COMP6217 Social Networking Technologies Game Theory and Social Networks

Dr Thanassis Tiropanis t.tiropanis@southampton.ac.uk

The narrative

- Modelling how individuals respond to each others' actions
- Predicting behaviour when individuals interact
- Predicting behaviour spread and evolution in a group (next session)
- Predicting behaviour spread in a network (next session)

The narrative

Modelling how individuals respond to each others' actions

What is a Game

- Individuals can act according to their self-interest when presented with choices
- But when more than one individuals interact with each other their *choices* can lead to different outcomes
- Acting according to *self interest* does not always yield the maximum profit in such cases
- How can we reason about behaviour?
- How can we predict outcomes?

Presentation or Exam?

- You and your partner need to work on your common project and your exam at the same time
- You need to make a choice between the two
- Your grades will be determined based on how well you do on both

		Your Partner		
		Presentation	Exam	
You	Presentation	90,90	86,92	
	Exam	92,86	88,88	

Figure 6.1: Exam or Presentation?

What is a Game

- A game is the environment where such interactions take place and it consists of:
 - A set of participants: *players*
 - Options per participant: strategies
 - Benefit per choice of option: payoff
 - Payoffs can be based on the choices not of one participant but of all participants
 - They are shown in a *payoff matrix*

Prisoner's Dilemma

- Two have been taken prisoners and are questioned by the police
- They are both guilty
- When questioned they are offered the option to confess
 - Should both of them confess they will be convicted to serve in prison for 5 years
 - Should just one of them confess, the confessor will be let free, while the other one will serve 10 years
 - Should none of them confess, they will both serve a year for resisting arrest.
- Prisoners cannot communicate with each other

Prisoner's Dilemma

Prisoner's Dilemma

Ζ

	Confess Strategy	Not Confess Strategy	
Confess Strategy	P ₁ (S, T), P ₂ (S, T)	P ₁ (S', T), P ₂ (S', T)	
ot Confess Strategy	P ₁ (S, T'), P ₂ (S, T')	P ₁ (S΄, T΄), P ₂ (S΄, T΄)	

Best responses

- Let's assume we have a player 1 and a player 2 with strategies S and T respectively.
 - P₁(S, T) and P₂(S, T) are the payoffs for each player given their strategies.
- For a player, a best response is the best choice they can make given a certain expectation of a choice from the other player
- Given a choice of a strategy T by player 2, a best response for player 1 is strategy S, when for every other available strategy S'
 − P₁(S, T) ≥ P₁(S', T)

Strictly best responses

 Given a choice of a strategy T by player 2, a strict best response for player 1 is strategy S, when for every other available strategy S' - P₁(S, T) > P₁(S', T)

Dominant Strategies

- A *dominant strategy* S for Player 1 is one that is the *best response* to every strategy of Player 2.
- A *strictly dominant strategy* S for Player 1 is one that is the *strictly best response* to every strategy of Player 2
- There is the assumption that players have *come common knowledge* of possible payoffs of each other, etc

Prisoner's Dilemma

Southampton

The narrative

Predicting behaviour when individuals interact

Predicting outcomes

- In games with strictly dominant strategies, we expect players to chose those strategies
 - This basic assumption has been debated but it is a basic one in game theory
- In games without strictly dominant strategies, how can we predict the choices of the players? – SEE EQUILIBRIA

Example - equilibria

- Firm 1 and Firm 2 are competing for clients A, B and C
- Firm 1 too small, Firm 2 is large
- They need to decide which client to approach
 - If they approach the same client they get half the client's business each
 - If Firm 1 approaches a client on its own they will get 0 business
 - If Firm 2 approaches B or C on its own, they will get their full business
 - A is a large client and will do business only with both of them and they payoff will be higher (4 each)
 - Business with B or C is worth 2

		$\mathbf{Firm} \ 2$		
	A	B	C	
A	4,4	0, 2	0,2	
Firm 1 B	0,0	1,1	0,2	
C	0,0	0, 2	1, 1	

Figure 6.6: Three-Client Game

SOURCE: http://www.cs.cornell.edu/home/kleinber/networks-book

Example - equilibria

• (A, A) is the only Nash Equilibrium

Figure 6.6: Three-Client Game

SOURCE: http://www.cs.cornell.edu/home/kleinber/networks-book

Nash Equilibrium

- In a game where player 1 choses strategy S and player
 2 choses strategy T, the pair of strategies (S, T) is a
 Nash Equilibrium if
 - S is a best response to T, and
 - T is a best response to S.
- The expectation is that even when there are no dominant strategies, if there are Nash equilibria, players will chose the strategies of the equilibria
- This is based on the belief that each party will make this choice
- But how can we predict behaviour when there are more than one Nash Equilibria in a game?

– And they yield the same payoffs?

Is there a Nash equilibrium in the prisoner's dilemma game?

Multiple Equilibria

- A Coordination Game
 - What can you and your partner choose when preparing a common presentation? Keynote or PowerPoint?
 - We assume that you cannot convert from one to the other

Two Nash Equilibria: (P, P) (K, K)

Vour Dortnor

Figure 6.7: Coordination Game

 $SOURCE: \ http://www.cs.cornell.edu/home/kleinber/networks-book$

Multiple Equilibria: Focal Points

- To predict which of the multiple equilibria players will chose one can argue that there can be "natural reasons" not shown in the payoff matrix that will create a bias for one equilibrium
 - This will be a *focal point*
 - E.g. if PowerPoint is more frequently used in the University maybe both players will chose this instead of Keynote
- Reference: Schelling, T. (1960) A Strategy of Conflict. Harvard University Press

Multiple Equilibria

- Anti-coordination games:
 - Hawk-Dove Game
 - Chicken

Matching Pennies

- What about games with no Nash Equilibria?
- Two players hold a penny each and they decide which side to show to each other each time
- Player 1 looses her/his penny if they match
- Player 2 looses his/her penny if they don't match

		Head Strategy	Tail Strategy
A A A A A A A A A A A A A A A A A A A	Head Strategy	-1, +1	+1, -1
	Tail Strategy	+1, -1	-1, +1

Mixed Strategies

- When there are no equilibria (as in the matching pennies game) we can assign a probability on each strategy
 - E.g. Player 1 will choose Head with a probability p
 - and Tail with with probability 1-p
 - Player 1 is choosing a *pure strategy Head* if p=1

Mixed Strategies and Equilibria

- An equilibrium with mixed strategies is one where probabilities of strategies for Player 1 is the best response to a probability of strategies by Player 2
- In the matching pennies game, we have an equilibrium for probability ½ for each strategy for each player
 - In cases where payoffs are less 'symmetric' equilibria are based on unequal probabilities

Strategy Optimisation

- Pure strategies vs. Mixed strategies
 - Mixed strategies can help find additional Nash equilibria or the only Nash equilibria
- Individual optimisation vs. group optimisation
 - Dominant strategies, Nash equilibria, focal points refer to individual optimisation
 - Pareto optimality and social optimality refer to group optimisation

Pareto Optimality

- Take a choice of strategies; it is Pareto-optimal if there is no other choice in which all players receive payoffs that
 - are at least as high, and
 - At least one player receives a *strictly higher* payoff
- It could be that a unique nash equilibrium is not pareto-optimal; a binding agreement is required to ensure that a pareto-optimal set of strategies is chosen in that case

Which pairs of strategies are pareto-optimal?

Southampton

	Confess	Not Confess
Confess	<mark>X</mark> -5, -5	V 0, -10
Not Confess	-10, 0 V	-1, -1 V

Social Optimality

- A choice of strategies by the players that maximizes the sum of the players' payoffs
- If a pair of strategies is socially optimal is also Pareto-optimal
 - Discuss: why?
- Of, course, adding payoffs to establish social welfare has to be meaningful

Which pair of strategies here is socially-optimal?

You

Presentation

Exam

Pres

sentation	Exam
90,90	86,92
92.86	88,88

Your Partner

Figure 6.1: Exam or Presentation?

SOURCE: http://www.cs.cornell.edu/home/kleinber/networks-book

Pareto Optimality

- Take a choice of strategies; it is Pareto-optimal if there is no other choice in which all players receive payoffs that
 - are at least as high, and
 - At least one player receives a *strictly higher* payoff
- It could be that a unique nash equilibrium is not pareto-optimal; a binding agreement is required to ensure that a pareto-optimal set of strategies is chosen in that case

Which pairs of strategies are socially-optimal?

		Confess	Not Confess
	Confess	<mark>X</mark> -5, -5	X 0, -10
>	Not Confess	-10, 0 X	-1, -1 V

Multiplayer Games

- They can be used to model games with more than one players
- Nash equilibrium in a multiplayer game with players 1, ..., n
 - A set of strategies $(S_1, S_2, ..., S_n)$ in which each strategy is the best response to all the others
 - For player *i*, strategy S_i is a best response if for any other available strategy S'_i

 $P_i(S_1, ..., S_i, S_{i+1}, ..., S_n) \ge P_i(S_1, ..., S_i, S_{i+1}, ..., S_n)$

Game Theory & Social Networks

- How do people decide to establish connections?
- Modelling and understanding privacy and trust in Social Networks Reference: Buskens. Social networks and trust. (2002)
- Given a network structure and that interaction can happen along established edges what is the behaviour on different types of networks?
- Discuss: Other problems?

Research Case

- Hawks and Doves in small-world networks
- "The role of network clustering on cooperation in the Hawk-Dove game"
- Assuming static network structures
- "Dovelike behaviour is advantaged if synchronous update is used"

SOURCE: Tomassini et al. Hawks and Doves on small-world networks. Physical Review E (2006) vol. 73 (1) pp. 016132

$$\begin{array}{c|c} H & D \\ \hline H & \left(\frac{G-C}{2}, \frac{G-C}{2}\right) & (G,0) \\ \hline D & (0,G) & \left(\frac{G}{2}, \frac{G}{2}\right) \end{array}$$

FIG. 8. (Color online) Lattice: two possible configurations.

Predicting behaviour with Game Theory

- Are there (strictly) dominant strategies?
- Or any Nash equilibria?
- If there are many Nash equilibria can we predict which one will be achieved based on higher payoffs or focal points?
- Are there pareto-optimal pairs of strategies?
 - Are Nash equilibria among them? A binding agreement would be required if not.
- Is there a socially-optimal pair of strategies?

Lessons learned

- Understanding of the main concepts of Game Theory. Given a payoff matrix be able to identify and explain best responses, dominant strategies, equilibria, focal points, pareto optimality, social optimality.
- Ability to explain how Game Theory can apply to specific problems in social networks and outline how.

[•] Easley, D. and Kleinberg, J. Networks Crowds and Markets. Cambridge University Press, 2010. <u>http://www.cs.cornell.edu/home/kleinber/networks-book</u> (chapters 6 and 7)