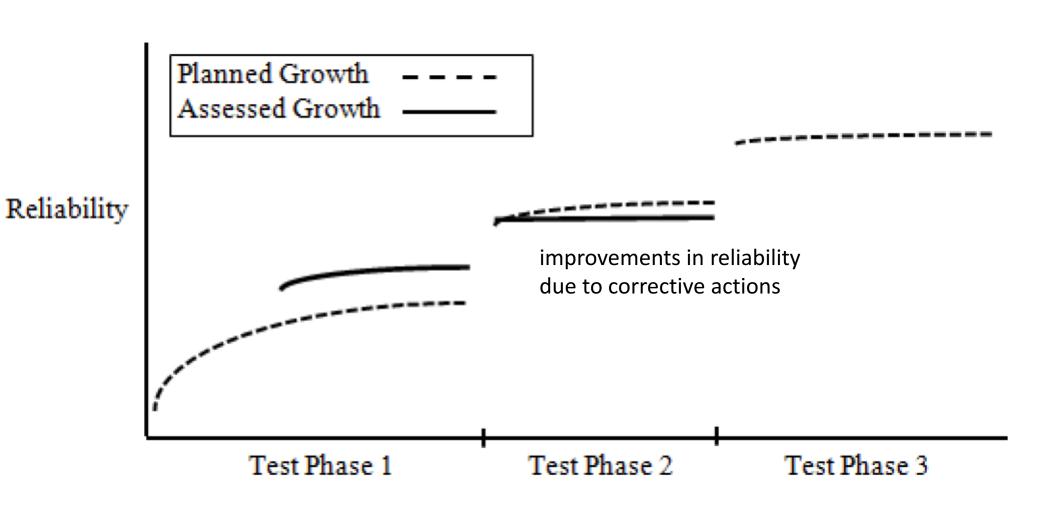


#### QUALITY OF PROTOTYPE

- Who built it?
  - Technologist vs industry
  - Experienced personnel available for flight build?
  - Same manufacturing infrastructure for flight build?
- When was it built?
  - Obsolescence of components or processes [7]
- Are the processes mature and repeatable?
- Verification and acceptance criteria
- Are there raw material procurement issues?
- Is the supply chain complex?
- Sole source or intellectual property issues?
- Any scale changes required for flight?

#### RECOMMENDATIONS FOR MISSION RESIDUAL RISK REDUCTION


Reliability growth [8] is improvement in reliability over time due to corrective actions to system design, operation... or the associated manufacturing process


Investigation of adhesive

Extreme environment testing

of acreage material

types and thicknesses





- A. Assign reliability goal for system in Announcement of Opportunity [9]
  - Facilitates comparison of Expected Value from competing mission proposals
  - Proposers can allocate reliability requirements to subsystems
    - Balance new technology reliability against capability of other subsystems
- B. Assess reliability of subsystems and integrated system
  - Avoid costly reliability improvement for subsystems that do not drive integrated mission risk [10]
  - Search for unanticipated failure modes
    - Drive down Unknown Risks [5]
  - Concentrate on failure modes that dominate risk [11]
  - Monitor remaining opportunity for reliability growth
- C. Provide flexibility for TRL advances in mission development schedule
  - Different technologies have different design cycle duration
    - Short cycle time permits later design freeze in mission development timeline
  - Technology already transferred to industry can have shorter delivery schedule New technologies are likely early in the reliability
  - growth curve Expect significant reliability improvement from an additional design cycle
- D. Test hard
  - Develop insight into technology capability limits
  - Vary test environments to assess sensitivity of response
  - Collect data to validate predictive models
  - Study failure phenomenology, including precursors [12]

#### REFERENCES

- 1. Cline, Preston B. (3 March 2015). "The Merging of Risk Analysis and Adventure Education" (PDF). Wilderness Risk Management. 5 (1): 43-45.
- 2. NASA Announcement of Opportunity New Frontiers 4, NNH16ZDA0110, (2016)
- 3. NASA Policy for Safety and Mission Success NPD 8700.1E, Revalidated (2013)
- 4. NASA Systems Engineering Handbook NASA SP-2007-6105 Rev 1 (2007)
- 5. Benjamin, A., Dezfuli, H., Everett, C., "Developing Probabilistic Safety Performance Margins for Unnown and Underappreciated Risks"
- 6. Venkatapathy, E., Ellerby D., Gasch, M., "Heat-shield for Extreme Entry Environment Technology (HEEET): Development Status", IPPW June 2017
- 7. Valerdi, C., Kohl, R., "An Approach to Technology Risk Management", ESD Symposium, Cambridge MA, March 2004
- 8. Department of Defense Handbook: Reliability Growth Management, MIL-HDBK-189C, June 2011
- 9. NASA System Safety Handbook, Vol 1. "System Safety Framework and Concepts for Implementation", NASA SP-2010-580, November 2011
- 10.NASA Risk Management Handbook, NASA SP-2011-3422
- 11. Vander Kam, J., Gage, P., "Estimating Orion Heat Shield Failure Risk Due To Ablator Cracking During the EFT-1 Mission", June 2016
- 12. Groen, F., Stamatelatos, M., Dezfuli, H., Maggio, G., "An Accident Precursor Analysis Process Tailored for NASA Space Systems", STI 10-027