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Abstract

Multiscale methods such as averaging and homogenizatisa bacome an in-
creasingly interesting topic in stochastic time series efiod). When applying the av-
eraged/homogenized processes to applications such asgiaraestimation and filtering
problems, the resulting asymptotic properties are ofteakwén this thesis, we focus on
the above mentioned multiscale methods applied on Ornbtgienbeck processes. We
find that the maximum likelihood based estimators for thé drnd diffusion parameters
derived from the averaged/homogenized systems can userttesponding marginal mul-
tiscale data as observations, and still provide a strongergence to the true value as
if the observations are from the averaged/homogenize@gmgsthemselves. The asymp-
totic distribution for the estimators are studied in thiedis for the averaging problem,
while that of the homogenization problem exhibit more diffies and will be an interest
of future work. In the case when applying the multiscale rdshto the Kalman filter of
Ornstein-Uhlenbeck systems, we study the convergenceebatihe marginal covariance
and marginal mean of the full scale system and those of thaged/homogenized systems,
by measuring their discrepancies.

In Part Ill, we study real world projects of time series mdidgl in the field of
econometrics. Chapter 7 presents a modelling project endst rate time series from the
well known Nelson-Siegel yield curve model. The methodglsigows a development from
standard Vector Autoregressive model to Bayesian basetddseedastic regression model.
Gibbs sampling is used as the Monte Carlo method. Chapters@pts a model comparison
in modelling a portfolio of economic indices between consteorrelation GARCH and
Dynamic Conditional Correlation GARCH models. It compattes two models suitability
in capturing the effect of “volatility clustering”.

vi
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Chapter 1

Introduction

The problem of parameter estimation for autoregressive) (jpe time series has long been
avery popular topic. A large amount of literature focuseparameter estimation problems
for AR type models under different setups. In this thesis prasent parameter estimation
strategies of AR type models within the framework of Ornstdhlenbeck stochastic dif-
ferential equations in Part | and Il, where the data are pexvicontinuously, except when
discretization is necessary. We present the problem witi@rBayesian framework in Part
lll, where the data are provided discretely since it is basedeal world applications.

Parameter estimation forms an essential part of the #tatistference methodolo-
gies, especially for standard models such as Ornstein batdnprocesses. In recent liter-
atures, such as [1, 2, 69, 72], model fitting of multiscaledeats become a popular topic in
this area, since the finite dimensional data with differeaties often become inconsistent
with model at small scales when applying standard stadisitiference methods. The dis-
crepency between the estimated and true values of the paméthe model could deviate
significantly. Furthermore, the methods presented in [R&sja general set of models, but
a weak convergence for the estimators. For applicationsahpractice, this motivates us
to study the asymptotic behaviour of the estimators in angtgense for the model at small
scales. For ease of approach, we focus on the Ornstein WHdkmvocesses as a point of
attack, since the problem of parameter estimation for @mdthlenbeck (OU) processes
has been extensively studied in the literature. Discussidmaximum likelihood estima-
tors for the drift and diffusion parameters of an OU procexstheir asymptotic properties
can be found in [11, 54, 66].

The problem of parameter estimation for stochastic diffeaé equation within the
multiscale framework had already been studied for someaicetgpes of multiscale setup.
In [6, 7], the authors discuss maximum likelihood estimatid drift and diffusion param-
eters of a scalar OU process when data is observed from a scaled smoothed OU process



Y = %fliexsds. They conclude that the observation time stejand total number of ob-
servationsV should both be functions ef in order to preserve asymptotic consistency and
efficiency. In addition, [5] also constructs an adaptivessubpling scheme to be applied
in a Triad model. Another paper discussing parameter estimfor OU processes in the
multiscale framework is [1]. It studies the problem of estting integrated diffusion under
the existence of microstructure noise. It assumes the higdeess follows an 1t diffusion
process, and tries to estimate the integrated diffusioarpater, while observing data with
microstructure additive noise. It proposes a subsamplimtpggregating scheme to ensure
the consistency and statistical efficiency of the estimator

In Part I, we focus on a different set up of the multiscale fearork, which is
discussed in detail in [78]. Within this framework, weak eergence of drift estimator
for a general type of Itd SDE is discussed in [73]. Weak daift diffusion estimatiors
for a Langevin equation is discussed in [79]. In this thesis,observe data from the slow
variable of a two (averaging) or three (homogenizationgtsoale system of OU stochastic
differential equations, and estimate the drift and ditbngparameters for the coarse-grained
equation for the slow variable. We will show that the maximiikalihood based drift and
diffusion estimators are asymptotically consistent, itrargy sense.

After we have investigated the behaviour of maximum likediti estimators for the
data with small scales in a finite dimensional multiscalenfeavork, it comes natural to us
that we want to further utilize the feature of averaging aachbgenization in a wider area
of applications. One of the most popular area in stochastidatting is filtering. Studying
the behaviour of multiscale filtering can be useful in margaar such as analysis of signal
processing, dynamical systems and meterology and oceardeltimg. Multiscale filter-
ing can aid accurate estimate of the small scale componéithweveals the microscopic
stochastic nature of the data, while also significantly cedithe demand for computational
resources, which make simultaneous estimates more chaelpigvable or even from im-
possible to possible. These reasons directly motivate invéstigate this methodology in
the context of averaging and homogenization.

Though multiscale filtering is a recently developed topidias already been stud-
ied in many literatures. In [62], the authors studied mathigeal strategies for filtering
turbulent dynamical systems. The approach involves thergyrof rigorous mathematical
guidelines, exactly solvable nonlinear models with phaisiesight, and novel cheap algo-
rithms with judicious model errors to filter turbulent si¢gmaith many degrees of freedom.
[76] studied nonlinear filtering problems for the optimatdil of the slow component of a
two-scale system, where the fast scale component is ergodic

Applications of multiscale linear filter has been extenlgivdudied in the context
of signal processing, such as [75, 91]. [41] presented a tmmgtudy of the limiting



behaviour of the homogenization problem following SPDE#hefform
dp<(t,w) = LE(Op(t,x)dt + M(t)p<(t, z)dW;

where
L= Vaz; (aij(x/€7 ZE/G) Vi; )

and
M(t) = hi(we /€, Zi [€)

for which Z§ follows dZ; = f(Z¢/€)dt + QdW;. [65] discussed filtering problems where
the underlying SDE follows

dx = g(z/e)xdt + o(z/e)dw

with observations taken fromlz = h(x/¢)zdt, for which g, o andh lie on a unit torus on
R".

In Part Il, we focus on the problem of linear filtering for theultiscale system
studied in Part . The observations we consider contain twces of discrepancies, the
discrepancy between the slow part of the multiscale systadrte averaged/homogenized
process, and the discrepancy between the actual model arabderved data. We apply
Kalman filter to the contaminated observation from the slawt pf the multiscale system,
to show that the marginal Kalman filter for the slow part of Hystem converges to the
filtered distribution of the averaged/homogenized pracess

Part Il studies the problem of AR type derived time serieddals fitted in real
world applications. Autoregressive model is one of the daah tool in time series data
analysis. Autoregressive models are the most establistoettlsin time series forecast-
ing. In this part, we integrate the autoregressive models ®ayesian methods and im-
plemented through Markov Chain Monte Carlo to build spedifite series hierarchical
models for time series forecasting.

In Chapter 7, we will show a step-by-step construction ofARemodel from a stan-
dard Vector Autoregressive model to a Bayesian HeterostiedRegression model, imple-
mented using Monte Carlo methods. The underlying data iadh@nal interest rates from
the Nelson Siegel yield curve model. The reason behind tbizelof Bayesian method is
that we believe the nature of the time series has been didtsignificantly by the recent
crisis, which made standard regression not plausible. Wewveethat Bayesian updating
scheme is a good feature that can be added to the model to aalsye predictions.

In Chapter 8, we fit the GARCH type of the AR model to diagnose wblatility
structure of a group of multivariate time series data, unkerpresence of volatility clus-



tering. The underlying data is a portfolio of 8 indices regamting a wide area of economic
aspects. Since the aim of this project is to reconstructrbssecorrelation between compo-
nents of the time series under the presence of volatilitgteling, we opt for the GARCH
model, and compare the performance of the Constant Coorl@@C) and Dynamic Con-
ditional Correlation (DCC) modifications of the model. Themason we choose GARCH
model is that it is the best tool in volatility modelling. Wisa expect that the DCC version
of the GARCH model would represent the evolution of the datiens across the indices.

In this thesis, we usé’ or ¢ to denote an arbitrary constant which can vary from
occurrence to occurrence. For the simplicity of notatioe, will write x,, (or y,, X,)
instead ofz(nd) (resp.y(nd), X (nd)) for the discretized process. To simplify on notation,
we may sometimes omit the tensor product signwhere we actually mean matrix/vector
product as tensor products. Similarly, will often Us§ to denote a square under tensor
product, and for any matrix/m, we definem asm = /m\/m". When data is observed
discrete, we usé to denote the time increment observations are provided Aataddenote
the time increment observations are taken.
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Chapter 2

The Ornstein-Uhlenbeck (OU)
Process

A vector valued Ornstein Uhlenbeck (OU) process is defindlesolution of a stochastic
differential equation of the form

dX

E:a(X—,u)-i-\/E%- (2.1)

When the drift matrixa is negative definite, and the diffusion mateixis positive definite
diagonal, the process is ergodic. The solutiortan be written in closed form,

X(t) = (I — e+ e X(0) + / t e¥t=3) \JadW, . (2.2)
0

When this process is ergodic, we take the limit in time,

t
lim X (t) = p+ lim / =9\ /rdW, . (2.3)
> Jo

t—00

This is clearly a Gaussian random variable, with mgaand variance ., for which,
vec(o) = (—a ® —a)tvec(o), (2.4)

where® denotes the Kronecker sum, angt(-) denotes the vectorization of the matrix by
stacking its columns into a single column vector. Using imigriant property, the drift and
diffusion parameters can be easily estimated. The follgimown results can be found in
[11, 54, 66].

Theorem 2.1. Assume we are given continuous observations from an Omistaienbeck
processX defined in(2.1). Then the maximum likelihood estimator for the drift paréene

6



ar, defined as
1

&T:</OTdX®X> (/OTX®th> (2.5)

is asymptotically unbiased and converges almost surelydeT — oo. It is also asymp-
totically normal, as

\/T(dT—a)g./\/'(O,Joo) asT — oo .

Theorem 2.2. Assume we are given a discretized realizatlon= X (nd) from an Ornstein-
Uhlenbeck process defined(@ 1) with time step). The maximum likelihood estimatés,

defined as
N-—1

o5 = Tnzo (Xn—I—l - Xn) ® (Xn+1 - Xn) : (26)

is asymptotically unbiased and converges almost suretyass — 0, while T’ is fixed, and
X, = X (nd). In addition, it is asymptotically normal as
1 20

%(Ag—U)g/\/(O,T) G,S(S—>O.

Some key steps in the proof of these theorems are the folipwin
r D
/ Xt)@dWy SN (0,Tos) as T — o0,
0

and .
/ X(t)® X(t)dt - To as., as T — c0.
0

In Part I, we use the estimators defined in (2.5) and (2.6) tthéitdata coming
from equations (3.1a) in Chapter 3 and (4.1a) in Chapter 4r rain goal is to study
their asymptotic properties. In chapter 3, we discuss pearanestimation problem in the
averaging setup, where the data comes from equation (3vhdlg in chapter 4, we study
the parameter estimation problem in the homogenizatiampsetrresponding to equation
(4.1a).

Another result which will be useful to us is an extended wmrsf the maximal
inequality result from Theorem 2.5 in [34]. The theoremestdhat the expected supremum
of a stopped scalar OU process is bounded in terms of theaghdftits stopping time. We
convert this result to suit a vector valued OU process.

Theorem 2.3.Let(X (t))+>0 be the Ornstein-Uhlenbeck process solyiad) with X (0) =
g, WhereW is a standard Brownian Motion. Then there exists universastantC' > 0,



such that

log (1 + max;(|Dy|)T)
E X2 <cC
<0;1£TH @)l ) = min; (| Dy; /34])

wherea = PDP~! is the eigenvalue diagonalization of the drift mattixwhich only has
real eigenvaluesp is the diagonal matrix of eigenvaluesoivith the scales of eigenvalues
sorted in increasing magnitude from top-left to lower-tigintries. Note thatP is the
normalized matrix of corresponding eigenvectors. Findlly= P~lo(P~1)*. ||-|| is the
Euclidean norm.

A maximal bound for complex valued OU processes is discussdtheorem A.1
in [74].

Proof. We prove this theorem by doing a linear transformationXdt). By assumption,
we can writtea = PDP~!. Let X'(t) be
X'(t) = P71X(b),
Then, we can rewrite equation (2.1) as
dX'(t) = DX'(t)dt + P~'\/odW;.

SinceP~!,/cW; is a linear combination of the vector valued Brownian mofiy
we can define a new Brownian motion, by defining a positive @defsymmetric matrix
¥ = P lo(P7Y)",

VEAW! = P~\adW, .

Furthermore, by the time change property of Brownian matieve can rescald’/
as

VEiudW s, = dWi,

whereX;; is theith entry on the diagonal df. We can rewrite the OU process in scalar
form, for equation,

dX'(t/Si)i = (D /i) X (t/ ) idt + AW 4.

Notice that theVT/i,t ande,t for i £ j are correlated, however, this does not undermine the
assumption of Theorem 2.5 in [34], sinté; ; is a standard Brownian motion. We apply



Theorem 2.5 in [34] to each transformed equation above, we ha

E( sup I(X’(t))z|>
0<t<T

— E< sup |(X’(t/2n-))@-|>

0<t<¥;; T

log (1+ |37
S C i
| Dii /il

< C log (14 [Dy|T) ‘
| Dii /il

From the transformation, we know

E ( sup IX(t)z|>
0<t<T

HBHE< sup !X’(t)i\>
0<t<T

\X'(t/zn‘)o :

IN

IN

||| < sup
0<t<

i1

where P; is theith row of P, which are normalized eigenvectors. Consequently we have
the result,

E < sup IIX(t)H) < C'mzax(HPZ-H)\/log(l + max;(|Dyi|) T)

0<t<T min; (| Dy /X4]) ’

hence,
log (1 + max;(|Dy|)T)

E< sup HX(tW) < Cmax(|P|?)

0<t<T

SinceP; are normalized eigenvectors @f || P||?> = 1, thus

log (1 + max;(|Dy|)T)
E| sup [X@®)|? ] <C .
(ogthH ® ) - min; (| Dy; /34])




Chapter 3

Parameter Estimation for the
Averaged Equation of a Multiscale
OU Process

3.1 Introduction

In this chapter, we consider the following fast/slow systafnstochastic differential equa-
tions

dx dU
— - A
o ana + a2y + o (3.1a)
dy 1 q2 dV
. = R R 1
dt € (217 + a2y) e dt (3.1b)

for whichz € X, y € V. We may takeY asR? andY asR%. The case wherd is T%,
and) is T is discussed in [78]. We assume we observe data generatée ppydjection
onto thex coordinate of the system. We also make the following assiomsat

Assumptions 3.1.
We assume that

(i) U,V are independent standard Brownian motions;

(i) q1, g2 are positive definite diagonal matrices;

( air a2 >
1 1
021 ¢a22

10

(i) 0<e< 1;

(iv) the system’s drift matrix



only have negative real eigenvalues whes sufficiently small;

(v) z(0) andy(0) are independent di andV/, (xz(0),y(0)) is under the invariant mea-
sure of syster(B.1), andE (||z(0)|? + [|y(0)]|?) < oo.

Remark 3.2. Assumption 3.1(iv) guarantees the ergodicity of the sy¢8f) whene is
small.

Remark 3.3. Though we assumed the whole sys{gr)to be ergodic through assumption
3.1(iv). In other words, we assumeg, anda; — a12a§21a21 to be negative definite. We
believe it may be relaxed to complex eigenvalues with negadial parts. Drift matrix with
complex eigenvalues may be of interest to further work.

Remark 3.4. Assumption 3.1(ii) assumes diagonal matrices for the sliffu parameters
g1 and g, which ensures independence of Brownian motions. Howeednelieve that;
and ¢ being positive definite symmetric should be sufficient taantae the same results
in this chapter, since Brownian motions can be rescalednretand linearly combined to
obtain an equivalent Brownian motion in distribution witlagonal diffusion matrix. We
make this assumption for simplicity of notation.

In what follows, we will refer to the following equation asethveraged equation
for equation (3.1a),

dX dU

— =aX +/q1— 3.2

dt a + q1 dt ) ( )
where

a= all — a12a521a21 . (33)

In the rest of this chapter,

e we take observations from the multiscale system (3.1a);

¢ we first show that the discrepancy between the trajectaries the slow part: of the
multiscale system (3.1a) and the averaged equation (3o2pislerO(,/e) in the L2
sense, in Section 3.2;

¢ we then show that using observations from the multiscaleesy$3.1a) and applying
them to the drift estimatai;, defined in (2.5), we can correctly estimate the drift
of the averaged equation (3.2) in Section 3.3, and studydyemtotic normality of
the estimator in Section 3.4;

e we also show that using observations from the multiscalesy$3.1a) and applying
them to the diffusion estimatats, defined in (2.6), we can correctly estimate the
diffusion parameter; of the averaged equation (3.2) in Section 3.5, and study the
asymptotic normality of the estimator in Section 3.6;
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o finally a numerical example is studied to illustrate our firgdi in Section 3.7.

3.2 The Paths

In this section, we show that the projection of system (3ritdp dhex coordinate converges

in a strong sense to the solutidhof the averaged equation (3.2). Our result extends that of
Theorem 17.1 in [78], where the state spacés restricted tdl' and the averaged equation
is deterministic. Assuming that the system is an OU prodbessgomain can be extended
to R and the averaged equation can be stochastic. We prove thwifad lemma first.

Lemma 3.5. Suppose thatr, y) solves (3.1a) and Assumptions 3.1 are satisfied. Then, for
finiteT" > 0, ande small

B sw (|| + (o)) = O (1061 + ) (3.4

where||-|| is the vector norm, and the order is in termscof

Proof. We look at the system of SDEs as,

dXt = axtdt + \/C_lth (35)

0
X = X a— 1a11 16112 andq = q1 w
Y <021 022 0

We try to characterize the magnitude of the eigenvalues do find the eigenval-
ues, we require

where

det(a—AI)=0.

For block matrices, the equation above can be rearranged to,
1 1 1
det [ —age — A1 | det (a11 — )\I) — alg(—agg — )\I) —ag | =0.
€ € €
First, we set the first determinant equal to zero:
det ! A ! det ( M) =0
et | —ag — = —, detlazz — ¢ =Y.
c 422 s 22

By definition, e\ are the eigenvalues af,, thus they are of orde?(1). Consequently, we
haved, (not necessarily distinct) real eigenvalues of or@é%).

12



If the determinant of the second matrix is zero, we have

det <(a11 — M) — a12(%a22 — )\I)_léam) =0.
We apply Taylor expansion dfgs — eAI)~! ate = 0. We have,
(azg — eXI) ™! = agy + edagy + O(?) .
We substitute the above expansion into the determinant,
det (an — alg(a§21 + 6Aa§22 + O(?))ag; — )\I) =0,
and we find it is equivalent to finding the eigenvalues of aypbed matrix ofa,

det (@ — eMaraayyag) — O(e?) — M) =det(a+0O(e) —A)=0.

By Theorem 2 in [42], on the eigenvalues of a perturbed matvexknow that the
correspondingl; (not necessarily distinct) real eigenvalues are of ofdér). Therefore,
we can decomposeas

. D, 0
a=PDP lwithD=["" .
0 1p,

where D is the diagonal matrix, for whiclD; € R“*% and D, € R%*% are diagonal

blocks of the eigenvalues of ordéX(1). We also defin& = P~'q(P~')*. Using Lemma
9.14 in Appendix 9.11, we have the ratio between diagonahetgs ofD andX is always

We apply Theorem 2.3 to the system of equations (3.5). We have

E( sup [|x(t) min, (| Dy; /34])

0<t<T

H2> < olos (1 + maxi(| D) T)
SinceD;;/¥;; = O(1), max; | Dy;| = O(L), we have

0<t<T

E ( sup ux<t>u2> — O (log(1+T/6)).

13



Sincex = <x> , we get
Yy

E ( sup ([l=()]* + !!y(t)!!2)> =0 (log(l + z)) .
0<t<T €

This completes the proof. O

Theorem 3.6. Let Assumptions 3.1 hold for systé&l). Suppose that and X are solu-
tions of (3.1a) and3.2)respectively, corresponding to the same realization ot ilpgocess
andz(0) = X(0). Then,z converges toX in L. More specifically,

T
E sup |lz(t) — X(t)H2 < 0(62 log(—) + eT)eT ,
0<t<T €

whenT is fixed finite, the above bound can be simplified to

E sup [|z(t) = X(1)]* = O(e).
0<t<T

Proof. For auxiliary equations used in the proof, please refer ¢ocbnstruction in [78].
The generator of system (3.1) is

1
Eavg = E‘CO + ‘Cla
where
1
Ly = (anz+axny) V,+ §q2 :VyVy
1
Ly = (allw + ale) Vg + 5611 : VeV,

To prove that the ? error between the solutiongt) and X (t) is of orderO(+/e), we first
need to find the functio®(x, y) which solves the Poisson equation

—Lo® = anx + apy — ax / Pp(y; x)dy = 0; (3.6)
y

wherep(y; x) is the invariant density of in (3.1b) withz fixed. In this case, the partial
differential equation (3.6) is linear and can be solved iekpt

D(z,y) = D(y) = —(a12a3,)y. 3.7

14



Applying Itd formula to®(x, y), we get

ie 1 1 v,
T L0+ L1® 4+ — GV, Bt
at e ° Tt Ve 42Vy dt’

and substituting into (3.1a) gives

= ax — ecfl—(f +eL1P + \/E\/@qu)% + ql%. (3.8)
Define
t
0(t) := (2(x(t),y(t)) — (x(0),y(0))) —/0 (a112(s) + a12y(s)) - V,ds.
From (3.7), we see thdt does not depend anand thus
0(t) = @(x(t),y(t)) — (z(0),4(0))
= —(a2a3;)(y(t) — y(0). (3.9)
Now define
t
M) = - [ VEY,S)(s)av:
0
t
= —/0 \/@(algaz_;)*d‘/s.
Itd isometry gives
E|M(t)|* = ct (3.10)

The solution of (3.1a) in the form of (3.8) is

x(t) = z(0) —|—/0 ax(s)ds + e0(t) + VeM(t) + \/qT/O dUs .

Also, from the averaged equation (3.2), we get

X(t):X(O)—i—/O dX(s)ds—l—\/q_l/O v .

15



Lete(t) = x(t) — X (¢). By assumptiong(0) = 0 and

e(t) = /0 a(z(s) — X(s))ds+ €d(t) + VeM(t) . (3.11)
Then, .
le®)|* < 3\\&/0 e(s)ds|* + 32| 0(t)|* + 3e[| M (2] -

By applying Lemma 3.5 on (3.11), the Burkholder-Davis-Guridequality (see
Appendix 9.2) and Holder’s inequality (see Appendix 9vg, get

E( sup ||€(75)||2>

0<t<T
T T

< ¢ </ Ele(s)|?ds + €2 log(=) + ET>
0 €

T T
< c<6210g(—)—|—eT—|—/ E sup ||e(u)\|2ds>.
0

€ 0<u<s

By Gronwall’s inequality, we deduce that

€

T
E ( sup He(t)H2> < c(e?log(=) + €T)e™.
0<t<T

WhenT is fixed, we have

E ( sup He(t)H2> =0(e).

0<t<T

This completes the proof. O

3.3 The Drift Estimator

Suppose that we want to estimate the drift of the procéssescribed by (3.2), but we
only observe a solutiofiz(t) }4 (0,7 Of (3.1a). According to the previous theoremis a
good approximation o, so we replaceX in the formula of the MLE (2.5) by. In the
following theorem, we show that the error we will be makingnisignificant, in a sense to
be made precise.

Theorem 3.7. Suppose that is the projection to the:-coordinate of a solution of system
(3.1) satisfying Assumptions 3.1. L&} be the estimate we get by replaciigin (2.5) by

16



-1

d%z(/(fdm@x) (/(f:v@xdt) . (3.12)

lim lim E|ja% —al*>=0.
e—=0T—c0

Then,

Proof. We define

1T 1T
I = T/o dr®@x and [y = T/o T ® xdt.
By ergodicity, which is guaranteed by Assumptions @iland (iv)
lim Iy =E(z®xz) =C #0a.s.,
T—oc0

which is a constant invertible matrix. We expadhd using Itd formula applied o® as in
(3.8):
L=+ JL+Js+ 4+ J;5

where
1 /T
J1 = ?/0 ax ® xdt

€ T
€ T
ng—/ [,1(I)®1'dt
T 0
T
J4:¥/ Vy¢1/q2d‘/t®x
0

1 T
J5 = —\/ql/ dUt®.%'
T 0

It is obvious that
J1 = als.

Sinced is linear iny, and by Itd isometry, we get

9 ce 1 [T 9
E(I747) = ZElz [ Vi@

- 25(z/ T\\m(t)\\zdt)

17



by ergodicity, we have
ce

N (PAY

~

Similarly for Js,

B0 = By [ el
5 - 177 t
c 1 (T
= —E(= t)||2dt
75 (7 [ otar)
_ ¢
T
We know® is independent af, so
JgEO.

Finally, using (3.7) and (3.1b) we break further into
1 [T 1205, /€ T
Jo = T / (a12a2_21)(a21x + aggy) ® xdt — H#(D / dV; @ x
0 0

Again, using Itd isometry and ergodicity, we bound ftfenorm of the second term by

—1 T
aloa € Cce
|| 202 VIR “’/0 Wil < 5.

By ergodicity, the first term converges Irf asT — oo,

-1 T

a1oa

_7127722 / (aglx + aggy) ® xdt — —alnge ((a2_21a21m + y) & .%') .
0

We write the expectation as
E e ((a;zlaglx +y)®@x) =Epe (Epe ((a521a21x +y) ® z|z))

Clearly, the limit of p¢ conditioned on is a normal distribution with mean a,,"ag; 2z by
(2.3). Thus, we see that

lim Epe ((ag aziz +y) ® x) = 0.

e—0

Putting everything together, we see that
lim lim (I; —al) =0 in L?
e—0T—o00

Since the denominatdk of a%. converges almost surely, the result follows. O
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3.4 Asymptotic Normality for the Drift Estimator

We extend the proof of theorem 3.7 to prove asymptotic natyfalr the estimatos.. We
have seen that
ag —a=(Jo+Jy+ J5)I; "

We will show that
VT (a5 — @+ a2 ((a2_21a21x +y)@z)) BN (0, 062)

and compute the limit ob2 ase — 0. First we apply the Central Limit Theorem for
martingales ta/, andJ; (see [36]). We find that

VTJ, 2>./\/’(0,J(4)2) as T — oo,

where
0(4)? = ea12a§21q2a521*a“{2Epe (r ®x);
and
VTJs B N (0,0(5)2) as T — oo,
where

a(5)7 = Epe(a @ ).

We write Jo = Jo 1 + Jo 2 Where

-1 T ~1 — T
Joq1 = _ 2120y / (CL21£C + agzy) ® xdt and J2,2 = —W / dV ® x.
0 0
Once again, we apply the Central Limit Theorem for martiagab.J; » and we find
VTJyo B N (0,0(2,2)%) as T — oo

where

0(2,2) = earnay) aazy ajsBy(z @ x).

Finally, we apply the Central Limit Theorem for functionasergodic Markov Chains to
Ja1 (see [16]). We get

VT (Jz,l + a12E e ((a2_21a21x +y)® ac)) L2 N (0, o(2, 1)2)
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asT — oo, where
o(2,1)? = / £(x, 9)E(x, ¥)* pe(, y)dwdy
XxY
+ 2/Xxy§(36,y)/0 (Pre)(m,y)dtpe(x,y)dxdy

with
§(x,y) = — (a12a§21a2133 + a12y) @r+E (a12a521a21~"3 + alzy) @z

and
(PE&)(z,y) = E (&(z(t), y(t)[z(0) = z,y(0) = y) .

Putting everything together, we get thatfas+ oo,
VT (Jy+ Jy+ J5) = Xo1 + Xoo + X4+ X5

in law, whereX; ~ N(0,0(i)?) fori € {{2,1},{2,2},4,5}. Finally, we note that the
denominator/, converges almost surely d5— oo to E < (x(t) ® «(t)). It follows from
Slutsky’s theorem that a8 — oo,

VT (&ET —a+ a1oE e ((a2_21a21x +y)® x)) — X,
in law, where
)(6 = (X271 + X2,2 + X4 + X5)(Epe($(7f) ® SC(t)))_l ~ N(O, U?)

It remains to computéim. .o o2. We have already seen that2, 2)2 ~ O(¢) and
o(4)? ~ O(e). Thus, we need to compute

lim B (X1 + X5) ® (X2, + X5))
= li_r>r(1)E (Xo1® X1+ X071 @ X5+ X5 ® X1+ X5 @ X5)
€

First, we see that
ImE(Xs ® X5) = lImE, (z ®z) = aE(X ® X) = q1¢7°
e—0 e—0

for which the variance of the invariant distribution &f is defined asrec(¢°) = (—a &
—a) " tvec(qy).

To computelim,_q E(Xg,ﬂ first we setj = ay; agiz +y. Then,(z,) is also
an ergodic process with invariant distributipp that converges as — 0 to (0, ¢7°) ®
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N (0, ¢3°), for which the variance of the invariant distributiog® and¢3° are computed
following (2.4),

vec(qi®) = (—a @ —d)_lvec(ql) , vec(qs®) = (—ag @ —agg)_lvec(qQ).

Sinceé(z,y) = —a12y ® z, it follows that
lig(l)Epe(ﬁ(v’Uaﬂ) ®&(r,7)) = ar2 QSOQ?O\/@*GTQ-
In addition, as — 0, the procesg decorrelates exponentially fast. Thus
i (PF€) (7, y) = anpE(X (@)X (0) = 2)E(y) =0

forallt > 0. Ast — oo, the processz, 7) also converges exponentially fast to a mean-zero
Gaussian distribution and thus the integral with respectisdinite. We conclude that the
second term of (2, 1)? disappears as— 0 and thus

P_}I%E(XQJ ® Xo1) = a121/30° /a5 aly.

Finally, we show that
lim E(Xz,l & X5) =0.
e—0

Clearly, X5 is independent of in the limit, since it only depends anandU. So,
IimE(Xz; ® X5) = im E (E(X2; ® Xs|2))
e—0 e—0

and
Iim E (E(X =
El 3 (E(X21lz)) =0

for the same reasons as above. Similar calculations give
lIimE(X5 ® X91) =0.
lim E(X5 © Xo,1)

Thus
lim o? = (qlqix’ + a121/65° 45/ QS"*G’Iz) ()2 (3.13)

e—0

We have proved the following

Theorem 3.8. Suppose that is the projection to the:-coordinate of a solution of system
(3.1) satisfying Assumptions 3.1. L&}t be as in(3.12) Then, asl” — oo,

VT (@ — @) B N (e, 02),
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wherep, and o, are dependent on, whilst i, — 0 and o2 converges to the limit i(3.13)
ase — 0.

3.5 The Diffusion Estimator

Suppose that we want to estimate the diffusion parametdreoptocessX described by
(3.2), but we only observe a solutida:() },c(o,r) Of (3.1a). As before, we replack in

the formula of the MLE (2.6) by. In the following theorem, we show that the estimator is
still consistent in the limit.

Theorem 3.9. Suppose that is the projection to the:-coordinate of a solution of system
(3.1) satisfying Assumptions 3.1. We set

1N—l

G5 =D (ns1—2n) @ (2ni1 — ) (3.14)

n=0

wherez,, = z(nd) is the discretized: process§ < e is the discretization step arid = NJ
is fixed. Then, for every> 0

lim E|g5 — q1]|* = 0
lim E[|g5 — a1 =0,

more specifically,
Elgs — all* = O(6) .

Proof. We rewritex,,.1 — x,, using discretized (3.1a),

(n+1)0 A (n) A (n)
Tptl — Ty = VadUs + Rln + RQn (3.15)
nd
where
N (n+1)d
Rgn) = all/ x(s)ds
né
A (n) (n+1)d
Ry’ = a12/ y(s)ds
nd

We let¢, = % (Utnt1)s — Uns). SinceU is a Brownian motion{&, },>o is a

sequence of independent standard Gaussian random varisifdewrite
(n+1)d

VardUs = v/ q10&,.

nd
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We can write the estimator as

i =

_|_

Nl
N Zgr%

N5 &

Hence, we can expand the error as

L V-1 2
*(x2e )

E (G5 — q1)

IN

e

Cst (

N252

It is straightforward for line (3.16a),

LN 2
2 _
E(N;)gn—1> = .

By Assumptions 3.1(v), and Holder inequality, we have,

(n+1)8 2
= a}E /5 x(s)ds

E(R}™)?

IN

cd? .

IN

2
St (R + RS ’))

N-1

2
SR + B @ §n>

=0

(n+1)
ca%lé/ Eax(s)%ds

)
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Itis similar for E(R{")?2,

R (n+1)5 2
E(RM)? = o4E / y(s)ds (3.18)

)

IN

(n+1)
ca%zé/ Ey(s)ds
né

< 6.

sinceR™ and R{" are Gaussian random variables, we hE¢&\"” + R{")* = €5, so
line (3.16d) is of orde©(5?). For line (3.16b), we need to get the correlation betwégﬂ
fori € {1,2} and¢,,. We write system (4.1) in integrated form,

z(s) = mp+an / z(u)du + a12/ y(u)du + /q1 dUu (3.19)
nd nod
y(s) = yn+ = r(u)du + %/ w)du + —/ avy (3.20)
€ Jns € Jns
We substitute (3.19) and (3.20) mfbﬁ andR(”) respectively,

< (n) < (n) (n+1)d
R + RV = / ap1z(s) + ai2y(s)ds
né

= a11%n0 + a12Ynd

(n+1)s
+ <a11+ a12a21>/ / duds
nd
(n+1)0
+ <a11a12—|— a12a22>/ / u)duds

(n+1)d
+ au\/ﬁ/ /dUudS
d nd

(n+1)d s
+ a12\/—q_2/ dV,ds
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Using this expansion, we find,

E (& (R + /5"))
= E (&(anniznd + ai2ynd) (3.21a)

(n+1)s
(fn ((Gn + a12a21> / / duds)) (3.21b)
(n+1)d

+ E (fn <a11a12 + a12a22>/ / duds) (3.21¢)
(n+1)0  ps

(fn (au\/q_l/ms /mg dUudS>> (3.21d)
(n+1)0  ps

+ E (fn (am@ " / qudS>> (3.21¢)
€ nd nd

By the definition of¢,, line (3.21a) is zero. By substituting (3.19) and (3.20pilibes
(3.21b) and (3.21c) respectively and iteratively, we kntweytare of order€)(52). By
definition of&,,, we know that line (3.21d) is of orde@(ég). By independence betweén
andV, line (3.21e) is zero. Therefore,

+
=

E

_|_

E (& (8" + R{")) = 0(6%).
Thus,
E (&R + RV)?) = 0(5%) .

Whenm < n, we have,

E (& (R + Ry en (R + RS™))

E (E (&R + B™6n(B™ + R Fus) )
= E (&n(R{™ + BIE (R + RSY)|Fos) )

(

Whenm > n, the same result holds. Thus we have that line (3.16b) is adrad(5?).
By symmetry, line (3.16¢) has the same ordech?). Therefore, we have for equation
(3.16),

E (g5 —q1)? = 0(9).

This completes the proof. O
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3.6 Asymptotic Normality for the Diffusion Estimator

To examine the asymptotic normality of the diffusion estionawe use the decomposition
of g5 in the proof of Theorem 3.9,

5

N[
2|
o,
SN
|
=

(@G —a) = 0 2q( (3.22a)

N—
b oIS A 4 YY) (3.220)

STRY + RYe, (3.22¢)
(R + R{M)? (3.22d)
Since
L 1 N-1
. -1 2

It follows from Central Limit Theorem for sum of multivarat.i.d random variables, as
6—0,

) 1N71 D q2
. _1 2 1

We have shown that (&, (R + R(”))) O(52), so line (3.22b) has mean

55 VI () 5
( NG 5Z§n )+ RS )) 0(s2) .

2
UsingE (Zgn )y R(”))> = 0(0), we find the second moment of (3.22b),
n=0

N—1 2
_1 q1 A(n) A(n)
E|d§ 2 n(R7 + R = O(9) .
( v L Rl B >> )

Thus whery is small,




By symmetry, same result holds for line (3.22c¢). Finally; lioe (3.22d), using
(3.17) and (3.18), we have

11 el A 1
E (5—5 (B 4 R;n>>2> = 0(5?),

No =
and,
L N A 2
E((”—a <R§”>+R§"’>2> = 0(9)
n=0
Thus,
11 N1 1
072505 2 (R + RYY)? ~ N (0(57),0(9))
n=0

e 2
672 (g5 — 1) B N(0, 22y . (3.23)
We have proved the following,

Theorem 3.10. Under the conditions of Theorem 3.9 and with the same naoiattidolds

that

22
(cjf;—ql)g./\/( ,%)asééo.

N

5

3.7 Numerical Example

We show our findings in this chapter through the a numericah®gte. The multiscale
system of interest is

dx dU,
— = - 2— .24
7 T+y+V2 v (3.24a)
dy 1 \/5 dv;
Y T, i 3.24b
dt € ( x y) + € dt Y ( )
The averaged equation is
dX dU,
— = -2X 2—. 3.25
dt V2 dt ( )

We first examine the convergence of the drift estimator inofém 3.7. We fix the scale
parameter at = 279,276 and 273, observation time incremet = 210, and let the
number of observationd’ increase fron2!'! to 2'8. For each set of the parameters, we
sample 100 paths using the exact solution.

We first show the consistency of the estimator by plottingth@orm of the errors
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AVERAGING: DRIFT ESTIMATOR I ERRORS

log, E (a5 — a)”

" log(T)

Figure 3.1: Averaging: Consistency of Estimadr

(a5 — a), in Figure 3.1. We see that whé&h = N is short, the estimation error from
observations of different scale parametserare similar. When time is large, the error with
small scale parametercontinues to decrease at a constant rate.

We then show the asymptotic variance of the estimator byipipthe distribution
of the time adjusted errorgT (a5 — E(a5)) with e = 279, in Figure 3.2. The asymptotic
variance is computed using (3.13), which is 6 in our case.rétdines are the 2.5 and 97.5
guantiles of the adjusted errors, the blue lines are theate@econfidence intervals of the
adjusted errors. When observation tiffiés large, the confidence intervals of the simulated
errors are contained in the expected confidence intervals.

We then examine the convergence of the diffusion estimatdihieorem 3.9. We
fix the total time horizorl”’ = N§ = 1, and the scale parametet= 22,276 and2—3. We
decrease the observation time increm@ifitom 2 to 2717, For each set of parameters,
we sample 100 paths using the exact solution.

We first show the consistency of the estimator by plottingth@orm of the errors
(45 — q1), in Figure 3.3. We see that agets small, the estimation error from observations
of different scale parametes are similar. This shows that the error is irrelevant to what
value the scale parameter takes, and are always conveayaggd.

We then show the asymptotic variance of the estimator byipépthe distribution
of the § adjusted error§*%((j§ — E(g5)) with e = 279, in Figure 3.4. The variance is
computed using (3.23), which is 8 in our example. The redsliae the 2.5 and 97.5
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AVERAGING: DRIFT ESTIMATOR ASYMPTOTIC VARIANCE

VT (a5 — B(a%))

log,(T)

Figure 3.2: Averaging: Asymptotic Normality af.

guantiles of the adjusted errors, the blue lines are theatggeaonfidence intervals of the
adjusted errors. We see that the confidence intervals ofintiélated errors and and the
expected confidence intervals agree.

3.8 Conclusion

In this chapter, we have verified asymptotic properties efrttaximum likelihood estima-
tors for the drift (2.5) and diffusion (2.6) parameters of@U process, while observing
data from the slow part of a multiscale system (3.1). We har#ied that the discrepancy
between the solution of the averaged equation (3.2) anddtepart of the system (3.1a),
in the L2 sense, is small whenis small. In summary,

e we take continuous observations from the multiscale sy$geha)z ;

e we have shown that the mismatch between trajectoriasawfd X is asymptotically
small if e is small;

¢ we have shown that the maximum likelihood estimaitprconverges ta as7" — oo
ande — 0, and the asymptotic distribution of the estimator;

e we have shown that the maximum likelihood estimajpconverges tg asd — 0,
and the asymptotic distribution of the estimator. We notieebehaviour of§ is not

29



2

— q‘l)

45

ds))

- B(

(a5

1

5

log, E (

S

AVERAGING: DIFFUSION ESTIMATOR 12 ERRORS

-log,(9)
Figure 3.3: Averaging: Consistency ¢ff
AVERAGING: DIFFUSION ESTIMATOR ASYMPTOTIC VARIANCE
: : N T~ N\ : I f :
S S S U T S N A S S SN SRS S S S
! ) i ' ! : ! : i i ] ! : ;
A T A T L
i : i i i : . : i i : i i : i
o T A
L N\ AN L TN
‘ ‘ ‘ ‘ ‘ ‘ - Ev:)t:v:;ﬁ:\sasympmncvanance ‘

Figure 3.4: Averaging: Asymptotic Normality gf

30



related toe;

In future works, when possible, we can further relax the mggions imposed on the drift
and diffusion matrices, possibly in the ways addresseddmamarks to the assumptions.
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Chapter 4

Parameter Estimation for the
Homogenized Equation of a
Multiscale OU Process

4.1 Introduction

In this chapter we consider the following fast/slow systenstochastic differential equa-

tions
dz 1 dau
% - (117 + a12y) + (@137 + a14y) + V@1 ar (4.1a)
dy 1 g dV
@~ @l G (410

for whichz € X y € Y. We may taket asR% and) asR%. The case wherg is T,
and) is T is discussed in [78]. We assume we observe data generatée ppydjection
onto thex coordinate of the system. We also make the following assiomsat

Assumptions 4.1.
We assume that

(i) U,V are independent Brownian motions;
(i) q1,qo are positive definite diagonal matrices;

(i) 0<e<1;
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(iv) the system’s drift matrix

1 1
(gan +aiz a2+ a14>
1 1
2 @21 2 (22

only have negative real eigenvalues whes sufficiently small;
(V) agp invertible;

(vi) 2(0) andy(0) are independent di andV/, (x(0),y(0)) is under the invariant mea-
sure of systen(B.1), andE (||z(0)|? + [|y(0)[|?) < oco.

Remark 4.2. In assumption 4.1(iv), we have assumed the whole sygtdirto be ergodic
whene is sufficiently small. This condition can be decomposegi@nda;z — ajqasy a
only have negative real eigenvalues; ang — aua;zlagl = 0, which ensures the fast scale
term in (4.1a) vanishes.

Remark 4.3. Assumption 4.1(v) is necessary in our setup, however, thdtreould still
hold whernuy; has determinant zero, a scalar example is discussed by Bajiawu in [20]
for diffusion estimates.

Remark 4.4. As in Remark 3.4 for the case of averagigg.and g, in Assumption 4.1(ii)
can also be relaxed to positive definite matrices to guaessme result.

In what follows, we will refer to the following equation assthomogenized equa-
tion for system (4.1),

dX AW
= —aXx j— 4.2
7 +/4 el (4.2)
where
4= a13 — a14a55 ag1 (4.3)
and
q=q + a12a521QQa521*a;{2 . (4-4)

In the rest of this chapter,
e we take observations from the multiscale system (4.1a);

o we first show that the discrepancy between the trajectames the slow part: of the
multiscale system (4.1a) and the homogenized equatiohi¢bPorderO(e/log(¢))
in the L2 sense, in Section 4.2;

o we then show that using observations from the multiscalery$4.1a) and applying
them to the drift estimataéir, defined in (2.5), we can correctly estimate the drift
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of the homogenized equation (4.2) in Section 4.3 by subsamthie observations at
proper rates;

e we also show that using observations from the multiscaleesy$4.1a) and applying
them to the diffusion estimatarys, defined in (2.6), we can correctly estimate the dif-
fusion parametef of the homogenized equation (4.2) in Section 4.4 by subsampl
the observations at proper rates;

o finally a numerical example is studied to illustrate our firgdi in Section 4.5.

The convergence of the homogenized system is different fhatnof the averaging
systems. For each given time series of observations, the pathe slow process converge
to the paths of the corresponding homogenized equation.ekervwe will see that in the
limit ¢ — 0, the likelihood of the drift or diffusion parameter is difémt depending on
whether we observe a path of the slow process generated 1g) (@ the homogenized
process (4.2) (see also [73, 78, 79]).

4.2 The Paths

The following theorem extends Theorem 18.1 in [78], whickegiweak convergence of
paths onT?. By limiting ourselves to the OU process, we extend the doraiR? and
prove a stronger mode of convergence. We prove the follovenmgna first.

Lemma 4.5. Suppose thafr, y) solves (4.1a) and Assumptions 4.1 are satisfied. Then, for
fixed finiteT" > 0 and smalle,

E sup (J2(0)]? + [y®|P) = O (1og<1 n 2)) (4.5)
0<t<T €

where||-|| is the vector norm, and the order is in termscof

Proof. We look at the system of SDEs as,

dXt = axtdt + \/ath (46)

1 1
T a1l +a a2 +a 0
% — a= | 111 13 ¢ 112 14 andq — a1 X _
Yy 2021 2a22 0 =¢

We try to characterize the magnitude of the eigenvalues db find the eigenval-
ues, we require

where,

det(a— M) =0.
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We either have the characteristic polynomial

1
det (—GQQ — )\[)

or
1 1 1 1
det <(Ea11 + a3 — )\I) — (ECL12 + a14)(6_a22 )\I) 6_a21> =0.

First, we set the first determinant equal to zero:
d 1 1 d 5 _
et —agg—)\l 62d2 et(agg—e )\I)—O.
By definition, ¢\ are the eigenvalues ah,, thus they are of orde”\ = O(1). Conse-
qguently, we havel; (not necessarily distinct) real eigenvalues of or@én;%).
If the determinant of the second matrix is zero, we have
1 1 1 1
det <(Ea11 + a3 — M) — (Eau + aq)( 2&22 — M)~ €—a21> =0. 4.7
Rearranging the matrix we have,
1 1 2y 7)1
det (Ean + a3 — )\I) — (Eam + a14)(a22 —€ )\I) as | =0.
We apply Taylor expansion of(e?) = (azs — €2XI)~! ate = 0. We have,
f(eZ) = a;zl + eZAagzz + 64)\26623 + 0(66) = a§21 + 0(62) .
We substitute the Taylor expansion into the determinant,

1 1
det ((—an + a3 — N) — (Ea12 + ay4)(ag — 62)\1)_1@21>

et ((

1 _
= det CL11 + a3 — )\I) (Ealg + a14)(a221 + 0(62))a21>

= det a11 — a12a221a21) (EZ — )\I) + O(E))

M) + O(e))

1
€
a—

[
o o

Itis equivalent to finding the eigenvalues of a perturbedrixaf a. By Theorem 2 on page
137 in [42], on the eigenvalues of a perturbed matrix, we tbae the corresponding,;
(not necessarily distinct) real eigenvalues of oré¥i ). Therefore, we can decompoae
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as

. D, 0
a:PDP1W|thD:< ! ) )
1p
2 2

where D is the diagonal matrix, for whiclD; € R%*% and D, € R%*% are diagonal

blocks of eigenvalues of ord&?(1). We also definez = P~!q(P~!)*. Using Lemma
9.14 in Appendix 9.11, we have the ratio between diagonahehts ofD andX. is always

We apply Theorem 2.3 to the system of equations (4.6). We have

E( sup ||x(?) min, (| Dy; /34])

0<t<T

u2> < olos (1 + maxy(|Dis)T)

SinceDii/E”— = O(l), max; ‘D“‘ = O(eiz), we have

T
E (é;lgT\\X(t)HQ) =0 <log(1 + 6—2)> :

Sincex = <I> , we get
Y

E (02%(\@@)“2 n ||y<t>||2>> —o (g (1+3)) -

This completes the proof. O

Theorem 4.6. Let Assumptions 4.1 hold for systéml). Suppose that and X are so-
lutions of (4.1a) and4.2) respectively. (x,y) corresponds to the realizatiofU/, V') of
Brownian motion, whileX corresponds to the realization

W =g 2 (VaiU. — arzap /@ V) (4.8)

andxz(0) = X(0). Thenz converges toX in L2. More specifically,

T
E sup [z(t) - X(1)]2 < ( og(L) + 62T> o
0<t<T €
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whenT is fixed finite, the above bound can be simplified to

E sup [la(t) - X(8)]]2 = O( log(e)).

0<t<T

Proof. We rewrite (4.1b) as
(a2_21a21£6(t) +y(t))dt = e2a2_21dy(t) — ea2_21 V@2dVy . (4.9

We also rewrite (4.1a) as

dz(t) = %am(a;;aglx(t) +y(t))dt + ar4(ags a1x(t) + y(t))dt

—|—(CL13 — a14a2_21a21)x(t)dt + \/q_ldUt
1
— (Ealg + a14> (a2_21a21x(t) + y(t))dt (4.10)
+ax(t)dt + /q1dU; .

Replacing(ay, as x(t) + y(t))dt in (4.10) by the right-hand-side of (4.9), we get

de(t) = e(aia + ears)agy dy(t) — a12ay /q2dV; — €aisa55 \/q2dVs
+az(t)dt + \/q1dUy
= ax(t)dt + e(arz + ears)agy) dy(t) (4.12)
—i—\/éth — ea14a521 V@dVy .

Thus

z(t) = x(0)+/0 azx(s)ds + /qW; (4.12)

+e(ara + ears)ag, (y(t) — y(0)) — earaaz, /32 Vs -
Recall that the homogenized equation (4.2) is
t
X(t) = X(0) +/ aX(s)ds + \/§Wt . (4.13)
0

Let e(t) = =(t) — X(¢t). Subtracting the previous equation from (4.12) and usirg th
assumptionX (0) = x(0), we find that

e(t) = EL/O e(s)ds (4.14)

+e ((ar2 + eara)agy (y(t) — y(0)) — arsan; /g2 Vi) -
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Applying Lemma 4.5, we find asrindependent constant, such that

€

T
E ( sup Hy(t)H2> < Clog(—).
0<t<T

By Cauchy Schwarz,

E ( sup He(t)H2> <c (/OTEHe(s)Hst + €2 log(é) + 62T> . (4.15)

0<t<T

By the integrated version of the Gronwall inequality, we autselthat

T
E ( sup He(t)H2> <ec <62 log(—) + 62T> el (4.16)
0<t<T €

WhenT is finite, we have

E ( sup He(t)H2> = O (*log(e)) .

0<t<T

This completes the proof. O

4.3 The Drift Estimator

As in the averaging case, a natural idea for estimating fifteofithe homogenized equation
is to use the maximum likelihood estimator (2.5), replackdpy the solutionz of (4.1a).
However, in the case of homogenization we do not get asyinpligt consistent estimates
if we do not subsample our observations [73, 78, 79]. To aeh&correct estimate, we
must subsample the data: we chodseour time interval for observation, according to
the value of the scale parametegind solve the estimation problem for discretely observed
diffusion processes, see [73, 78, 79].

The maximum likelihood estimator for the drift of a homogasd equation con-
verges after proper subsampling. We let the observatioa itervalA and the number of
observationsV both depend on the scaling parameteby settingA = ¢* and N = ¢ 7.
We find the error is optimized in the? sense whemv = 1/2. We will show thatay .
converges t@ only if 6% — 00, In a sense to be made precise later.

Theorem 4.7. Suppose that is the projection to the:-coordinate of a solution of system
(4.1) satisfying Assumptions 4.1. L&t . be the estimate we get by replaciigin (2.5) by
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Then,

E2

NA T A
wherea as defined if4.3). Consequently, i = ¢*, N =¢ 7, a € (0,1),7 > «,

Ellan.e — al* = O(A +

lim E|jay, — af* =
e—0
Furthermore,oo = 1/2 and~ > 3/2 optimize the error.

Before proving Theorem 4.7, we first find the magnitude of tieeement ofy over
a small time intervalA. Solving equation (4.1b), we have

A
a22 2

Yn+1 —Yn = - I yn (4.18)
(n+1)A L (nDA—s
+ / T x(s)ds

6
1 n+1 (n+1)A s
+ - / 2 /q2dVs .

By triangle inequality, we have

Ellyns1 = yal® < He‘”“ Iy
+ e — 1)
1 9gss A
S Gt P

Sinceay, is negative definite, thus,

>

EHynJrl - yn||2 = O(ei - 1) .

By definition A = €%, and the property tha(tz’e% —-1) = (9(6%) |f > is small, the above
equation can be rewritten as

El[yns1 — ynl|? = O(emax(@=20)) (4.19)
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Proof. Definel; andls as

1 N-t =
L = an:o(fﬂnﬂ —Tp) @Iy, I2 = M§$n®$nﬁ

By ergodic theorem, and sindé = ¢~ 7, we have

limIy =E(z, ®xz,) =C #0

e—0

which is a constant invertible matrix. Hence instead of prgv

N - 1 €2
EHGN,e — aH2 = O(AQ + m + AQ)

we prove,
2

E|L — als|*> = O(A% + — 4+ —

11 — al||” = O( +NA+A2)

We use the rearranged equation (4.11) of (4.1a) to deconmpesaror,

L —aly=J1+Ja+J3+Jy.

where
1 N-1 (n+1)A J
J = ano / x(s)ds —zy, | @ 2,
1 N-1 _ (n+1)A
n=0
€ N-1 L (n+1)A
J3 = NA (a12+ea14)a2_2/ dy(s) ® zp,
N-1

€ (n+1)A
Jy = NA 2 14a22\/q_2/ dVs @ xp,
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By independence, Itd isometry and ergodicity, we immedjathave

(n+1)A
Bl = B Z / AW, &2

IN

q (n+1)A ) )
—NE/ AW ||7E||zy,
Vel [ 2B

IN

NQAQNAEH%HQ

= Olxx).

and

) (n+1)A )
Bl = Elgg Z/ AV,

(n+1)A

_ NQAZEHZ/ AV, & @

620 (n+1)A ) )
< R
S wveazlVE <H/nA dVs||* | E([lzn]%)
20
SRR
0~
frg (m) .

By Holder inequality, and (4.19), we have,

N nJrlA
Bl = Bl / dy ®
0

n:
N-1

eC
= EHN— _O(yn+1 _yn)®$n”2

N— N-1
< NWEHZ Wnt1 = vn) IPEN D 2’
n=0 n=0
eC e o
< NearNE® (@20 NE|ja,||?
2
€
= O0(x3)-
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Finally, we find the squared error fof. We use the integrated form of equation (4.11) on
time interval[nA, s] to replacez(s)

- N—1 .(n
BLAE = agBIY [ ) -wdsemnl @2
N2AZ 2 f
~9 N—-1
a n n n n
= Bl Y + Ky + K+ K| (4.22)
n=0
(4.23)
where,
(n+1)A
K" = / / w)duds & z, ,
n+1
Kén) = e€(aig + €ayy) a22/ / dy(u)ds ® x,, ,
(n+1)A
KM = / / AW,ds @ z,,
n+1
Kin) = ea14a2_21\/q_2/ / dV,ds @ x, .
nA nA
We immediately see that
~ N—
ElJ, |2 = @ g K™ 4.24
[l B 1D K™ (4.24)
NZA n=0 =1
~ 4 4
@ o e K™ 4.25
+ B I oK) s (4.25)
m#n  \i=1 j=1

Remark 4.8. We use the exact decompositionfdf/; || by using(4.24)and (4.25). This
is essential in order to obtain more optimized subsamplixtg for the drift estimator. For
general L? bound for the error, we can applydtder’s inequality to decomposg as,

(n+1)A
BN = o HZ / ) — 2a)ds ® ol

(n+1)A
< ||Z / $) — 20)ds| B

which is used in [79]. Using this inequality will give an aptal subsampling rate af =
2/3, and achieves an over all' error of orderO(¢!/3). However, this magnitude of overall
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error is not optimal inZ2. We will show later that the optimdl? error can be achieved at
the order ofO(¢'/?), using the exact decomposition shown above.

By Cauchy Schwarz inequality, we know for line (4.24),

N-—1 4 N—-1 4
ES IS KM < S SEIE™)P.
n=0 i=1 n=0 i=1

Using first order iterated integrals, we have

(n+1)A  ps
E|KM)? = E| / / 2(u)duds ®
nA nA

(n+1)A  ps ) )
ca [T [ lnt) Pdudsen]
nA nA

IN

(n+1)A
< CA/ (s —nA)3ds
nA
= 0(AY.
Using (4.19), we have
) (n+1)A s
E||K{Vds|? = E|eC / dy(u)ds @ ||
nA nA
) (n+1)A 9
< CE| / L W) —y()ds o
) (n+1)A 9 9
< CEAE /A ly(s) — y(u)|2ds]an|
(n+1)A s—nA
gcﬁAp/ (e @ —1)ds
nA

A

= 0 (64(6_6_2 - 1)) .

For K\, we have,
(n) 12 (n+1)A s )
EIEP2 = E| / ) / Vs @ o

(n+1)A s
CA/ H/ AW, |[*ds
nA nA

(n+1)A
CA/ (s —nA)ds
nA

IN

IN

= 0(AY).
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") we have

SinceK." is similar to K
E|lK| = O(EA%)

Thus, for line (4.24), the order of the dominating terms are,

N—-1 4
ES IS KM|P = O(NA* + Net(e™@ — 1) + NAY) .
n=0 i=1

For line (4.25),

E > ZK<” ZK“”’ ED> EHZK "’HEHZK

m#n =1 m#n i=1

We know,

(n+1)A
E||C / u)duds||

CE (/(:H (s — nA)ds)

E|K"|

IN

Similarly, we have

n) (n+1)A
E|KM| = €CE / (y(s) — ya)ds

Since the integral of Brownian motions is Gaussian

(n+1)A
E|KM| = / / dW,ds)
(n+1)A

— CE( /A (W (s) = W (n))ds)

(n+1)A
= CIE(/A W(s)ds — W (nA)A)
= 0.
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and

(n+1)A s
E|KM| = ceE(/A /Aquds)
(n+1)A
— R / V(s)ds — V(nA)A)
nA

= 0.

Thus,
4
EIY KM =0(A% +en),
1=1

immediately we have for line (4.25),

ED I KM

m#n =1 j=1

(m)y) _ 244 2 272
Kj )| = O(N“A® + N“e*A%) .

e

Putting all terms fot/; together, we keep the dominating terms, and by assumpfian—
A
oo, anda < 2 sincee™ 2 — 0,

C A
E|A° < smxs(VA*+Nei(e 3 1)+ NAY)
NSAQ (N2A4 —|—N262A2)

A? e _A
= Oyt

4
+ A% €%,

A
-+ +A )

€

NA?

= O
Therefore, putting/;’s, i € {1, 2,3, 4}, together, we have,

4
B - al|* < ) E|JL|?
i=1

64

_ 2, 2
= O(NA2+A +€%)
1
62
+ O(F)
62
_ 2, L &
= 0(A +NA+A2)
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We rewrite the above equation usidg= ¢* and N = ¢ 7,
E|I — als||> = O(e2® + 7% 4 2729

It is immediately seen thai = % and~ > 3/2 optimize the error, and € (0, 1), the order
of the error is
E| I, — al|* = O(e) .

This completes the proof. O

4.4 The Diffusion Estimator

Just as in the case of the drift estimator, we define the difusstimator by the maximum
likelihood estimator (2.6), wher& is replaced by the discretized solution of (4.1a). More
specifically, we define

N—1
. 1
de=%x ZO (41 = n) ® (@ni1 = Tn) (4.26)

wherezx,, = z(nA) is the discrete observation of the process generated bg)(@rdA is
the observation time interval.

Theorem 4.9. Suppose that is the projection to the:-coordinate of a solution of system
(4.1) satisfying Assumptions 4.1. Lgtbe the estimate we get by replacifgin (2.6) by
x, i.e.

Then A
Ellg — > = 0 (A +é+ %)
whereg as defined ir{4.4). Consequently, iA = €%, fixT = NA, anda € (0,2), then
lim El|g — g]* = 0.
Furthermore,«« = 4/3 optimizes the error.

We first define

(n+1)A
VAR, = / dW, .

A
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Proof. We now prove Theorem 4.9. Using the integral form of equafibhl),

(n+1)A

Tntl —Tn = ﬂdWs
nA

+ Rl + Rz + Rg
where

. (n+1)A
Ry, = Ez/ x(s)ds
nA

) (n+1)A
Ry = e€aisaq99 \/C]_2/ aVs
nA
(n+1)A

Rs; = e(a12+6a14)a2_21/ dy(s)
nA

We rewrite line (4.27) as
(n+1)A
\/5dWS = CjAnn
nA

wheren,, are N'(0, I) random variables.
For A ande sufficiently small, by Cauchy-Schwarz inequality

(n+1)A (n+1)A (n+1)A
E||c/ z(s)ds||? CIE/ ||x(s)||2d5/ ds
nA nA nA

(n+1)A
CAE/ |z (s)|ds
nA

< cm( sup ||x<s>||2>
nA<s<(n+1)A

= o)

IN

IN

Therefore,
E|| Ry || = O(A?)

By Itd isometry
E||Ro|” = O(A)

Then we look ati2,

EHR3H2 = 6QCIEHyn—i—l - ynH2
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By (4.19), we have
E||Rs||?> = O(emax(@2)) (4.28)

We substitutdz,, 1 — x,,) into the estimatog. in Theorem 4.9. We decompose the
estimator’s error as follows,

1N—l
Ge=d = Q5D @ —1)
n=0
1N—1 3
+ 7 Z(Ri®RZ)
n=0 i=1
1N—1 3
+op 2l 2 e Vil
n=0 i=1
1Nfl 3
n=0 i=1
1Nfl
v Iy [Then
n=0 \ i#j
= R

IN
Q
s}l
[\
=

E (¢ — §)° iy —1)? (4.29)
1 2
<fZR§> (4.30)
3 e 2
+ CZE (T Ri® chnn> (4.31)
2
(% mnnmi) (4.32)
2

1=
+ CZE(T (}?Z-@;}?j)) (4.33)

Notice that we use the simplified)? notation in this section, what we mean is actually
square by tensor product. By law of large numbers, it is easee that line (4.29) is of
orderO(A).
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In line (4.30), fori € {1, 2}, we have
e 2 ;N
El=Y R?| = =N ER>2%
(rZ ) gz

SinceE|| R, ||> = O(A?), we have

sinceE| Ry ||> = O(e2A), we have

e 2
H2 _ 2 2\2\ __ 4
E<f§32> = 0 (N*(Ae%)?) = O(e).

N-1 2
It is different forlE (% ZR§> , by (4.19), we have
n=0

(Nl . 2 ot (N ) 2
E| = ZR3 = —2E Z (ynJrl - yn)
T n=0 T n=0
N-1

Ce'NY E (ynt1 — yn)"

n=0

€4+2 max(0,a—2)

6max(4720¢)
=0 (T

Adding up all terms for line (4.30), we have,

3 1N71A2 2 ) 4 6max(4720¢)

n=0

IN

2

In line (4.31), fori € {1,2}, we have

N—1 2
1 . _ ) . 2 .
E ( HEO: Ri® qAnn> < CN2AE <RZ ® m) = CNE||&i|
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SinceE| &y ||2 = O(A?), we have
(N1 2
, _ B - .
E (T ZORl ® \/qAnn> = O(NA?) = 0(A);
sinceE| Ry||2 = O(¢2A), we have

N-1 2
1 - = 2 2
E <? T;ORQ ® qAnn> = O(Ne*A) = O(e%) .

N—1 2

Again, it is different forE | £> " R3 © /GAn, | due to correlation betweeR(" and

n=0
nn. Using the expression from (4.18) by only considering theiating terms, we have

(N1 2
E (T Y R qu)

n=0
N-1
1 N _ 2
= E(T Rg( qA%))
n=0
1 < (m) A(n) (m+1)A (n+1)A
+ E EZR:S R /A \/5dW5/A VadW s
m#n m n

By computing the order of the dominating terms and the mgatim terms, when

m =n,

1 N-1 9 1 N-1 R
E (T > &% (Vadn,) ) = =D AE(Ran)
n=0 n=0

1 .
= fE(Rgnﬁ)

-0 <€ma>c(a72))
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and whenm < n,

(n+1)A

( 5> > R{VRY / " \/ dWs Va dWs)

m#n

IN

CN?¢’E ((yn+1_7 yn)(ym-i-l - ym)

(n+1)A (m+1)A
/ qwv! / aw,
nA mA

5 o (n+1)A ,
CN7€E | (Ynt1 —yn)/ dW;

X

IN

A

(m+1)A

E (merl _ym)/A dWs|~7:mA

Using the expansion in (4.18), and using the dominating seynty,
(n+1)A

E| (Ym+1 — ym)/ dW| Fina

o((

1 m+1 (m+1)A s
+ —2/ x(s)ds
m
1A

X

M\D

e

A

(m+ (m+1)A s (m+1)A
/ qv, / AW\ Fna
A mA

A
= Oe(e” =1))

| o=

|

Therefore, whemn < n, we have,

(m (n+1)A
(T2 S RYVRYY / \/ dWs Va dWs)
et _a
= O(ge @ -1

_ 0(6472a+2 max(a72,0))

— O(Emax(0,4f2a) )

In the casen > n, the result is identical due to symmetry. Adding up all teffiorsline
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(4.31),
> (lNz_lzfzi o Mn)

1=1 Tn=0

-0 (A + €2 + 6max(a,Q) + €2max(0,2—a)) (435)

Line (4.32) is symmetric with line (4.31), which we can card# it has the same order in
(4.35).
In line (4.33), we have

N-1 2
Zﬁ(Zﬁ@%)éN@@ww&w
1#] n=0
Substituting in the.2 norms of eachz;, i € {1,2,3}, we have for line (4.33),
N-1 2
Z E (ZRZ ® Rj)
i#j n=0

- O <A262 + Aemax(a,2) + 62+max(a,2)) (436)

Aggregating bounds (4.34), (4.35) and (4.36) for equatinesl from (4.29) to (4.33) re-
spectively, we have

E|\Ge — qI°
= 0(4)
max(4,2a)
+ O <A2 + 64 + €T>

—|— O (A —|— 62 + EmaX(QaQ) _|_ 62 maX(O,Q—a))

+ (A262 + Aemax(a,Z) + €2+max(a,2)>

It is clear that wheny < 2,
EllGe — gl|* = O(A + ¢*72 + €2).
The error is minimized whea = 4/3, which is of order
Ellg.—ql? =0 (e3) -
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It is easy to see whem > 2, the error explodes. This completes the proof. O

4.5 Numerical Example

We show our findings in this chapter through the a numericah®gte. The multiscale
system of interest is

dx 1 dUu
i E(—x —y)+(—z+y)+ \/5% (4.37a)
dy 1 V2dV
% - = (—z—y)+ — (4.37b)
The homogenized equation is
dXx daw
— =-2X 4—. 4.38
dt Vi dt (4.38)

To justify the optimal subsampling rate for drift estimatae simulate the multi-
scale system using the exact solution of the OU process. paithis subsampled with
N = €5 number of observations at a time incrementof= ¢, with o € [0.1,1]. We
takee = 274,...,2712, Each estimate is based on 100 paths. The initial condiicet at
(z0,90) = (0,0).

The L? norm of the errors from the drift estimatan . at different subsampling
rate ande are plotted in Figure 4.1, we can find the optimal subsampttgc is roughly
between 0.5 and 0.7, which agrees with our choicercf 1/2. Figure 4.2 provides an
alternative view of the 3D contour surface.

To justify the optimal subsampling rate for the diffusioniestor ¢., we simulate
the multiscale system using exact solution. Each path isrgéed over a fixed total time
horizon of T = 1, at a very fine resolution with = 272°, with available number of
observationsV = 220, Each estimate is based on 100 paths. We take the scale parame
e =272 ...,2795 and test the diffusion estimator a sequence of subsampites o
over each path at raté8.1,2]. When subsampling the observations, we make full use of
each simulated path as introduced in [1] by setting the sfagach subsampled sequence
consecutively.

We find from Figure 4.3, that the? norm of the error is minimized roughly within
the interval ofa = [1.2, 1.6, this agrees with our expectation of finding= 4/3 optimizes
error. Figure 4.4 provides an alternative view of the 3D oansurface.
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03
0.2
01

Figure 4.1: Homogenization:? norm of (ay . — a) for differente anda

05 06
Subsampling rate «

HOMOGENIZATION: DRIFT ESTIMATOR 1> ERRORS

12— . 08

Subsampling rate «

—lno.(e)

Figure 4.2: Homogenization:2 norm of (a . — a) for differente anda (alternative view)
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HOMOGENIZATION: DIFFUSION ESTIMATOR L2 ERRORS

—logy(e)

0.8 1 12
Subsampling rate a

Figure 4.3: Homogenization.? norm of (4. — ¢) for differente anda

HOMOGENIZATION: DIFFUSION ESTIMATOR L2 ERRORS

Subsampling rate a

—log(e)

Figure 4.4: Homogenization.? norm of (4. — §) for differente anda (alternative view)
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4.6 Conclusion

In this chapter, we have verified asymptotic limits of the maxm likelihood estimators for

the drift (2.5) and diffusion (2.6) parameters of an OU pes;avhile observing data from
the slow part of a multiscale system (4.1). We have verified the discrepancy between
the solution of the homogenized equation (4.2) and the sk qf the system (4.1a), in
the L? sense, is small whenis small. In summary,

¢ we take discrete observations from the multiscale systeta)4 ;

e we have shown that the mismatch between trajectoriesasfd X is asymptotically
small if € is small;

e we have shown that the maximum likelihood estimaitQr. converges t@a ase — 0,
with proper subsampling at time stép= ¢*, andN = ¢~ 7. The valuesx = 1/2
andy > 3/2 optimize the error in.? sense;

e we have shown that the maximum likelihood estimajoconverges t@ ase — 0,
with proper subsampling at time stép = ¢*, and the total time horizon fixed at
T = NA. The valuesy = 4/3 optimizes the error i, sense;

We did not examine the asymptotic variances for the estirmae we did for the
case of averaging. Itis because we believe that the methas@ckin the case of averaging
is not readily applicable for the case of homogenizationg¢ssiit results in too many de-
composed error terms, the correlations become too diffioude accurately quantified. We
believe we need better ways to decompose the error terms|smbietter tools to quantify
the limiting variances.

In future works, when possible, we can further relax the mggions imposed on
the drift and diffusion matrices, possibly in the ways addesl in the remarks to the as-
sumptions.
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Part |l

FILTERING FOR MULTISCALE
PROCESSES
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Chapter 5

Averaging and Kalman Filter

In Part I, we have shown the behaviour of multiscale methdds/eraging and homoge-
nization applied to the drift and diffusion estimation plesh of Ornstein Uhlenbeck (OU)
processes. Since the path of the slow part of the OU procedsecapproximated closely by
the averaged/homogenized process as we have shown inr&egtiband 4.2 respectively,
it is natural that we would like to take advantage of this grtypin other applications. In
this chapter, we will integrate the method of averaging whthlinear filtering problem. We
compare the behaviour of the Kalman filter [9, 22, 47, 68] fandtiscale OU system with
that for the averaged system. We will look at the behaviotheKalman filter for a system
of multiscale OU process, as well as the Kalman filter for theraged process. Our goal
is to show that the marginal Kalman filtered distribution tioe slow part of the multiscale
OU system approximates the filtered distribution from theraged process using the data
from the multiscale system.

We derive the Kalman filter for the multiscale OU system irtieec5.1, and then
introduce the Kalman filter for the averaged process insed&i2. We discuss the conver-
gence between Kalman filters for the multiscale system amdvbraged process in section
5.3. A numerical example is discussed in section 5.4.

5.1 Kalman Filter for the Multiscale System

Recall the multiscale system (3.1) satisfying Assumpti®ds

dzx dUu
7 = ou® + apy + \/EE

dy 1 qo dV
ar T ¢l eny) o
with initial condition (z(0)*, y(0)*)* ~ N (mg, vo).
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We rewrite the above system as

d aw
_X =ax + \/a—a X(O) ~ N(m0> UO)a (52)
dt dt
where,
X
X = ,
Y
1 a 1 0 0
a=ag+ -a; = 11 12 42 ’
€ 0 0 € \az1 a2
and

_+1_q10+100
qq06q10060q2

forwhichz € X,y € Y, x € X &Y. We takeX = R%, andy = R%. Suppose we
observez, a noise contaminated integralfwhich follows the SDE

% = hx + \/7_'62—?;], z(0) =0, (5.3)
whereh = (hy,hs) for which by € R>*% | hy € R*%, 7 s invertible andiV, w are
independent standard Brownian motions. Equation (5.3)vsltbat the observation is a
linear transformation of the hidden procesontaminated by Gaussian noise. Notice that
x is Gaussian from equation (5.2). Under this setup, the tiondi distribution ofx|z is
also Gaussian and is characterized by a meét) and covariance matrix(¢). These two

guantities satisfy a pair of closed nonlinear ODEs, knowthad<alman filter [68]:

d
d—;} = av+va* —ovh*t thu+q, (5.4a)
dm = amdt+ (vh*t1)(dz — hmdt). (5.4b)

with initial conditionsv(0) andm(0)

Our interest is the conditional distribution of the slowtpafrthe multiscale system
x given observations, which is the marginal of the Gaussian distributidf{m(t), v(t)).
We set

vy = Ig vl , (5.5a)
mg = Ig,m, (5.5b)
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where

N }dl
la, = 0o --- 110 --- 0 : (5.6)

d1 d2

andx denotes transposition of a matrix or the adjoint of an ojperat

5.2 Kalman Filter for the Averaged Process

Now consider the averaged equation for the slow process.®).(3rom Chapter 3, we
know that the slow processof (5.2) can be averaged to the following SDE

dX dU
= = X T Va—-, X(0) =2(0) ~ N (Mo, Vo) (5.7)

wherea = all — a12a2_21a21.
The observations taken fromshould be close t& from the SDE below, ife is

small,

dz - dw
_— = _— Z = .
- hX ++7 T (0) =0, (5.8)

whereh = hy — hoasy as; .

The conditional distributionX (¢)| Z(¢) is Gaussian and is characterized by a mean
M (t) and covariance matri¥ (¢). The corresponding Kalman filter can be derived as the
following coupled SDEs,

dv - -
= av+ Va* — VRtV + ¢, (5.9a)

dM = aMdt + (Vh*t~Y)(dZ — hM dt). (5.9b)

We will show in Section 5.3, that if we feed the observatiormrf (5.3) to the
Kalman filter (5.9), with identical initial conditions, tf@aussian distribution characterized
by (5.5) converges to (5.9), as— 0.

5.3 The Convergence of the Kalman Filters

We will prove in this section, asgets small, the distribution of Kalman filter described in
(5.5) converges to the distribution of the Kalman filter didmed (5.9), given that we take
Z(t) = z(t) in equation (5.9b).
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Theorem 5.1. Consider the scale separated Ornstein-Uhlenbeck sy&ei) and let As-
sumptions 3.1 hold and only consider the scalar processeswh= d> = 1. By feeding
noisy observationgz(s)}o<s<: from equation(5.3) to both the marginal filtered distribu-
tion of the multiscale systei((m..(s, z(s)),v.(s)) and the filter distribution of the aver-
aged equationV (M (s, z(s)), V(s)), then, for everyt > ¢ > 0,

(i) |lvz(s) = V(s)|| = O(e), for anys € [0, ¢]. given initial conditionv, (0) = V(0);

(i) E (me(s,z(s)) — M(s, z(s)))* = O(e?) for any s € [0,t], given initial condition
mz(0,2(0)) = M(0, z(0)).

Before going to the main result of this chapter, we first defiome linear operators
for an arbitrary symmetric matrix:

Lom = agm + may,

Lym = aym + maj,
1

Lm = am+ma* = Lom+ ~Lim.
€

and for simplicity, denote
S=hr"th. (5.10)

We will write the covariance matrix in terms of its scalar entries,

V11 V12
v =
V21 V22
sincev characterizes covariancey; = v7j,.

Proof. Proof of(i) in Theorem 5.1.
Recall the definition for the variance (5.4a) written in slifiggd notation defined
above

dv

o = av +va* — vh*r thu +q

1 1
= Lov+ Eﬁw —vSv + (qo + Eq1> (5.11)

By rearranging the equation above, we have

Liv=—q1+e¢€ (% — Lov +vSv — q0> (5.12)

Using the block representation of we have a system of 3 equations, for which the
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equation corresponds to the lower-left block can be writiefollows,

dvoq
a21v11 + a22vV21 = € T (021041 + v2a12)
+  ((v21511 + v22512)v11 + (V21512 + V22.522)v21)

- @)
The above equation can be solved approximatelyfpms a function o4,
Vo1 = —a§21a21v11 + eC (5.13)

We now try to find are-independent bound for th& in equation (5.13). By writing
the symmetric square matrices in vector forms, we define= as1v11 + assv1s = €agnC,
andl; = (CL21, a9, 0),

11 Q1 0
U= 1v|.¢o=|0|.01=
V22 0 q2
We can write
dw, T —— 1 1 -
o o (aw + =G0+ Go+ — i (v)>

for which F (%) is the corresponding vectorized form of matrigv, and

2a11 2a12 O 0 0 0
ai=1| 0 a;1 a2 Jao = | ag  a 0
0 0 0 0 2&21 2&22

We find that for the fast scale terms with ord@f?),

0 0 0 V11

b@s¥ = (asi,a2,0) | a1 ag 0 V12 | = aewy
0 2&21 2a22 V22
and
0
Hqﬂl:(am,am,o) 0]=0
q2
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Therefore, we can write the differential equation faor as

dw,

dt

1 P T o PR
= Eazng + bgp + ba1v — bF(’U)
1 =
= —an (wv + eG(v))

whereG(7) = a3, (bqo + b1 7 — bF (0 ))
Solving this nonhomogeneous first order linear equationfimgethe solution

t
wy(t) = e/ e < G (0(s))ds .
0

Since the unconditional variance of the invariant meastiaaultiscale OU system
of the form (3.1) is finite and independent of time andve havelim,_,, E(z2(t)) < ¢
andlim;_,, E(y2(t)) < ¢, for c some finite constant independenttcztnde. Immediately,
we also know that the covariand®x(t) < VE(@@2(t))E(y2(t)) < c. Hence we
know that the unconditional covariance matrlx of the muHIs system is finite, and by the
solution to an OU SDE as described in (2.2) and the invariariakce as in (2.4), we can
immediately deduce that the invariant variance is the uppend for the variance af(¢)
andy(t). We know thatv(t) is the conditional covariance matrix of the coupled system

(x(t),y(t)) given{z(s)}o<s<t- We know the conditional variance is always less than or
equal to the unconditional variance, and since the undondit variance is bounded above
by the invariant variance, we conclude thét) < C, for someC independent of ande.

Since G(#(t)) is a continuous quadratic function oft), andag; < 0, we can
obtain an upper bound for the following integral,

H/ G E()ds] < s G uu/ B9 g < e

for which the||-|| is a vector norm, andis ane-independent constant. Therefore, we proved
thatw, (t) is of orderO(e), and consequently,

-1
V21 = —Qygy A21V11 + eC

whereC' is of orderO(1).
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According to (5.11), we have the equation for the top-leficklas follows,

dv
dil = ((a11v11 + a12v21) + (vi1011 + v12012))
1
+ -0
€
— (011511 4+ v12521)v11 + (V11512 + v12522)v21)
+ @

By substituting the solution of,; from equation (5.13) into the above equation,
and considering,; = v12, and the definitions of anda, we have

% = (a11v11 + a1pviz) + (vitar + vi2a12)

— (vi1ham  hy 4 vishem  he) vin — (vitha T he + visheT  he) V1o
+ @

= (an — a12a2_21a21 + GC) v11 + V11 (a11 - a21a2_21a12 + EC)

—  (vith1 +vihe) 7 hyvrt — (vithy + vighe) T havry

+ @

= (an - a12a521a21 + GC) v11 + V11 (a11 - a12a521a21 + GC)

— (h1 — a21a521h2 + eC) L hiv — o (h1 — a21a521h2 + eC) 7 hovrs
+ @

= (an - a12a521a21 + GC) v11 + V11 (a11 - a12a521a21 + GC)

— 11 (h1 — a21a521h2 + eC) 1 (h1 — h2a521a21 + EC) V11

+ @

= (a+eC)v1 +v11(a+eC)— vn(ﬁ + EC)Til(;L +eC)u + @1

= avi] +vna— UniLTfliwn +q1+eC.

As e — 0, this equation converges to the equation ¥oin (5.9a). Sincev;; = v, and
noting that we are considering; andV to be scalars, we can show that

d(va; - V) d(?}n - V)

dt dt o
= 2a(vyy — V) = hr th(v} — V%) +eC
- (2a ~ (o + V)) (011 — V) + €C
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The solution to the above equation bounded as

t - -
H(Ux—V)(t)H < H sup ((e2dfh7—*1h(v11(8)+V(S))> GC(t)dSH
0 0<s<t
t
< eC’(t)H/ eQddsH
0
< eC(t)

whereC(t) is a constant for everg; which is independent af .
The proof for statement) of Theorem 5.1 is complete. O

We then prove the convergence between the mean of the mladigtrdbution of
the filtered multiscale OU system and the filtered mean of Yieeaged distribution.

Proof. Proof of(ii) in Theorem 5.1.
We writem in the form of its scalar entries,

my
m =
ma
Recall the definition for the filtered mean (5.4b)

dm = amdt + (vh*7~ 1) (dz — h*mdt) (5.14)

Rearranging the above equation, we have

dm _q.,dz
aim =¢e <E —agm — (vh*r 1)(E — hm))

By rewriting the above equation in block representation, haee a system of 2
equations, the equation for the lower block,

dmg

. 1\, 02
e (vh*r 1) (= — hm))

as1m ag9mMmo = €
21M1 + ag2my2 ( i

We have the solution ofi» as a function ofn;
mo = —a2_21a21m1 +eC (515)

We now try to find a bound fo€' in equation (5.15). We define,,, = asymi +
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azems = easnC andb = (a1, az2). We can write the differential equation far,, as

d%ﬁ% — 562_7? — 5<a0m(t) + %alm(t) + (v(@)h*rh) <% — hm(t)>>

We find that for the fast scale term with ord®¢2),

- 0 0 ma
baym = (az1, aze) = a22Wp,
az aze ) \'ms

Therefore, we can write the differential equation faf, as
dwy,

Do = Lfaymi(t) +5 (aom<t>+<v<t>h*71> (%‘hm“)»

_ %aﬂ <wm + eay,'b (aom(t) + Wk ) (% - hm(t))))

We substitute in the definition fc%% from equation (5.3), we have

2o _ Lo <wm + ezl (aom<t> + (k') (hx<t> VTG - hm(”)))

wherew is a Brownian motion.

Solving this nonhomogeneous first order linear equationhawe the solution,

W (t) (5.16)
= 6/0 e e (t*s)aggg(aom(s) + (v(s)h* 171 (hx(s) — hm(s))) ds

t
+ 6/0 e ¢ =) a b(v(s)h*r ) /Tdws

We have proved th@ supo<,<;([|z||*+||y||?) is bounded in Lemma 3.5, &{x*(s))
is bounded. Since the coupled systénis), y(s)) has invariant mean of zero, and finite

invariant variance, by Itd isometry, we see thigt2,) is of orderO(e?), consequently’
in equation (5.15) has a boundirt, ie. E(C?) = O(1).

We then substitute the solution fets in equation (5.15) and;; in equation (5.13)
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into the upper block of the rearranged equation (5.14)

dm; = (aymg+ ajgma)dt + (vh*t1)(dz — (hymy + hama)dt)
— (am + gt ()t + (b eC())(dz — (my + hyagun(£))db)
= amidt + (vi1ht 1Y) (dz — hmadt)
+ gy wy, (t)dt
b eC(t)(dz — (i + haagwn(6)d)
— (vithm Y hoayt wy, (t)dt

Noticem; = m,, we can express the difference between(t, z(t)) andM (¢, z(t)),

d(mg(t, 2(t)) — M(t, 2(t))) = (a - unin—%) (m1 — M)dt
+ a521wmdt
+  €C(t)(dz — (hmy + hoagyw(s))ds)

— (v11(8)hT V) hgagywn, (s)ds
Hence we have the solution
(me = M)(2(0) = [ OB a5

+oeC() /te(a—uu(s)ﬁ%—l)(t—s)hxdt
0

+oeC() /te(&—vu(s)iLQT_l)(t—s)\/Fdw
0

_ ) /Ot6(&—U11(s)ﬁ27_1)(t—s)me(s)ds

_ ) /Ote(a—uu(s)ﬁ%—l)(t—s)h2a221wm(8)d5

B /Ot Een @R TNy (o) R 2ag ) wn (s)ds

Since we know thal(w?,) = O(e?), using thatvy;(t) > 0 for all ¢, we have
e—vih?r ! < €%, andvy; has a finite upper bound since it is the conditional variamee-c
pared to the invariant invariance of Using these facts, and by Cauchy-Schwarz inequality,
we have

E(mg(t, 2(t)) — M(t, 2(t)))? EC(t) + EC(t) + EC() + €1C(t) + €1C(t) + €C(t)

<
< EC(t)
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This completes the proof for stateméiit of Theorem 5.1. O

5.4 Numerical Example

We illustrate our idea in Theorem 5.1 through a simple nucaéexample. The system of
interest is

dx = axdt+/qdU , o~ N(0,I), (5.17)
dz = hxdt+/TdW , 2(0) =0 (5.18)

We observe:(t), to model the conditional distribution of(¢)|z(¢). We know this
distribution is Gaussian, so we apply the Kalman filter toneste the mean and variance
of the distribution. We plot the direct Kalman filter (5.4)pdipd to the system, and plot the
marginal mean and variance as described in (5.5). On the loéimel, we model it through
the averaged system

dX = aXdt+/qdU , Xog~ N(0,I) (5.19)

We know the conditional distribution of (¢)|z(¢) is Gaussian, so we plot the mean
and variance of this conditional distribution from the agerd Kalman filter (5.9). In the
numerical example below, the simulation of the SDE is vieeuoiethod without subsam-
pling. We take following values for the parameters,

-5 1 1 0
az(l _l>,q:<0 2),h:(l,l)

a=05¢=1,7=01€e=2"10§=2712 n =213,

In Figure 5.1, we see the actual path of slow process from thiéistale system
(blue line) and the path of the averaged process (red limsett follow each other. This
illustrates the convergence of the paths for averaged gsatated in Theorem 3.6. The two
standard deviation confidence intervals from the Kalmaer§ltboth direct (cyan lines) and
averaged (green lines), almost lie directly on top of eatlertThey both provide a good
support for the actual path of the slow procedsom the OU system.

In Figure 5.2, we plot the convergence of the Kalman filtefarares. We see that
the variance of marginal distributiariz (dashed cyan line) anil |z (dashed green line) are
almost the same. The speed of convergence of the varianee®smgrfast and stable. The
variance ofy|z (dash-dotted cyan line) is also plotted for illustration.

In Figure 5.3, we plot the squared erf@n, (t) — M (t))?, from which we see that
the error quickly converges to zero. The size of the errornadettled is of scal@0 9,
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PATHS AND CONFIDENCE INTERVALS OF THE FILTERED DISTRIBUTIONS

al of the marginal fitter
al of the averaged fiter

Figure 5.1: Paths and 95% confidence intervals of the filtdigdbutions

which is in line with our expectation of ordé?(e?), for e = 2710,

In Figure 5.4, we plot the distande,.(t) — V' (¢)]|, from which we see that the error
quickly converges to a constant. The size of the constaritdbserved at an order @?(¢),
which is in line with our expectations.

We conclude this is a good evidence to support Theorem 54 ad@itlantage of this
application of Kalman filter on averaged process mainly illeseduction of observations
and computational complexity when solving similar probderfihere is no need to observe
the entire multiscale system, but just the correspondingyimal data, and hence reduces
computational time and requirement on computational nessu

5.5 Conclusion

In this chapter, we tried to integrate the multiscale metbibaveraging and Kalman filter-
ing. We have proved that the slow part of the marginal filtefisttibution of the multiscale
system converges to the filter distribution of averaged ggscgiven observations from the
multiscale system contaminated with Gaussian noise¢ @dmall. In summary,

e \We take observations from the noisy observation (5.3);

e Wwe use these observation to substitute into the mean araheardf the Kalman filter
derived from the averaged process (5.9);
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VARIANCES OF THE FILTERED DISTRIBUTIONS

= = = Variance of the marginal filter for x
Variance of the averaged filter for X

- = Variance ofthe marginal fer ory |
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Figure 5.2: Variances of the filtered distributions

SQUARED ERROR BETWEEN THE MARGINAL AND AVERAGED MEANS OF THE FILTERED DISTRIBUTION
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Figure 5.3: Squared error between the means of the margidahaeraged filtered distri-
butions
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ERROR BETWEEN THE MARGINAL AND AVERAGED VARIANCES OF THE FILTERED DISTRIBUTIONS

I
0,025
In

0015} 1

0.005(—

Figure 5.4: Error between the variances of the marginal aachged filtered distributions

e we show that the Gaussian distributions characterized I8y émd (5.5) closely fol-
low each other.

In Theorem 5.1, we proved the convergence between the nahudjstribution of
the Kalman filter applied on the whole coupled system and iteilaslition of that Kalman
filter applied on the averaged process, when the coupledmyistmade of two scalar OU
processes. However, we expect similar result to hold forfaitg d; andds.
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Chapter 6

Homogenization and Kalman Filter

In this chapter, we will compare the behaviour of the Kalméarfiapplied to a multiscale
OU system with that applied to the homogenized process. Wdoek at the behaviour
of the Kalman filter for a system of multiscale OU processesyell as the Kalman filter
for the homogenized process. Our goal is to show that theediltenarginal distribution
for the slow part of the multiscale OU system approximatesfiltered distribution of the
homogenized process.

We derive the Kalman filter for the multiscale OU system irtieec6.1, and then
introduce the Kalman filter for the homogenized processdti@e 6.2. Then we discuss the
convergence between the filtered marginal distributionttierslow part of the multiscale
system and the filtered distribution for the homogenize@gss in section 6.3. A numerical
example is discussed in section 6.4.

6.1 Kalman Filter for the Multiscale System

Recall the multiscale system (4.1) satisfying Assumptibis

dx 1 du
7l (anz + ai2y) + (@132 + a14y) + v/ m%
dy B 1 g2 dV
= = 3lamrtany) /5o

with initial condition (z(0)*, y(0)*)* ~ N (mg, vo).
We rewrite the above system as

d aw
o =ax+ G x(0) ~ N(mo, v) (6.2)
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where

()

1 1 a13 Q14
a—a0+6a1+62a2—<0 0>+

cas Lo om0y, (00
q—CI(] Equ_ 0 0 62 0 q2 .

forwhichz € X,y € Y, x € X & ). We takeX = R%, andy = R%. Suppose we
observez, a noise contaminated integralxfwhich follows the SDE

and

% = hx + \/7_'62—1;}, z(0) =0, (6.3)
whereh = (hq, ho), for whichhy; € R4, hy € RIX%; 7 invertible. W, w are indepen-
dent standard Brownian motions of appropriate dimensi&agiation (6.3) shows that the
observation is a linear transformation of the hidden presesontaminated by Gaussian
noise. Notice thak is Gaussian from equation (6.2). Under this setup, the tiondi dis-
tribution of x|z is also Gaussian and is characterized by a megé and covariance matrix

v(t). These two quantities satisfy a pair of closed nonlinear &DE
dv
dt
dm = amdt+ (vh*t1)(dz — hmdt) . (6.4b)

= av+va* —vh't thu+q (6.4a)

Our interest is the conditional distribution of the slowtpafrthe multiscale system
x given observations, which is the marginal of the Gaussian distributidéf{m(t), v(t)).
We set

mg = Igm (6.5a)
vy = Ig vy, (6.5b)

wherel,, is as in (5.6).
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6.2 Kalman Filter for the Homogenized Process

Now consider the homogenized equation for the slow proceg&2). From Chapter 4, we
know that the “slow” process of (6.2) can be homogenized to the following SDE

auv’

dx ~
o XV

dt X(0) = 2(0) ~ N (Mo, Vo), (6.6)

whered = a3 — a14a55 a1, andg = g1 + ar2a5; g2 (ag; )" a}y. The observations taken
from z should be close t& from the SDE below, it is small,

dz - dw
— =hX — Z(0)=0 6.7
7 +VTos s Z(0) =0, (6.7)
Whereﬁ =hy — h2a2_21a21.

The conditional distribution ofX (¢)|Z(¢) is Gaussian and is characterized by a
mean}/(t) and covariance matri¥ (¢). The corresponding Kalman filter can be derived

as the following ODEs,

d - -
d—‘t/ =aV+Va* —Vh*t 1AV +4q (6.8a)

dM = aMdt + (Vh*t~)(dZ — hMdt) . (6.8b)

We will show in Section 6.3, that if we feed the observatioramf (6.3) to the
Kalman filter (6.8), with identical initial conditions, tHgéaussian distribution characterized
by (6.5) converges to (6.8), as— 0.

6.3 The Convergence of the Kalman Filters

We will prove in this section, asgets small, the distribution of the Kalman filter described
in (6.5) converges to the filtered distribution of the homdged process described in (6.8),
given that the we tak&(¢) = z(t) in equation (6.8b).

As in the averaging case, before going to the main result,rstediefine some linear
operators for an arbitrary symmetric matrix

Lom = apm + ma
Lim = ajm+ maj
Lom = asm+ maj
Lm = am+ma* = Lom + %Elm + 6_2£2m
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and for simplicity, denote

S =h*r"1h
which is positive definite symmetric.
Theorem 6.1. Consider the scale separated Ornstein-Uhlenbeck sy&e2l and let As-
sumptions 4.1 hold and only consider the scalar processenvh= d, = 1. By feeding
noisy observationgz(s)}o<s<: from equation(6.3) to both the marginal filtered distri-

bution of the multiscale systei(m, (s, z(s)), v, (s)) and the filtered distribution of the
homogenized equatiok (M (s, z(s)), V(s)), then for everyl > € > 0,

(i) [lve(s) = V(s)|| = O(e?), for anys € [0,], given initial conditionv, (0) = V(0);

(i) B (mq(s,2(s)) — M(s, 2(s)))? = O(2), for any s € [0,¢], given initial condition
mz(0,2(0)) = M(0, z(0)).

Before going to the main result of this chapter, we first desiome linear operators
for an arbitrary symmetric matrix:

Lom = agm + may
Lym = aym+ maj
Lom = aym + maj
L'm = am+ma* = Lom + %Elm + éﬁgm

and for simplicity, denote
S =hn*t"'h.

Proof. Proof of statementi) in Theorem 6.1.
Recall the definition for the variance (6.4a) written in slifiggd notation defined
above

dv

- = av +va* —vh*t thu + q

1 1 1
= Lov+ Eﬁl?) + 6—2£2 —vSv+ <qo + ECh) (69)

By rearranging the equation above, we have

d
Lov = —q; + ¢ (d_qt) — Lov +vSv — qo> —eLyv (6.10)
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By looking at the lower-right block of equation (6.10), wesba

(a21v12 + agvag) + (va1a21 + v22a22) = —qo

d
+ € ( 252 -0+ (USU)QQ — 0>

— €-0

Thus we have the solution of; as a function ot,,

o —1 1 —1 62 —1 d'U22
V92 = —Qgg (21V12 — §CL22 qo + §CL22 W + (’US’U)22 (611)

By looking at the top-right block of equation (6.10), we have

dv
virag) + vigagy = € (d_;z — (@13v21 + a14v22) + (050)12> (6.12)

— e(anva + a12v22)

By substituting the solution afy; into equation (6.12), and hy; —a12a2_21a21 =0
in Remark 4.2 and note that= a3 — a14a521a21, we have,

_a;
vig = ———1
a22
a2
+ ¢ 2 42
2a35,
dvig 1442
+ & —= — (a2 —
dt 2a22

Hence we have the solution fory as a function of;q,

a a
vig = — oy 222 4 20 (6.13)
as9 20,22

We now try to find are-independent bound fat' in the above equation. By writing the
symmetric square matrices in vector forms, we defige= asiv11 + asovis — 62(21222 g2 =
2agyC, andb = (ag1, ag, 0),

V11 q1
U= |vi2|,0=]0]|,a=1]0
V22 0 q2
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We can write

dw,  >dv
dt — dt

- - - — — _ﬁ —
U+ 560+ G+ 5@ (v)>

for which F (%) is the corresponding vectorized form of matrigv, and

2&13 2a14 0 2&11 2a12 0 0 0 0
ap = 0 aig  au |, a1 = 0 air a2 |, d2=|[aa ax 0
0 0 0 0 0 0 0 2a21 2&22

We find that for the fast scale terms with omté(e%),

0 0 0 V11

-, a1
92U = (a21,a22,0) | ag1  age 0 vig | = agow, + € q2 ,
2a92
0  2a91 2a9 V29
and
0
bq_‘l = (CL21,CL22, 0) O == 0 .
q2

Therefore, we can write the differential equation oy as

dw, a2 aiga o b (L. 1. =
ety wv+62a32 +ea—22 aov—i—zalv—F(v)%—qO .

Solving this nonhomogeneous first order linear equationfingethe solution

b oagy b
wy(t) = e/ e & (=) <% +—5,1?7(s)> ds
0

20,%2 a2

> [* 22 (t— b =
+oe / ¢ R (t=) 2 <c_iov(s) ~ F(@) + %) ds .
0 a22

Since the unconditional variance of the invariant meastianaultiscale OU system
in the form of (4.1) is finite and independent of time aneve havelim; ., E(z2(t)) < ¢
andlim; ., E(y2(t)) < ¢, for ¢ some finite constant independenttande. Immediately,
we also know that the covarian@®(z(t)y(t)) < /E(22(t))E(y%(t)) < c. Hence we
know that the unconditional covariance matrix of the mualie system is finite, and by the
solution to an OU SDE as described in (2.2) and the invariaribmce as in (2.4), we can
immediately deduce that the invariant variance is the uppend for the variance af(t)
andy(t). We know thatv(t) is the conditional covariance matrix of the coupled system
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(x(t),y(t)) given{z(s)}o<s<t- We know the conditional variance is always less than or
equal to the unconditional variance, and since the undondit variance is bounded above
by the invariant variance, we conclude thét) < C, for someC independent of ande.

Since F(#(t)) is a continuous quadratic function oft), andag; < 0, we can
obtain an upper bound for the following integrals,

H / o0 b (a0v<> F@) + @) ds

IN

— sup ||@v(s) — +qu/ ¢ F (t=s)
(29 0<s<t

e2C(t) .

222 (t—s) alQQQ b .
[ e#e <2a + (s )) ds|
22

<  sup Hau;h—k— a (s H/ e (=9 g
0<s<t 203

eC(t) .

IN

IN

for which the||-|| is a vector norm, and’(¢) is a constant for every but e-independent.
Therefore, we proved that,(¢) is of orderO(e), and consequently,
az1 ai12q2
=4+ E0(t) .

Vg = ——V11 + €
as9 20,22

whereC (t) is of orderO(2).
We finally look at the top-left block of equation (6.10),

dsil = (a13v11 + a1av21) + (vi1a13 + v12a14)
+ % ((a11v11 + a12v21) + (vira11 + vi2a12))
1
+ 50
—  (vitham thy 4 vigho T ha)vin — (vinhat " the + vizhaT T ha)va
+ q1 -

Substituting in the solution af;5 from (6.13), and considering the definitionsagf
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h and assumption;; — a12a521a21 = 0in Remark 4.2, we have

dv11

— = (a4 C(t))v1y + vir(a+ €C(t))

afy 3
GTQQ +e€ C(t)
22
0
— ?)11(?1 + 630(15))7'_1(?1 + egC(t))vn
+ @1
= avi +v1a — vnfm-_lfwn +q+ €3C(t) .

Sincev1 = v, whereC(t) in the above equation is of ordéX(1). This equation converges
to the equation fok” in (6.8a). Noting that we are considering, andV to be scalars, we
can show that

d(?}x — V) d(U11 — V)
dt dt o
= 2a(viy — V) — hr th(vy — V?) + E3C(t)

= (28— b "h(on +V)) (on = V) + EC(1).

The solution to the above equation is bounded as

t - -
||(Um _ V)(t)” < ||C(t)€3/ sup <(62&7h7——1h(v11(S)+V(S))) dSH
0 0<s<t

)| /O €2 s
C(t)

IN

<

Notice C(t) is of orderO(2) here, therefore,
I(vs = V)(@)]l = O(?) .

The proof for statement) of Theorem 6.1 is complete. O

Proof. Proof of(ii) in Theorem 6.1.
We writem as a block matrix of its scalar entries,
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Recall the definition for the filtered mean (6.4b)
dm = amdt + (vh*t~1)(dz — h*mdt) . (6.14)

Rearranging the above equation, we have

d
apm = eQd—? — 2agm — eaym — (vh* ) (== — hm) .
By rewriting the above equation in block representation, haee a system of 2

equations, the equation for the lower block,

d d
as1m1 + ageMmeo = 62% —-0—-0- 62(1)h*7'71)(d—j — hm) .
We then have the solution af, as a function ofn;
mo = —a2_21a21m1 + EQC . (615)

We now try to find a bound fo€' in equation (6.15). We define,,, = asym1 +
asymsy = ¢2C andb = (a91, aze). We can write the differential equation far,, as

dwy,  »dm - 1 1 v 1\, dz
W—bdt —b<a0m+ 6alm—i—€2a2m+(v(t)h T )(dt hm)) .

We find that for the fast scale term with oro[@(eiz),

- 0 0 mi
bagm = (az1, age) = AW, .
az aze ) \'ms

Therefore, we can write the differential equation ey, as

dw,

1- - 1 * _—1
= 6—2ba2m +b <a0m + cam + (®)h*T)( hm)>

1 o

= 02 (wm + e2a5y b(agm + aym + (vh*T 1) (= — hm))) .
We substitute in the definition f(% from equation (6.3), we have

dwp, 1 1z 1 . dw

el L2 <wm + 2agy b(agm + —am + (vh*r~ Y (hx + \/F% - hm))> .

wherew is a Brownian motion.
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Solving this nonhomogeneous first order linear equationhawe the solution,

wn(t) = € /0 e%(t_s)agjg(aom(s) + (v(s)R*77 ) (hx(s) — hin(s))) d§6.16)

az2

¢
+ e/ e =) q - baym(s)ds
0

¢ a22

+ € / e =) b(w(s)h* m 1) /T dws .
0

Finding theL? bounds term by term above, we have

b oagy t—s) 17 * _— ’
B ([ eF 005 (aom(s) + (0617 x(s) — () s

IN

t a
tE </ o B (t=9) (C(ap — v(s)h* 77 h)*m?(s) + Cv(s)h* ' hx>(s)) ds)
0
< e,
We have proved thaE supy<,<;(||z[|* + |ly[|*) is bounded in Lemma 4.5, $8(x?(s))

is bounded. Since the coupled systénts), y(s)) has invariant mean of zero, and finite
invariant variance, we see thtn?(s) is bounded. We have

b ag t—s) —17 *_— ?
E< /0 e 021 (agm(s) + (v(s)h*7 ) (hx(s) — hin(s))) ds> < EC(t),

t o, . 2
E (/ efg(ts)aﬂlbalm(s)ds) < EC(t),
0
and
t 4 .
E < / eff(tS>a22lb(v(s)h*7—1)\/?dws> < EC(t).
0

Hence, for equation (6.16)
E(w,,(t))? < C(t) . (6.17)

We then substitute the solution fot, from equation (6.15) and;; into the upper
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block of the rearranged equation (6.14)

dm1

I+ 4+ I+ +

+ o+ o+

(a13my + ajgms)dt

1
E(a11m1 + ajgmg)dt

0
(vht™1)(dz — (hymy + homy)dt)
(@m1 + araazy wn (t))dt
%(al2a521wm(t))dt

(011 + €C(E)hT™)(dz — hmi(t) — haagy wi())dt)
amydt + (viihrY)(dz — hmadt)

a14a2_21wm(t)dt

~ (@12 wm (1)

eC(t)hr~Hdz — (hmy (t) — hoag wy,(t))dt)

V11 ]tLT_thCL;;’wm(t)dt .

Noticem; = m,, and by assumption, we have the same initial conditiap§), z(0)) =
M (0, z(0)), we have the difference,

d(mg(t, 2(t)) — M(t, 2(1))) = (a - unin—lﬁ) (g — M)dt

a14a521wm(t)dt
1 —
E(al2a221wm(t))dt

eC(t)hr™H(dz — (hmy (t) — hoagy wy, (t))dt)

V11 ltLTflhgaQ_Qlwm(t)dt .

+ o+ o+
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We have the solution,

(me — M)(t,2(t)) =

t S
a14a221/ e(a—vn(s)hT lh)(t—s)wm(s)ds
0

1 o
Ealzaml/ @ o RTINSy, (5)ds
0
t ~ ~
EC(t)FLT_l/ e(d—vn(s)hr—lh)(t_s)dz
0

t 7 7 ~
EC(t)hT_l/ e(d_v“(s)m_lh)(t_s)(hml(s) — haasy wi,(s))ds)
0

~ t S
h7_1h2a221/ ela—vn(s)hr 1h)(t_s)vn(s)wm(s)ds.
0

In order to use Cauchy-Schwarz inequality, we use the soly6.17) to find the
magnitude of each term in the above equation.

IN

IN

IN

IN

IN

IN

IN

t S 2
E <a14a221 / e(a—vn(S)hT lh)(t_s)wm(s)d8>
0

t ~ ~ 2
CE (/ e(&—vn(s)hrlh)(t—s)wm(s)ds>
0

t 2
CE (/ e“(ts)wm(s)ds>
0
t ~
CtE </ eQa(t_S)w?n(s)ds>
0

Ctet .
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t o 2
E(eC(t)ﬁT_l/ e(d—vn(s)hr—lh)(t_s)dz>
0

t 2
EC(tE (/ e“(t_s)dz>
0

2
e¥=3) (hx(s)ds + \/?dws)>

IN

IN - INA

ml\) ml\)

Q9
b ==

2

\T; o\ﬂ~

_|_

Q

IN
2
~
Y

Similarly
2

t 7 7 ~
E (eC(t)hT_l / =M R (fym (5) — h2a221wm(s))ds)> < EC(t),
0

and

. ) 2
E <h71h2a2_21/ eav“(s)hT_lhvn(S)Wm(S)dS> < €0
0

Hence, by Cauchy-Schwarz inequality,

E(mg(t,z(t)) — M(t, 2(t))? < Cte' +Ce + C(t)e® + C(t)e® + C(t)e?
< Ot)e?.

where as — 0, the L? difference is small. This completes the proof for stateng@nof
Theorem 6.1. O
6.4 Numerical Example

We illustrate our idea in Theorem 6.1 through a simple nucaéexample. The system of
interest is

dx = axdt+./qdW , zo~ N(0,I), (6.18)
dz = hxdt++/Tdw , 2(0)=0 (6.19)

We observe{z(s)}o<s<¢, to model the conditional distribution af(t). We know
this distribution is Gaussian, so we apply the Kalman filkeestimate the mean and vari-
ance of the distribution. We plot the marginal mean and wagaof the filtered distribution
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as described in (6.5). On the other hand, we model it throbigthtmogenized system
dX = aXdt++/qdUu’ | X(0)~ (My.Vp) (6.20)

We know the conditional distribution of (¢)|z(¢) is Gaussian, so we plot the mean
and variance of this conditional distribution from the h@unized Kalman filter (6.8).
In the numerical example below, the simulation of the SDEi#gseauler method without
subsampling. We take the following values for the paranseter

1 1
—E—l _E+1 2 0 1
a:< BT )’q:<o z)’h:“@),
€2 €2 €2

a=-2,=2,7=01,e=2"7,6§=2715n =215

In Figure 6.1, we see the actual path of slow process from thiéistale system
(blue line) and the path of the homogenized process (redl ¢ilmsely follow each other.
This illustrates the convergence of the paths for averagedeps stated in Theorem 4.6.
The two standard deviation confidence intervals from theviéal filters, both direct (cyan
lines) and homogenized (green lines), closely follow eablero They both provide a good
support for the actual path of the slow procedsom the OU system.

In Figure 6.2, we plot the convergence of the Kalman filterarazes. We see that
the variance of marginal distributior]z (dashed cyan line) anll |z (dashed green line) are
almost the same. The speed of convergence of the variareesatively slower compared
to those from the averaged system, but it is very much comgrthat the convergence and
stability is well obtained. The variance gfz (dash-dotted cyan line) is also plotted for
illustration.

In Figure 6.3, we plot the squared erifon.(t) — M (t))?, from which we see that
the errors are controlled at below the ordei@f*, and are still decreasing, which is in line
with our expectation of an ord€?(e?) = 2714 ~ 10742,

In Figure 6.4, we plot the distande,.(t) — V' (¢)||, from which we see that the error
is rough of orden0~3, and our expectation is that it is of ordé(¢?) = 2714 ~ 10742,

We conclude this is a good evidence to support Theorem 6.& ativantage of
this application of Kalman filter on homogenized procesfiéssame as those discussed in
Section 5.4.

6.5 Conclusion

In this chapter, we tried to integrate the multiscale methildomogenization and Kalman
filtering. We have proved that the slow part of the margingifidd distribution of the multi-
scale system converges to the filter distribution of homgehprocess, given observations
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PATHS AND CONFIDENCE INTERVALS OF THE FILTERED DISTRIBUTIONS
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ure 6.1: Paths and 95% confidence intervals of the filtdistdibutions

VARIANCES OF THE FILTERED DISTRIBUTIONS

Figure 6.2: Variances of the filtered distributions
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SQUARED ERROR BETWEEN THE MARGINAL AND HOMOGENIZED MEANS OF THE FILTERED DISTRIBUTION
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Figure 6.3: Squared error between the means of the margiwkahamogenized filtered
distributions

ERROR BETWEEN THE MARGINAL AND HOMOGENIZED VARIANCES OF THE FILTERED DISTRIBUTIONS
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Figure 6.4: Error between the variances of the marginal amadgenized filtered distribu-
tions
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from the multiscale system contaminated with Gaussianenaiade is small. Unlike the
parameter estimation for the homogenized OU system in @hdpthere we observe no
need for subsampling. In summary,

o We take observations from the noisy observation (6.3);

e we use these observation to substitute into the mean araheardf the Kalman filter
derived from the homogenized process (6.8);

e we show that the Gaussian distributions characterized I8y éhd (6.5) closely fol-
low each other.

Similar to the result achieved in averaging, in Theorem &d proved the conver-
gence between the marginal distribution of the Kalman fafgplied on the whole coupled
system and the distribution of that Kalman filter applied lemhhomogenized process, when
the coupled system is made of two scalar OU processes. Howewexpect similar result
to hold for any finited; andd,.
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Part Il

EXTERNAL PROJECTS
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In this part of the thesis, we will study applications of twpés of stochastic models
in real world. We will study how a standard vector autoregires model is developed
to a heteroscedastic Bayesian autoregressive model whiag fitto a time series data in
Chapter 7. Then we will study the Generalized AutoregresSinditional Heteroscedastic
(GARCH) model, equipped with a constant and a time depercantlation matrix, for a
portfolio of 8 asset classes in Chapter 8.

The recent financial crisis has significantly challengedabsumptions and appli-
cabilities of some of the empirically tested stochastic atedin particular, mean reverting
models such as vector autoregressive models were prefeyredonometric researchers
and monetary policy makers. However, they no longer showinoimg arguments in sim-
ulating future economic scenarios, since the volatile amiftlg changing economic en-
vironment do not adhere to models with constant parametgmiare. Bayesian vector
autoregressive models have come of more popularity dus tsetf updating” ability and
its autoregressive based property. We will discuss abeuapiplication of Bayesian autore-
gressive models to the time series of interest rate factotlse Nelson-Siegel yield curve
model in Chapter 7. Along the development of the model froandard vector autoregres-
sive model to the hierarchical heteroscedastic regressiotel, we will incorporate the
numerical method of Markov Chain Monte Carlo, Gibbs samlespecific. Comparison
of the models will be based on mean forecasts based on ead apetification. Since the
model is essentially targeted at forecasting, we fix theregd parameters on their mean
values, while ignoring the uncertainty band for the estedgiarameters.

Also due the unexpected and rapid change in the recent ecoadmosphere, vul-
nerability to risks (volatility) has come to the core conterhen making investment deci-
sions. Inter-governmental institutions, such as the hattonal Monetary Fund, are espe-
cially sensitive to economic and market volatilities. Then@ralized Autoregressive Condi-
tional Heteroscedastic (GARCH) Model has been a populaeasdntial tool in modelling
volatility, we study two types of multivariate GARCH mod#&ie Constant Correlation and
Dynamic Conditional Correlation GARCH models, in ChapteTBe Constant Correlation
GARCH assumes a constant correlation matrix among assais, eind the Dynamic Con-
ditional Correlation GARCH model assumes a time dependamelation matrix. We will
compare the two setups of the GARCH model by fitting them intodata. Comparing to
our focus on mean estimates in Chapter 7, we concentrateeatfigtribution in 8. This is
due to the target of this modelling project is to analyze thefplio risk structure, the aim
is to replicate the volatility and the cross asset correfetime series according to historical
data.

All models in this part are coded in MATLAB. We thank the puahfi licenced
“Econometric Tool Box” developed by James LeSage, et al {fbthe great efficiency
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and convenience it provides to the implementation of ourefiimd) process. | would also
like to thank the International Monetary Fund for providithg opportunity and support for
these projects.
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Chapter 7

Bayesian Vector Autoregressive
Models

Vector Autoregressive (VAR) models are of particular ietrnto economic researchers and
policy makers. This is due to the mathematical simplicitd anoven credibility of regres-
sion models. Autoregressive models, specifically with shmemories, are usually mean
reverting, and trend deterministic under normal condgiomhis is true, for an economic
statistic, across (usually very) long time horizon. Howetlee recent economic recession
presented a distorted picture for the economic scenaridoas autoregressive models. For
this reason, we apply Bayesian Vector Autoregressive (BMABdels and their derivatives
to our problem of simulating the Nelson-Siegel factors. Tethods of Bayesian Vector
Autoregressions are discussed in detail in [59, 88].

In section 7.1 we introduce the Nelson-Siegel yield curvelehofrom which the
time series of factors are taken. From section 7.2 to se@ti®nwe discuss how the time
series model for the Nelson-Siegel interest rate factas {fe long, medium and short
term interest rate parameters of Nelson-Siegel model) eafelzeloped from the standard
VAR(1) to the Bayesian heteroscedastic regression modesedtion 7.6, we discuss the
convergence tests for the MCMC samplers, which take impbphkace in the Gibbs sam-
pling for Bayesian VAR model studied in section 7.4, and tteydsian heteroscedastic
regression model studied in section 7.5. Finally, in secti, we discuss the results from
each model in the development process, the reason a speoifiel is preferred, and the
convergence test results if the model is MCMC based. For tkMK based models in
sections 7.4 and 7.5, though we will sample the entire théepos space for the param-
eters of interest, we will focus on the mean estimates of #rameters since our aim is
to implement those estimated models to simulate data, ftrerewve will not discuss the
uncertainty bands of the estimated parameters.
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7.1 The Nelson-Siegel Factors

The Nelson-Siegel model [23, 24, 67] is the most widely usedehfor yield curve mod-
elling of government bonds (ie. US Treasury bills) by cdntanks and monetary policy
researchers. It takes the form

AT

AT
)\767 + y2(t) <L — e)‘7> (7.1)

Yield(t) = yo(t) + y1(t) N

where) is a decay factor, which is assumed to be a constant acroishéorizon due to
its low volatility; 7 is the bond maturity parametey(t) = (yo(t),y1(t),y2(t)) is a three
dimensional time series which the following models are Oase

In economic termsyy is interpreted as the long run level of interest raigss the
short term component and for the medium term. They are usually fitted via least-sguare
or similar algorithms (see [23]).

In our problem, historical monthly(t) is supplied. It is the vector valued time
series we try to model and simulate. Since short memory re@delpreferred by the policy
makers, we restrict our models to have lag length of 1 (moniit® also assume there is
no cross-dependence between componentg©fat the same time due to observational
restrictions, which means we can not forecagt) giveny;(t), i # j. The modelling
scheme takes four steps. We start from the standard VAR@Egdtion 7.2, then introduce
the standard BVAR(1) in section 7.3, and its hierarchicahkaCarlo derivative in section
7.4. Finally, we modify the Monte Carlo BVAR(1) as a heteextastic linear regression
model to give our best forecasting result in section 7.5.

We have time series dagdt) on monthly frequency, ranging from August 1988 to
April 2010 (as in Figure 7.7), and givenand a range of different maturities Our aim is
to forecasty(t) for 60 periods (ie. 5 years) from May 2010 using regressigetanodels.
We assume a constahfor the entire 5-year simulation period, which only taked pnen
we are converting the simulatedt) to yield curve forecasts using equation (7.1). The
Nelson-Siegel model (7.1) is only used as a map to convefatitersy(t) to yields, and is
irrelevant to the model development process discusseavbelo

7.2 Model 1: The Vector AR(1) process

As a start, we regress the time series datét) }o<:<n against itself with order one time
lag, using the standard Vector AR(1) model

Y =LY®+1q (7.2)
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where the datd” = {y(t)}1<i<y € RY*k with L as the lag operatby & € RF*k;
n € RV** is the random Gaussian error. The variable- 1 takes the value 261, and is the
number of equidistantly observed historigét), ranging from August 1988 to April 2010;
k = 3 is the number of variables. We want to estimate the parandeter

By estimating the parametdr through ordinary least squares, we can make mean
forecasts using the model. The mean forecagtedand selected yield curves are plotted
in Figure 7.8. The results will be discussed in Section 7.7.

For simplicity of notation in later steps, we decompose thave equation as

i =LY ¢; + ¢ (7.3)

wherei € {0,1,2}. The vectory; represents a column vector ®f = (yo,y1,y2) in
equation (7.2), and; a corresponding column vector b = (¢o, ¢1, P2), respectively.
¢; Is a Gaussian random vector with mean zero and covarianag&xmat For the sake of
simplicity, we omit the column indicesof y; and ¢;. We write the regression model in
this form to avoid the unnecessary complication when desyithe variance of a matrix
random variable, which is a three-dimensional tensor. Ehiwlification only results a
change of notation, it does not affect the correlation ambfgg nore;'’s.

7.3 Model 2: The standard BVAR(1)

We now implement the standard Bayesian vector autoregecssbdel with lag 1 based
on the VAR(1) set up (7.3) by adding more randomness to thenpaters. We assumge
(shorthand notation fap;’s in (7.3)) follow a distribution classified by the Bayesiame-
work described below. For Bayesian models, the choice ofogpjate priors is essential.
There are many choices of priors for BVAR estimation, they studied extensively in
[59, 85, 88]. However, we choose the non-informative Littan prior, or Minnesota prior,
for our standard BVAR(1) application.

The Litterman prior is the most classical and most widelydusen-informative
prior in BVAR applications. When implementing a BVAR modeltiwthe absence of prior
knowledge of the time series, external information entacheequation marginally and de-
viates as time lags increase. The prior is not derived froyneaplicit economic theory but
purely on common belief [59, 60], which assumes that cursate has higher dependence
with immediate past than the past further back in time. Thigperty shows a very weak
assumption is required to implement this prior, and a widgsmf problems this prior is
able to adapt to. This advantage motivates our construofittimee BVAR model. In the Lit-

For our problem, the lag operator is defined/as = {y(t) }o<t<n-1
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terman prior, the parameters are assumed to be indepemndene¢éch other. All parameters
are assumed to have mean of zero except the coefficient orrsh&ad of the dependent
variable, and with standard deviation decreasing as tigeitecrease.

The Littermanprior assumes a Gaussian distribution for

¢ ~ N(¢o, Vo) (7.4)

where the prior meag, = (0,...,0,1,0,...,0)*, with the ;*" entry valued 1, and all
other entries valued zetowhich reflects the belief that thigh variable has an expected
value equal to its immediate past, but not other variables.

The prior covariance takes the form:

1 1\ *
Vo=V (%) (7.5)

1 _ . O
<‘/b2> =0l ww(z7])A_
Ey

ij J

whered € (0,1) is a parameter describing overall tightness of the variaict is a lag
decay function at lag with rate) € (0,1). The function describes the shrinkage of the
standard deviation with increasing lag length. In our pealbl = 1, which gives a constant
lag decay functionw(i, j) a weight function describes the tightness of the prior foiakde

j inequationi of the system, relative to the tightness of its own lags oz i in equation

1. w is a symmetric matrix, which is chosen as a common preferggiie

1 05 0.5
w=1]105 1 05
05 05 1

The diagonal's mean variablé has a larger weight in equatienwhich takes a big-
ger role in describing itself, and other variables in thisagpn are equally less weighted.
&, is the estimated standard error from a univariate autosegme for variable. It is pre-
estimated using; = Ly, + ¢;, where the variance @fis 62. ; /6 acts as a scaling factor
adjusts for varying magnitude of the variables across @t and ;. The construction
of V; through the factorization setup eases sampling sfnce it is assumed to follow a
multivariate Gaussian distribution.

2For our problemg, takes one of the following value$l,0,0)*, (0,1,0)* or (0,0,1)".
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We have thdikelihood function for¢ from the model (7.3)

LOIY) s det() exp (50— WS- (01)0) (79

Hence we find theosterior by completing the square for the product of the prior

(7.4) and the likelihood (7.6),

1 N N R
p((ﬁ‘Y) X exp <_§(¢ - ¢Bayesian)*V§;yesian(¢ - ¢Bayesian)> (77)

whereg andV are the maximum likelihood estimators of the posterior mamashvariance
for parameters. Thereforep is updated by the lag 1 dafaY” according to

éBayesian = (‘/0_1 + (LY)*Eil(LY))il (‘/0_1¢0 + (LY)*Eily)

VBayesicm = (‘/071 + (LY)*Eil(LY))_l
In summary, for the BVAR(1) model, we have the following fremvork:
We want to estimate the parametein (7.3), by maximizing it's posterior density;

we use datd” = (yo(t), y1(t), y2(t))o<t<n as input, segment it to the dependent
variable{y; }1<:<n for each run of the model fap;, and the independent variables
LY = (yo(t), y1(t), y2(t))o<t<n-1;

the prior density foks as given by (7.4);
the likelihood L(¢|Y") as given by (7.6);

the posteriop(4|Y’) as given by (7.7).

We use the estimategito make 60-period mean forecastsy¢f) using equation (7.3). The
selected yield curves are shown in Figure 7.9. The resultb®discussed in Section 7.7.

7.4

Model 3: BVAR(1) with Gibbs sampling

When the Litterman prior is chosen as a non-informativerptle posterior distributions
can be obtained in a closed form, the necessary estimatioteanalytically obtained.

However, in the case an informative prior is preferred andlmareasonably supplied, we
may opt for the Gibbs sampling for the BVAR model since anedytresults in Model 2
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cannot be obtained here. Gelfand and Smith [29] proved ifithe functional form of the
joint density of the random observations is known, usingdSikampler to draw a sequence
of complete conditional distributions for all of its parates, will converge in the limit to
the true joint posterior distribution of the parameter.
Recall the setup in (7.3),
y=LYd+e (7.8)

wherey and(LY") retain the same property, but assume N (0, 0%1) is a vector of inde-
pendently identically distributed Gaussian random error¢he case we want to implement
the hierarchical Gibbs sampled BVAR(1) model to estimatameterg ¢, o), we first need
some more assumptions.

Assumptions 7.1.
We assume, for the syst¢m3).

(i) the prior densityr,(¢) for parameterg, and the prior densityr, (o) for parameter
o are independent, ie. the joint prior densityp, o) = 74(¢)m,(0);

(it) m4(¢) is Gaussian, for which the mean and variance can be expreasdohear
combinations ob;

(iii) we assume a non-informative diffuse prior fas(c) o 1, which is a continuous
uniform distribution, witho > 0.

For Assumption 7.1 (ii), we mean there exigtsuch that
1 _
o(0) s oxp (5 (Ro =)' T (R0 =) 79)

from which it is possible thak € R™*k with m < k, andr andT are the prior mean and
covariance ofR, respectively. In the event < k, the priormy(¢) in (7.11) is improper,
since there are fewer number of equations than the numbexrriafles. However, we can
seek an alternative by factorisiig ! = 7/, andr, = 7. This gives

1
mo(0) s oxp (= (ro =) (76 = 1)) (710
Therefore, we have the joiptrior density

m(¢,0) = 7o (0)my(9), (7.11)
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and thdikelihood function

Lo o~ Ve (515 (- W (- 1)), (.12

)
to get theposterior
p(¢,0) < o™ N exp (<¢ - Qggibbs) ) Vg;blbs (¢ - Qggibbs)) ; (7.13)
which gives the maximum likelihood estimators
Bgivhs = ((LY)*(LY) + 0>7*7) " (LY )*y + o%7*r,) , (7.14)
and
Vginbs = 02 (LY)*(LY) + o%77) . (7.15)

It is observed that the MLES s and Vi, depend ons, which prevents it to
have an analytical solution as in the standard BVAR modeh witterman prior. Thell
and Goldberger [90] proposed that to be initially estimated by the least squares method
62 = (y — (LY)9)" (y — (LY)@)/N — k.

The Gibbs sampler samplésfrom the multivariate conditional Gaussian posterior
distribution (7.13), with conditional mean (7.14) and aae (7.15), and samplesfrom
the posterior density

p(o]@) ox —o N exp (= (y — (LY)9)" (y — (LY)9))

which is identical to

(y = (LY)9)" (y = (LY)9) [o*|¢ ~ x*(N 1)
In summary, for the BVAR(1) model with Gibbs sampling, we @&akie following
framework:

e We want to estimate the coefficiept ando, the standard deviation for the erroin
(7.3), by maximizing their joint posterior density;

e we use datd” = (yo(t),y1(t),y2(t))o<t<n as input, segment it to the dependent
variable{y; }1<:<n for each run of the model fap;, and the independent variables

LY = (yo(t), y1(t), y2(t))Jo<t<n-—1;
e the joint prior density fof¢, o) is given by (7.11);

e the likelihood functionL(¢, oY) is given by (7.12);
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e and the joint posteriop(¢, o|Y") is given by (7.13).

Convergence tests of the MCMC method is monitored using@uannethods, which
are discussed in Section 7.6. The 60-month mean forecag(g)afnade by the BVAR(1)
with Gibbs sampler and selected yield curves are shown iar€ig.10. The results will be
discussed in Section 7.7.

7.5 Model 4: Bayesian heteroscedastic regression and Gibsam-
pling

We now refer to the spatial autoregressive models from a8aggerspective. The method
is discussed extensively in [56, 57].
The model (7.3) is considered as a case of heteroscedastar liegression model
with an informative prior.
y=LY¢p+e

with

Assumptions 7.2.
We assume:

(i) e follows a Gaussian distribution/ (0, 0%V');
(ii) the variance of the error takes a diagonal foim= diag(vi,ve,...,vN);
(i) ¢ has a Gaussian priaN (¢, T);
(iv) o has a flat diffuse priof1/c), which is a uniform distribution witlr > 0;
(v) eachw; has a priorr /v; follows independent?(r) prior distributions;
(vi) r follows a priorI'(m, k).

In this model,y and LY are the same as defined in (7.3). In addition to the
previous model, we assume, thahas a non-constant variance. The relative variance
(v1,v9,...,vy) are assumed to be fixed at each discrete observational tieeate un-
known parameters need to be estimated. Bayesian methoustheoconstrains from a
degrees-of-freedom perspective when estimalihgarametergvy, vo, ..., vy ) of V, and
thek + 1 parameters o ando, using NV data observations, since we can rely on an infor-
mative prior for thel” parameters. The prior/v; takes the form of¢?(r) distribution as
described in Assumption 7(®). This type of prior was first introduced by Lindley in [58]
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as cell variances in the analysis of variance with multigdeayvations per cell. It has been
discussed in [30] as well.

The prior assigned to eaeh can be understood as a distribution with unity mean
and variance/r. Asr becomes large, all; will approach unity, giving an identity ma-
trix for V, believing that outliers and non-constant variances doert; whenV does
not equal identity, it makes the model more robust to owtleend observations with large
variances by assigning less weight to these observations.

Following the usual Bayesian methodology, we have theihikeld function,

N -1
L(¢,0,V|Y) oc o™ N7V (H ﬂw)) exp (%(y — (LY)$)" V" (y - (LY)¢)> :
1

- (7.16)
we then compute the posterior using the priors and likelihfamction analytically, how-
ever, the posterior density may not be tractable. We seeksEhmpling to derive the
posterior distribution.

We will use the following mutually conditional distributis for ¢, o andV to do
our sampling.

ol(0,V) ~ N(H(LY)'V'y+o°T '), 0°H) (7.17)
H = (L) v Iy)+7) "

N 62 U;

[22:10(22/@) G.V) ~ (V) (7.18)
o2 +r
{TZ-JF}I(QU) ~ X(r+1) (7.19)

wheree; = y; — (LY)f¢.
The Gibbs sampling takes the following steps repeatedly:

(i) Start with arbitrary choices of initial valueg, o° andv?;
(i) Sampleg! using (7.17) conditional on® andv?;
(iii) Samples! using (7.18) conditional op' andv?;
(iv) Samplev; using (7.19) conditional on! ando!.

In summary, for the Bayesian heteroscedastic regressiateinvath Gibbs sam-
pling, we have the following framework:

e We want to sample the parametées o, V'), by doing Gibbs sampling iteratively;
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MCMC CONVERGENCE di agnostics

Based on sanpl e size = 1000

Aut ocorrel ati ons within each paranmeter chain

Vari abl e Lag 1 Lag 5 Lag 10 Lag 50

phi 0 -0.023 0. 000 0. 035 0. 003

phi 1 0. 026 -0. 003 0. 039 -0. 067

phi 2 -0. 003 0. 026 -0.023 -0.014
Figure 7.1: Autocorrelation Diagnostics for Model 3

e we use datd” = (yo(t),y1(t),y2(t))o<t<n as input, segment it to the dependent
variable{y; }1<:<n for each run of the model fap;, and the independent variables

LY = (yo(t),y1(t), y2(t))o<t<n-1;

o the priors for each parameter are specified through a sestritditions, which are
set out in Assumptions 7.2;

o the likelihood function is given in (7.16);

o the posteriors are specified iteratively in (7.17), the tipdascheme follows the al-
gorithm in 7.5.

Convergence tests of the MCMC method is monitored usinguannethods, which
are discussed in Section 7.6. The 60-month mean forecagts)dfom the heteroscedastic
regression model and Gibbs sampling and selected yieldesware shown in Figure 7.11.
The results will be discussed in Section 7.7.

7.6 Convergence Tests of the MCMC Samplers

For the Gibbs sampler models 3 and 4 discussed in Sectiomd.4.8, we assess the con-
vergence of the sampler to the posterior distributions. et of the samplers in Section
7.4 and 7.5, we used 1100 draws for each step, and discaredisth100 as burn-in. We
use the rest of the 1000 samples to be tested for converg@nuang various MCMC con-
vergence diagnostics, we focus on the following diagndstits: autocorrelation, Raftery
& Lewis, and Geweke’s diagnostics. The diagnostic measanesxplained in [43].

Autocorrelation is the most common approach to measurendiepey among Markov
Chain samples. Autocorrelation with lags 1, 5, 10 and 50 haen computed (see Figures
7.1 and 7.2), we find all of them being very small, which sugdlee samples are well
mixed.

Raftery & Lewis [32, 82, 83] diagnostics provides a pradtical for finding the
minimum sample size required to reach a desired level oepostdistributional accuracy in
terms of percentiles. We take the quantilegof 0.025 to be our interest, with a precision
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MCMC CONVERGENCE di agnostics

Based on sanpl e size = 1000

Aut ocorrel ati ons within each paraneter chain

Vari abl e Lag 1 Lag 5 Lag 10 Lag 50
phi 0 0. 049 -0.051 -0.038 0. 002
phi 1 0. 004 -0.034 0.011 -0.012
phi 2 -0. 007 0. 003 0. 039 0. 010

Figure 7.2: Autocorrelation Diagnostics for Model 4

Raftery-Lew s Di agnostics for each paraneter chain
(g=0. 0250, r=0.010000, s=0.950000)

Vari abl e Thin Bur n Total (N) (Nmi n) | -stat
phi 0 1 2 969 937 1.034
phi 1 1 2 969 937 1.034
phi 2 1 2 969 937 1.034

Figure 7.3: Raftery & Lewis test for Model 3

level of r = 0.01 associated with a probability = 95%. In Figures 7.3 and 7.4, the

resulting statistics suggest that a total number of 969 slrare required to achieve the
desired accuracy of = 0.01 on the propose@.025 percentile estimation; and 937 draws
are required if the draws are from an iid chain. Our chain st&®f 1000 effective draws,

which exceeds both of these requirements.

Geweke’s [31] diagnostics tests if the mean estimates cgese It compares the
means from the early and latter part of the Markov Chain. &laee two groups of sum-
mary statistics been produced for the Geweke’s diagnosiite first group of statistics
titted "Geweke Diagnostics for each parameter chain” shibsestimates of the numerical
standard error (NSE) and relative numerical efficiency (RNRNE provides an indication
of the number of draws that would be required to produce theesaumerical accuracy if
the draws had been sampled independently from the postiisibution. The test pro-
duces estimates of iid chain and truncation of the periadgséndow at 4%, 8% and 15%.
The NSE and RNE based on an iid process provides a sampletabatatistics. The 4%,
8% and 15% NSEs and RNEs do not base on iid assumption of tloegwo If they are
significantly different, then we tend to believe in the na@hrature, however, in our case

Raftery-Lew s Di agnostics for each paraneter chain
(g=0. 0250, r=0.010000, s=0.950000)

Vari abl e Thi n Bur n Tot al (N) (' Nmi n) | -stat
phi 0 1 2 969 937 1.034
phi 1 1 2 969 937 1.034
phi 2 1 2 969 937 1.034

Figure 7.4: Raftery & Lewis test for Model 4
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in Figures 7.5 and 7.6, corresponding statistics are clogath other, which suggests a
well-mix of our samples.

The second group of the statistics titled "Geweke Chi-segiaest for each param-
eter chain” shows if the sample draws have reached an equilibased on the means of
the first 20% and the last 50% of the sample. If the sample Ma@tmin has reached an
equilibrium, the means of the two portions of the sample khbe roughly equal. From
the results in Figures 7.5 and 7.6, we see that the means pathemeters are close enough
to indicate a good convergence.

Therefore, the conclusion arise as both of the MCMC samplére Bayesian
VAR(1) model with Gibbs sampler (Model 3) and the Heterosstid Regression Model
(Model 4) have reach equilibrium with our required accuri@egl given our sample size in
the simulation.

7.7 Discussion of the Results

Before we make our choices on the model, we outline the fueddah assumptions we
make on yield curve. We make two assumptions (or beliefsherbehaviour of our tar-
geting yield curves: 1) the yield curves being simulatedremenal yield curve& Normal
yield curves always have a positive derivative in time. ftes a rational economic ex-
pectation that the economy will grow in the future, and theoamted inflation will rise in
the future rather than fall. The positive derivative is asgociated with the risks posed to
the uncertainty of future inflation rate and the value of siched cash flows, which is com-
pensated by higher yields for longer maturity. 2) We belitheyield curves for different
forwards should not intersect significantly, and yield @swvith shorter forward periods
should mostly be dominated by those with longer forwardss &ksumption holds because
we believe that risks posed to the uncertainty in longer tsggeater, hence should be com-
pensated with higher yields. With these two expectationsiimd, we discuss the results
from the four models.

In Figure 7.7, we see that the long run interest leygkevolves at a rather sta-
ble level, while the shor; and mediumy, term levels show relatively high correlation
and high volatility. In all of the four forecast plots corpemding to our four models re-
spectively, we show the 60-period mean forecast valuegfin the upper plot, and the
forecasted mean yield curves with four typical forward pési (ie. today, 1-year, 3-year
and 5-year) in the lower plot.

The forecasted Nelson-Siegel factors, in Figure 7.8, usia¢/AR(1) model shows

3There are 3 types of yield curves: normal, inverted and flatst\df the post-Great Depression yield curves
have been normal, and there is enough reason for us to bélgweuld be normal
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Geweke Di agnostics for each paraneter chain

Vari abl e Mean std dev
phi 0 0. 013170 0. 044212
phi 1 -0.012824 0. 043320
phi 2 0. 095037 0. 337383
Vari abl e NSE 4% RNE 4%
phi 0 0. 001385 1.019037
phi 1 0. 001192 1. 321504
phi 2 0. 010099 1.115972
RNE 15%
0.997201
1.722246
1. 325150

0.
0.
0.

o

NSE iid
001398
001370
010669

NSE 8%
. 001484
. 001161
. 009766

Geweke Chi-squared test for each paraneter chain

First 20% versus Last 50% of the sanple

Vari abl e phi 0O

NSE estinate Mean N. S. E.
i.i.d. 0. 012691 0. 001710
4% t aper 0. 012616 0.001583
8% t aper 0. 012449 0.001668
15% t aper 0.012216 0.001725
Vari abl e phi 1

NSE esti nate Mean N. S. E.
i.i.d. -0. 011670 0.001686
4% t aper -0.011679 0.001436
8% t aper -0.011693 0.001393
15% t aper -0.011748 0. 001301
Vari abl e phi 2

NSE estinate Mean N. S. E.
i.i.d. 0. 105432 0.012862
4%t aper 0. 105512 0. 013101
8% t aper 0. 105007 0.011099
15% t aper 0.104849 0. 010969

Chi-sq Prob
0. 620908
0. 581897
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Figure 7.5: Geweke diagnostics for Model 3
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Geweke Di agnostics for each paraneter chain

Vari abl e Mean std dev

phi 0 0. 998704 0. 003682

phi 1 0.013190 0.010479

phi 2 -0.016624 0. 009377

Vari abl e NSE 4% RNE 4%

phi 0 0. 000137 0. 721950

phi 1 0. 000343 0.932118

phi 2 0. 000275 1.164783
NSE 15% RNE 15%
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0. 000347 0.912707

0. 000242 1.506677
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Geweke Chi-squared test for each paraneter chain

First 20% versus Last 50% of the sanple

Vari abl e phi 0O

NSE esti mate Mean N. S. E.
i.i.d. 0. 998483 0. 000142
4% t aper 0. 998506 0. 000137
8% t aper 0. 998532 0. 000137
15% t aper 0. 998581 0. 000122
Vari abl e phi 1

NSE estimate Mean N. S. E
i.i.d. 0.012646 0. 000409
4% t aper 0.012773 0. 000361
8% t aper 0. 012805 0. 000330
15% t aper 0.012885 0. 000277
Vari abl e phi 2

NSE esti mate Mean N. S. E.
i.i.d. -0.016230 0. 000363
4%t aper -0.016265 0. 000292
8% t aper -0.016356 0. 000224
15% t aper -0.016395 0. 000203

Chi-sq Prob
0. 029574
0. 029981
0. 039884
0. 049599
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Figure 7.6: Geweke diagnostics for Model 4
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clear mean reverting feature of the model, while the threepmments stays relatively iso-
lated. The resulting yield curves converge quite quicklfaicls means for a bond with a
maturity of 10 years, there is little difference in yield ievbuy it today, in 1-year, 3-year’s
or 5-year’s time. The results from VAR(1) does not directiplate the two beliefs we

assume for yield curves, however, the tiny differences @ldg among the four forward
periods squeeze out the motivation to take such risks. EBigdtris not encouraging, so we
look to the Bayesian modification of this regression model.

The forecast made by the standard BVAR(1) model is plotteignire 7.9. The
Bayesian structure with non-informative prior forecastedonverging medium and short
term interest levels. However, the yield curves violatesbeond belief we assumed at the
beginning of this chapter. The yield curves with longer fard/periods should dominate
those with shorter forward periods. In our case, yield csyrfi®m top to bottom, should be
in the order of 5-year, 3-year, 1-year and zero-year (toflay)ard periods. The Bayesian
VAR(1) with non-informative prior presented us with a wrafig, non normal) structure of
the yield curves. The reason for this problem lies behindctiw@ce of the non-informative
prior, we assumed a non-informative prior, with fixed meadh @ariance. The result shows
that this model lies heavily on correct specification of thiempwhich is something we are
unable to supply except making a consensus choice. Thereferattempt an informative
prior with Monte Carlo methods to forecast the time series.

Then we look at the hierarchical Bayesian VAR(1) with an infative prior, in-
corporated with Gibbs sampler, the result is shown in Figud®. For each simulation
step, we make 1100 draws, and discard the first 100 as buihén compare to the yield
curves from the standard Bayesian VAR(1), we find yield csifelow a more reasonable
order, however, the yield curves still intersect at someunitstt which is not desirable ac-
cording to the second belief we have on yield curve behavidh®ough this modification
of the Bayesian VAR(1) model has shown some improvementratelts still exhibit the
problem of intersecting (non normal) yield curves. Thispinsd us that the main struc-
ture of the model gives approximate correct order of thedyieirves, but may have some
critically information in the error terms being missed otitis motivation turns us to the
heteroscedastic modifications of this Bayesian VAR(1) rhode

For the last Bayesian heteroscedastic VAR(1), with a setfofinative priors and
Gibbs sampler, the results are shown in Figure 7.11. ThelaietiNelson-Siegel factors
have shown a much better replicate of the correlation asgarEi7.7. The yield curves
have demonstrated a reasonable order for different forperidds.

The idea above is further illustrated by the time series osgcorrelations between
10, ¥y1 andys. We observe the correlation time series on a 12-monthly Xigear) inter-
vals. Figure 7.12 shows the historical correlation stmectamong the 3 factors. Figure
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7.13 shows the simulated correlations based on VAR(1), lwldoks more like switch-
ing between -1 and +1 correlation. This certainly does noklgood in replicating the
historical correlations. Figure 7.14 shows the simulatedeatations based on standard
BVAR(1). It is observed that the correlation betwagrandy- still resembles a switching
phenomenon, while the correlation betwegrandy; shows an evident periodicity, which
is non-existent in the historical correlation. Figure 7stibws the simulated correlations
based on BVAR(1) with Gibbs sampler. It is observed thataviitg phenomenon between
-1 and +1 is not so evident under this model, the correlatetvéeny, andy; has shown
most significant improvement, whilst the other two showitgac periodicity which is not
evident in history. Figure 7.16 shows the simulated cotigia based on heteroscedastic
regression model with Gibbs sampler. This result best aafgds the historical distribu-
tion of correlations, there are no obvious switching betwedreme constant, nor periodic
behaviour.

7.8 Figures

7.9 Conclusion

In this chapter, we have developed from the standard VAR inddé¢he Bayesian VAR
model by assuming the distribution for the coefficientfurther, we implemented a hier-
archical model by adding distributional assumption ont® éror variance parametet
and sampled through the Gibbs sampler to retrieve estinfiatdbe parameters; finally,
by introducing more parameters to accurately specify therance matrix of the error,
namely, the variance matriX, and the auxiliary parameter, we developed a Bayesian
heteroscedastic regression model. For the last two modsksdbon MCMC methods, we
examined the convergence of the Gibbs samplers.

By comparing the simulated results, we conclude that theeBiay heteroscedastic
regression model best suits our purpose, which is to simylatd curves. In summary, we
choose this model based on the following two reasons: 1)sit $mtisfies the normal yield
curve assumption and the non intersecting nature; 2) thelaied Nelson-Siegel interest
rate factors best replicates the historical time seriet) boterms of the mean reverting
feature, volatility level and correlations.
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Figure 7.10: Simulated Nelson-Siegel factors and Yieldv€sirusing Gibbs Sampled
BVAR(1)

111



—_—

maturity

Simulated NS factors y(t) using Heterascedastic Regression Model with Gibbs Sampler
months
Simulated Yield Curve using Heteroscedastic Regression Model with Gibbs Sampler
T

0.06
0.os
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Chapter 8

Dynamic Conditional Correlation
GARCH

The autoregressive models discussed in the previous cHapte shown inadequate capa-
bility in modelling time-varying volatility. We attemptei overcome some of these short-
comings with the Bayesian heteroscedastic regression Isjadethis chapter, we delve
deeper into this modelling issue and investigate the GémedaAutoregressive Condi-
tional Heteroscedasticity (GARCH) model. This model haw/pd successful in predicting
volatility changes.

The phenomena of clustering of volatilities exist in a widage of economic and
financial activities. The word “clustering of volatilitygfers to observations that “large
changes tend to be followed by large changes, of either sigd,small changes tend to
be followed by small changes”[63, 64]. For example, if we gien a set of uncorre-
lated, drift (or mean) corrected, economic time series {atdc (o 71, the magnitude of the
time series{|x:|};c(o,7) displays a positive, significant and slowly decaying autcea-
tion function: corr(|z|, |z1+s5]|) > 0 for variousé [64]. No real economic reason has been
proved to explain the clustering behaviour of volatilifieespite the empirical success of
the ARCH/GARCH models. This observation motivates us tdyagigese models to sim-
ulate economic risks. GARCH models require high frequerata dthis is realisable for
financial data, but not easily feasible in terms of economit monetary data. This is one
of the reasons we did not refer to this model in the previowptr.

In section 8.1 we introduce the portfolio space, the datdabla and our objective.
In section 8.2, we make a brief review of the multivariate G&Rmodel setup. We discuss
the type of multivariate GARCH model with constant correlatmatrix in section 8.3,
and dynamic conditional correlation matrices in sectioh 8n section 8.5, we examine
the goodness-of-fit of the proposed models using Kupiec drtiom-of-Failure test and
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Christoffersen’s Markov test. Finally, the simulated fesare discussed in section 8.6.

8.1 The portfolio

The problem of interest here is a portfolio with a set of firiahiadices from very different
asset classes. The portfolio space reflects the potentedtment space for the reserves of
the International Monetary Fund. The indices show the hedflthat specific asset class,
and as a proxy to monitor the health of that economy. The aatecs is Bloomberg. The
indices, discussed in this chapter are:

Index Asset class Weight

Russell 3000 | US Equity market index 30%

MSCI EAFA | Morgan Stanley Capital International 30%
Europe, Australasia, Far East (International Equity index

US MBS US Mortgage Backed Securities 11.5%

US Corp US Corporate Debt 11.5%

HY High Yield Bonds 12%
(non-investment grade bond)

Real Estate | Real Estate Prices 5%

Commodity | Global commadities (oil, gold, metal, etc) 0%

Cash USD Cash equivalent assets 0%

The normalized historical indices of the above assets are shown in Figu8e 8.
from the plot, we see trend is not so obvious for most of thetasso we opt away from
autoregressive models, by referring to GARCH models on iagu¢al logged) returns of
the assets to explore the nature of the volatilities. Wethletog returns in Figure 8.4 and
the autocorrelation functions in Figure 8.5.

The data is provided on a weekly frequency from 3 April, 19822 June, 2009.
Our objective is to find an appropriate volatility model tansiate returns for the indices.
Assessment of the suitability of the model is based on thelsited cross asset correlation
distribution and the empirical feasibility of the simuldteeturns. For this reason, we put
more emphasis on the distribution closeness which are &by least squares in 8.3
and maximum likelihood in 8.4 respectively, instead of a meatimate from Bayesian
MCMC sampling as we did in the previous chapter. To measwedha closeness of the
distributions, we implement goodness-of-fit tests, naméalypiec Proportion-of-Failure test
and Christoffersen Markov test, which will be discussedeétad in section 8.5.

2Normalization here means all indices share the same sjaine. eg. 1 or 100

119



8.2 The multivariate GARCH model

It is widely accepted in the industry that understanding pratlicting the dependence in
the co-movements of asset returns is important. It is olesketkat financial volatilities
move together more or less closely over time across assstgjraphical and industrial
markets. Therefore, multivariate models provide a bettgy 1@ explore the cross sectional
(eg. asset classes, geographical distribution, marketg, eelevance than working with
separate univariate models [70]. The GARCH model has bessusied in extensive detail
in many literatures, such as [13, 14, 15], and multivaria®BRGH model has also been
explored extensively, such as [70, 86, 87]. In this chapterfollow the notation used in
[70].
The multivariate GARCH model is defined as

L e (8.19)
a = Hz, (8.1b)
where,

(i) € R™is a vector of log returns at time

(i) a; € R™is avector of mean-corrected returns at timie. E(a;) = 0, Cov(a;) = Hy;

(iii) pu: € R™is a vector of expected value of the conditional

(iv) H; € R™™" is the conditional covariance matrix of at timet;

(V) Ht% the Cholesky factorization off;>;

(Vi) z € R™is the vector of iid errors such thBY z;) = 0 andE(z;2] ) = I.

The idea of modelling conditional variance and correlatiootivates us to decom-
pose the covariance matrix as
Hy = DRy Dy

11 1
whereD; = diag ( ki), h3y, - .- ,hfn> is the conditional standard deviation, witl the
(,7)th element ofH;; R; is the correlation matrix. We focus on two specificationshef t

multivariate GARCH model: GARCH with constant correlatioratrix and GARCH with
time-varying correlation matrix.

3The idea of using Cholesky decomposition is that it helpswapthe correlation between independent
random variables after we have obtained the covarianceéxn&towever, in Chapter 7, when specifying the
prior covariance (7.5), we construct the covariabgérom it's factorized matrix, we did not restrict it to accord
with Cholesky decomposition for modelling convenience.
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We will apply multivariate GARCH models to the time seriesajavith short mem-
ories as in the previous chapter. Empirically, it is ofteffisient to assume a GARCH(1,1)
model than sophisticated volatility models with highereang] since the marginal benefit
we achieve is overcome by the additional complication wheplémenting higher order
GARCH models, reason and examples are studied extensividy i 89]. In our modelling
project, short memory is also an assumption we take uponestgulherefore, we will
only look at the constant correlation and time-varying efation multivariate GARCHY{,q)
models with lage = 1 andq = 1, wherep is the order of the Autoregressive (AR) terms
and q is the order of the autoregressive conditional hetedzsticity (ARCH) terms.

8.3 Model 1: Constant Correlation Matrix

GARCH models with constant correlation matrix has a covexgamatrix of the form
H, = D;RD, (8.2)

where the correlation matri® = [p;;] is a constant positive definite matrix, and the di-
agonal standard deviation matrly; is time dependent. With;; = 1,7 = 1,...,n, the
covariance matrix is given by .

[Hiij = hih}pis

and each conditional variance is modelled as
Qi @ P;
hit = ¢; + Z Aigai{ o+ Z Bi phii—p
q=1 p=1

wherec € R" is a vector,A;, B; € R"*" are diagonal matriceaﬁ)j = a;—; ©® ay—j isthe
element-wise produtt H, is positive definite if elements ef A; andB; are positive, since

R is positive definite. When implementing this model, we ugetiime series data of index
returns(ry) jo<¢<7 Of 8 assets, and aim to estimate the values of the constarlatisn
matrix R, and the time series of standard deviatidiswhich are the components of the
covariance time serieH;. In summary, for the Constant Correlation GARCH model, we
follow the framework below,

o We estimate the time dependent covariance maffidefined in (8.2), under the mul-
tivariate GARCH framework defined in (8.1), through therestiion of the constant
correlation matrixk and the time series of standard deviatidns

“Element-wise product is defined @8 y):; = ;- ¥ij.
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e we use the time series data of the 8 asset classes as databngiust apply mean
correction, and then estimate covariance;

o the method used in the estimation is least squares.

The results are discussed later in Section 8.6.

8.4 Model 2: Dynamic Conditional Correlation GARCH

Now we look at the case when the correlation matkixn (8.2) has time dependence,
denoted ag; in this section. This setup is defined as the Dynamic Conditi€orrelation
GARCH model, it was introduced in [27], and the multivariatese was discussed in [26].
According to the formulation in (8.1a), (8.1b) and (8.2)n#ar to the constant correlation
case, we express the conditional variances as

Qi Py
hit = Q450 + Z ai,qait—q + Z 6i,phi,t—p- (83)
q=1 p=1

The results are discussed below in Section 8.6. We defindahdard errorg, as
Nt = Dt_lat ~ N(O,Rt)

To preserve the properties of positive definite symmetraperties of the covari-
ance matrix,, we make the following assumptions,

Assumptions 8.1.
Assume:

(i) R; positive definite, so as to ensutg is positive definite;

(i) all elements of?, must be equal or less than 1 in magnitude, since it descries t
correlation;

(iii) R is symmetric.
In order to ensure Assumptions 8, is decomposed into the following structure

R, = Q'@ (8.4)
Q (1—a—b)Q+an_1n" 1 +bQi 1 (8.5)

where( is the covariance matrix of the standard errggswhich can be estimated easily
as mean-squared-errd@p; is a diagonal matrix which takes the square root of the diabon
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elements of),. It rescales the elements @ to ensure assumption 8.1 (iiy;, including
the initial value@Q,, must be positive definite to ensure assumption 8.1 {igndb are
scalars such that, b > 0 anda + b < 1.

Maximum likelihood based estimation of the parameters@f€C-GARCH model
requires us to make assumptions on the distribution of therseg;. We assume stan-
dard Gaussian here. For ease of notation, we divide the pdeasnto two groupsp; =
(cvio, @1, - - ., vig, Bit, - - -, Bip) for parameters of the univariate GARCH model for the as-
seti, andy = (a,b) for the correlation structure. The likelihood function far= Ht%zt
is

L(¢, ) = El ) HIH| exp (—%a? Htlat) , (8.6)

replacingH; using (8.2) thdog-likelihood function becomes

[\3}—‘

T
= —=)  (nlog(27) + 2log(|Ds|) + log(|R:|) + af D; 'Ry "Dy lay) . (8.7)
t=1

We then estimate the parameters in two steps famd+ iteratively. We first replace
R; using the identity, which gives the likelihood function iy

1 T n CL2
lg) = ~3 Z (n log(27m) + Z <10g(hit) + h_Zt>>
n T a2
=) (—% Z <log(h¢t) + h—Z + C)) (8.8)

where(' is a constant. Note that the second line of the above equatéans that the log
likelihood is the sum of the log-likelihoods of the univagaGARCH equations of assets,
meaning that each parameter can be determined separatelycto asset.

Once we have the MLE by maximizing (8.8), we also know;, for each asset, so
n; and@ can be estimated. We then estimateasing the following conditional likelihood

T

1) = —5 " (nlog(2r) + 2og(|Dy) + log(IRl) + B ')
t=1

for which it is equivalent to maximizing,

T

—5 > (log(|R|) + nf Ry ') - (8.9)
t=1

l\.’)lr—l

The maximum likelihood estimators under these pseuddhi&et] yields consistent
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and asymptotically normal estimates [21]. In conclusiom wse the index return data
(r¢)o<t<T, first apply mean correction (remoyg and normalization (divide by standard
deviationD, La,) on the data, then estimate the correlation time seriesxmAfrusing the
DCC-GARCH(1,1) model. In summary, we estimate the Dynantaditional Correlation
GARCH model by following the framework below,

e We estimate the time dependent covariance madifixdefined in (8.3), under the
multivariate GARCH framework defined in (8.1), through ttstimation of the time
series of correlation matriR; defined in (8.4) and the time series of standard devia-
tions D, defined as in section 8.3, the parameter set of interést i8) in specific;

e we use the time series data of the 8 asset classes as databyiust apply mean
correction, and then estimate covariance;

e the log-likelihood function of the parameters is given in7(8

e the estimation method is maximum likelihood, it is applieztatively for¢ by max-
imizing (8.8) for each parameter separately, and/fdry maximizing (8.9).

The results are discussed below in Section 8.6.

8.5 Goodness-of-Fit Tests

Since the purpose of this modelling project is to analyzeitkes the portfolio is exposed to,
the goodness-of-fit of the models will not focus on the meaeadasts the model simulates,
but on the risks underlying the simulated scenario. We appbygoodness-of-fit tests for
the GARCH models discussed in this chapter, the Kupiec RPtiopeof-Failure (PoF) test
[12, 53] and the Christoffersen’s Markov test [18].

We apply the Kupiec PoF test on the simulated Value-at-RigiRP. The Kupiec
PoF test evaluates if the total number of exceptions (ientimeber of simulated returns falls
below the proposed VaR) agrees with the expected numberoafptinns. The Christof-
fersen’s Markov test examines if the exceptions are indeguethy distributed over time.

For each simulated data, it is either identified as an exmeti not, so the number
of exceptions follows a binomial distribution

p(z) = (”) pr(1—p)

wheren is the total number of data; is the number of exceptions observed, ang the
probability of getting an exception, under an assumedibdigton.

®Here we mean 95% VaR, which is defined as the 5% quantile witieispace the VaR lies.
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The null hypothesid is defined as the expected proportion of violations is equal
to «, wherea is the significance level of the test.
Under the null hypothesis, the test statistic is

(Z) Pops (1 — Dobs)" ™
( ) (1 —a)n—=

21og <<n> (1 . E) > —2log (a"(1—)"")

from which the test statistic followg?(1) distribution whem is large.

If the estimated probabilityp.,s is above the significance level, we accept the
model, otherwise, we reject the model.

We then apply the Christoffersen’s Markov test [18] to chi#t¢ke exceptions are
independently distributed over time. The null hypothelisis defined as the exceptions
are independently distributed over time.

The test statistic is defined as

Kupiec = 2log

1-— 00 n01 1-— n10 111
Christoffersen = 210g<( m01)" oy (1 — 1) ™0y >

oﬂﬁ(l —q)n e
= 2log ((1 — mo1)"mpP* (1 — m1)™07py ) — 2log (®(1 — )" ™7)

wheren;; is the number of transitions from staieo j, for i,j € {0,1}, which corre-
sponds to non-exceptions and exceptions, the corresgpridinsition probabilities are
mi; = nij/ >_;mig. The distribution of the test statistic convergesytq1) distribution
whenn is large.

The Kupiec PoF test only quantifies the number of exceptidrikvgnores the tim-
ing and two-state switching process of the random variablee Christoffersen’s Markov
test complements this weakness. Since both of these tastistaare likelihood ratios, and
follow a x2(1) distribution, the sum of the two test statistics forms a nesqalanatory and
powerful test statistic. However, the weakness of assuitiiagandom variable follows a
Markov process remains.

8.6 Discussion of Results

We first take a look at the normalised historical indices,urég8.3 gives us an overview
of the normalized historical indices, and Figure 8.4 presan overview of the historical
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1.0000 0.7057 0.0499 0.0714 -0.0077 0.6223 0.1634 0.0780
0.7057 1.0000 0.0498 0.0677 -0.0285 0.4652 0.2690 0.0794
0.0499 0.0498 1.0000 0.7763 -0.0358 -0.0107 0.0007 0.0381
0.0714 0.0677 0.7763 1.0000 -0.0284 0.0449 0.0314 0.0172
-0.0077 -0.0285 -0.0358 -0.0284 1.0000 -0.0064 0.0359 -0.0421
0.6223 0.4652 -0.0107 0.0449 -0.0064 1.0000 0.1108 0.0640
0.1634 0.2690 0.0007 0.0314 0.0359 0.1108 1.0000 0.0406
0.0780 0.0794 0.0381 0.0172 -0.0421 0.0640 0.0406 1.0000
Figure 8.1: Historical correlation matrix of returns

log returns. We compare the two models from three aspectsvdtatilities, correlation
structure and the goodness-of-fit test statistics. For butldels, we generated N=1000
paths, took the means to be our estimates. All the plots heea hormalized to the same
scale for the convenience of visual comparison.

From Figure 8.4, we observe that 4 assets presented signiifitagher historical
volatilities than others, they are “Russell 3000", “MSCI ER”, “Real Estate” and “Com-
modities”. In addition, we observed significant recent tititg increase in “Russell 3000,
“MSCI EAFE", “Real Estate”, “High Yield” and “Commodities"we define them to be
“highly volatile assets”. The degrees of volatility for “U8BS” and “US Corp” are rela-
tively small and stable across time, we define them to be tstadsets”. The volatility for
“Cash” is almost negligible.

The simulated indices using the Constant Correlation GARGH is plotted in
Figure 8.6 , and the simulated mean returns in Figure 8.7.gaomg Figures 8.4 and 8.7,
it is easy to see that the volatilities of those highly vidatissets have been significantly
underestimated, even the volatilities for the stable asast underestimated. The only
exception is “Real Estate”, of which the simulated retuitsin a seemingly similar level
of volatility.

Since we are assuming the constant correlation GARCH(1gbeinwe compare
the correlation matrix across the entire time horizon. Fgi1l shows the historical cor-
relation matrix, and Figure 8.2 shows the correlation maifithe simulated returns using
constant correlation GARCH(1,1) model. Both matrices araputed based on discrete ob-
servations provided. We see the discrepancies are signifibe two matrices are nowhere
close to each other in terms of elementwise values. Fromittezahces in correlation ma-
trices, we believe the constant correlation matrix muttate GARCH(1,1) model is not an
appropriate choice for our data.

For the hypothesis testings, we take significance level &b,98nd compare the
testing statistic with the¢?(1) distribution’s critical value. We implement the hypottesi
testing on the portfolio level of our model, which means, wgragate the simulated as-
set returns to portfolio returns, and assess the null hgsitlon the mean returns of the
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1.0000 0.4089 -0.0117 0.0030 -0.0336 0.2458 0.0316 -0.0133
0.4089 1.0000 -0.0452 -0.0212 -0.0340 0.2800 0.0603 -0.0110
-0.0117 -0.0452 1.0000 0.7936 -0.0605 0.0141 -0.0401 -0.0435
0.0030 -0.0212 0.7936 1.0000 -0.0300 0.0353 0.0054 -0.0507
-0.0336 -0.0340 -0.0605 -0.0300 1.0000 -0.0412 0.0711 -0.0494
0.2458 0.2800 0.0141 0.0353 -0.0412 1.0000 -0.0662 0.0019
0.0316 0.0603 -0.0401 0.0054 0.0711 -0.0662 1.0000 0.0654
-0.0133 -0.0110 -0.0435 -0.0507 -0.0494 0.0019 0.0654 1.0000
Figure 8.2: Simulated correlation matrix using CC-GARCHJ1

portfolio, since we are more interested on the risk of themipgortfolio. For the constant
correlation GARCH(1,1) model, the Kupiec PoF test statisti0.04, assuming Gaussian
distribution for the simulated portfolio returns, whichggiests the expected proportion of
exceptions equals to the observed; and the Christofferddarkov test statistic is 0.3613,
which suggests the exceptions are independently distdbower time. One specific weak-
ness of these hypothesis tests on this problem is that wevaheating the risks on the
portfolio level, since the given portfolio has zero weigbts some assets, it means that
the test statistics have no representation for the sinilegsults of those zero weighted
assets. However, we conclude that the constant correl@®RCH(1,1) model does not
adequately present the data from the three above discuspedts.

Now we refer to the dynamic conditional correlation GARCH{}Imodel. Figure
8.8 presents one sample path taken as means of N=1000 gems&rand Figure 8.9 shows
the simulated mean returns. From Figure 8.9, we observétihablatilities of all assets are
more normalized at a similar level, instead of the histdiscdifferently scaled volatilities
as in Figure 8.4. This is expected, since most of the assetepied a significant increase
in volatilities in recent period, which is observable in fig 8.4.

The progressive correlations base on 12-week (3-montiggsefor the entire time
horizon is plotted in Figure 8.10. It shows cross corretatifor all 8 asset indices. The
red line indicates where the simulated results starts t@kentinto account. We see that
the correlations present a good autoregressive strudtotie historically and in simulation.
The simulated correlations shows the change in correlaiarcture across time, this is
particularly obvious for the correlation between “Rus8€I00” and “MSCI EAFE”".

On the portfolio level, the Kupiec PoF test statistic is A®@5under the assumption
that the simulated portfolio returns follow a Gaussianritistion. The Christoffersen’s
Markov test statistic is 2.7437. The critical value)gf(1) at 95% confidence, is 3.84, so
the null hypothesis is accepted. Thus, we conclude thatythardic conditional correlation
GARCH(1,1) model outperforms the constant correlation @&R1,1) model in modelling
the volatilities and correlations of our given portfolio.
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8.7 Figures

8.8 Conclusion

In this chapter, we have compared the characteristics omihévariate GARCH model
with two types of correlation matrix. We studied the GARCHdebwith a constant cor-
relation matrix for the mean corrected returns in 8.3, amd@A\RCH model with a time
dependent correlation matrix in 8.4. We examined the gaesdoéfit of both of the models
through the Kupiec PoF and Christoffersen Markov tests.

By comparing the simulated results, we conclude that theuayo conditional cor-
relation GARCH model better suits our purpose, which is ficate the volatility and
cross-asset correlation structure of the portfolio. Ourchasion is supported by the simu-
lated results, which are plotted in the figures in the nexticec
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Simulated Indices using CC-GARCH(1,1)
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Chapter 9

Appendix

9.1 I1tdo Formula

Lemma 6.5 in [78].
Consider the 1t6 SDE

dz aw

= h(z) + ()

— = A = 2p.
7 (0) =20

where W (t) is a standardn-dimensional Brownian motion, : Z — R? is a smooth
vector-valued function, angl: Z — R™*d g smooth matrix-valued function. L&tbeT¢,
RY or R! @ T,

Define the generator of the SDE above as

1
ﬁv:h-vu—i-il“:vvfy

wherel'(z) = y(2)y(2)7.

Lemma 9.1 (Itd Formula) Assume that both(-) and ~(-) are globally Lipschitz onZ
and thatz, is a random variable independent of the Brownian mofiiit), and satifying
E|z0|?> < co. Letz(t) solve the above 8t SDE, and let/ € C%(Z,R). Then the process
V(z(t)) satisfies
t t
V0) = VEO) + [ Vs + [ (GVEE) G ).

9.2 Burkholder-Davis-Gundy Inequality

Theorem 3.22in [78].
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Consider the Itd stochastic integral

1(t) = /0 f(s)aW (s),

whereW (t) is ad-dimensional Brownian motion anfl(s) € R™*?. We assume
that f(¢) is a random process, adapted to the filtratlgrgenerated by the proce8g(¢),

and such that .
E </ f(8)2d8> < 00,
0

and define the quadratic variation process

(I)e = /O (f(s) ® f(s))ds.

Theorem 9.2(Burkholder-Davis-Gundy Inequality)Consider the aboveadtstochastic in-
tegral, a martingale with quadratic variation proces$);. For everyp > 0 there are
positive constant§’* such that

CEI) % <E ( sup uw) < CHE|(InI%.

0<s<t

9.3 The Gronwall Inequality

Lemma4.4in [78].

Lemma9.3. e (Differential form) Letn(t) € C*([0,T];R") satisfy the differential

inequality
dn(t)

T2 < an(t) + (1), (0) = n,
wherea € R andvy € L([0,7]); R*. Then
t
o) < exptan) (n+ [ exp(-as)uspas
fort € [0, 7.
e (Integral form) Assume thdt(t) € C([0, T]; R™") satisfies the integral inequality

55a/0t§<s>ds+b,
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for some positive constanésandb. Then

E(t) < bexp(at)t € [0,T].

9.4 Central Limit Theorems

This section quotes central limit theorems for random Wées martingales, and function-
als of erogodic Markov chains.

Theorem 9.4(Central Limit Theorem) [78] Let {¢,}°° ; be a sequence of i.i.d. random
variables with mean zero and variance 1. Define

Sn = &
k=1

Then the sequence

Xn = Sp

vn

converges in distribution to a standard normal random vhkéa

Theorem 9.5(Martingale Central Limit Theorem)[78] Let {M(t) : R — R?} be a
continuous square integrable martingale on a probabilihase (2, F, 1) with respect to a
filtration {F; : t > 0}; let (M); denote its quadratic variation process. Assume that:

(i) M(0) =0;
(i) the process\ (t) has continuous sample paths and stationary increments;

(iii) the scaled quadratic variation @ (t) converges irl.! (1) to some symmetric positive-
definite matrix:

lim E <|% —E|> =0
t—00 t

Then the process/+/t M, converges in distribution to a'(0, ) random variable.
Furthermore, the rescaled martingale

ME(t) = eM <612>

converges weakly iz to vVXW (t), where W (t) is a standardd-dimensional
Brownian motion and/Y. denotes the square root of the mat¥ix
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Below we cite the Central Limit Theorem for functionals ofedic Markov chains.
The first theorem is part of Theorem 2.3 in [16], which chaggzes the limiting distri-
bution for an erogdic Markov chain; the second theorem isofdm@ 3.1 in [16], which
identifies the limiting variance of the limiting Gaussiastdbution.

We first define{ X, },,>0 is an ergodic Markov chain with invariant distributian
and¢ : F — R is a measurable function, whefgis a general state space. Write

i
L

Sn: E(Xk)n:I,Q,
0

i

Theorem 9.6(Central Limit Theorem for functionals of ergodic Markovaihs) [16] Let
{X, }n>0 be an ergodic Markov chain with and assume that

/g%(d;c) < +00.

ThenS,,//n — N(0,a?) in distribution for somer? > 0.
Theorem 9.7. Let{X,, },>0 be an ergodic Markov chain with and assume that
i) [&(z) ) < 400
S0 1 [ &(x)P™E(z)w(dx) converges.

Then,
S,/v/n — N(0,0%) in distribution

holds for some2 > 0. Further,

a—/§2 dx+2/Z§ )P () (dx)

if (i) holds and (ii) is strengthened into

(i1") Zf(-)P"{(-) converges in L' () .

n=1
9.5 The Blockwise Matrix Inversion Formula
[19]

A B\ [ A'4+AB(D-CAB)ICAT —A\B(D - CAB)!
C D B —(D—-CA'B)"1cA~? (D—CA'B)!
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9.6 Holder’s inequality

[38]
Letx € C", define, forp > 1

n 1/p
]l = (Zlfﬂilp>

=1

Forz,y € C™,

n n 1/p n 1/p/
S Jaillui] < (Zw) (Zw) |
i=1 i=1 i=1

9.7 The Continuous-time Ergodic Theorem

Lemma 9.8. [46] Fix a measurable spacs, let (7;) be a measurable flow osiwith invari-
anto-field Z, and let¢ be a(T;)- stationary random element ii. Consider a measurable
functionf : S — R with f(£) € LP for somep > 1. Then ag — oo,

tt / t f(T:€)ds — E[f (&) T]a.s.andinLP
0

An immediate result from the above ergodic theorem wouldlee:

1 T
r-— /O B=()aW (1),

Then there exists a constafit> 0: E|I|? < C forall T > 0.

Proof. Use the Itd isometry and invoke the Lipschitz continuityy/of O

9.8 Some Quoted Properties of Linear Operator

Some linear operator properties from [80]. The existenckuariqueness of the solution of
initial value problem regarding a bounded linear operator.

Theorem 9.9.[80][p104] If A is the infinitesimal generator of a differentiable semigyou
then for everyr € X the initial value problem of th& valued functionu(t)

has a unique solution.
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Since an operator on a finite-dimensional normed space isreded linear operator
if and only if it is a continuous linear operator [93]. Ody, £1 and L, in Chapters 3 and
4 are clearly continuous, hence bounded linear operatdrs bdundedness of the solution
regarding a linear operator.

Theorem 9.10. [80][p118] Let A be the infinitesimal generator of an analytic semigroup
eAt I
o=sup{ReA: A €c(A)} <0

then there are constant®/ > 1 andy > 0 such that|e?t|| < Me #,

whereo here stands for the spectrum of the linear operator

9.9 Eigenvalues of A Simple Matrix

Lemma 9.11. For a matrix M of the following structure:

0 O
mi1 Mo

with my negative definite, top-left zero sub-matrix amg squares matrices, anths in-
vertible. Then the zero eigenvalues from the top-left zatomatrix are simple (ie. with
algebraic multiplicity 1), and all other eigenvalues nagat

Proof. We first prove that all the zero eigenvalues from the topdaefimatrix are simple.
Since the top-left zero matrix is a square matrix, we assumaaimension ig. We con-
struct the following vector of sizg,

e =

with 1 as the entryl € {1,...,k}.
Then we can construct an eigenvectpthrough eacle;,

€]
v = 1
—m, mie
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It is easy to check by the definition of eigenvectors thatare proper eigenvectors
for eigenvalue zero,
Muv; =0 =0y

It is also easy to see that all the eigenvectgrandv; are orthogonal it # I/,
(o) =0 (1#1).

Therefore, each zero eigenvalue has independent eigenveatthe zero eigenval-
ues are simple. The second statement is straightforwarde si; is negative definite, all
it's eigenvalues are negative. O

9.10 An Inequality of Matrix Norm

Definition 9.12. [40] Let ||e|| be a vector norm o©™. Define|e|| on C"*" by
14]] = sup|Az|

wherex € C".

Theorem 9.13.[40] The matrix norm defined in Definition 9.12 satisfies

[Az|| < [ Allll]|
and
1] = 1.
If £is alinear operator applied on a square mattjand the following holds
le“tA] < C||A|
then we say
le“tAll < C

wheret denotes time(' is a constant changes from occurrence to occurrence.

9.11 Order Preservation on the Diagonal of a Matrix

In the first case, we let andq be as defined in (3.5), with decomposed as
a=PDP !,
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whereD is a diagonal matrix of eigenvalues @f

D, 0
D={"" | ,
0 lp,

andU is the corresponding matrix of eigenvectors; and the diagdiffusion matrix can

be written as
q= <Q1 0 )
— ) .
0 <@

. <qf Lo )
qQ = -1
0 eqqy

D= (P 0 oy
0 Dagy !

hence,
and consequently,

In the second case, we letandq be as defined in (4.6), with decomposed as
a=PDP !,
whereD is a diagonal matrix of eigenvalues af
D
2= 4n)
and P is the corresponding matrix of eigenvectors; and the diagdiffusion matrix can

be written as
q= a1 O
0 g

hence,

and consequently,

Dygit 0
Dq'=qD 7! = 14 L] =00).
0 Doqy

Therefore, for both averaging and homogenization problemeshaveDq~! =
O(1), whereD is diagonal matrix of eigenvalues of the drift matsixandq the diffusion
matrix.
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Lemma 9.14. We let(a, q) be as defined i3.5) or in (4.6), let¥ = U~ q(U~1)7, then
the elements on the diagonal of matfi®>~1);; = O(1), and thusD;; /%;; = O(1).

Proof. By the definition of%, we know
£ =P lqP)T;

We know immediately thall is a real symmetric matrix, hence it can be decomposed using
Singular Value Decomposition,
Y =Vsv!

whereV is unitary, andS is a diagonal matrix of singular values. Due to symmetry.of
the singular values;; = |Aii|, for which Ai: are the eigenvalues &f, and are of same
orders agy, which is east to prove. Hence,

Dy '=pvs v l=vpslv1.

It follows with our first result
(DX 1) = O(1) (9.1)

Y1 X
Y ;1 12 .
Yig Y2
for which X1, € R4%d1| 31,5 € R%2%d2 gnd¥;, € R4 *d2

Using block matrix inversion formula in Appendix 9.5, we bathe diagonal blocks
of 271,

Then we write> as

EHn = S - ZeXeXh) !
(X e = Yo + 35810211 — B19X0 8, 18135

By equation (9.1), we have
(S11 — T12890%15) ' = D15 = O(1)
from which we can conclude

Y1 = 0(1) s E122222,{2 = 0(1) :
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Again by equation (9.1),

(@) (2521 + 25 019(811 — 2122222{2)_12122521)
= O (33 + X5 T120% 1955,

whereC'is an orderO(1) matrix, and this block matrix is of orde&?(¢) for averaging and
O(€?) for homogenization. By previous equation

Y1980, = 0(1)

we have
Y120%1955, = O(1) .

therefore in averaging,

1
22_21 = 0(6) SO 222 = O(E)

and in homogenization
_ 1
Yor =O0(?) so Yoo = (9(6—2)
Consequently, we have
DZ-Z-/EZ-Z- = 0(1) .
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