Southampton

COMP6217
Social Networking Technologies Game Theory and Social Networks

Dr Thanassis Tiropanis t.tiropanis@southampton.ac.uk

Southampton

The narrative

- Modelling how individuals respond to each others' actions
- Predicting behaviour when individuals interact
- Predicting behaviour spread and evolution in a group (next session)
- Predicting behaviour spread in a network (next session)

Southampton

The narrative

Modelling how individuals respond to each others' actions

Southampton

What is a Game

- Individuals can act according to their self-interest when presented with choices
- But when more than one individuals interact with each other their choices can lead to different outcomes
- Acting according to self interest does not always yield the maximum profit in such cases
- How can we reason about behaviour?
- How can we predict outcomes?

Southampton

Presentation or Exam?

- You and your partner need to work on your common project and your exam at the same time
- You need to make a choice between the two
- Your grades will be determined based on how well you do on both

Figure 6.1: Exam or Presentation?

Southampton

What is a Game

- A game is the environment where such interactions take place and it consists of:
- A set of participants: players
- Options per participant: strategies
- Benefit per choice of option: payoff
- Payoffs can be based on the choices not of one participant but of all participants
- They are shown in a payoff matrix

Southampton

Prisoner's Dilemma

- Two have been taken prisoners and are questioned by the police
- They are both guilty
- When questioned they are offered the option to confess
- Should both of them confess they will be convicted to serve in prison for 5 years
- Should just one of them confess, the confessor will be let free, while the other one will serve 10 years
- Should none of them confess, they will both serve a year for resisting arrest.
- Prisoners cannot communicate with each other

Southampton

Prisoner's Dilemma

Southampton

Prisoner's Dilemma

Confess Strategy

Southampton

Best responses

- Let's assume we have a player 1 and a player 2 with strategies S and T respectively.
- $P_{1}(S, T)$ and $P_{2}(S, T)$ are the payoffs for each player given their strategies.
- For a player, a best response is the best choice they can make given a certain expectation of a choice from the other player
- Given a choice of a strategy T by player 2 , a best response for player 1 is strategy S, when for every other available strategy S^{\prime}
$-P_{1}(S, T) \geq P_{1}\left(S^{\prime}, T\right)$

Southampton

Strictly best responses

- Given a choice of a strategy T by player 2, a strict best response for player 1 is strategy S, when for every other available strategy S^{\prime}
$-P_{1}(S, T)>P_{1}\left(S^{\prime}, T\right)$

Southampton

Dominant Strategies

- A dominant strategy S for Player 1 is one that is the best response to every strategy of Player 2.
- A strictly dominant strategy S for Player 1 is one that is the strictly best response to every strategy of Player 2
- There is the assumption that players have come common knowledge of possible payoffs of each other, etc

Prisoner's Dilemma

Southampton

Southampton

The narrative

Predicting behaviour when individuals interact

Southampton

Predicting outcomes

- In games with strictly dominant strategies, we expect players to chose those strategies
- This basic assumption has been debated but it is a basic one in game theory
- In games without strictly dominant strategies, how can we predict the choices of the players? - SEE EQUILIBRIA

Southampton

Example - equilibria

- Firm 1 and Firm 2 are competing for clients A, B and C
- Firm 1 too small, Firm 2 is large
- They need to decide which client to approach
- If they approach the same client they get half the client's business each
- If Firm 1 approaches a client on its own they will get 0 business
- If Firm 2 approaches B or C on its own, they will get their full business
- A is a large client and will do business only with both of them and they payoff will be higher (4 each)
- Business with B or C is worth 2

Figure 6.6: Three-Client Game

Southampton

Example - equilibria

- (A, A) is the only Nash Equilibrium

		Firm 2		
		A	B	C
	A	4,4	0,2	0,2
Firm 1	B	0,0	1,1	0,2
	C	0,0	0,2	1,1

Figure 6.6: Three-Client Game

Southampton

Nash Equilibrium

- In a game where player 1 choses strategy S and player 2 choses strategy T , the pair of strategies (S, T) is a Nash Equilibrium if
- S is a best response to T, and
$-T$ is a best response to S.
- The expectation is that even when there are no dominant strategies, if there are Nash equilibria, players will chose the strategies of the equilibria
- This is based on the belief that each party will make this choice
- But how can we predict behaviour when there are more than one Nash Equilibria in a game?
- And they yield the same payoffs?

Is there a Nash equilibrium in the prisoner's dilemma game?

Southampton

Multiple Equilibria

- A Coordination Game
- What can you and your partner choose when preparing a common presentation? Keynote or PowerPoint?
- We assume that you cannot convert from one to the other

Two Nash Equilibria: (P, P) (K, K)

Figure 6.7: Coordination Game

Centhwan of

Multiple Equilibria: Focal Points

- To predict which of the multiple equilibria players will chose one can argue that there can be "natural reasons" not shown in the payoff matrix that will create a bias for one equilibrium
- This will be a focal point
- E.g. if PowerPoint is more frequently used in the University maybe both players will chose this instead of Keynote
- Reference: Schelling, T. (1960) A Strategy of Conflict. Harvard University Press

Southampton

Multiple Equilibria

- Anti-coordination games:
- Hawk-Dove Game
- Chicken

	Dove strategy	Hawk Strategy
	3, 3	1, 5
	5, 1	0, 0

Southampton

Matching Pennies

- What about games with no Nash Equilibria?
- Two players hold a penny each and they decide which side to show to each other each time
- Player 1 looses her/his penny if they match
- Player 2 looses his/her penny if they don't match

	Head Strategy	Tail Strategy
	-1, +1	+1, -1
	+1, -1	-1, +1

Southampton

Mixed Strategies

- When there are no equilibria (as in the matching pennies game) we can assign a probability on each strategy
- E.g. Player 1 will choose Head with a probability p
- and Tail with with probability 1-p
- Player 1 is choosing a pure strategy Head if $p=1$

Southampton

Mixed Strategies and Equilibria

- An equilibrium with mixed strategies is one where probabilities of strategies for Player 1 is the best response to a probability of strategies by Player 2
- In the matching pennies game, we have an equilibrium for probability $1 / 2$ for each strategy for each player
- In cases where payoffs are less 'symmetric' equilibria are based on unequal probabilities

Southampton

Strategy Optimisation

- Pure strategies vs. Mixed strategies
- Mixed strategies can help find additional Nash equilibria or the only Nash equilibria
- Individual optimisation vs. group optimisation
- Dominant strategies, Nash equilibria, focal points refer to individual optimisation
- Pareto optimality and social optimality refer to group optimisation

Pareto Optimality

Southampton

- Take a choice of strategies; it is Pareto-optimal if there is no other choice in which all players receive payoffs that
- are at least as high, and
- At least one player receives a strictly higher payoff
- It could be that a unique nash equilibrium is not pareto-optimal; a binding agreement is required to ensure that a pareto-optimal set of strategies is chosen in that case

Which pairs of strategies are pareto-optimal? \square

$\frac{8}{8}$

$-10,0$	$-1,-1$
V	V

Southampton

Social Optimality

- A choice of strategies by the players that maximizes the sum of the players' payoffs
- If a pair of strategies is socially optimal is also Pareto-optimal
- Discuss: why?
- Of, course, adding payoffs to establish social welfare has to be meaningful

Your Partner
Which pair of
strategies here is socially-optimal?

	Your Partner	
	Presentation	Exam
YouPresentation Exam$\| 90,90$	86,92	
	92,86	88,88

Figure 6.1: Exam or Presentation?
SOURCE: http://www.cs.cornell.edu/home/kleinber/networks-book

Pareto Optimality

Southampton

- Take a choice of strategies; it is Pareto-optimal if there is no other choice in which all players receive payoffs that
- are at least as high, and
- At least one player receives a strictly higher payoff
- It could be that a unique nash equilibrium is not pareto-optimal; a binding agreement is required to ensure that a pareto-optimal set of strategies is chosen in that case

	Confess	Not Confess
\breve{y}	X	X
	$-5,-5$	$0,-10$

$$
\begin{aligned}
& \begin{array}{rr}
-10,0 & -1,-1 \\
\mathrm{X} & \mathrm{~V}
\end{array}
\end{aligned}
$$

Southampton

Multiplayer Games

- They can be used to model games with more than one players
- Nash equilibrium in a multiplayer game with players $1, \ldots, n$
- A set of strategies $\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ in which each strategy is the best response to all the others
- For player i, strategy S_{i} is a best response if for any other available strategy $\mathrm{S}_{\mathrm{i}}^{\prime}$

$$
P_{i}\left(S_{1}, \ldots, S_{i}, S_{i+1}, \ldots, S_{n}\right) \geq P_{i}\left(S_{1}, \ldots, S_{i}^{\prime}, S_{i+1}, \ldots, S_{n}\right)
$$

Coutbingur

Game Theory \& Social Networks

- How do people decide to establish connections?
- Modelling and understanding privacy and trust in Social Networks
Reference: Buskens. Social networks and trust. (2002)
- Given a network structure and that interaction can happen along established edges what is the behaviour on different types of networks?
- Discuss: Other problems?

Southampton

Research Case

- Hawks and Doves in small-world networks
- "The role of network clustering on

	H	D
H	$\left(\frac{G-C}{2}, \frac{G-C}{2}\right)$	$(G, 0)$

$$
(0, G)
$$

$$
\left(\frac{G}{2}, \frac{G}{2}\right)
$$ cooperation in the Hawk-Dove game"

- Assuming static network structures
- "Dovelike behaviour is advantaged if synchronous update is used"

Predicting behaviour with

Cumane

 Game Theory- Are there (strictly) dominant strategies?
- Or any Nash equilibria?
- If there are many Nash equilibria can we predict which one will be achieved based on higher payoffs or focal points?
- Are there pareto-optimal pairs of strategies?
- Are Nash equilibria among them? A binding agreement would be required if not.
- Is there a socially-optimal pair of strategies?

Southampton

Lessons learned

- Understanding of the main concepts of Game Theory. Given a payoff matrix be able to identify and explain best responses, dominant strategies, equilibria, focal points, pareto optimality, social optimality.
- Ability to explain how Game Theory can apply to specific problems in social networks and outline how.
- Easley, D. and Kleinberg, J. Networks Crowds and Markets. Cambridge University Press, 2010. http://www.cs.cornell.edu/home/kleinber/networks-book (chapters 6 and 7)

