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VISION-AIDED INERTIAL NAVIGATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. §119(e)
to U.S. Provisional Patent Application Nos. 61/040,473,
filed Mar. 28, 2008, which is incorporated herein by refer-
ence in its entirety.

STATEMENT OF GOVERNMENT RIGHTS

This invention was made with Government support under
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TECHNICAL FIELD

This document pertains generally to navigation, and more
particularly, but not by way of limitation, to vision-aided
inertial navigation.

BACKGROUND

Existing technologies for navigation are not without
shortcomings. For example, global positioning system
(GPS) based navigation systems require good signal recep-
tion from satellites in orbit. With a GPS-based system,
navigation in urban areas and indoor navigation is some-
times compromised because of poor signal reception. In
addition, GPS-based systems are unable to provide close-
quarter navigation for vehicular accident avoidance. Other
navigation systems suffer from sensor errors (arising from
slippage, for example) and an inability to detect humans or
other obstacles.

OVERVIEW

This document discloses a system for processing visual
information from a camera, for example, and inertial sensor
data to provide an estimate of pose or other localization
information. The camera provides data including images
having a number of features visible in the environment and
the inertial sensor provides data with respect to detected
motion. A processor executes an algorithm to combine the
camera data and the inertial sensor data to determine posi-
tion, orientation, speed, acceleration or other higher order
derivative information.
A number of features within the environment are tracked.

The tracked features correlate with relative movement as to
the frame of reference with respect to the environment. As
the number of features increases, the complexity of the data
processing also rises. One example of the present subject
matter uses an Extended Kalman filter (EKE) having a
computational complexity that varies linearly with the num-
ber of tracked features.

In one example, a first sensor provides data for tracking
the environmental features and a second sensor provides
data corresponding to movement of the frame of reference
with respect to the environment. A first sensor can include a
camera and a second sensor can include an inertial sensor.

Other types of sensors can also be used. Each sensor can
be classified as a motion sensor or as a motion inferring
sensor. One example of a sensor that directly detects motion

2
is a Doppler radar system and an example of a sensor that
detects a parameter from which motion can be inferred is a
camera.
In one example, a single sensor provides data correspond-

s ing to the tracked features as well as data corresponding to
relative movement of the frame of reference within the
environment. Data from the single sensor can be multi-
plexed in time, in space, or in another parameter.
The sensors can be located on (or coupled to), either or

10 both of the frame of reference and the environment. Relative
movement as to the frame of reference and the environment
can occur by virtue of movement of the frame of reference
within a stationary environment or it can occur by virtue of
a stationary frame of reference and a traveling environment.

15 Data provided by the at least one sensor is processed using
a processor that implements a filter algorithm. The filter
algorithm, in one example, includes an EKE, however, other
filters are also contemplated.

In one example, a system includes a feature tracker, a
20 motion sensor and a processor. The feature tracker is con-

figured to provide feature data for a plurality of features
relative to a frame of reference in an environment for a
period of time. The motion sensor is configured to provide
motion data for navigation of the frame of reference in the

25 environment for the period of time. The processor is com-
municatively coupled to the feature tracker and communi-
catively coupled to the motion sensor. The processor is
configured to generate at least one of navigation information
for the frame of reference and the processor is configured to

30 carry out the estimation at a computational complexity linear
with the number of tracked features. Linear computational
complexity is attained by simultaneously using each fea-
ture's measurements to impose constraints between the
poses from which the feature was observed. This is imple-

35 mented by manipulating the residual of the feature measure-
ments to remove the effects of the feature estimate error
(either exactly or to a good approximation).

This overview is intended to provide an overview of
subject matter of the present patent application. It is not

40 intended to provide an exclusive or exhaustive explanation
of the invention. The detailed description is included to
provide further information about the present patent appli-
cation.

45 BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale,
like numerals may describe similar components in different
views. Like numerals having different letter suffixes may

50 represent different instances of similar components. The
drawings illustrate generally, by way of example, but not by
way of limitation, various embodiments discussed in the
present document.
FIG.1 illustrates a composite view of time sampled travel

55 of a frame of reference relative to an environment.
FIG. 2 illustrates a block diagram of a system.
FIG. 3 illustrates selected images from a dataset.
FIG. 4 illustrates an estimated trajectory overlaid on a

map.
60 FIG. 5 illustrates position, attitude and velocity for x-axis,

y-axis, and z-axis.

DETAILED DESCRIPTION

65 FIG. 1 illustrates a composite view of five time-sampled
positions during travel of frame of reference 15 within
environment 20. Environment 20 includes two features
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illustrated here as a tree and a U.S. postal mailbox, denoted
as feature 5 and feature 10, respectively. At each of the time
sampled points, each of the two features are observed as
denoted in the figure. For example, at time tl, frame of
reference 15 observes feature 5 and feature 10 along the line 5

segments illustrated. At a later time t2, frame of reference 15
again observes feature 5 and feature 10, but with a different
perspective. In the figure, the frame of reference travels a
curving path in view of the features.

Navigation information as to the relative movement io
between the frame of reference 15 and the environment 20
can be characterized using sensor data.

Various types of sensors can be identified. A first type of
sensor provides direct measurement of quantities related to
motion. Data from a sensor of a second type can provide data 15
by which motion can be inferred. Data can also be derived
form a statistical model of motion.
A sensor of the first type provides an output that is derived

from direct measurement of the motion. For example, a
wheel encoder provides data based on rotation of the wheel. 20
Other examples include a speedometer, a Doppler radar, a
gyroscope, an accelerometer, an airspeed sensor (such as
pitot tube), and a global positioning system (GPS).
A motion inferring sensor provide an output that, after

processing, allows an inference of motion. For example, a 25
sequence of camera images can be analyzed to infer relative
motion. In addition to a camera (single or multiple), other
examples of motion-inferring sensors include a laser scanner
(either 2D or 3D), sonar, and radar.

In addition to receiving data from a motion sensor and a 30
motion-inferring sensor, data can also be derived from a
statistical probabilistic model of motion. For example, a
pattern of vehicle motion through a roadway intersection can
provide data for the present subject matter. Additionally,
various types of kinematic or dynamic models can be used 35
to describe the motion.

With reference again to FIG. 1, an estimate of the motion
of frame of reference 15 at each of the time samples can be
generated using an inertial measurement unit (IMU).

In addition, feature 5 and feature 10 can be tracked using 40
a video camera.

FIG. 2 illustrates system 100 according to one example of
the present subject matter. System 100 includes first sensor
110 and second sensor 120. In one example, sensor 100
includes a feature tracker and sensor 120 includes a motion 45
sensor, a motion inferring sensor, or a motion tracking
model. The figure illustrates two sensors, however, these can
be combined and implemented as a single sensor, such as for
example, a camera or a radar system, in which the function
of sensing motion and tracking features are divided in time, 50
space, or other parameter. In addition, more than two sensors
can be provided.

System 100 uses data derived from two sensing modali-
ties which are represented in the figure as first sensor 110
and second sensor 120. The first sensing modality entails 55
detecting motion of the frame of reference with respect to
the environment. The first sensing modality expresses a
constraint as to consecutive poses and a motion measure-
ment. This motion can be sensed using a direct motion
sensor, a motion tracking sensor, a motion inferring sensor 60
or based on feature observations. The second sensing modal-
ity includes feature observations and is a function of a
particular feature and a particular pose.

System 100 includes processor 130 configured to receive
data from the one or more sensors. Processor 130, in one 65
example, includes instructions for implementing an algo-
rithm to process the data and derive navigation information.

_►,

Processor 130, in one example, implements a filter algo-
rithm, such as a Kalman filter or an extended Kalman filter
(EKE).

Data acquired using the feature tracking sensor and a
motion sensor (or motion-inferring sensor or a motion
tracking model) is processed by an algorithm. The algorithm
has complexity linear with the number of tracked features.
Linear complexity means that complexity of the calculation
doubles with a doubling of the number of features that are
tracked. In order to obtain linear complexity, the algorithm
uses feature measurements for imposing constraints between
the poses. This is achieved by projecting the residual equa-
tion of the filter to remove dependency of the residual on the
feature error or higher order terms.

Processor 130 provides an output to output device 140.
Output device 140, in various examples, includes a memory
or other storage device, a visible display, a printer, an
actuator (configured to manipulate a hardware device), and
a controller (configured to control another system).
A number of output results are contemplated. For

example, the algorithm can be configured to determine a
position of a particular feature. The feature is among those
tracked by one of the sensors and its position is described as
a point in three-dimensional space. The results can include
navigation information for the frame of reference. For
example, a position, attitude, orientation, velocity, accelera-
tion or other higher order derivative with respect to time can
be calculated. In one example, the results include the pose
for the frame of reference. The pose includes a description
of position and attitude. Orientation refers to a single degree
of freedom and is commonly referred to as heading. Atti-
tude, on the other hand, includes the three dimensions of
roll, pitch and yaw.
The output can include a position, an orientation, a

velocity (linear or rotational), acceleration (linear or rota-
tional) or a higher order derivative of position with respect
to time.
The output can be of any dimension, including I-dimen-

sional, 2-dimensional or 3-dimensional.
The frame of reference can include, for example, an

automobile, a vehicle, or a pedestrian. The sensors are in
communication with a processor, as shown in FIG. 2, and
provide data relative to the frame of reference. For example,
a particular sensor can have multiple components with one
portion axed to the frame of reference and another portion
axed to the environment.
In other examples, a portion of a sensor is decoupled from

the frame of reference and provides data to a remote
processor.
In one example, a feature in space describes a particular

point, and thus, its position within an environment can be
identified using three degrees of freedom. In contrast to a
feature, the frame of reference can be viewed as a rigid body
having six degrees of freedom. In particular, the degrees of
freedom for a frame of reference can be described as moving
up and down, moving left and right, moving forward and
backward, tilting up and down (pitch), turning left and right
(yaw), and tilting side to side (roll).

Consider next an example of an Extended Kalman Filter
(EKF)-based algorithm for real-time vision-aided inertial
navigation. This example includes derivation of a measure-
ment model that is able to express the geometric constraints
that arise when a static feature is observed from multiple
camera poses. This measurement model does not require
including the 3D feature position in the state vector of the
EKE and is optimal, up to linearization errors. The vision-
aided inertial navigation algorithm has computational com-
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plexity that is linear in the number of features, and is capable
of high-precision pose estimation in large-scale real-world
environments. The performance of the algorithm can be
demonstrated with experimental results involving a camera/
IMU system localizing within an urban area. 5
Introduction

Vision-aided inertial navigation has benefited from recent
advances in the manufacturing of MEMS-based inertial
sensors. Such sensors have enabled small, inexpensive, and
very accurate Inertial Measurement Units (IMUs), suitable 10
for pose estimation in small-scale systems such as mobile
robots and unmanned aerial vehicles. These systems often
operate in urban environments where GPS signals are unre-
liable (the "urban canyon"), as well as indoors, in space, and
in several other environments where global position mea- 15
surements are unavailable.

Visual sensing provides images with high-dimensional
measurements, and having rich information content. A fea-
ture extraction method can be used to detect and track
hundreds of features in images. However, the high volume 20
of data also poses a significant challenge for estimation
algorithm design. When real-time localization performance
is required, there is a fundamental trade-off between the
computational complexity of an algorithm and the resulting
estimation accuracy. 25

The present algorithm can be configured to optimally
utilize the localization information provided by multiple
measurements of visual features. When a static feature is
viewed from several camera poses, it is possible to define
geometric constraints involving all these poses. This docu- 30
ment describes a model for expressing these constraints
without including the 3D feature position in the filter state
vector, resulting in computational complexity only linear in
the number of features.
The Simultaneous Localization and Mapping (SLAM) 35

paradigm refers to a family of algorithms for fusing inertial
measurements with visual feature observations. In these
methods, the current IMU pose, as well as the 3D positions
of all visual landmarks are jointly estimated. These
approaches share the same basic principles with SLAM- 40
based methods for camera-only localization, with the dif-
ference that IMU measurements, instead of a statistical
motion model, are used for state propagation. SLAM-based
algorithms account for the correlations that exist between
the pose of the camera and the 3D positions of the observed 45
features. SLAM-based algorithms, on the other hand, suffer
high computational complexity; properly treating these cor-
relations is computationally costly, and thus performing
vision-based SLAM in environments with thousands of
features remains a challenging problem. 50

The present subject matter includes an algorithm that
expresses constraints between multiple camera poses, and
thus attains higher estimation accuracy, in cases where the
same feature is visible in more than two images.
The multi-state constraint filter of the present subject 55

matter exploits the benefits of delayed linearization while
having complexity only linear in the number of features. By
directly expressing the geometric constraints between mul-
tiple camera poses it avoids the computational burden and
loss of information associated with pairwise displacement 60
estimation. Moreover, in contrast to SLAM-type
approaches, it does not require the inclusion of the 3D
feature positions in the filter state vector, but still attains
optimal pose estimation.
Estimator Description 65
A goal of the proposed EKF-based estimator is to track the

3D pose of the IMU-axed frame {I} with respect to a

T
global frame of reference {G}. In order to simplify the
treatment of the effects of the earth's rotation on the IMU
measurements (cf. Equations 7 and 8), the global frame is
chosen as an Earth-Centered, Earth-Fixed (ECEF) frame. An
overview of the algorithm is given in Table 1.

TABLE I

Multi-State Constraint Filter

Propagation for each IMU measurement received, propagate the filter

state and covariance.

Image Every time a new image is recorded:

registration augment the state and covariance matrix with a copy of

the current camera pose estimate; and

image processing module begins operation.

Update when the feature measurements of a given image become

available, perform an EKE update.

The IMU measurements are processed immediately as
they become available, for propagating the EKE state and
covariance. On the other hand, each time an image is
recorded, the current camera pose estimate is appended to
the state vector. State augmentation is used for processing
the feature measurements, since during EKE updates the
measurements of each tracked feature are employed for
imposing constraints between all camera poses from which
the feature was seen. Therefore, at any time instant the EKE
state vector comprises (i) the evolving IMU state, Xrm, and
(ii) a history of up to Nm_ past poses of the camera. The
various components of the algorithm are described in detail
below.
A. Structure of the EKE State Vector
The evolving IMU state is described by the vector:

X I —T bT cyT by c T T (Equation 1)
IMU = ~C ~/ g I PI

where rGq is the unit quaternion describing the rotation from
frame {G} to frame {I}, Apr and Gvr are the IMU position
and velocity with respect to {G}, and bg and ba are 3xI
vectors that describe the biases affecting the gyroscope and
accelerometer measurements, respectively. The IMU biases
are modeled as random walk processes, driven by the white
Gaussian noise vectors nwy and nwa, respectively. Following
Eq. (1), the IMU error-state is defined as:

X IMU = [60 bg Gi by °pT 
]
T 

(Equation 2)

For the position, velocity, and biases, the standard addi-
tive error definition is used (i.e., the error in the estimate z
of a quantity x is defined as X=x—z). However, for the
quaternion a different error definition is employed. In par-
ticular, if 4 is the estimated value of the quaternion q, then
the orientation error is described by the error quaternion 8q,
which is defined by the relation q=Sq Q~ 'q. In this expression,
the symbol ® denotes quaternion multiplication. The error
quaternion is

1 
60T 1

1T (Equation 3)
2

Intuitively, the quaternion Sq describes the (small) rota-
tion that causes the true and estimated attitude to coincide.
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Since attitude corresponds to 3 degrees of freedom, using 60 -continued
to describe the attitude errors is a minimal representation. Gy T- c 2c +c= C9 a - 2LWG xJ vi - L(DG xJ Pi g

Assuming that N camera poses are included in the EKE
state vector at time-step k, this vector has the following b,= 03x1, °p = °o,
form: 5

T Ci vT G _T CN ,T G _T T (Equation 4)
Xk = ~XiMuk G 4 PC, G 4 PCN]

where

where, for brevity, denote

10 Cg = C(GA, a = am — ba

and co=co_-bg CqwG. The linearized continuous-time model
for the IMU error-state is:

C;
G 4 15 Xis FX,,,,U +Gn,,,,u (Equation 10)

where nrMU [ngT nwgT n" nwaT]T is the system noise. The
are GpG,, i=1 ... N the estimates of the camera attitude and covariance matrix of n mu Q mu depends on the IMU noise
position, respectively. The EKE errorstate vector is defined characteristics and is computed off-line during sensor cali-
accordingly: bration. The matrices F and G that appear in Equation 10 are20

given by:
zk 1xJMUkT66C1TG T ... 66CNTGpCNT]T (Equation 5)

B. Propagation
The filter propagation equations are derived by discreti- 46-1 -13 03x3 03x3 03x3

zation of the continuous-time IMU system model, as 25 03x3 03x3 03x3 03x3 03x3
described in the following: F= -CT La xJ 03x3 -2L-G xJ -C9 -LI)G xJ2

1) Continuous-Time System Modeling:
The time evolution of the IMU state is described by:

03x3 03x3 03x3 03x3 03x3

03x3 03x3 13 03x3 03x3

30

Gg(r) = 2n(w(r))'Gg(r), tig(r) =%(t) 
(Equation 6) where I3 is the 3x3 identity matrix, and

GvI(t) = Gaw, b,(t) = n_(t), GPi(t) = Gvi(t)

—13 03x3 03x3 03x3

35
In these expressions, ~a is the body acceleration in the

03x3 13 03x3 03x3

T
global frame, w=[wx wy WjT is the rotational velocity

C= 0 03x303x3 3x3 -C9 

expressed in the IMU frame, and 03x3 03x3 03x3 13

03x3 03x3 03x3 03x3

40
0 —c)' c)y

LwxJ w 2) Discrete-Time Implementation
n(&) _ j 0 ~, L&) x] = 0 -&= The IMU samples the signals wm and am with a period T,

-&)y wx 0 and these measurements are used for state propagation in the
EKF. Every time a new IMU measurement is received, the

45 IMU state estimate is propagated using 5th order Runge-
The gyroscope and accelerometer measurements, wm and Kutta numerical integration of Equation 9. The EKE cova-

am respectively, are given by: riance matrix is also propagated. For this purpose, consider
the following partitioning for the covariance:

&)y = CJ + C(Cg)&)G + bg + ng (Equation 7)
50

a. = C(ci)(Ga — Gg+2L-G xJGvi + L-G Xj2GPI) + ba +n~, (Equation 8) Puklk P'Cklk

Pklk = 7
P~Ckk PCCkIk

(Equation 11)

where C(•) denotes a rotational matrix, and ng and na are
zero-mean, white Gaussian noise processes modeling the 55 where Prrk,k is the 15xI5 covariance matrix of the evolving
measurement noise. Note that the IMU measurements incor- IMU state, PCCkIk is the 6Nx6N covariance matrix of the
porate the effects of the planet's rotation, wG. Moreover, the camera pose estimates, and PCCk,k is the correlation between
accelerometer measurements include the gravitational accel- the errors in the IMU state and the camera pose estimates.
eration, Gg, expressed in the local frame. With this notation, the covariance matrix of the propagated

Applying the expectation operator in the state propagation 60 state is given by:
equations (Equation 6) yields the equations for propagating
the estimates of the evolving IMU state:

P"k+llk 
(D(tk +T, tk)P/Cklk

TPk+lk =  T
1 - — 1 i - (Equation 9) 65 

PiCklk~(tk +T, tk) PCCkIk

Gq - ,2-~(~)GQ, b8 = 03x1,
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where P,,,.,ik is computed by numerical integration of the
Lyapunov equation:

Pi,—FP,,+P,,FT+GQiMcGT (Equation 12)

Numerical integration is carried out for the time interval
(tk, tk+T), with initial condition Prr k The state transition
matrix (D(tk+T, t,) is similarly computed by numerical inte-
gration of the differential equation

10
Consider the case of a single feature, f, that has been

observed from a set of Mj camera poses

5 C; — c
(c R, Pc; ), i E Sj.

10
(~(t,+Tj,) F(D(t,+T,t,), Te[O,T] (Equation 13)

with initial condition (D(tk, t,)-I,,.
C. State Augmentation
Upon recording a new image, the camera pose estimate is

computed from the IMU pose estimate as:

Ca = C— 1 b c c _ T, (Equation 14)
ci—,g®cq,and Pc= P,+Cg PC

where

is the quaternion expressing the rotation between the IMU
and camera frames, and rpm is the position of the origin of the
camera frame with respect to {I}, both of which are known.
This camera pose estimate is appended to the state vector,
and the covariance matrix of the EKE is augmented accord-
ingly:

Each of the Mj observations of the feature is described by the
model:

1 C; Xi (Equation 18)

ZjCi 
Y 

15
where n,(1) is the 2xI image noise vector, with covariance
matrix R,O)_CTi_2Iz. The feature position expressed in the
camera frame, Cipf, is given by:

20
C; 

Xi

(Equation 19)

C' Pfj = C' yj = C(c' q)(cPfj — cPC )

C; Zj

25

where Gpf is the 3D feature position in the global frame.
Since this is unknown, in the first step of the algorithm,
employ a least-squares minimization to obtain an estimate,

of the feature position. This is achieved using the
30 measurements z,U), ieSJ, and the filter estimates of the

camera poses at the corresponding time instants.
Following the estimation of the feature position, compute

the measurement residual:

35

16N+15 16N+15 T (Equation 15) TO = z(i) — Z 
)

Pkk 
J 

jPkk~ 
J where

qX1

where the 7acobian 7 is derived from Equation 14 as: 40 ~' - c q _ . 'Zj yJ

.

Ci
c;X

JO Osx9 Osxs Osx6N (Equation 16) 

J 

- LCq,PC xJ 03x9 I3 01x6N I 

Ci 
yJ = C(c' g)(°pfj cPCi )

45 C; 2J

D. Measurement Model
Consider next the measurement model employed for

updating the state estimates. Since the EKE is used for state
estimation, for constructing a measurement model it suffices
to define a residual, r, that depends linearly on the state
errors, X, according to the general form:

r=HX+noise (Equation 17)

In this expression H is the measurement 7acobian matrix,
and the noise term must be zero-mean, white, and uncorre-
lated to the state error, for the EKE framework to be applied.

Viewing a static feature from multiple camera poses
results in constraints involving all these poses. Here, the
camera observations are grouped per tracked feature, rather
than per camera pose where the measurements were
recorded. All the measurements of the same 3D point are
used to define a constraint equation (cf. Equation 24),
relating all the camera poses at which the measurements
occurred. This is achieved without including the feature
position in the filter state vector.

(Equation 20)

Linearizing about the estimates for the camera pose and for
the feature position, the residual of Equation 20 can be

50 approximated as:
r,(i) H,(i)t+HfY)cP

fj
+n,(i) (Equation 21)

In the preceding expression Hx (1) and H (1) are the 7acobiansfi
of the measurement z (i) with respect to the state and the
feature position, respectively, and Gpf is the error in the

55 position estimate of f.. The exact values of the 7acobians in
this expression are generally available. Stacking the residu-
als of all Mj measurements of this feature yields:

r(')—H (i)X+Hf )cPf+nY) (Equation 22)

where r(i), H,(j)' Hf 0, and nO are block vectors or matrices
60 with elements r (~~~, H 7), H ( ) and n,(), for ieSj. Since the

feature observations in different images are independent, the
covariance matrix of n(i) is R(')-CTi-21,M;*
Note that since the state estimate, X, is used to compute

the feature position estimate, the error Gpf in Equation 22 is
65 correlated with the errors X. Thus, the residual r(j) is not in

the form of Equation 17, and cannot be directly applied for
measurement updates in the EKF. To overcome this, define
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a residual roU), by projecting rU) on the left nullspace of the
matrix F1,10. Specifically, let A denote the unitary matrix
whose columns form the basis of the left nullspace of Hfto
obtain:

o(i)=AT(z(i)-f(i))g4TH (i)k+ATO) (Equation 23)

=H 67XG)+n1W (Equation 24)

Since the 2Mjx3 matrix Hf) has full column rank, its left
nullspace is of dimension 2Mj-3. Therefore, r,(') is a (2M~-
3)xI vector. This residual is independent of the errors in the
feature coordinates, and thus EKE updates can be performed
based on it. Equation 24 defines a linearized constraint
between all the camera poses from which the feature fi was
observed. This expresses all the available information that
the measurements z.U) provide for the Mj states, and thus the
resulting EKE update is optimal, except for the inaccuracies
caused by linearization.

In order to compute the residual roU) and the measurement
matrix Ho(j), the unitary matrix A does not need to be
explicitly evaluated. Instead, the projection of the vector r
and the matrix Hx(j) on the nullspace of Hf) can be computed
very efficiently using Givens O(Mj)operations. Addition-
ally, since the matrix A is unitary, the covariance matrix of
the noise vector noU) is given by:

Ef o(1) 
ov) I~i_ 6i_',4T`4=2j__,

LL J

The residual defined in Equation 23 is not the only
possible expression of the geometric constraints that are
induced by observing a static feature in Mj images. An
alternative approach is, for example, to employ the epipolar
constraints that are defined for each of the Mj (Mj— 1)/2 pairs
of images. However, the resulting Mj (Mj-1)/2 equations
would still correspond to only 2Mj-3 independent con-
straints, since each measurement is used multiple times,
rendering the equations statistically correlated. Experimen-
tal data shows that employing linearization of the epipolar
constraints results in a significantly more complex imple-
mentation, and yields inferior results compared to the
approach described above.
E. EKE Updates
The preceding section presents a measurement model that

expresses the geometric constraints imposed by observing a
static feature from multiple camera poses. Next, consider the
update phase of the EKE, in which the constraints from
observing multiple features are used. EKE updates are
triggered by one of the following two events:
When a feature that has been tracked in a number of
images is no longer detected, then all the measurements
of this feature are processed using the method pre-
sented above in the section concerning Measurement
Model. This case occurs most often, as features move
outside the camera's field of view.

Every time a new image is recorded, a copy of the current
camera pose estimate is included in the state vector (see
the section concerning State Augmentation). If the
maximum allowable number of camera poses, Nm,,,
has been reached, at least one of the old ones must be
removed. Prior to discarding states, all the feature
observations that occurred at the corresponding time
instants are used, in order to utilize their localization
information. In one example, choose Nm_J3 poses that
are evenly spaced in time, starting from the second-
oldest pose. These are discarded after carrying out an
EKE update using the constraints of features that are
common to these poses. One example always retains
the oldest pose in the state vector, because the geomet-

12
ric constraints that involve poses further back in time
typically correspond to larger baseline, and hence carry
more valuable positioning information.

Consider next the update process. At a given time step the
5 constraints of L features, selected by the above two criteria,

must be processed. Following the procedure described in the
preceding section, compute a residual vector ro(i), j=1 ... L,
as well as a corresponding measurement matrix Hove j=
1 ... L for each of these features (cf. Equation 23). Stacking

10 all residuals in a single vector yields:

ro HAY+no (Equation 25)

where ro and no are vectors with block elements roU) and n,u)

j=1 ... L, respectively, and Hx is a matrix with block rows
15 HfU), j=1 ... L.

Since the feature measurements are statistically indepen-
dent, the noise vectors n,u) are uncorrelated. Therefore, the
covariance matrix of the noise vector no is equal to
Ro aim2Id, where d=Ej_,L(2Mj-3) is the dimension of the

20 residual ro. In practice, d can be a quite large number. For
example, if 10 features are seen in 10 camera poses each, the
dimension of the residual is 170. In order to reduce the
computational complexity of the EKE update, employ the
QR decomposition of the matrix H, Specifically, denote this

25 decomposition as

H = [Q1 Q,]~ 

Ty 

0

30

where Q, and Qz are unitary matrices whose columns form
bases for the range and nullspace of Hx, respectively, and TH
is an upper triangular matrix. With this definition, Equation

35 25 yields:

Ty (Equation 26)
ro = [Qi Qzl~ 0 ~X +no

40 
Qi rl
 - 

Ty Qi no (Equation 27)
X+

Qz ro 0 Qz no

From the last equation it becomes clear that by projecting
45 

the residual ro on the basis vectors of the range of Hx, all the
useful information in the measurements is retained. The
residual Q2Tro is only noise, and can be completely dis-
carded. For this reason, instead of the residual shown in

50 
Equation 25, employ the following residual for the EKE
update:

r„=QiTro=TFyY+n„ (Equation 28)

In this expression n —Q,Tno is a noise vector whose cova-

55 riance matrix is equal to R —QiTRoQi=6im2Ir, with r being
the number of columns in Q, The EKE update proceeds by
computing the Kalman gain:

K=PT,T(THPTHT+Rn)-1 (Equation 29)

60 while the correction to the state is given by the vector

AX=Kr, (Equation 30)

In addition, the state covariance matrix is updated according
to:

65
P7,17,-(1 KTx)P7+1ix(1 KTH)T+KR„KT (Equation 31)

where ~-6N+15 is the dimension of the covariance matrix
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Consider the computational complexity of the operations
needed during the EKE update. The residual r,,, as well as the
matrix TH, can be computed using Givens rotations in O(r2d)
operations, without the need to explicitly form Q, On the
other hand, Equation 31 involves multiplication of square
matrices of dimension ~, an O(~3) operation. Therefore, the
cost of the EKE update is max (O(r2d),O(~)). If, on the
other hand, the residual vector ro was employed, without
projecting it on the range of Hx, the computational cost of
computing the Kalman gain would have been O(d3). Since
typically d»~, r, the use of the residual r results in
substantial savings in computation.
Discussion

Consider next some of the properties of the described
algorithm. As shown elsewhere in this document, the filter's
computational complexity is linear in the number of
observed features, and at most cubic in the number of states
that are included in the state vector. Thus, the number of
poses that are included in the state is the most significant
factor in determining the computational cost of the algo-
rithm. Since this number is a selectable parameter, it can be
tuned according to the available computing resources, and
the accuracy requirements of a given application. In one
example, the length of the filter state is adaptively controlled
during filter operation, to adjust to the varying availability of
resources.
One source of dill culty in recursive state estimation with

camera observations is the nonlinear nature of the measure-
ment model. Vision-based motion estimation is very sensi-
tive to noise, and, especially when the observed features are
at large distances, false local minima can cause convergence
to inconsistent solutions. The problems introduced by non-
linearity can be addressed using techniques such as Sigma-
point Kalman filtering, particle filtering, and the inverse
depth representation for features. The algorithm is robust to
linearization inaccuracies for various reasons, including (i)
the inverse feature depth parametrization used in the mea-
surement model and (ii) the delayed linearization of mea-
surements. According to the present subject matter, multiple
observations of each feature are collected prior to using
them for EKE updates, resulting in more accurate evaluation
of the measurement 7acobians.

In typical image sequences, most features can only be
reliably tracked over a small number of frames ("opportu-
nistic" features), and only a few can be tracked for long
periods of time, or when revisiting places (persistent fea-
tures). This is due to the limited field of view of cameras, as
well as occlusions, image noise, and viewpoint changes, that
result in failures of the feature tracking algorithms. If all the
poses in which a feature has been seen are included in the
state vector, then the proposed measurement model is opti-
mal, except for linearization inaccuracies. Therefore, for
realistic image sequences, the present algorithm is able to
use the localization information of the opportunistic fea-
tures. Also note that the state vector Xk is not required to
contain only the IMU and camera poses. In one example, the
persistent features can be included in the filter state, and
used for SLAM. This can improve the attainable localization
accuracy within areas with lengthy loops.

Experimental Example

The algorithm described herein has been tested both in
simulation and with real data. Simulation experiments have
verified that the algorithm produces pose and velocity esti-

14
mates that are consistent, and can operate reliably over long
trajectories, with varying motion profiles and density of
visual features.
The following includes the results of the algorithm in an

5 outdoor experiment. The experimental setup included a
camera/IMU system, placed on a car that was moving on the
streets of a typical residential area in Minneapolis, Minn.
The system included a Pointgrey FireFly camera, registering
images of resolution 640x480 pixels at 3 Hz, and an Inertial

io Science ISIS IMU, providing inertial measurements at a rate
of 100 Hz. During the experiment all data were stored on a
computer and processing was done off-line. Some example
images from the recorded sequence are shown in FIG. 3.
The recorded sequence included a video of 1598 images

15 representing about 9 minutes of driving.
For the results shown here, feature extraction and match-

ing was performed using the SIFT algorithm. During this
run, a maximum of 30 camera poses was maintained in the
filter state vector. Since features were rarely tracked for

20 more than 30 images, this number was sufficient for utilizing
most of the available constraints between states, while
attaining real-time performance. Even though images were
only recorded at 3 Hz due to limited hard disk space on the
test system, the estimation algorithm is able to process the

25 dataset at 14 Hz, on a single core of an Intel T7200 processor
(2 GHz clock rate). During the experiment, a total of 142903
features were successfully tracked and used for EKE
updates, along a 3.2 km-long trajectory. The quality of the
position estimates can be evaluated using a map of the area.

30 In FIG. 4, the estimated trajectory is plotted on a map of
the neighborhood where the experiment took place. The
initial position of the car is denoted by a red square on SE
19th Avenue, and the scale of the map is shown on the top
left corner.

35 FIG. 5 illustrates the 3a bounds for the errors in the
position, attitude, and velocity. The plotted values are
3-times the square roots of the corresponding diagonal
elements of the state covariance matrix. Note that the EKE
state is expressed in ECEF frame, but for plotting, all

4o quantities have been transformed in the initial IMU frame,
whose x axis is pointing approximately south, and its y axis
east.
The trajectory follows the street layout quite accurately

and, additionally, the position errors that can be inferred
45 from this plot agree with the 3o bounds shown in FIG. 5A.

The final position estimate, expressed with respect to the
starting pose, is Xfinai [-7.92 13.14 —0.78]Tm. From the
initial and final parking spot of the vehicle it is known that
the true final position expressed with respect to the initial

50 pose is approximately Xfi", [0 7 0]Tm. Thus, the final
position error is approximately 10 in in a trajectory of 3.2
km, i.e., an error of 0.31% of the traveled distance. This is
remarkable, given that the algorithm does not utilize loop
closing, and uses no prior information (for example, non-

55 holonomic constraints or a street map) about the car motion.
Note also that the camera motion is almost parallel to the
optical axis, a condition which is particularly adverse for
image-based motion estimation algorithms. In FIG. 5B and
FIG. 5C, the 3 a bounds for the errors in the IMU attitude and

60 velocity along the three axes are shown. From these, observe
that the algorithm obtains accuracy (3a) better than P for
attitude, and better than 0.35 m/sec for velocity in this
particular experiment.
The results demonstrate that the algorithm is capable of

65 operating in a real-world environment, and producing very
accurate pose estimates in real-time. Note that in the dataset
presented here, several moving objects appear, such as cars,
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pedestrians, and trees whose leaves move in the wind. The
algorithm is able to discard the outliers which arise from
visual features detected on these objects, using a simple
Mahalanobis distance test. Robust outlier rejection is facili-
tated by the fact that multiple observations of each feature
are available, and thus visual features that do not correspond
to static objects become easier to detect. Note also that the
method can be used either as a stand-alone pose estimation
algorithm, or combined with additional sensing modalities
to provide increased accuracy. For example, a GPS sensor
(or other type of sensor) can be used to compensate for
position drift.

The present subject matter includes an EKF-based esti-
mation algorithm for real-time vision-aided inertial naviga-
tion. One aspect of this work is the derivation of a mea-
surement model that is able to express the geometric
constraints that arise when a static feature is observed from
multiple camera poses. This measurement model does not
require including the 3D feature positions in the state vector
of the EKE, and is optimal, up to the errors introduced by
linearization. The resulting EKF-based pose estimation
algorithm has computational complexity linear in the num-
ber of features, and is capable of very accurate pose esti-
mation in large-scale real environments. One example
includes fusing inertial measurements with visual measure-
ments from a monocular camera. However, the approach is
general and can be adapted to different sensing modalities
both for the proprioceptive, as well as for the exteroceptive
measurements (e.g., for fusing wheel odometry and laser
scanner data).

Selected Calculations

Intersection can be used to compute an estimate of the
position of a tracked feature f.. To avoid local minima, and
for better numerical stability, during this process, use an
inverse-depth parametrization of the feature position. In
particular, if {Cn} is the camera frame in which the feature
was observed for the first time, then the feature coordinates
with respect to the camera at the i-th time instant are:

C' Pfj = C(Cn q)Cn p f. + C PC,, i e Sj 
(Equation 32)

In this expression

C(Cn q)

and cipc are the rotation and translation between the camera
frames at time instants n and i, respectively. Equation 32 can
be rewritten as:

Cn Xj (Equation 33)

Cn zzJ
C; Cn zj c Cn + C;
Pfj = c;

C. 

R, Yj 
1 

CnZ 
Pc„

Cn 
ZJ J

1

rzpj 

IIIIII 

(Equation 34)

Cn 

ZJ~C(Cn 
q) 18i

a 

IYJ 

+PJ C' pCn/I` LL 1
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-continued

h't (aj, /3j, pj) (Equation 35)

= 
C, 

hi2(aj, 8J, PJ)

5 hi3 (aj , 8J, PJ)

In the last expression h,,, hi2 and hi3 are scalar functions of
the quantities aj,(3j,pj, which are defined as:

10

Cn Xj Cl 
Y 
 1 (Equation 36)

aj 

Tn2.J 
,13j= 6n2

J .'Pi=6n2.J 
,

15 Substituting from Equation 35 into Equation 18, express the
measurement equations as functions of aj, P. and pj only:

20 (D 1 h,'t (aj, flp Pj) (J) 
(Equation 37)

Z, 
y, 

j8j, Pj) h,'z(a Pj) 
+n,

'h'3 (aj, j, j,

Given the measurements z,U), ieSj, and the estimates for the

25 
camera poses in the state vector, obtain estimates for cxj, (3j,
and pj, using Gauss-Newton least squares minimization.
Then, the global feature position is computed by:

30 1
&j (Equation 38)

GPfj = CT (G4) l3j +GPC,

1

35 Note that during the least-squares minimization process the
camera pose estimates are treated as known constants, and
their covariance matrix is ignored. As a result, the minimi-
zation can be carried out very efficiently, at the expense of
the optimality of the feature position estimates. Recall,

40 however, that up to a first-order approximation, the errors in
these estimates do not affect the measurement residual (cf.
Equation 23). Thus, no significant degradation of perfor-
mance is inflicted.

45 Additional Notes

The above detailed description includes references to the
accompanying drawings, which form a part of the detailed
description. The drawings show, by way of illustration,

50 specific embodiments in which the invention can be prac-
ticed. These embodiments are also referred to herein as
"examples." Such examples can include elements in addi-
tion to those shown and described. However, the present
inventors also contemplate examples in which only those

55 elements shown and described are provided.
All publications, patents, and patent documents referred

to in this document are incorporated by reference herein in
their entirety, as though individually incorporated by refer-
ence. In the event of inconsistent usages between this

6o document and those documents so incorporated by refer-
ence, the usage in the incorporated reference(s) should be
considered supplementary to that of this document; for
irreconcilable inconsistencies, the usage in this document
controls.

65 In this document, the terms "a" or "an" are used, as is
common in patent documents, to include one or more than
one, independent of any other instances or usages of "at least
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one" or "one or more." In this document, the term "or" is
used to refer to a nonexclusive or, such that "A or B"
includes "Abut not B." ̀B but notA," and "A and B," unless
otherwise indicated. In the appended claims, the terms
"including" and "in which" are used as the plain-English
equivalents of the respective terms "comprising" and
"wherein." Also, in the following claims, the terms "includ-
ing" and "comprising" are open-ended, that is, a system,
device, article, or process that includes elements in addition
to those listed after such a term in a claim are still deemed
to fall within the scope of that claim. Moreover, in the
following claims, the terms "first," "second," and "third,"
etc. are used merely as labels, and are not intended to impose
numerical requirements on their objects.

Method examples described herein can be machine or
computer-implemented at least in part. Some examples can
include a computer-readable medium or machine-readable
medium encoded with instructions operable to configure an
electronic device to perform methods as described in the
above examples. An implementation of such methods can
include code, such as microcode, assembly language code,
a higher-level language code, or the like. Such code can
include computer readable instructions for performing vari-
ous methods. The code may form portions of computer
program products. Further, the code may be tangibly stored
on one or more volatile or non-volatile computer-readable
media during execution or at other times. These computer-
readable media may include, but are not limited to, hard
disks, removable magnetic disks, removable optical disks
(for example, compact disks and digital video disks), mag-
netic cassettes, memory cards or sticks, random access
memories (RAMS), read only memories (ROMs), and the
like.
The above description is intended to be illustrative, and

not restrictive. For example, the above-described examples
(or one or more aspects thereof) may be used in combination
with each other. Other embodiments can be used, such as by
one of ordinary skill in the art upon reviewing the above
description. The Abstract is provided to comply with 37
C.F.R. §1.72(b), to allow the reader to quickly ascertain the
nature of the technical disclosure. It is submitted with the
understanding that it will not be used to interpret or limit the
scope or meaning of the claims. Also, in the above Detailed
Description, various features may be grouped together to
streamline the disclosure. This should not be interpreted as
intending that an unclaimed disclosed feature is essential to
any claim. Rather, inventive subject matter may lie in less
than all features of a particular disclosed embodiment. Thus,
the following claims are hereby incorporated into the
Detailed Description, with each claim standing on its own as
a separate embodiment. The scope of the invention should
be determined with reference to the appended claims, along
with the full scope of equivalents to which such claims are
entitled.
What is claimed is:
1. A vision-aided inertial navigation system comprising:
at least one image source to produce image data for a

plurality of poses of a frame of reference along a
trajectory within an environment over a period of time,
wherein the image data includes features that were each
observed within the environment at poses of the frame
of reference along the trajectory, wherein one or more
of the features were each observed at multiple ones of
the poses of the frame of reference along the trajectory;

a motion sensor configured to provide motion data of the
frame of reference in the environment for the period of
time; and

18
a hardware-based processor communicatively coupled to

the image source and communicatively coupled to the
motion sensor, the processor configured to compute
estimates for at least a position and orientation of the

5 frame of reference for each of the plurality of poses of
the frame of reference along the trajectory,

wherein the processor is configured to:
determine, from the image data, feature measurements

corresponding to the features observed from the
10 poses along the trajectory;

group the feature measurements according to the fea-
tures observed within the image data;

for one or more of the features observed from multiple
15 poses along the trajectory, compute based on the

respective group of feature measurements for the
feature, one or more constraints that geometrically
relate the multiple poses from which the respective
feature was observed; and

20 determine the position and orientation of the frame of
reference for each of the plurality of poses along the
trajectory by updating, in accordance with the
motion data and the one or more computed con-
straints, state information within a state vector rep-

25 resenting estimates for the position and orientation of
the frame of reference along the trajectory while
excluding, from the state vector, state information
representing estimates for positions within the envi-
ronment for the features that were each observed

30 from the multiple poses and for which the one or
more constraints were computed.

2. The vision-aided inertial navigation system of claim 1
wherein the processor is configured to generate each of the

35 one or more constraints by manipulating a residual of a
measurement for the respective feature.

3. The vision-aided inertial navigation system of claim 1,
wherein the image source includes a camera, and
wherein the vision-aided inertial navigation system com-

40 prises one of a robot or a vehicle.
4. The vision-aided inertial navigation system of claim 1

wherein the motion sensor includes an inertial measurement
unit (IMU).

5. The vision-aided inertial navigation system of claim 1
45 wherein the processor is configured to implement an

extended Kalman filter to compute the one or more con-
straints.

6. The vision-aided inertial navigation system of claim 1
further including an output device coupled to the processor,

50 the output device including at least one of a memory, a
transmitter, a display, a printer, an actuator, and a controller.

7. A method comprising:
receiving, with a processor and from at least one image

55 
source communicatively coupled to the processor,
image data for a plurality of poses of a frame of
reference along a trajectory within an environment over
a period of time, wherein the image data includes
features that were each observed within the environ-

60 ment at poses of the frame of reference along the
trajectory, wherein one or more of the features were
each observed at multiple ones of the poses of the frame
of reference along the trajectory;

receiving, with the processor and from a motion sensor
65 communicatively coupled to the processor, motion data

of the frame of reference in the environment for the
period of time;
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computing, with the processor, state estimates for at least
a position and orientation of the frame of reference for
each of the plurality of poses of the frame of reference
along the trajectory,

wherein computing the state estimates comprises: 5

determining, from the image data, feature measure-
ments corresponding to the features observed from
the poses along the trajectory;

grouping the feature measurements according to the
features observed within the image data; l0

for one or more of the features observed from multiple
poses along the trajectory, computing, based on the
respective group of feature measurements for the
feature, one or more constraints that geometrically 15
relate the multiple poses from which the respective
feature was observed; and

determining the position and orientation of the frame of
reference for each of the plurality of poses along the
trajectory by updating, in accordance with the 20
motion data and the one or more computed con-
straints, state information within a state vector rep-
resenting estimates for the position and orientation of
the frame of reference along the trajectory while
excluding, from the state vector, state information 25
representing estimates for positions within the envi-
ronment for the features that were each observed
from the multiple poses and for which the one or
more constraints were computed; and

controlling, responsive to the computed state estimates, 30

navigation of the frame of reference.
8. The method of claim 7 wherein computing one or more

constraints comprises manipulating a residual of a measure-
ment of the respective feature to reduce an effect of a feature
estimate error. 35

9. The method of claim 7 wherein computing state esti-
mates further includes computing states estimates for at least
a velocity, or acceleration of the frame of reference.

10. The method of claim 7 wherein receiving image data
includes receiving data from at least one of a camera-based 40

sensor, a laser-based sensor, a sonar-based sensor, and a
radar-based sensor.

11. The method of claim 7 wherein receiving motion data
from the motion sensor includes receiving data from at least
one of a wheel encoder, a velocity sensor, a Doppler radar 45
based sensor, a gyroscope, an accelerometer, an airspeed
sensor, and a global positioning system (GPS) sensor.

12. The method of claim 7 wherein computing, based on
the image data, one or more constraints comprises executing
an Extended Kalman Filter (EKE). 50

13. A non-transitory computer-readable storage medium
comprising instructions that configure a processor to:

receive, with the processor and from at least one image
source communicatively coupled to the processor,
image data for a plurality of poses of a frame of 55

reference along a trajectory within an environment over
a period of time, wherein the image data includes
features that were each observed within the environ-
ment at poses of the frame of reference along the
trajectory, wherein one or more of the features were 60
each observed at multiple ones of the poses of the frame
of reference along the trajectory;

20
receive, with the processor and from a motion sensor

communicatively coupled to the processor, motion data
of the frame of reference in the environment for the
period of time;

determine, from the image data, feature measurements
corresponding to the features observed from the poses
along the trajectory;

group the feature measurements according to the features
observed within the image data;

for one or more of the features observed from multiple
poses along the trajectory, compute, based on the
respective group of feature measurements for the fea-
ture, one or more constraints that geometrically relate
the multiple poses from which the respective feature
was observed;

determine state estimates for at least a position and an
orientation of the frame of reference for each of the
plurality of poses along the trajectory by updating, in
accordance with the motion data and the one or more
computed constraints, state information within a state
vector representing estimates for the position and ori-
entation of the frame of reference along the trajectory
while excluding, from the state vector, state estimates
for positions within the environment for the features
that were each observed from the multiple poses and
for which the one or more constraints were computed;
and

output, for display, information responsive to the com-
puted state estimates for the frame of reference.

14. The computer-readable storage medium of claim 13
wherein the instructions configure the processor to compute
the one or more constraints by manipulating a residual of a
measurement of the respective feature to reduce an effect of
a feature estimate error.
15. The computer-readable storage medium of claim 13

wherein the instructions configure the processor to compute
states estimates for at least a velocity, or acceleration of the
frame of reference.

16. The computer-readable storage medium of claim 13
wherein the image data includes data from at least one of a
camera-based sensor, a laser-based sensor, a sonar-based
sensor, and a radar-based sensor.
17. The computer-readable storage medium of claim 13

wherein the motion data includes data from at least one of
a wheel encoder, a velocity sensor, a Doppler radar based
sensor, a gyroscope, an accelerometer, an airspeed sensor,
and a global positioning system (GPS) sensor.
18. The computer-readable storage medium of claim 13

wherein the instructions configure the processor to execute
an Extended Kalman Filter (EKE).
19. The computer-readable storage medium of claim 13

wherein one or more of the constraints are computed based
on the feature measurements for features observed at three
or more of the poses along the trajectory.
20. The vision-aided inertial navigation system of claim 1

wherein the processor computes one or more of the con-
straints based on the feature measurements for features
observed at three or more of the poses along the trajectory.
21. The method of claim 7 wherein one or more of the

constraints are computed based on the feature measurements
for features observed at three or more of the poses along the
trajectory.
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