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9.6 Hölder’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 141

9.7 The Continuous-time Ergodic Theorem . . . . . . . . . . . . . . . .. . . 141

9.8 Some Quoted Properties of Linear Operator . . . . . . . . . . . .. . . . . 141

9.9 Eigenvalues of A Simple Matrix . . . . . . . . . . . . . . . . . . . . . .. 142

9.10 An Inequality of Matrix Norm . . . . . . . . . . . . . . . . . . . . . . .. 143

9.11 Order Preservation on the Diagonal of a Matrix . . . . . . . .. . . . . . . 143

iii



Acknowledgments

Foremost, I would like to express my deepest gratitude to my supervisors, Professor Andrew

Stuart and Doctor Anastasia Papavasiliou, for their continuous support through my PhD

study, research and professional development, for the motivation, guidance, patience and

knowledge they have provided through my PhD study. This thesis can not have been made

possible without their guidance and tutorship. So, here again, I express my most sincere

gratitude to their assistance.

I would also like to thank the members of the Applied Maths andStatistics seminar

group and research fellows for their fruitful thoughts, critical but constructive comments

and advices, assistance and help, especially KonstantinosZygalakis, Simon Cotter, Yvo

Pokern, Jochen Voss and David White.

I am also thankful to the financial support provided by the University Warwick Vice-

Chancellor’s studentship, and the internship opportunityprovided by International Mone-

tary Fund to practice my learnings.

Last but not least, I would like to thank my parents for their continuing support

through my life, and for the opportunity to study at Warwick.

iv



Declarations

The work contained in this thesis is original, except as acknowledged, and has not been

submitted previously for a degree at any university. To the best of my knowledge and

belief, this thesis contains no material previously published or written by another person,

except where due reference is made.

v



Abstract

Multiscale methods such as averaging and homogenization have become an in-
creasingly interesting topic in stochastic time series modelling. When applying the av-
eraged/homogenized processes to applications such as parameter estimation and filtering
problems, the resulting asymptotic properties are often weak. In this thesis, we focus on
the above mentioned multiscale methods applied on Ornstein-Uhlenbeck processes. We
find that the maximum likelihood based estimators for the drift and diffusion parameters
derived from the averaged/homogenized systems can use the corresponding marginal mul-
tiscale data as observations, and still provide a strong convergence to the true value as
if the observations are from the averaged/homogenized systems themselves. The asymp-
totic distribution for the estimators are studied in this thesis for the averaging problem,
while that of the homogenization problem exhibit more difficulties and will be an interest
of future work. In the case when applying the multiscale methods to the Kalman filter of
Ornstein-Uhlenbeck systems, we study the convergence between the marginal covariance
and marginal mean of the full scale system and those of the averaged/homogenized systems,
by measuring their discrepancies.

In Part III, we study real world projects of time series modelling in the field of
econometrics. Chapter 7 presents a modelling project on interest rate time series from the
well known Nelson-Siegel yield curve model. The methodology shows a development from
standard Vector Autoregressive model to Bayesian based heteroscedastic regression model.
Gibbs sampling is used as the Monte Carlo method. Chapter 8 presents a model comparison
in modelling a portfolio of economic indices between constant correlation GARCH and
Dynamic Conditional Correlation GARCH models. It comparesthe two models suitability
in capturing the effect of “volatility clustering”.
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Chapter 1

Introduction

The problem of parameter estimation for autoregressive (AR) type time series has long been

a very popular topic. A large amount of literature focuses onparameter estimation problems

for AR type models under different setups. In this thesis, wepresent parameter estimation

strategies of AR type models within the framework of Ornstein Uhlenbeck stochastic dif-

ferential equations in Part I and II, where the data are provided continuously, except when

discretization is necessary. We present the problem withinthe Bayesian framework in Part

III, where the data are provided discretely since it is basedon real world applications.

Parameter estimation forms an essential part of the statistical inference methodolo-

gies, especially for standard models such as Ornstein Uhlenbeck processes. In recent liter-

atures, such as [1, 2, 69, 72], model fitting of multiscale data has become a popular topic in

this area, since the finite dimensional data with different scales often become inconsistent

with model at small scales when applying standard statistical inference methods. The dis-

crepency between the estimated and true values of the parameters of the model could deviate

significantly. Furthermore, the methods presented in [72] gives a general set of models, but

a weak convergence for the estimators. For applications in real practice, this motivates us

to study the asymptotic behaviour of the estimators in a strong sense for the model at small

scales. For ease of approach, we focus on the Ornstein Uhlenbeck processes as a point of

attack, since the problem of parameter estimation for Ornstein-Uhlenbeck (OU) processes

has been extensively studied in the literature. Discussions of maximum likelihood estima-

tors for the drift and diffusion parameters of an OU process and their asymptotic properties

can be found in [11, 54, 66].

The problem of parameter estimation for stochastic differential equation within the

multiscale framework had already been studied for some certain types of multiscale setup.

In [6, 7], the authors discuss maximum likelihood estimation of drift and diffusion param-

eters of a scalar OU processxt, when data is observed from a scaled smoothed OU process
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yt =
1
ǫ

∫ t
t−ǫ xsds. They conclude that the observation time step∆ and total number of ob-

servationsN should both be functions ofǫ, in order to preserve asymptotic consistency and

efficiency. In addition, [5] also constructs an adaptive subsampling scheme to be applied

in a Triad model. Another paper discussing parameter estimation for OU processes in the

multiscale framework is [1]. It studies the problem of estimating integrated diffusion under

the existence of microstructure noise. It assumes the hidden process follows an Itô diffusion

process, and tries to estimate the integrated diffusion parameter, while observing data with

microstructure additive noise. It proposes a subsampling and aggregating scheme to ensure

the consistency and statistical efficiency of the estimator.

In Part I, we focus on a different set up of the multiscale framework, which is

discussed in detail in [78]. Within this framework, weak convergence of drift estimator

for a general type of Itô SDE is discussed in [73]. Weak driftand diffusion estimatiors

for a Langevin equation is discussed in [79]. In this thesis,we observe data from the slow

variable of a two (averaging) or three (homogenization) time-scale system of OU stochastic

differential equations, and estimate the drift and diffusion parameters for the coarse-grained

equation for the slow variable. We will show that the maximumlikelihood based drift and

diffusion estimators are asymptotically consistent, in a strong sense.

After we have investigated the behaviour of maximum likelihood estimators for the

data with small scales in a finite dimensional multiscale framework, it comes natural to us

that we want to further utilize the feature of averaging and homogenization in a wider area

of applications. One of the most popular area in stochastic modelling is filtering. Studying

the behaviour of multiscale filtering can be useful in many areas, such as analysis of signal

processing, dynamical systems and meterology and oceanic modelling. Multiscale filter-

ing can aid accurate estimate of the small scale component, which reveals the microscopic

stochastic nature of the data, while also significantly reduces the demand for computational

resources, which make simultaneous estimates more cheaplyachievable or even from im-

possible to possible. These reasons directly motivate us toinvestigate this methodology in

the context of averaging and homogenization.

Though multiscale filtering is a recently developed topic, it has already been stud-

ied in many literatures. In [62], the authors studied mathematical strategies for filtering

turbulent dynamical systems. The approach involves the synergy of rigorous mathematical

guidelines, exactly solvable nonlinear models with physical insight, and novel cheap algo-

rithms with judicious model errors to filter turbulent signals with many degrees of freedom.

[76] studied nonlinear filtering problems for the optimal filter of the slow component of a

two-scale system, where the fast scale component is ergodic.

Applications of multiscale linear filter has been extensively studied in the context

of signal processing, such as [75, 91]. [41] presented a complete study of the limiting

2



behaviour of the homogenization problem following SPDEs ofthe form

dpǫ(t, x) = Lǫ(t)pǫ(t, x)dt +M ǫ(t)pǫ(t, x)dWt

where

Lǫ = ▽xi(a
ij(x/ǫ, Zǫ/ǫ)▽xj ·)

and

M ǫ
k(t) = hk(xt/ǫ, Z

ǫ
t /ǫ)

for whichZǫt follows dZǫt = f(Zǫ/ǫ)dt +QdWt. [65] discussed filtering problems where

the underlying SDE follows

dx = g(x/ǫ)xdt + σ(x/ǫ)dw

with observations taken fromdz = h(x/ǫ)xdt, for whichg, σ andh lie on a unit torus on

R
n.

In Part II, we focus on the problem of linear filtering for the multiscale system

studied in Part I. The observations we consider contain two sources of discrepancies, the

discrepancy between the slow part of the multiscale system and the averaged/homogenized

process, and the discrepancy between the actual model and the observed data. We apply

Kalman filter to the contaminated observation from the slow part of the multiscale system,

to show that the marginal Kalman filter for the slow part of thesystem converges to the

filtered distribution of the averaged/homogenized process.

Part III studies the problem of AR type derived time series models fitted in real

world applications. Autoregressive model is one of the standard tool in time series data

analysis. Autoregressive models are the most established models in time series forecast-

ing. In this part, we integrate the autoregressive models with Bayesian methods and im-

plemented through Markov Chain Monte Carlo to build specifictime series hierarchical

models for time series forecasting.

In Chapter 7, we will show a step-by-step construction of theAR model from a stan-

dard Vector Autoregressive model to a Bayesian Heteroscedastic Regression model, imple-

mented using Monte Carlo methods. The underlying data is thenominal interest rates from

the Nelson Siegel yield curve model. The reason behind the choice of Bayesian method is

that we believe the nature of the time series has been distorted significantly by the recent

crisis, which made standard regression not plausible. We believe that Bayesian updating

scheme is a good feature that can be added to the model to make plausible predictions.

In Chapter 8, we fit the GARCH type of the AR model to diagnose the volatility

structure of a group of multivariate time series data, underthe presence of volatility clus-

3



tering. The underlying data is a portfolio of 8 indices representing a wide area of economic

aspects. Since the aim of this project is to reconstruct the cross-correlation between compo-

nents of the time series under the presence of volatility clustering, we opt for the GARCH

model, and compare the performance of the Constant Correlation (CC) and Dynamic Con-

ditional Correlation (DCC) modifications of the model. The reason we choose GARCH

model is that it is the best tool in volatility modelling. We also expect that the DCC version

of the GARCH model would represent the evolution of the correlations across the indices.

In this thesis, we useC or c to denote an arbitrary constant which can vary from

occurrence to occurrence. For the simplicity of notation, we will write xn (or yn, Xn)

instead ofx(nδ) (resp.y(nδ),X(nδ)) for the discretized process. To simplify on notation,

we may sometimes omit the tensor product sign⊗, where we actually mean matrix/vector

product as tensor products. Similarly, will often use(·)2 to denote a square under tensor

product, and for any matrix
√
m, we definem asm =

√
m
√
m

∗. When data is observed

discrete, we useδ to denote the time increment observations are provided, and∆ to denote

the time increment observations are taken.

4
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Chapter 2

The Ornstein-Uhlenbeck (OU)

Process

A vector valued Ornstein Uhlenbeck (OU) process is defined asthe solution of a stochastic

differential equation of the form

dX

dt
= a(X − µ) +

√
σ
dW

dt
. (2.1)

When the drift matrixa is negative definite, and the diffusion matrixσ is positive definite

diagonal, the process is ergodic. The solutionX can be written in closed form,

X(t) = (I − eat)µ+ eatX(0) +

∫ t

0
ea(t−s)

√
σdWs . (2.2)

When this process is ergodic, we take the limit in time,

lim
t→∞

X(t) = µ+ lim
t→∞

∫ t

0
ea(t−s)

√
σdWs . (2.3)

This is clearly a Gaussian random variable, with meanµ, and varianceσ∞, for which,

vec(σ∞) = (−a⊕−a)−1vec(σ), (2.4)

where⊕ denotes the Kronecker sum, andvec(·) denotes the vectorization of the matrix by

stacking its columns into a single column vector. Using thisinvariant property, the drift and

diffusion parameters can be easily estimated. The following known results can be found in

[11, 54, 66].

Theorem 2.1. Assume we are given continuous observations from an Ornstein Uhlenbeck

processX defined in(2.1). Then the maximum likelihood estimator for the drift parameter

6



âT , defined as

âT =

(∫ T

0
dX ⊗X

)(∫ T

0
X ⊗Xdt

)−1

(2.5)

is asymptotically unbiased and converges almost surely toa asT → ∞. It is also asymp-

totically normal, as

√
T (âT − a)

D→ N (0, σ∞) as T → ∞ .

Theorem 2.2.Assume we are given a discretized realizationXn = X(nδ) from an Ornstein-

Uhlenbeck process defined in(2.1)with time stepδ. The maximum likelihood estimatorσ̂δ,

defined as

σ̂δ =
1

T

N−1∑

n=0

(Xn+1 −Xn)⊗ (Xn+1 −Xn) . (2.6)

is asymptotically unbiased and converges almost surely toσ asδ → 0, whileT is fixed, and

Xn = X(nδ). In addition, it is asymptotically normal as

1√
δ
(σ̂δ − σ)

D→ N
(

0,
2σ2

T

)

as δ → 0 .

Some key steps in the proof of these theorems are the following:

∫ T

0
X(t) ⊗ dWt

D→ N (0, Tσ∞) as T → ∞ ,

and ∫ T

0
X(t)⊗X(t)dt → Tσ∞ a.s., as T → ∞ .

In Part I, we use the estimators defined in (2.5) and (2.6) to fitthe data coming

from equations (3.1a) in Chapter 3 and (4.1a) in Chapter 4. Our main goal is to study

their asymptotic properties. In chapter 3, we discuss parameter estimation problem in the

averaging setup, where the data comes from equation (3.1a);while in chapter 4, we study

the parameter estimation problem in the homogenization setup corresponding to equation

(4.1a).

Another result which will be useful to us is an extended version of the maximal

inequality result from Theorem 2.5 in [34]. The theorem states that the expected supremum

of a stopped scalar OU process is bounded in terms of the driftand its stopping time. We

convert this result to suit a vector valued OU process.

Theorem 2.3.Let(X(t))t≥0 be the Ornstein-Uhlenbeck process solving(2.1)withX(0) =

x0, whereW is a standard Brownian Motion. Then there exists universal constantC > 0,

7



such that

E

(

sup
0≤t≤T

‖X(t)‖2
)

≤ C
log (1 + maxi(|Dii|)T )

mini(|Dii/Σii|)

wherea = PDP−1 is the eigenvalue diagonalization of the drift matrixa, which only has

real eigenvalues;D is the diagonal matrix of eigenvalues ofa with the scales of eigenvalues

sorted in increasing magnitude from top-left to lower-right entries. Note thatP is the

normalized matrix of corresponding eigenvectors. Finally, Σ = P−1σ(P−1)∗. ‖·‖ is the

Euclidean norm.

A maximal bound for complex valued OU processes is discussedin Theorem A.1

in [74].

Proof. We prove this theorem by doing a linear transformation forX(t). By assumption,

we can writea = PDP−1. LetX ′(t) be

X ′(t) = P−1X(t),

Then, we can rewrite equation (2.1) as

dX ′(t) = DX ′(t)dt+ P−1√σdWt.

SinceP−1√σWt is a linear combination of the vector valued Brownian motionWt,

we can define a new Brownian motion, by defining a positive definite symmetric matrix

Σ = P−1σ(P−1)∗, √
ΣdW ′

t = P−1√σdWt .

Furthermore, by the time change property of Brownian motions, we can rescaleW ′
t

as
√

ΣiidW
′
t/Σii

= dW̃i,t

whereΣii is theith entry on the diagonal ofΣ. We can rewrite the OU process in scalar

form, for equationi,

dX ′(t/Σii)i = (Dii/Σii)X
′(t/Σii)idt+ dW̃i,t.

Notice that theW̃i,t andW̃j,t for i 6= j are correlated, however, this does not undermine the

assumption of Theorem 2.5 in [34], sincẽWi,t is a standard Brownian motion. We apply
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Theorem 2.5 in [34] to each transformed equation above, we have

E

(

sup
0≤t≤T

|(X ′(t))i|
)

= E

(

sup
0≤t≤ΣiiT

|(X ′(t/Σii))i|
)

≤ C

√
√
√
√ log

(

1 + |Dii

Σii
Σii|T

)

|Dii/Σii|

≤ C

√

log (1 + |Dii|T )
|Dii/Σii|

.

From the transformation, we know

E

(

sup
0≤t≤T

|X(t)i|
)

≤ ‖Pi‖E
(

sup
0≤t≤T

|X ′(t)i|
)

≤ ‖Pi‖E
(

sup
0≤t≤TΣii

|X ′(t/Σii)|
)

.

wherePi is theith row of P , which are normalized eigenvectors. Consequently we have

the result,

E

(

sup
0≤t≤T

‖X(t)‖
)

≤ Cmax
i

(‖Pi‖)
√

log (1 + maxi(|Dii|)T )
mini (|Dii/Σii|)

,

hence,

E

(

sup
0≤t≤T

‖X(t)‖2
)

≤ Cmax
i

(‖Pi‖2)
log (1 + maxi(|Dii|)T )

mini(|Dii/Σii|)
.

SincePi are normalized eigenvectors ofa, ‖Pi‖2 = 1, thus

E

(

sup
0≤t≤T

‖X(t)‖2
)

≤ C
log (1 + maxi(|Dii|)T )

mini(|Dii/Σii|)
.
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Chapter 3

Parameter Estimation for the

Averaged Equation of a Multiscale

OU Process

3.1 Introduction

In this chapter, we consider the following fast/slow systemof stochastic differential equa-

tions

dx

dt
= a11x+ a12y +

√
q1
dU

dt
(3.1a)

dy

dt
=

1

ǫ
(a21x+ a22y) +

√
q2
ǫ

dV

dt
(3.1b)

for whichx ∈ X , y ∈ Y. We may takeX asRd1 andY asRd2. The case whereX is T
d1,

andY is T
d2 is discussed in [78]. We assume we observe data generated by the projection

onto thex coordinate of the system. We also make the following assumptions.

Assumptions 3.1.

We assume that

(i) U, V are independent standard Brownian motions;

(ii) q1, q2 are positive definite diagonal matrices;

(iii ) 0 < ǫ≪ 1;

(iv) the system’s drift matrix
(

a11 a12
1
ǫa21

1
ǫa22

)

10



only have negative real eigenvalues whenǫ is sufficiently small;

(v) x(0) andy(0) are independent ofU andV , (x(0), y(0)) is under the invariant mea-

sure of system(3.1), andE
(
‖x(0)‖2 + ‖y(0)‖2

)
<∞.

Remark 3.2. Assumption 3.1(iv) guarantees the ergodicity of the system(3.1) whenǫ is

small.

Remark 3.3. Though we assumed the whole system(3.1) to be ergodic through assumption

3.1(iv). In other words, we assumeda22 anda11 − a12a
−1
22 a21 to be negative definite. We

believe it may be relaxed to complex eigenvalues with negative real parts. Drift matrix with

complex eigenvalues may be of interest to further work.

Remark 3.4. Assumption 3.1(ii) assumes diagonal matrices for the diffusion parameters

q1 andq2, which ensures independence of Brownian motions. However,we believe thatq1
andq2 being positive definite symmetric should be sufficient to guarantee the same results

in this chapter, since Brownian motions can be rescaled in time and linearly combined to

obtain an equivalent Brownian motion in distribution with diagonal diffusion matrix. We

make this assumption for simplicity of notation.

In what follows, we will refer to the following equation as the averaged equation

for equation (3.1a),
dX

dt
= ãX +

√
q1
dU

dt
, (3.2)

where

ã = a11 − a12a
−1
22 a21 . (3.3)

In the rest of this chapter,

• we take observations from the multiscale system (3.1a);

• we first show that the discrepancy between the trajectories from the slow partx of the

multiscale system (3.1a) and the averaged equation (3.2) isof orderO(
√
ǫ) in theL2

sense, in Section 3.2;

• we then show that using observations from the multiscale system (3.1a) and applying

them to the drift estimator̂aT , defined in (2.5), we can correctly estimate the driftã

of the averaged equation (3.2) in Section 3.3, and study the asymptotic normality of

the estimator in Section 3.4;

• we also show that using observations from the multiscale system (3.1a) and applying

them to the diffusion estimator̂σδ, defined in (2.6), we can correctly estimate the

diffusion parameterq1 of the averaged equation (3.2) in Section 3.5, and study the

asymptotic normality of the estimator in Section 3.6;
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• finally a numerical example is studied to illustrate our findings in Section 3.7.

3.2 The Paths

In this section, we show that the projection of system (3.1) onto thex coordinate converges

in a strong sense to the solutionX of the averaged equation (3.2). Our result extends that of

Theorem 17.1 in [78], where the state spaceX is restricted toT and the averaged equation

is deterministic. Assuming that the system is an OU process,the domain can be extended

toR and the averaged equation can be stochastic. We prove the following lemma first.

Lemma 3.5. Suppose that(x, y) solves (3.1a) and Assumptions 3.1 are satisfied. Then, for

finiteT > 0, andǫ small

E sup
0≤t≤T

(
‖x(t)‖2 + ‖y(t)‖2

)
= O

(

log(1 +
T

ǫ
)

)

(3.4)

where‖·‖ is the vector norm, and the order is in terms ofǫ.

Proof. We look at the system of SDEs as,

dxt = axtdt+
√
qdWt (3.5)

where

x =

(

x

y

)

, a =

(

a11 a12
1
ǫ a21

1
ǫ a22

)

andq =

(

q1 0

0 q2
ǫ

)

.

We try to characterize the magnitude of the eigenvalues ofa. To find the eigenval-

ues, we require

det(a− λI) = 0 .

For block matrices, the equation above can be rearranged to,

det

(
1

ǫ
a22 − λI

)

det

(

(a11 − λI)− a12(
1

ǫ
a22 − λI)−1 1

ǫ
a21

)

= 0 .

First, we set the first determinant equal to zero:

det

(
1

ǫ
a22 − λI

)

=
1

ǫd2
det (a22 − ǫλI) = 0 .

By definition,ǫλ are the eigenvalues ofa22, thus they are of orderO(1). Consequently, we

haved2 (not necessarily distinct) real eigenvalues of orderO(1ǫ ).
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If the determinant of the second matrix is zero, we have

det

(

(a11 − λI)− a12(
1

ǫ
a22 − λI)−1 1

ǫ
a21

)

= 0 .

We apply Taylor expansion on(a22 − ǫλI)−1 at ǫ = 0. We have,

(a22 − ǫλI)−1 = a−1
22 + ǫλa−2

22 +O(ǫ2) .

We substitute the above expansion into the determinant,

det
(
a11 − a12(a

−1
22 + ǫλa−2

22 +O(ǫ2))a21 − λI
)
= 0 ,

and we find it is equivalent to finding the eigenvalues of a perturbed matrix of̃a,

det
(
ã− ǫλ(a12a

−2
22 a21)−O(ǫ2)− λI

)
= det (ã+O(ǫ)− λI) = 0 .

By Theorem 2 in [42], on the eigenvalues of a perturbed matrix, we know that the

correspondingd1 (not necessarily distinct) real eigenvalues are of orderO(1). Therefore,

we can decomposea as

a = PDP−1 with D =

(

D1 0

0 1
ǫD2

)

whereD is the diagonal matrix, for whichD1 ∈ R
d1×d1 andD2 ∈ R

d2×d2 are diagonal

blocks of the eigenvalues of orderO(1). We also defineΣ = P−1
q(P−1)∗. Using Lemma

9.14 in Appendix 9.11, we have the ratio between diagonal elements ofD andΣ is always

Dii/Σii = O(1) .

We apply Theorem 2.3 to the system of equations (3.5). We have

E

(

sup
0≤t≤T

‖x(t)‖2
)

≤ C
log (1 + maxi(|Dii|)T )

mini(|Dii/Σii|)
.

SinceDii/Σii = O(1), maxi |Dii| = O(1ǫ ), we have

E

(

sup
0≤t≤T

‖x(t)‖2
)

= O (log(1 + T/ǫ)) .
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Sincex =

(

x

y

)

, we get

E

(

sup
0≤t≤T

(
‖x(t)‖2 + ‖y(t)‖2

)

)

= O
(

log(1 +
T

ǫ
)

)

.

This completes the proof.

Theorem 3.6. Let Assumptions 3.1 hold for system(3.1). Suppose thatx andX are solu-

tions of (3.1a) and(3.2)respectively, corresponding to the same realization of theU process

andx(0) = X(0). Then,x converges toX in L2. More specifically,

E sup
0≤t≤T

‖x(t)−X(t)‖2 ≤ c(ǫ2 log(
T

ǫ
) + ǫT )eT ,

whenT is fixed finite, the above bound can be simplified to

E sup
0≤t≤T

‖x(t)−X(t)‖2 = O(ǫ).

Proof. For auxiliary equations used in the proof, please refer to the construction in [78].

The generator of system (3.1) is

Lavg =
1

ǫ
L0 + L1,

where

L0 = (a21x+ a22y) · ∇y +
1

2
q2 : ∇y∇y

L1 = (a11x+ a12y) · ∇x +
1

2
q1 : ∇x∇x

To prove that theL2 error between the solutionsx(t) andX(t) is of orderO(
√
ǫ), we first

need to find the functionΦ(x, y) which solves the Poisson equation

−L0Φ = a11x+ a12y − ãx ,

∫

Y
Φρ(y;x)dy = 0; (3.6)

whereρ(y;x) is the invariant density ofy in (3.1b) withx fixed. In this case, the partial

differential equation (3.6) is linear and can be solved explicitly

Φ(x, y) = Φ(y) = −(a12a
−1
22 )y. (3.7)
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Applying Itô formula toΦ(x, y), we get

dΦ

dt
=

1

ǫ
L0Φ+ L1Φ+

1√
ǫ

√
q2∇yΦ

dVt
dt
,

and substituting into (3.1a) gives

dx

dt
= (ãx− L0Φ) +

√
q1
dUt
dt

= ãx− ǫ
dΦ

dt
+ ǫL1Φ+

√
ǫ
√
q2∇yΦ

dVt
dt

+
√
q1
dUt
dt

. (3.8)

Define

θ(t) := (Φ(x(t), y(t)) − Φ(x(0), y(0))) −
∫ t

0
(a11x(s) + a12y(s)) · ∇xΦds.

From (3.7), we see thatΦ does not depend onx and thus

θ(t) = Φ(x(t), y(t)) − Φ(x(0), y(0))

= −(a12a
−1
22 )(y(t)− y(0)). (3.9)

Now define

M(t) := −
∫ t

0

√
q2∇yΦ(x(s), y(s))dVs

= −
∫ t

0

√
q2(a12a

−1
22 )

∗dVs.

Itô isometry gives

E‖M(t)‖2 = ct (3.10)

The solution of (3.1a) in the form of (3.8) is

x(t) = x(0) +

∫ t

0
ãx(s)ds + ǫθ(t) +

√
ǫM(t) +

√
q1

∫ t

0
dUs .

Also, from the averaged equation (3.2), we get

X(t) = X(0) +

∫ t

0
ãX(s)ds+

√
q1

∫ t

0
dUs .
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Let e(t) = x(t)−X(t). By assumption,e(0) = 0 and

e(t) =

∫ t

0
ã (x(s)−X(s)) ds+ ǫθ(t) +

√
ǫM(t) . (3.11)

Then,

‖e(t)‖2 ≤ 3‖ã
∫ t

0
e(s)ds‖2 + 3ǫ2‖θ(t)‖2 + 3ǫ‖M(t)‖2 .

By applying Lemma 3.5 on (3.11), the Burkholder-Davis-Gundy inequality (see

Appendix 9.2) and Hölder’s inequality (see Appendix 9.3),we get

E

(

sup
0≤t≤T

‖e(t)‖2
)

≤ c

(∫ T

0
E‖e(s)‖2ds+ ǫ2 log(

T

ǫ
) + ǫT

)

≤ c

(

ǫ2 log(
T

ǫ
) + ǫT +

∫ T

0
E sup

0≤u≤s
‖e(u)‖2ds

)

.

By Gronwall’s inequality, we deduce that

E

(

sup
0≤t≤T

‖e(t)‖2
)

≤ c(ǫ2 log(
T

ǫ
) + ǫT )eT .

WhenT is fixed, we have

E

(

sup
0≤t≤T

‖e(t)‖2
)

= O (ǫ) .

This completes the proof.

3.3 The Drift Estimator

Suppose that we want to estimate the drift of the processX described by (3.2), but we

only observe a solution{x(t)}t∈(0,T ) of (3.1a). According to the previous theorem,x is a

good approximation ofX, so we replaceX in the formula of the MLE (2.5) byx. In the

following theorem, we show that the error we will be making isinsignificant, in a sense to

be made precise.

Theorem 3.7. Suppose thatx is the projection to thex-coordinate of a solution of system

(3.1) satisfying Assumptions 3.1. LetâǫT be the estimate we get by replacingX in (2.5) by
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x, i.e.

âǫT =

(∫ T

0
dx⊗ x

)(∫ T

0
x⊗ xdt

)−1

. (3.12)

Then,

lim
ǫ→0

lim
T→∞

E‖âǫT − ã‖2 = 0 .

Proof. We define

I1 =
1

T

∫ T

0
dx⊗ x and I2 =

1

T

∫ T

0
x⊗ xdt.

By ergodicity, which is guaranteed by Assumptions 3.1(iii) and (iv)

lim
T→∞

I2 = E(x⊗ x) = C 6= 0 a.s.,

which is a constant invertible matrix. We expanddx using Itô formula applied onΦ as in

(3.8):

I1 = J1 + J2 + J3 + J4 + J5

where

J1 =
1

T

∫ T

0
ãx⊗ xdt

J2 =
ǫ

T

∫ T

0
dΦ ⊗ x

J3 =
ǫ

T

∫ T

0
L1Φ⊗ xdt

J4 =

√
ǫ

T

∫ T

0
∇yΦ

√
q2dVt ⊗ x

J5 =
1

T

√
q1

∫ T

0
dUt ⊗ x

It is obvious that

J1 = ãI2.

SinceΦ is linear iny, and by Itô isometry, we get

E
(
‖J4‖2

)
=

cǫ

T
E‖ 1
T

∫ T

0
dVt ⊗ x(t)‖2

=
cǫ

T
E

(
1

T

∫ T

0
‖x(t)‖2dt

)
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by ergodicity, we have

E
(
‖J4‖2

)
=
cǫ

T
.

Similarly for J5,

E
(
‖J5‖2

)
=

c

T
E‖ 1
T

∫ T

0
dUt ⊗ x(t)‖2

=
c

T
E

(
1

T

∫ T

0
‖x(t)‖2dt

)

=
c

T

We knowΦ is independent ofx, so

J3 ≡ 0.

Finally, using (3.7) and (3.1b) we breakJ2 further into

J2 = − 1

T

∫ T

0
(a12a

−1
22 )(a21x+ a22y)⊗ xdt− a12a

−1
22

√
ǫq2

T

∫ T

0
dVt ⊗ x

Again, using Itô isometry and ergodicity, we bound theL2 norm of the second term by

E‖a12a
−1
22

√
ǫq2

T

∫ T

0
dVt ⊗ x‖2 ≤ cǫ

T
.

By ergodicity, the first term converges inL2 asT → ∞,

−a12a
−1
22

T

∫ T

0
(a21x+ a22y)⊗ xdt → −a12Eρǫ

(
(a−1

22 a21x+ y)⊗ x
)
.

We write the expectation as

Eρǫ
(
(a−1

22 a21x+ y)⊗ x
)
= Eρǫ

(
Eρǫ

(
(a−1

22 a21x+ y)⊗ x|x
))

Clearly, the limit ofρǫ conditioned onx is a normal distribution with mean−a−1
22 a21x by

(2.3). Thus, we see that

lim
ǫ→0

Eρǫ
(
(a−1

22 a21x+ y)⊗ x
)
= 0.

Putting everything together, we see that

lim
ǫ→0

lim
T→∞

(I1 − ãI2) = 0 in L2

Since the denominatorI2 of âǫT converges almost surely, the result follows.
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3.4 Asymptotic Normality for the Drift Estimator

We extend the proof of theorem 3.7 to prove asymptotic normality for the estimator̂aǫT . We

have seen that

âǫT − ã = (J2 + J4 + J5)I
−1
2 .

We will show that

√
T
(
âǫT − ã+ a12Eρǫ

(
(a−1

22 a21x+ y)⊗ x
)) D→ N

(
0, σ2ǫ

)

and compute the limit ofσ2ǫ as ǫ → 0. First we apply the Central Limit Theorem for

martingales toJ4 andJ5 (see [36]). We find that

√
TJ4

D→ N
(
0, σ(4)2ǫ

)
as T → ∞,

where

σ(4)2ǫ = ǫa12a
−1
22 q2a

−1
22

∗
a∗12Eρǫ(x⊗ x);

and √
TJ5

D→ N
(
0, σ(5)2ǫ

)
as T → ∞,

where

σ(5)2ǫ = q1Eρǫ(x⊗ x).

We writeJ2 = J2,1 + J2,2 where

J2,1 = −a12a
−1
22

T

∫ T

0
(a21x+ a22y)⊗ xdt and J2,2 = −a12a

−1
22

√
ǫq2

T

∫ T

0
dV ⊗ x.

Once again, we apply the Central Limit Theorem for martingales toJ2,2 and we find

√
TJ2,2

D→ N
(
0, σ(2, 2)2ǫ

)
as T → ∞

where

σ(2, 2)2ǫ = ǫa12a
−1
22 q2a

−1
22

∗
a∗12Eρǫ(x⊗ x).

Finally, we apply the Central Limit Theorem for functionalsof ergodic Markov Chains to

J2,1 (see [16]). We get

√
T
(
J2,1 + a12Eρǫ

(
(a−1

22 a21x+ y)⊗ x
)) D→ N

(
0, σ(2, 1)2ǫ

)
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asT → ∞, where

σ(2, 1)2ǫ =

∫

X×Y
ξ(x, y)ξ(x, y)∗ρǫ(x, y)dxdy

+ 2

∫

X×Y
ξ(x, y)

∫ ∞

0
(P ǫt ξ)(x, y)dtρǫ(x, y)dxdy

with

ξ(x, y) = −
(
a12a

−1
22 a21x+ a12y

)
⊗ x+ E

(
a12a

−1
22 a21x+ a12y

)
⊗ x

and

(P ǫt ξ)(x, y) = E (ξ(x(t), y(t))|x(0) = x, y(0) = y) .

Putting everything together, we get that asT → ∞,

√
T (J2 + J4 + J5) → X2,1 +X2,2 +X4 +X5

in law, whereXi ∼ N (0, σ(i)2ǫ ) for i ∈ {{2, 1}, {2, 2}, 4, 5}. Finally, we note that the

denominatorI2 converges almost surely asT → ∞ to Eρǫ(x(t) ⊗ x(t)). It follows from

Slutsky’s theorem that asT → ∞,

√
T
(
âǫT − ã+ a12Eρǫ

(
(a−1

22 a21x+ y)⊗ x
))

→ Xǫ

in law, where

Xǫ = (X2,1 +X2,2 +X4 +X5)(Eρǫ(x(t)⊗ x(t)))−1 ∼ N (0, σ2ǫ ).

It remains to computelimǫ→0 σ
2
ǫ . We have already seen thatσ(2, 2)2ǫ ∼ O(ǫ) and

σ(4)2ǫ ∼ O(ǫ). Thus, we need to compute

lim
ǫ→0

E ((X2,1 +X5)⊗ (X2,1 +X5))

= lim
ǫ→0

E (X2,1 ⊗X2,1 +X2,1 ⊗X5 +X5 ⊗X2,1 +X5 ⊗X5)

First, we see that

lim
ǫ→0

E(X5 ⊗X5) = q1 lim
ǫ→0

Eρǫ(x⊗ x) = q1E(X ⊗X) = q1q
∞
1

for which the variance of the invariant distribution ofX is defined asvec(q∞1 ) = (−ã ⊕
−ã)−1vec(q1).

To computelimǫ→0 E(X
2
2,1) first we setỹ = a−1

22 a21x + y. Then,(x, ỹ) is also

an ergodic process with invariant distributioñρǫ that converges asǫ → 0 to N (0, q∞1 ) ⊗
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N (0, q∞2 ), for which the variance of the invariant distributionsq∞1 andq∞2 are computed

following (2.4),

vec(q∞1 ) = (−ã⊕−ã)−1vec(q1) , vec(q
∞
2 ) = (−a22 ⊕−a22)−1vec(q2).

Sinceξ(x, ỹ) = −a12ỹ ⊗ x, it follows that

lim
ǫ→0

Eρǫ(ξ(x, ỹ)⊗ ξ(x, ỹ)) = a12
√

q∞2 q
∞
1

√

q∞2
∗
a∗12.

In addition, asǫ → 0, the process̃y decorrelates exponentially fast. Thus

lim
ǫ→0

(P ǫt ξ)(x, y) = a12E(X(t)|X(0) = x)E(ỹ) ≡ 0

for all t ≥ 0. As t→ ∞, the process(x, ỹ) also converges exponentially fast to a mean-zero

Gaussian distribution and thus the integral with respect tot is finite. We conclude that the

second term ofσ(2, 1)2ǫ disappears asǫ→ 0 and thus

lim
ǫ→0

E(X2,1 ⊗X2,1) = a12
√

q∞2 q
∞
1

√

q∞2
∗
a∗12.

Finally, we show that

lim
ǫ→0

E(X2,1 ⊗X5) = 0.

Clearly,X5 is independent of̃y in the limit, since it only depends onx andU . So,

lim
ǫ→0

E(X2,1 ⊗X5) = lim
ǫ→0

E (E(X2,1 ⊗X5|x))

and

lim
ǫ→0

E (E(X2,1|x)) = 0

for the same reasons as above. Similar calculations give

lim
ǫ→0

E(X5 ⊗X2,1) = 0.

Thus

lim
ǫ→0

σ2ǫ =
(

q1q
∞
1 + a12

√

q∞2 q
∞
1

√

q∞2
∗
a∗12
)

(q∞1 )−2 . (3.13)

We have proved the following

Theorem 3.8. Suppose thatx is the projection to thex-coordinate of a solution of system

(3.1)satisfying Assumptions 3.1. LetâǫT be as in(3.12). Then, asT → ∞,

√
T (âǫT − ã)

D→ N (µǫ, σ
2
ǫ ),
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whereµǫ andσǫ are dependent onǫ, whilstµǫ → 0 andσ2ǫ converges to the limit in(3.13)

asǫ→ 0.

3.5 The Diffusion Estimator

Suppose that we want to estimate the diffusion parameter of the processX described by

(3.2), but we only observe a solution{x(t)}t∈(0,T ) of (3.1a). As before, we replaceX in

the formula of the MLE (2.6) byx. In the following theorem, we show that the estimator is

still consistent in the limit.

Theorem 3.9. Suppose thatx is the projection to thex-coordinate of a solution of system

(3.1)satisfying Assumptions 3.1. We set

q̂ǫδ =
1

T

N−1∑

n=0

(xn+1 − xn)⊗ (xn+1 − xn) (3.14)

wherexn = x(nδ) is the discretizedx process,δ ≤ ǫ is the discretization step andT = Nδ

is fixed. Then, for everyǫ > 0

lim
δ→0

E‖q̂ǫδ − q1‖2 = 0 ,

more specifically,

E‖q̂ǫδ − q1‖2 = O(δ) .

Proof. We rewritexn+1 − xn using discretized (3.1a),

xn+1 − xn =

∫ (n+1)δ

nδ

√
q1dUs + R̂

(n)
1 + R̂

(n)
2 (3.15)

where

R̂
(n)
1 = a11

∫ (n+1)δ

nδ
x(s)ds

R̂
(n)
2 = a12

∫ (n+1)δ

nδ
y(s)ds

We let ξn = 1√
δ

(
U(n+1)δ − Unδ

)
. SinceU is a Brownian motion,{ξn}n≥0 is a

sequence of independent standard Gaussian random variables. We write

∫ (n+1)δ

nδ

√
q1dUs =

√

q1δξn.
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We can write the estimator as

q̂ǫδ = q1
1

N

N−1∑

n=0

ξ2n

+

√
q1

N
√
δ

N−1∑

n=0

ξn ⊗ (R̂
(n)
1 + R̂

(n)
2 )

+

√
q1

N
√
δ

N−1∑

n=0

(R̂
(n)
1 + R̂

(n)
2 )⊗ ξn

+
1

Nδ

N−1∑

n=0

(R̂
(n)
1 + R̂

(n)
2 )2

Hence, we can expand the error as

E (q̂ǫδ − q1)
2 ≤ CE

(

1

N

N−1∑

n=0

ξ2n − 1

)2

(3.16a)

+ C
q1
N2δ

E

(
N−1∑

n=0

ξn ⊗ (R̂
(n)
1 + R̂

(n)
2 )

)2

(3.16b)

+ C
q1
N2δ

E

(
N−1∑

n=0

(R̂
(n)
1 + R̂

(n)
2 )⊗ ξn

)2

(3.16c)

+ C
1

N2δ2
E

(
N−1∑

n=0

(R̂
(n)
1 + R̂

(n)
2 )2

)2

(3.16d)

It is straightforward for line (3.16a),

E

(

1

N

N−1∑

n=0

ξ2n − 1

)2

= cδ .

By Assumptions 3.1(v), and Hölder inequality, we have,

E(R̂
(n)
1 )2 = a211E

(
∫ (n+1)δ

nδ
x(s)ds

)2

(3.17)

≤ ca211δ

∫ (n+1)δ

nδ
Ex(s)2ds

≤ cδ2 .
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It is similar forE(R̂(n)
2 )2,

E(R̂
(n)
2 )2 = a212E

(
∫ (n+1)δ

nδ
y(s)ds

)2

(3.18)

≤ ca212δ

∫ (n+1)δ

nδ
Ey(s)2ds

≤ cδ2 .

SinceR̂(n)
1 andR̂(n)

2 are Gaussian random variables, we haveE(R̂
(n)
1 + R̂

(n)
2 )4 = Cδ4, so

line (3.16d) is of orderO(δ2). For line (3.16b), we need to get the correlation betweenR̂
(n)
i

for i ∈ {1, 2} andξn. We write system (4.1) in integrated form,

x(s) = xn + a11

∫ s

nδ
x(u)du + a12

∫ s

nδ
y(u)du+

√
q1

∫ s

nδ
dUu (3.19)

y(s) = yn +
a21
ǫ

∫ s

nδ
x(u)du+

a22
ǫ

∫ s

nδ
y(u)du+

√
q2

ǫ

∫ s

nδ
dVu (3.20)

We substitute (3.19) and (3.20) intôR(n)
1 andR̂(n)

2 respectively,

R̂
(n)
1 + R̂

(n)
2 =

∫ (n+1)δ

nδ
a11x(s) + a12y(s)ds

= a11xnδ + a12ynδ

+

(

a211 +
1

ǫ
a12a21

)∫ (n+1)δ

nδ

∫ s

nδ
x(u)duds

+

(

a11a12 +
1

ǫ
a12a22

)∫ (n+1)δ

nδ

∫ s

nδ
y(u)duds

+ a11
√
q1

∫ (n+1)δ

nδ

∫ s

nδ
dUuds

+ a12

√
q2

ǫ

∫ (n+1)δ

nδ

∫ s

nδ
dVuds
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Using this expansion, we find,

E

(

ξn(R̂
(n)
1 + R̂

(n)
2 )
)

= E (ξn(a11xnδ + a12ynδ)) (3.21a)

+ E

(

ξn

((

a211 +
1

ǫ
a12a21

)∫ (n+1)δ

nδ

∫ s

nδ
x(u)duds

))

(3.21b)

+ E

(

ξn

(

a11a12 +
1

ǫ
a12a22

)∫ (n+1)δ

nδ

∫ s

nδ
y(u)duds

)

(3.21c)

+ E

(

ξn

(

a11
√
q1

∫ (n+1)δ

nδ

∫ s

nδ
dUuds

))

(3.21d)

+ E

(

ξn

(

a12

√
q2

ǫ

∫ (n+1)δ

nδ

∫ s

nδ
dVuds

))

(3.21e)

By the definition ofξn, line (3.21a) is zero. By substituting (3.19) and (3.20) into lines

(3.21b) and (3.21c) respectively and iteratively, we know they are of ordersO(δ2). By

definition ofξn, we know that line (3.21d) is of orderO(δ
3
2 ). By independence betweenU

andV , line (3.21e) is zero. Therefore,

E

(

ξn(R̂
(n)
1 + R̂

(n)
2 )
)

= O(δ
3
2 ) .

Thus,

E

(

ξ2n(R̂
(n)
1 + R̂

(n)
2 )2

)

= O(δ3) .

Whenm < n, we have,

E

(

ξn(R̂
(n)
1 + R̂

(n)
2 )ξm(R̂

(m)
1 + R̂

(m)
2 )

)

= E

(

E

(

ξn(R̂
(n)
1 + R̂

(n)
2 )ξm(R̂

(m)
1 + R̂

(m)
2 )|Fnδ

))

= E

(

ξm(R̂
(m)
1 + R̂

(m)
2 )E

(

ξn(R̂
(n)
1 + R̂

(n)
2 )|Fnδ

))

= E

(

ξm(R̂
(m)
1 + R̂

(m)
2 )

)

E

(

ξn(R̂
(n)
1 + R̂

(n)
2 )
)

= O(δ3) .

Whenm > n, the same result holds. Thus we have that line (3.16b) is of orderO(δ2).

By symmetry, line (3.16c) has the same order ofO(δ2). Therefore, we have for equation

(3.16),

E (q̂ǫδ − q1)
2 = O(δ) .

This completes the proof.
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3.6 Asymptotic Normality for the Diffusion Estimator

To examine the asymptotic normality of the diffusion estimator, we use the decomposition

of q̂ǫδ in the proof of Theorem 3.9,

δ−
1
2 (q̂ǫδ − q1) = δ−

1
2 q1(

1

N

N−1∑

n=0

ξ2n − I) (3.22a)

+ δ−
1
2

√
q1

N
√
δ

N−1∑

n=0

ξn(R̂
(n)
1 + R̂

(n)
2 ) (3.22b)

+ δ−
1
2

√
q1

N
√
δ

N−1∑

n=0

(R̂
(n)
1 + R̂

(n)
2 )ξn (3.22c)

+ δ−
1
2

1

Nδ

N−1∑

n=0

(R̂
(n)
1 + R̂

(n)
2 )2 (3.22d)

Since

lim
δ→0

δ−
1
2 q1(

1

N

N−1∑

n=0

ξ2n − I) = lim
N→∞

q1√
T

1√
N

N−1∑

n=0

(ξ2n − I)

It follows from Central Limit Theorem for sum of multivariate i.i.d random variables, as

δ → 0,

lim
δ→0

δ−
1
2 q1(

1

N

N−1∑

n=0

ξ2n − I)
D→ N (0, 2

q21
T
)

We have shown thatE
(

ξn(R̂
(n)
1 + R̂

(n)
2 )
)

= O(δ
3
2 ), so line (3.22b) has mean

E

(

δ−
1
2

√
q1

N
√
δ

N−1∑

n=0

ξn(R̂
(n)
1 + R̂

(n)
2 )

)

= O(δ
1
2 ) .

UsingE

(
N−1∑

n=0

ξn(R̂
(n)
1 + R̂

(n)
2 )

)2

= O(δ), we find the second moment of (3.22b),

E

(

δ−
1
2

√
q1

N
√
δ

N−1∑

n=0

ξn(R̂
(n)
1 + R̂

(n)
2 )

)2

= O(δ) .

Thus whenδ is small,

δ−
1
2

√
q1

N
√
δ

N−1∑

n=0

ξn(R̂
(n)
1 + R̂

(n)
2 ) ∼ N (O(δ

1
2 ),O(δ)) .

26



By symmetry, same result holds for line (3.22c). Finally, for line (3.22d), using

(3.17) and (3.18), we have

E

(

δ−
1
2

1

Nδ

N−1∑

n=0

(R̂
(n)
1 + R̂

(n)
2 )2

)

= O(δ
1
2 ) ,

and,

E

(

δ−
1
2

1

Nδ

N−1∑

n=0

(R̂
(n)
1 + R̂

(n)
2 )2

)2

= O(δ) .

Thus,

δ−
1
2

1

Nδ

N−1∑

n=0

(R̂
(n)
1 + R̂

(n)
2 )2 ∼ N (O(δ

1
2 ),O(δ)) .

Putting all terms together, we have

δ−
1
2 (q̂ǫδ − q1)

D→ N (0,
2q21
T

) . (3.23)

We have proved the following,

Theorem 3.10. Under the conditions of Theorem 3.9 and with the same notation, it holds

that

δ−
1
2 (q̂ǫδ − q1)

D→ N (0,
2q21
T

) as δ → 0 .

3.7 Numerical Example

We show our findings in this chapter through the a numerical example. The multiscale

system of interest is

dx

dt
= −x+ y +

√
2
dUt
dt

(3.24a)

dy

dt
=

1

ǫ
(−x− y) +

√

2

ǫ

dVt
dt
, (3.24b)

The averaged equation is
dX

dt
= −2X +

√
2
dUt
dt

. (3.25)

We first examine the convergence of the drift estimator in Theorem 3.7. We fix the scale

parameter atǫ = 2−9, 2−6 and 2−3, observation time incrementδ = 2−10, and let the

number of observationsN increase from211 to 218. For each set of the parameters, we

sample 100 paths using the exact solution.

We first show the consistency of the estimator by plotting theL2 norm of the errors
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Figure 3.1: Averaging: Consistency of EstimatorâǫT

(âǫT − ã), in Figure 3.1. We see that whenT = Nδ is short, the estimation error from

observations of different scale parameterǫ’s are similar. When time is large, the error with

small scale parameterǫ continues to decrease at a constant rate.

We then show the asymptotic variance of the estimator by plotting the distribution

of the time adjusted errors
√
T (âǫT − E(âǫT )) with ǫ = 2−9, in Figure 3.2. The asymptotic

variance is computed using (3.13), which is 6 in our case. Thered lines are the 2.5 and 97.5

quantiles of the adjusted errors, the blue lines are the expected confidence intervals of the

adjusted errors. When observation timeT is large, the confidence intervals of the simulated

errors are contained in the expected confidence intervals.

We then examine the convergence of the diffusion estimator in Theorem 3.9. We

fix the total time horizonT = Nδ = 1, and the scale parameterǫ = 2−9, 2−6 and2−3. We

decrease the observation time incrementδ from 2−9 to 2−17. For each set of parameters,

we sample 100 paths using the exact solution.

We first show the consistency of the estimator by plotting theL2 norm of the errors

(q̂ǫδ − q1), in Figure 3.3. We see that asδ gets small, the estimation error from observations

of different scale parameterǫs are similar. This shows that the error is irrelevant to what

value the scale parameter takes, and are always converging to zero.

We then show the asymptotic variance of the estimator by plotting the distribution

of the δ adjusted errorsδ−
1
2 (q̂ǫδ − E(q̂ǫδ)) with ǫ = 2−9, in Figure 3.4. The variance is

computed using (3.23), which is 8 in our example. The red lines are the 2.5 and 97.5
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(â

ǫ T
−

E
(â

ǫ T
))

 AVERAGING: DRIFT ESTIMATOR ASYMPTOTIC VARIANCE

 

 

Time adjusted error Confidence Interval
Theoretical asymptotic variance
Error points

Figure 3.2: Averaging: Asymptotic Normality of̂aǫT

quantiles of the adjusted errors, the blue lines are the expected confidence intervals of the

adjusted errors. We see that the confidence intervals of the simulated errors and and the

expected confidence intervals agree.

3.8 Conclusion

In this chapter, we have verified asymptotic properties of the maximum likelihood estima-

tors for the drift (2.5) and diffusion (2.6) parameters of anOU process, while observing

data from the slow part of a multiscale system (3.1). We have verified that the discrepancy

between the solution of the averaged equation (3.2) and the slow part of the system (3.1a),

in theL2 sense, is small whenǫ is small. In summary,

• we take continuous observations from the multiscale system(3.1a)x ;

• we have shown that the mismatch between trajectories ofx andX is asymptotically

small if ǫ is small;

• we have shown that the maximum likelihood estimatorâǫT converges tõa asT → ∞
andǫ→ 0, and the asymptotic distribution of the estimator;

• we have shown that the maximum likelihood estimatorq̂ǫδ converges tõq asδ → 0,

and the asymptotic distribution of the estimator. We noticethe behaviour of̂qǫδ is not
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related toǫ;

In future works, when possible, we can further relax the assumptions imposed on the drift

and diffusion matrices, possibly in the ways addressed in the remarks to the assumptions.
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Chapter 4

Parameter Estimation for the

Homogenized Equation of a

Multiscale OU Process

4.1 Introduction

In this chapter we consider the following fast/slow system of stochastic differential equa-

tions

dx

dt
=

1

ǫ
(a11x+ a12y) + (a13x+ a14y) +

√
q1
dU

dt
(4.1a)

dy

dt
=

1

ǫ2
(a21x+ a22y) +

√
q2
ǫ2
dV

dt
(4.1b)

for whichx ∈ X y ∈ Y. We may takeX asRd1 andY asRd2 . The case whereX is T
d1,

andY is T
d2 is discussed in [78]. We assume we observe data generated by the projection

onto thex coordinate of the system. We also make the following assumptions.

Assumptions 4.1.

We assume that

(i) U, V are independent Brownian motions;

(ii) q1, q2 are positive definite diagonal matrices;

(iii ) 0 < ǫ≪ 1;
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(iv) the system’s drift matrix

(
1
ǫa11 + a13

1
ǫa12 + a14

1
ǫ2
a21

1
ǫ2
a22

)

only have negative real eigenvalues whenǫ is sufficiently small;

(v) a21 invertible;

(vi) x(0) andy(0) are independent ofU andV , (x(0), y(0)) is under the invariant mea-

sure of system(3.1), andE
(
‖x(0)‖2 + ‖y(0)‖2

)
<∞.

Remark 4.2. In assumption 4.1(iv), we have assumed the whole system(4.1) to be ergodic

whenǫ is sufficiently small. This condition can be decomposed toa22 anda13 − a14a
−1
22 a21

only have negative real eigenvalues; anda11−a12a−1
22 a21 = 0, which ensures the fast scale

term in (4.1a) vanishes.

Remark 4.3. Assumption 4.1(v) is necessary in our setup, however, the result could still

hold whena21 has determinant zero, a scalar example is discussed by Papavasiliou in [20]

for diffusion estimates.

Remark 4.4. As in Remark 3.4 for the case of averaging,q1 andq2 in Assumption 4.1(ii)

can also be relaxed to positive definite matrices to guarantee same result.

In what follows, we will refer to the following equation as thehomogenized equa-

tion for system (4.1),
dX

dt
= ãX +

√

q̃
dW

dt
, (4.2)

where

ã = a13 − a14a
−1
22 a21 , (4.3)

and

q̃ = q1 + a12a
−1
22 q2a

−1
22

∗
a∗12 . (4.4)

In the rest of this chapter,

• we take observations from the multiscale system (4.1a);

• we first show that the discrepancy between the trajectories from the slow partx of the

multiscale system (4.1a) and the homogenized equation (4.2) is of orderO(ǫ
√

log(ǫ))

in theL2 sense, in Section 4.2;

• we then show that using observations from the multiscale system (4.1a) and applying

them to the drift estimator̂aT , defined in (2.5), we can correctly estimate the driftã
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of the homogenized equation (4.2) in Section 4.3 by subsampling the observations at

proper rates;

• we also show that using observations from the multiscale system (4.1a) and applying

them to the diffusion estimator̂σδ, defined in (2.6), we can correctly estimate the dif-

fusion parameter̃q of the homogenized equation (4.2) in Section 4.4 by subsampling

the observations at proper rates;

• finally a numerical example is studied to illustrate our findings in Section 4.5.

The convergence of the homogenized system is different fromthat of the averaging

systems. For each given time series of observations, the paths of the slow process converge

to the paths of the corresponding homogenized equation. However, we will see that in the

limit ǫ → 0, the likelihood of the drift or diffusion parameter is different depending on

whether we observe a path of the slow process generated by (4.1a) or the homogenized

process (4.2) (see also [73, 78, 79]).

4.2 The Paths

The following theorem extends Theorem 18.1 in [78], which gives weak convergence of

paths onTd. By limiting ourselves to the OU process, we extend the domain to R
d and

prove a stronger mode of convergence. We prove the followinglemma first.

Lemma 4.5. Suppose that(x, y) solves (4.1a) and Assumptions 4.1 are satisfied. Then, for

fixed finiteT > 0 and smallǫ,

E sup
0≤t≤T

(
‖x(t)‖2 + ‖y(t)‖2

)
= O

(

log(1 +
T

ǫ2
)

)

(4.5)

where‖·‖ is the vector norm, and the order is in terms ofǫ.

Proof. We look at the system of SDEs as,

dxt = axtdt+
√
qdWt (4.6)

where,

x =

(

x

y

)

, a =

(
1
ǫa11 + a13

1
ǫa12 + a14

1
ǫ2
a21

1
ǫ2
a22

)

andq =

(

q1 0

0 1
ǫ2
q2

)

.

We try to characterize the magnitude of the eigenvalues ofa. To find the eigenval-

ues, we require

det(a− λI) = 0 .
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We either have the characteristic polynomial

det

(
1

ǫ2
a22 − λI

)

= 0 ,

or

det

(

(
1

ǫ
a11 + a13 − λI)− (

1

ǫ
a12 + a14)(

1

ǫ2
a22 − λI)−1 1

ǫ2
a21

)

= 0 .

First, we set the first determinant equal to zero:

det

(
1

ǫ2
a22 − λI

)

=
1

ǫ2d2
det
(
a22 − ǫ2λI

)
= 0 .

By definition, ǫ2λ are the eigenvalues ofa22, thus they are of orderǫ2λ = O(1). Conse-

quently, we haved2 (not necessarily distinct) real eigenvalues of orderO( 1
ǫ2
).

If the determinant of the second matrix is zero, we have

det

(

(
1

ǫ
a11 + a13 − λI)− (

1

ǫ
a12 + a14)(

1

ǫ2
a22 − λI)−1 1

ǫ2
a21

)

= 0 . (4.7)

Rearranging the matrix we have,

det

(

(
1

ǫ
a11 + a13 − λI)− (

1

ǫ
a12 + a14)(a22 − ǫ2λI)−1a21

)

= 0 .

We apply Taylor expansion onf(ǫ2) = (a22 − ǫ2λI)−1 at ǫ = 0. We have,

f(ǫ2) = a−1
22 + ǫ2λa−2

22 + ǫ4λ2a−3
22 +O(ǫ6) = a−1

22 +O(ǫ2) .

We substitute the Taylor expansion into the determinant,

det

(

(
1

ǫ
a11 + a13 − λI)− (

1

ǫ
a12 + a14)(a22 − ǫ2λI)−1a21

)

= det

(

(
1

ǫ
a11 + a13 − λI)− (

1

ǫ
a12 + a14)(a

−1
22 +O(ǫ2))a21

)

= det

(
1

ǫ
(a11 − a12a

−1
22 a21) + (ã− λI) +O(ǫ)

)

= det ((ã− λI) +O(ǫ))

= 0

It is equivalent to finding the eigenvalues of a perturbed matrix of ã. By Theorem 2 on page

137 in [42], on the eigenvalues of a perturbed matrix, we havethat the correspondingd1
(not necessarily distinct) real eigenvalues of orderO(1). Therefore, we can decomposea
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as

a = PDP−1 with D =

(

D1 0

0 1
ǫ2
D2

)

whereD is the diagonal matrix, for whichD1 ∈ R
d1×d1 andD2 ∈ R

d2×d2 are diagonal

blocks of eigenvalues of orderO(1). We also defineΣ = P−1
q(P−1)∗. Using Lemma

9.14 in Appendix 9.11, we have the ratio between diagonal elements ofD andΣ is always

Dii/Σii = O(1) .

We apply Theorem 2.3 to the system of equations (4.6). We have

E

(

sup
0≤t≤T

‖x(t)‖2
)

≤ C
log (1 + maxi(|Dii|)T )

mini(|Dii/Σii|)
.

SinceDii/Σii = O(1), maxi |Dii| = O( 1
ǫ2
), we have

E

(

sup
0≤t≤T

‖x(t)‖2
)

= O
(

log(1 +
T

ǫ2
)

)

.

Sincex =

(

x

y

)

, we get

E

(

sup
0≤t≤T

(‖x(t)‖2 + ‖y(t)‖2)
)

= O
(

log

(

1 +
T

ǫ2

))

.

This completes the proof.

Theorem 4.6. Let Assumptions 4.1 hold for system(4.1). Suppose thatx andX are so-

lutions of (4.1a) and(4.2) respectively. (x, y) corresponds to the realization(U, V ) of

Brownian motion, whileX corresponds to the realization

W. = q̃−
1
2
(√
q1U. − a12a

−1
22

√
q2V.

)
(4.8)

andx(0) = X(0). Thenx converges toX in L2. More specifically,

E sup
0≤t≤T

‖x(t)−X(t)‖2 ≤ c

(

ǫ2 log(
T

ǫ
) + ǫ2T

)

eT ,
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whenT is fixed finite, the above bound can be simplified to

E sup
0≤t≤T

‖x(t)−X(t)‖2 = O(ǫ2 log(ǫ)).

Proof. We rewrite (4.1b) as

(a−1
22 a21x(t) + y(t))dt = ǫ2a−1

22 dy(t)− ǫa−1
22

√
q2dVt . (4.9)

We also rewrite (4.1a) as

dx(t) =
1

ǫ
a12(a

−1
22 a21x(t) + y(t))dt+ a14(a

−1
22 a21x(t) + y(t))dt

+(a13 − a14a
−1
22 a21)x(t)dt+

√
q1dUt

=

(
1

ǫ
a12 + a14

)

(a−1
22 a21x(t) + y(t))dt (4.10)

+ãx(t)dt+
√
q1dUt .

Replacing(a−1
22 a21x(t) + y(t))dt in (4.10) by the right-hand-side of (4.9), we get

dx(t) = ǫ(a12 + ǫa14)a
−1
22 dy(t)− a12a

−1
22

√
q2dVt − ǫa14a

−1
22

√
q2dVt

+ãx(t)dt+
√
q1dUt

= ãx(t)dt+ ǫ(a12 + ǫa14)a
−1
22 dy(t) (4.11)

+
√

q̃dWt − ǫa14a
−1
22

√
q2dVt .

Thus

x(t) = x(0) +

∫ t

0
ãx(s)ds+

√

q̃Wt (4.12)

+ǫ(a12 + ǫa14)a
−1
22 (y(t)− y(0))− ǫa14a

−1
22

√
q2Vt .

Recall that the homogenized equation (4.2) is

X(t) = X(0) +

∫ t

0
ãX(s)ds +

√

q̃Wt . (4.13)

Let e(t) = x(t) − X(t). Subtracting the previous equation from (4.12) and using the

assumptionX(0) = x(0), we find that

e(t) = ã

∫ t

0
e(s)ds (4.14)

+ǫ
(
(a12 + ǫa14)a

−1
22 (y(t)− y(0)) − a14a

−1
22

√
q2Vt

)
.
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Applying Lemma 4.5, we find anǫ-independent constantC, such that

E

(

sup
0≤t≤T

‖y(t)‖2
)

≤ C log(
T

ǫ
) .

By Cauchy Schwarz,

E

(

sup
0≤t≤T

‖e(t)‖2
)

≤ c

(∫ T

0
E‖e(s)‖2ds+ ǫ2 log(

T

ǫ
) + ǫ2T

)

. (4.15)

By the integrated version of the Gronwall inequality, we deduce that

E

(

sup
0≤t≤T

‖e(t)‖2
)

≤ c

(

ǫ2 log(
T

ǫ
) + ǫ2T

)

eT . (4.16)

WhenT is finite, we have

E

(

sup
0≤t≤T

‖e(t)‖2
)

= O
(
ǫ2 log(ǫ)

)
.

This completes the proof.

4.3 The Drift Estimator

As in the averaging case, a natural idea for estimating the drift of the homogenized equation

is to use the maximum likelihood estimator (2.5), replacingX by the solutionx of (4.1a).

However, in the case of homogenization we do not get asymptotically consistent estimates

if we do not subsample our observations [73, 78, 79]. To achieve a correct estimate, we

must subsample the data: we choose∆, our time interval for observation, according to

the value of the scale parameterǫ and solve the estimation problem for discretely observed

diffusion processes, see [73, 78, 79].

The maximum likelihood estimator for the drift of a homogenized equation con-

verges after proper subsampling. We let the observation time interval∆ and the number of

observationsN both depend on the scaling parameterǫ, by setting∆ = ǫα andN = ǫ−γ .

We find the error is optimized in theL2 sense whenα = 1/2. We will show thatâN,ǫ
converges tõa only if ∆

ǫ2
→ ∞, in a sense to be made precise later.

Theorem 4.7. Suppose thatx is the projection to thex-coordinate of a solution of system

(4.1)satisfying Assumptions 4.1. LetâN,ǫ be the estimate we get by replacingX in (2.5)by
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x, i.e.

âN,ǫ =

(

1

N∆

N−1∑

n=0

(xn+1 − xn)⊗ xn

)(

1

N∆

N−1∑

n=0

xn ⊗ xn∆

)−1

(4.17)

Then,

E‖âN,ǫ − ã‖2 = O(∆ +
1

N∆
+

ǫ2

∆2
)

whereã as defined in(4.3). Consequently, if∆ = ǫα,N = ǫ−γ , α ∈ (0, 1), γ > α,

lim
ǫ→0

E‖âN,ǫ − ã‖2 = 0 .

Furthermore,α = 1/2 andγ ≥ 3/2 optimize the error.

Before proving Theorem 4.7, we first find the magnitude of the increment ofy over

a small time interval∆. Solving equation (4.1b), we have

yn+1 − yn = (ea22
∆
ǫ2 − I)yn (4.18)

+
1

ǫ2

∫ (n+1)∆

n∆
ea22

(n+1)∆−s

ǫ2 x(s)ds

+
1

ǫ

∫ (n+1)∆

n∆
ea22

(n+1)∆−s

ǫ2
√
q2dVs .

By triangle inequality, we have

E‖yn+1 − yn‖2 ≤ ‖ea22
∆
ǫ2 − I‖2E‖yn‖2

+ c‖ea22
∆
ǫ2 − I‖2

+
1

2
‖e2a22

∆
ǫ2 ‖2‖q2‖2 .

Sincea22 is negative definite, thus,

E‖yn+1 − yn‖2 = O(e−
∆
ǫ2 − 1) .

By definition∆ = ǫα, and the property that(e−
∆
ǫ2 − 1) = O(∆

ǫ2
) if ∆

ǫ2
is small, the above

equation can be rewritten as

E‖yn+1 − yn‖2 = O(ǫmax(α−2,0)) . (4.19)
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Proof. DefineI1 andI2 as

I1 =
1

N∆

N−1∑

n=0

(xn+1 − xn)⊗ xn , I2 =
1

N∆

N−1∑

n=0

xn ⊗ xn∆

By ergodic theorem, and sinceN = ǫ−γ , we have

lim
ǫ→0

I2 = E (xn ⊗ xn) = C 6= 0

which is a constant invertible matrix. Hence instead of proving

E‖âN,ǫ − ã‖2 = O(∆2 +
1

N∆
+

ǫ2

∆2
) ,

we prove,

E‖I1 − ãI2‖2 = O(∆2 +
1

N∆
+

ǫ2

∆2
) .

We use the rearranged equation (4.11) of (4.1a) to decomposethe error,

I1 − ãI2 = J1 + J2 + J3 + J4 . (4.20)

where

J1 =
1

N∆

N−1∑

n=0

(

ã

∫ (n+1)∆

n∆
x(s)ds− xn

)

⊗ xn

J2 =
1

N∆

N−1∑

n=0

(
√

q̃

∫ (n+1)∆

n∆
dWs

)

⊗ xn

J3 =
ǫ

N∆

N−1∑

n=0

(a12 + ǫa14)a
−1
22

∫ (n+1)∆

n∆
dy(s)⊗ xn

J4 =
ǫ

N∆

N−1∑

n=0

a14a
−1
22

√
q2

∫ (n+1)∆

n∆
dVs ⊗ xn
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By independence, Itô isometry and ergodicity, we immediately have

E‖J2‖2 = E‖
√
q̃

N∆

N−1∑

n=0

∫ (n+1)∆

n∆
dWs ⊗ xn‖2

=
q̃

N2∆2
E‖

N−1∑

n=0

∫ (n+1)∆

n∆
dWs ⊗ xn‖2

≤ q̃

N2∆2
NE‖

∫ (n+1)∆

n∆
dWs‖2E‖xn‖2

≤ q̃

N2∆2
N∆E‖xn‖2

= O(
1

N∆
) ,

and

E‖J4‖2 = E‖ ǫC
N∆

N−1∑

n=0

∫ (n+1)∆

n∆
dVs ⊗ xn‖2

=
ǫ2C

N2∆2
E‖

N−1∑

n=0

∫ (n+1)∆

n∆
dVs ⊗ xn‖2

≤ ǫ2C

N2∆2
NE

(

‖
∫ (n+1)∆

n∆
dVs‖2

)

E(‖xn‖2)

≤ ǫ2C

N2∆2
N∆E(‖xn‖2)

= O(
ǫ2

N∆
) .

By Hölder inequality, and (4.19), we have,

E‖J3‖2 = E‖ ǫC
N∆

N−1∑

n=0

∫ (n+1)∆

n∆
dy ⊗ xn‖2

= E‖ ǫC
N∆

N−1∑

n=0

(yn+1 − yn)⊗ xn‖2

≤ ǫ2

N2∆2
E‖

N−1∑

n=0

(yn+1 − yn)‖2E‖
N−1∑

n=0

xn‖2

≤ ǫ2C

N2∆2
N(ǫmax(α−2,0))NE‖xn‖2

= O(
ǫ2

∆2
) .
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Finally, we find the squared error forJ1. We use the integrated form of equation (4.11) on

time interval[n∆, s] to replacex(s)

E‖J1‖2 =
ã2

N2∆2
E‖

N−1∑

n=0

∫ (n+1)∆

n∆
(x(s)− xn)ds ⊗ xn‖2 (4.21)

=
ã2

N2∆2
E‖

N−1∑

n=0

(K
(n)
1 +K

(n)
2 +K

(n)
3 +K

(n)
4 )‖2 (4.22)

(4.23)

where,

K
(n)
1 = ã

∫ (n+1)∆

n∆

∫ s

n∆
x(u)duds ⊗ xn ,

K
(n)
2 = ǫ(a12 + ǫa14)a

−1
22

∫ (n+1)∆

n∆

∫ s

n∆
dy(u)ds ⊗ xn ,

K
(n)
3 =

√

q̃

∫ (n+1)∆

n∆

∫ s

n∆
dWuds⊗ xn ,

K
(n)
4 = ǫa14a

−1
22

√
q2

∫ (n+1)∆

n∆

∫ s

n∆
dVuds⊗ xn .

We immediately see that

E‖J1‖2 =
ã2

N2∆2
E

N−1∑

n=0

‖
4∑

i=1

K
(n)
i ‖2 (4.24)

+
ã2

N2∆2
E

∑

m6=n
‖
(

4∑

i=1

K
(n)
i

)



4∑

j=1

K
(m)
j



‖ (4.25)

Remark 4.8. We use the exact decomposition ofE‖J1‖2 by using(4.24)and (4.25). This

is essential in order to obtain more optimized subsampling rate for the drift estimator. For

generalLp bound for the error, we can apply Ḧolder’s inequality to decomposeJ1 as,

E‖J1‖p =
C

Np∆p
E‖

N−1∑

n=0

∫ (n+1)∆

n∆
(x(s)− xn)ds⊗ xn‖p

≤ C

Np−1∆p
E‖

N−1∑

n=0

∫ (n+1)∆

n∆
(x(s)− xn)ds‖pE‖xn‖p

which is used in [79]. Using this inequality will give an optimal subsampling rate ofα =

2/3, and achieves an over allL1 error of orderO(ǫ1/3). However, this magnitude of overall
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error is not optimal inL2. We will show later that the optimalL2 error can be achieved at

the order ofO(ǫ1/2), using the exact decomposition shown above.

By Cauchy Schwarz inequality, we know for line (4.24),

E

N−1∑

n=0

‖
4∑

i=1

K
(n)
i ‖2 ≤

N−1∑

n=0

4∑

i=1

E‖K(n)
i ‖2 .

Using first order iterated integrals, we have

E‖K(n)
1 ‖2 = E‖

∫ (n+1)∆

n∆

∫ s

n∆
x(u)duds ⊗ xn‖2

≤ C∆

∫ (n+1)∆

n∆

∫ s

n∆
‖x(u)‖2duds‖xn‖2

≤ C∆

∫ (n+1)∆

n∆
(s− n∆)2ds

= O(∆4) .

Using (4.19), we have

E‖K(n)
2 ds‖2 = E‖ǫC

∫ (n+1)∆

n∆

∫ s

n∆
dy(u)ds ⊗ xn‖2

≤ Cǫ2E‖
∫ (n+1)∆

n∆
(y(s)− y(u))ds ⊗ xn‖2

≤ Cǫ2∆E

∫ (n+1)∆

n∆
‖y(s)− y(u)‖2ds‖xn‖2

≤ Cǫ2∆E

∫ (n+1)∆

n∆
(e−

s−n∆

ǫ2 − 1)ds

= O
(

ǫ4(e−
∆
ǫ2 − 1)

)

.

ForK(n)
3 , we have,

E‖K(n)
3 ‖2 = E‖

∫ (n+1)∆

n∆

∫ s

n∆

√

q̃dWuds⊗ xn‖2

≤ C∆

∫ (n+1)∆

n∆
‖
∫ s

n∆
dWu‖2ds

≤ C∆

∫ (n+1)∆

n∆
(s− n∆)ds

= O(∆3) .
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SinceK(n)
4 is similar toK(n)

3 , we have

E‖K(n)
4 ‖2 = O(ǫ2∆3) .

Thus, for line (4.24), the order of the dominating terms are,

E

N−1∑

n=0

‖
4∑

i=1

K
(n)
i ‖2 = O(N∆4 +Nǫ4(e−

∆
ǫ2 − 1) +N∆3) .

For line (4.25),

E

∑

m6=n
‖(

4∑

i=1

K
(n)
i )(

4∑

j=1

K
(m)
j )‖ ≤

∑

m6=n
E‖

4∑

i=1

K
(n)
i ‖E‖

4∑

j=1

K
(m)
j ‖ .

We know,

E‖K(n)
1 ‖ = E‖C

∫ (n+1)∆

n∆

∫ s

n∆
x(u)duds‖

≤ CE

(
∫ (n+1)∆

n∆
(s− n∆)ds

)

= O(∆2) .

Similarly, we have

E‖K(n)
2 ‖ = ǫCE

(
∫ (n+1)∆

n∆
(y(s)− yn)ds

)

= O(ǫ∆) .

Since the integral of Brownian motions is Gaussian

E‖K(n)
3 ‖ = CE(

∫ (n+1)∆

n∆

∫ s

n∆
dWuds)

= CE(

∫ (n+1)∆

n∆
(W (s)−W (n∆))ds)

= CE(

∫ (n+1)∆

n∆
W (s)ds−W (n∆)∆)

= 0 .
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and

E‖K(n)
4 ‖ = CǫE(

∫ (n+1)∆

n∆

∫ s

n∆
dVuds)

= CǫE(

∫ (n+1)∆

n∆
V (s)ds − V (n∆)∆)

= 0 .

Thus,

E‖
4∑

i=1

K
(n)
i ‖ = O(∆2 + ǫ∆) ,

immediately we have for line (4.25),

E

∑

m6=n
‖(

4∑

i=1

K
(n)
i )(

4∑

j=1

K
(m)
j )‖ = O(N2∆4 +N2ǫ2∆2) .

Putting all terms forJ1 together, we keep the dominating terms, and by assumptionN∆ →
∞, andα < 2 sincee−

∆
ǫ2 → 0,

E‖J1‖2 ≤ C

N2∆2
(N∆4 +Nǫ4(e−

∆
ǫ2 − 1) +N∆3)

+
C

N2∆2
(N2∆4 +N2ǫ2∆2)

= O(
∆2

N
+

ǫ4

N∆2
(e−

∆
ǫ2 − 1) +

∆

N
+∆2 + ǫ2)

= O(
ǫ4

N∆2
+∆2 + ǫ2) .

Therefore, puttingJi’s, i ∈ {1, 2, 3, 4}, together, we have,

E‖I1 − ãI2‖2 ≤
4∑

i=1

E‖Ji‖2

= O(
ǫ4

N∆2
+∆2 + ǫ2)

+ O(
1

N∆
)

+ O(
ǫ2

∆2
)

+ O(
ǫ2

N∆
)

= O(∆2 +
1

N∆
+

ǫ2

∆2
)
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We rewrite the above equation using∆ = ǫα andN = ǫ−γ ,

E‖I1 − ãI2‖2 = O(ǫ2α + ǫγ−α + ǫ2−2α) .

It is immediately seen thatα = 1
2 andγ ≥ 3/2 optimize the error, andα ∈ (0, 1), the order

of the error is

E‖I1 − ãI2‖2 = O(ǫ) .

This completes the proof.

4.4 The Diffusion Estimator

Just as in the case of the drift estimator, we define the diffusion estimator by the maximum

likelihood estimator (2.6), whereX is replaced by the discretized solution of (4.1a). More

specifically, we define

q̂ǫ =
1

N∆

N−1∑

n=0

(xn+1 − xn)⊗ (xn+1 − xn) (4.26)

wherexn = x(n∆) is the discrete observation of the process generated by (4.1a) and∆ is

the observation time interval.

Theorem 4.9. Suppose thatx is the projection to thex-coordinate of a solution of system

(4.1) satisfying Assumptions 4.1. Letq̂ǫ be the estimate we get by replacingX in (2.6) by

x, i.e.

q̂ǫ =
1

T

N−1∑

n=0

(xn+1 − xn)⊗ (xn+1 − xn) .

Then

E‖q̂ǫ − q̃‖2 = O
(

∆+ ǫ2 +
ǫ4

∆2

)

whereq̃ as defined in(4.4). Consequently, if∆ = ǫα, fixT = N∆, andα ∈ (0, 2), then

lim
ǫ→0

E‖q̂ǫ − q̃‖2 = 0 .

Furthermore,α = 4/3 optimizes the error.

We first define

√
∆ηn =

∫ (n+1)∆

n∆
dWt .
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Proof. We now prove Theorem 4.9. Using the integral form of equation(4.11),

xn+1 − xn =

∫ (n+1)∆

n∆

√

q̃dWs (4.27)

+ R̂1 + R̂2 + R̂3

where

R̂1 = ã

∫ (n+1)∆

n∆
x(s)ds

R̂2 = ǫa14a
−1
22

√
q2

∫ (n+1)∆

n∆
dVs

R̂3 = ǫ(a12 + ǫa14)a
−1
22

∫ (n+1)∆

n∆
dy(s)

We rewrite line (4.27) as

∫ (n+1)∆

n∆

√

q̃dWs =
√

q̃∆ηn

whereηn areN (0, I) random variables.

For∆ andǫ sufficiently small, by Cauchy-Schwarz inequality

E‖c
∫ (n+1)∆

n∆
x(s)ds‖2 ≤ cE

∫ (n+1)∆

n∆
‖x(s)‖2ds

∫ (n+1)∆

n∆
ds

≤ c∆E

∫ (n+1)∆

n∆
‖x(s)‖2ds

≤ c∆2
E

(

sup
n∆≤s≤(n+1)∆

‖x(s)‖2
)

= O(∆2)

Therefore,

E‖R̂1‖2 = O(∆2)

By Itô isometry

E‖R̂2‖2 = O(ǫ2∆)

Then we look atR̂3,

E‖R̂3‖2 = ǫ2CE‖yn+1 − yn‖2
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By (4.19), we have

E‖R̂3‖2 = O(ǫmax(α,2)) (4.28)

We substitute(xn+1−xn) into the estimator̂qǫ in Theorem 4.9. We decompose the

estimator’s error as follows,

q̂ǫ − q̃ = q̃(
1

N

N−1∑

n=0

ηn ⊗ ηn − I)

+
1

T

N−1∑

n=0

3∑

i=1

(

R̂i ⊗ R̂i

)

+
1

T

N−1∑

n=0

3∑

i=1

R̂i ⊗
√

q̃∆ηn

+
1

T

N−1∑

n=0

3∑

i=1

√

q̃∆ηn ⊗ R̂i

+
1

T

N−1∑

n=0




∑

i 6=j
R̂i ⊗ R̂j





= R

Then we bound the mean squared error using Cauchy Schwarz inequality.

E (q̂ǫ − q̃)2 ≤ Cq̃2E(
1

N

N−1∑

n=0

η2n − I)2 (4.29)

+ C
3∑

i=1

E

(

1

T

N−1∑

n=0

R̂2
i

)2

(4.30)

+ C
3∑

i=1

E

(

1

T

N−1∑

n=0

R̂i ⊗
√

q̃∆ηn

)2

(4.31)

+ C
3∑

i=1

E

(

1

T

N−1∑

n=0

√

q̃∆ηn ⊗ R̂i

)2

(4.32)

+ C
∑

i 6=j
E

(

1

T

N−1∑

n=0

(

R̂i ⊗ R̂j

)
)2

(4.33)

Notice that we use the simplified(·)2 notation in this section, what we mean is actually

square by tensor product. By law of large numbers, it is easy to see that line (4.29) is of

orderO(∆).
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In line (4.30), fori ∈ {1, 2}, we have

E

(

1

T

N−1∑

n=0

R̂2
i

)2

=
1

T 2
N

N−1∑

n=0

E(R̂2
i )

2.

SinceE‖R̂1‖2 = O(∆2), we have

E

(

1

T

N−1∑

n=0

R̂2
1

)2

= O
(
N2(∆2)2

)
= O

(
∆2
)
;

sinceE‖R̂2‖2 = O(ǫ2∆), we have

E

(

1

T

N−1∑

n=0

R̂2
2

)2

= O
(
N2(∆ǫ2)2

)
= O(ǫ4).

It is different forE

(

1
T

N−1∑

n=0

R̂2
3

)2

, by (4.19), we have

E

(

1

T

N−1∑

n=0

R̂2
3

)2

=
Cǫ4

T 2
E

(
N−1∑

n=0

(yn+1 − yn)
2

)2

≤ Cǫ4N

N−1∑

n=0

E (yn+1 − yn)
4

= O
(

ǫ4+2max(0,α−2)

∆2

)

= O
(

ǫmax(4,2α)

∆2

)

Adding up all terms for line (4.30), we have,

3∑

i=1

E

(

1

T

N−1∑

n=0

R̂2
i

)2

= O
(

∆2 + ǫ4 +
ǫmax(4,2α)

∆2

)

. (4.34)

In line (4.31), fori ∈ {1, 2}, we have

E

(

1

T

N−1∑

n=0

R̂i ⊗
√

q̃∆ηn

)2

≤ CN2∆E

(

R̂i ⊗ ηn

)2
= CNE‖R̂i‖2
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SinceE‖R̂1‖2 = O(∆2), we have

E

(

1

T

N−1∑

n=0

R̂1 ⊗
√

q̃∆ηn

)2

= O(N∆2) = O(∆);

sinceE‖R̂2‖2 = O(ǫ2∆), we have

E

(

1

T

N−1∑

n=0

R̂2 ⊗
√

q̃∆ηn

)2

= O(Nǫ2∆) = O(ǫ2) .

Again, it is different forE

(

1
T

N−1∑

n=0

R̂3 ⊗
√

q̃∆ηn

)2

due to correlation between̂R(n)
3 and

ηn. Using the expression from (4.18) by only considering the dominating terms, we have

E

(

1

T

N−1∑

n=0

R̂3 ⊗
√

q̃∆ηn

)2

= E

(

1

T

N−1∑

n=0

R̂2
3

(√

q̃∆ηn

)2
)

+ E




1

T 2

∑

m6=n
R̂

(m)
3 R̂

(n)
3

∫ (m+1)∆

m∆

√

q̃dWs

∫ (n+1)∆

n∆

√

q̃dWs





By computing the order of the dominating terms and the martingale terms, when

m = n,

E

(

1

T

N−1∑

n=0

R̂2
3

(√

q̃∆ηn

)2
)

=
1

T

N−1∑

n=0

∆E

(

R̂2
3q̃η

2
n

)

=
1

T
E(R̂2

3η
2
n)

= O
(

ǫmax(α,2)
)
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and whenm < n,

E




1

T 2

∑

m6=n
R̂

(m)
3 R̂

(n)
3

∫ (m+1)∆

m∆

√

q̃dWs

∫ (n+1)∆

n∆

√

q̃dWs





≤ CN2ǫ2E ((yn+1−, yn)(ym+1 − ym)

×
∫ (n+1)∆

n∆
dW ′

s

∫ (m+1)∆

m∆
dWs

)

≤ CN2ǫ2E

(

(yn+1 − yn)

∫ (n+1)∆

n∆
dW ′

s

× E

(

(ym+1 − ym)

∫ (m+1)∆

m∆
dWs|Fm∆

))

Using the expansion in (4.18), and using the dominating terms only,

E

(

(ym+1 − ym)

∫ (n+1)∆

n∆
dWs|Fm∆

)

= E

((

(e−
∆
ǫ2 − 1)ym

+
1

ǫ2

∫ (m+1)∆

m∆
e−

(m+1)∆−s

ǫ2 x(s)ds

+
1

ǫ

∫ (m+1)∆

m∆
e−

(m+1)∆−s

ǫ2 dVs

)
∫ (m+1)∆

m∆
dWs|Fm∆

)

= O(ǫ(e−
∆
ǫ2 − 1))

Therefore, whenm < n, we have,

E




1

T 2

∑

m6=n
R̂

(m)
3 R̂

(n)
3

∫ (m+1)∆

m∆

√

q̃dWs

∫ (n+1)∆

n∆

√

q̃dWs





= O(
ǫ4

∆2
(e−

∆
ǫ2 − 1)2)

= O(ǫ4−2α+2max(α−2,0))

= O(ǫmax(0,4−2α))

In the casem > n, the result is identical due to symmetry. Adding up all termsfor line
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(4.31),

5∑

i=1

E

(

1

T

N−1∑

n=0

R̂i ⊗
√

q̃∆ηn

)2

= O
(

∆+ ǫ2 + ǫmax(α,2) + ǫ2max(0,2−α)
)

(4.35)

Line (4.32) is symmetric with line (4.31), which we can conclude it has the same order in

(4.35).

In line (4.33), we have

∑

i 6=j
E

(
N−1∑

n=0

R̂i ⊗ R̂j

)2

≤ NE‖Ri‖2E‖Rj‖2

Substituting in theL2 norms of eacĥRi, i ∈ {1, 2, 3}, we have for line (4.33),

∑

i 6=j
E

(
N−1∑

n=0

R̂i ⊗ R̂j

)2

= O
(

∆2ǫ2 +∆ǫmax(α,2) + ǫ2+max(α,2)
)

(4.36)

Aggregating bounds (4.34), (4.35) and (4.36) for equation lines from (4.29) to (4.33) re-

spectively, we have

E‖q̂ǫ − q̃‖2

= O(∆)

+ O
(

∆2 + ǫ4 +
ǫmax(4,2α)

∆2

)

+ O
(

∆+ ǫ2 + ǫmax(α,2) + ǫ2max(0,2−α)
)

+
(

∆2ǫ2 +∆ǫmax(α,2) + ǫ2+max(α,2)
)

It is clear that whenα < 2,

E‖q̂ǫ − q̃‖2 = O(∆ + ǫ4−2α + ǫ2).

The error is minimized whenα = 4/3, which is of order

E‖q̂ǫ − q̃‖2 = O
(

ǫ
4
3

)

.
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It is easy to see whenα > 2, the error explodes. This completes the proof.

4.5 Numerical Example

We show our findings in this chapter through the a numerical example. The multiscale

system of interest is

dx

dt
=

1

ǫ
(−x− y) + (−x+ y) +

√
2
dU

dt
(4.37a)

dy

dt
=

1

ǫ2
(−x− y) +

√
2

ǫ

dV

dt
, (4.37b)

The homogenized equation is

dX

dt
= −2X +

√
4
dW

dt
. (4.38)

To justify the optimal subsampling rate for drift estimator, we simulate the multi-

scale system using the exact solution of the OU process. Eachpath is subsampled with

N = ǫ1.5 number of observations at a time increment of∆ = ǫα, with α ∈ [0.1, 1]. We

takeǫ = 2−4, . . . , 2−12. Each estimate is based on 100 paths. The initial condition is set at

(x0, y0) = (0, 0).

TheL2 norm of the errors from the drift estimatorâN,ǫ at different subsampling

rate andǫ are plotted in Figure 4.1, we can find the optimal subsamplingrateα is roughly

between 0.5 and 0.7, which agrees with our choice ofα = 1/2. Figure 4.2 provides an

alternative view of the 3D contour surface.

To justify the optimal subsampling rate for the diffusion estimator q̂ǫ, we simulate

the multiscale system using exact solution. Each path is generated over a fixed total time

horizon ofT = 1, at a very fine resolution withδ = 2−20, with available number of

observationsN = 220. Each estimate is based on 100 paths. We take the scale parameter

ǫ = 2−2, . . . , 2−9.5, and test the diffusion estimator a sequence of subsamplingratesα

over each path at rates[0.1, 2]. When subsampling the observations, we make full use of

each simulated path as introduced in [1] by setting the startof each subsampled sequence

consecutively.

We find from Figure 4.3, that theL2 norm of the error is minimized roughly within

the interval ofα = [1.2, 1.6], this agrees with our expectation of findingα = 4/3 optimizes

error. Figure 4.4 provides an alternative view of the 3D contour surface.
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Figure 4.1: Homogenization:L2 norm of(âN,ǫ − ã) for differentǫ andα
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Figure 4.2: Homogenization:L2 norm of(âN,ǫ− ã) for differentǫ andα (alternative view)
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4.6 Conclusion

In this chapter, we have verified asymptotic limits of the maximum likelihood estimators for

the drift (2.5) and diffusion (2.6) parameters of an OU process, while observing data from

the slow part of a multiscale system (4.1). We have verified that the discrepancy between

the solution of the homogenized equation (4.2) and the slow part of the system (4.1a), in

theL2 sense, is small whenǫ is small. In summary,

• we take discrete observations from the multiscale system (4.1a)x ;

• we have shown that the mismatch between trajectories ofx andX is asymptotically

small if ǫ is small;

• we have shown that the maximum likelihood estimatorâN,ǫ converges tõa asǫ→ 0,

with proper subsampling at time step∆ = ǫα, andN = ǫ−γ . The valuesα = 1/2

andγ ≥ 3/2 optimize the error inL2 sense;

• we have shown that the maximum likelihood estimatorq̂ǫ converges tõq asǫ → 0,

with proper subsampling at time step∆ = ǫα, and the total time horizon fixed at

T = N∆. The valuesα = 4/3 optimizes the error inL2 sense;

We did not examine the asymptotic variances for the estimators as we did for the

case of averaging. It is because we believe that the method weused in the case of averaging

is not readily applicable for the case of homogenization, since it results in too many de-

composed error terms, the correlations become too difficultto be accurately quantified. We

believe we need better ways to decompose the error terms, andalso better tools to quantify

the limiting variances.

In future works, when possible, we can further relax the assumptions imposed on

the drift and diffusion matrices, possibly in the ways addressed in the remarks to the as-

sumptions.
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Part II

FILTERING FOR MULTISCALE

PROCESSES
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Chapter 5

Averaging and Kalman Filter

In Part I, we have shown the behaviour of multiscale methods of averaging and homoge-

nization applied to the drift and diffusion estimation problem of Ornstein Uhlenbeck (OU)

processes. Since the path of the slow part of the OU process can be approximated closely by

the averaged/homogenized process as we have shown in Sections 3.2 and 4.2 respectively,

it is natural that we would like to take advantage of this property in other applications. In

this chapter, we will integrate the method of averaging withthe linear filtering problem. We

compare the behaviour of the Kalman filter [9, 22, 47, 68] for amultiscale OU system with

that for the averaged system. We will look at the behaviour ofthe Kalman filter for a system

of multiscale OU process, as well as the Kalman filter for the averaged process. Our goal

is to show that the marginal Kalman filtered distribution forthe slow part of the multiscale

OU system approximates the filtered distribution from the averaged process using the data

from the multiscale system.

We derive the Kalman filter for the multiscale OU system in section 5.1, and then

introduce the Kalman filter for the averaged process in section 5.2. We discuss the conver-

gence between Kalman filters for the multiscale system and the averaged process in section

5.3. A numerical example is discussed in section 5.4.

5.1 Kalman Filter for the Multiscale System

Recall the multiscale system (3.1) satisfying Assumptions3.1,

dx

dt
= a11x+ a12y +

√
q1
dU

dt
dy

dt
=

1

ǫ
(a21x+ a22y) +

√
q2
ǫ

dV

dt

with initial condition(x(0)∗, y(0)∗)∗ ∼ N (m0, v0).
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We rewrite the above system as

dx

dt
= ax+

√
q
dW

dt
, x(0) ∼ N (m0, v0), (5.2)

where,

x =

(

x

y

)

,

a = a0 +
1

ǫ
a1 =

(

a11 a12

0 0

)

+
1

ǫ

(

0 0

a21 a22

)

,

and

q = q0 +
1

ǫ
q1 =

(

q1 0

0 0

)

+
1

ǫ

(

0 0

0 q2

)

for which x ∈ X , y ∈ Y, x ∈ X ⊕ Y. We takeX = R
d1, andY = R

d2 . Suppose we

observez, a noise contaminated integral ofx, which follows the SDE

dz

dt
= hx+

√
τ
dw

dt
, z(0) = 0, (5.3)

whereh = (h1, h2) for which h1 ∈ R
l×d1 , h2 ∈ R

l×d2, τ is invertible andW , w are

independent standard Brownian motions. Equation (5.3) shows that the observation is a

linear transformation of the hidden processx, contaminated by Gaussian noise. Notice that

x is Gaussian from equation (5.2). Under this setup, the conditional distribution ofx|z is

also Gaussian and is characterized by a meanm(t) and covariance matrixv(t). These two

quantities satisfy a pair of closed nonlinear ODEs, known asthe Kalman filter [68]:

dv

dt
= av + va∗ − vh∗τ−1hv + q, (5.4a)

dm = amdt+ (vh∗τ−1)(dz − hmdt). (5.4b)

with initial conditionsv(0) andm(0)

Our interest is the conditional distribution of the slow part of the multiscale system

x given observationsz, which is the marginal of the Gaussian distributionN (m(t), v(t)).

We set

vx = Id1vI
∗
d1 , (5.5a)

mx = Id1m, (5.5b)
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where

Id1 =







1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 1 0 · · · 0







}

d1

︸ ︷︷ ︸

d1

︸ ︷︷ ︸

d2

. (5.6)

and∗ denotes transposition of a matrix or the adjoint of an operator.

5.2 Kalman Filter for the Averaged Process

Now consider the averaged equation for the slow process in (5.2). From Chapter 3, we

know that the slow processx of (5.2) can be averaged to the following SDE

dX

dt
= ãX +

√
q1
dU

dt
, X(0) = x(0) ∼ N (M0, V0) (5.7)

whereã = a11 − a12a
−1
22 a21.

The observations taken fromz should be close toZ from the SDE below, ifǫ is

small,
dZ

dt
= h̃X +

√
τ
dw

dt
, Z(0) = 0, (5.8)

whereh̃ = h1 − h2a
−1
22 a21.

The conditional distributionX(t)|Z(t) is Gaussian and is characterized by a mean

M(t) and covariance matrixV (t). The corresponding Kalman filter can be derived as the

following coupled SDEs,

dV

dt
= ãV + V ã∗ − V h̃∗τ−1h̃V + q1, (5.9a)

dM = ãMdt+ (V h̃∗τ−1)(dZ − h̃Mdt). (5.9b)

We will show in Section 5.3, that if we feed the observations from (5.3) to the

Kalman filter (5.9), with identical initial conditions, theGaussian distribution characterized

by (5.5) converges to (5.9), asǫ→ 0.

5.3 The Convergence of the Kalman Filters

We will prove in this section, asǫ gets small, the distribution of Kalman filter described in

(5.5) converges to the distribution of the Kalman filter described (5.9), given that we take

Z(t) = z(t) in equation (5.9b).
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Theorem 5.1. Consider the scale separated Ornstein-Uhlenbeck system(5.2), and let As-

sumptions 3.1 hold and only consider the scalar processes whend1 = d2 = 1. By feeding

noisy observations{z(s)}0≤s≤t from equation(5.3) to both the marginal filtered distribu-

tion of the multiscale systemN (mx(s, z(s)), vx(s)) and the filter distribution of the aver-

aged equationN (M(s, z(s)), V (s)), then, for every1 ≫ ǫ > 0,

(i) ‖vx(s)− V (s)‖ = O(ǫ), for anys ∈ [0, t]. given initial conditionvx(0) = V (0);

(ii) E (mx(s, z(s)) −M(s, z(s)))2 = O(ǫ2) for any s ∈ [0, t], given initial condition

mx(0, z(0)) =M(0, z(0)).

Before going to the main result of this chapter, we first definesome linear operators

for an arbitrary symmetric matrixm:

L0m = a0m+ma
∗
0,

L1m = a1m+ma
∗
1,

Lǫm = am+ma
∗ = L0m+

1

ǫ
L1m.

and for simplicity, denote

S = h∗τ−1h . (5.10)

We will write the covariance matrixv in terms of its scalar entries,

v =

(

v11 v12

v21 v22

)

sincev characterizes covariance,v21 = v∗12.

Proof. Proof of(i) in Theorem 5.1.

Recall the definition for the variance (5.4a) written in simplified notation defined

above

dv

dt
= av + va∗ − vh∗τ−1hv + q

= L0v +
1

ǫ
L1v − vSv +

(

q0 +
1

ǫ
q1

)

(5.11)

By rearranging the equation above, we have

L1v = −q1 + ǫ

(
dv

dt
−L0v + vSv − q0

)

(5.12)

Using the block representation ofv, we have a system of 3 equations, for which the
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equation corresponds to the lower-left block can be writtenas follows,

a21v11 + a22v21 = ǫ

(
dv21
dt

− (v21a11 + v22a12)

+ ((v21S11 + v22S12)v11 + (v21S12 + v22S22)v21)

− q1)

The above equation can be solved approximately forv21 as a function ofv11,

v21 = −a−1
22 a21v11 + ǫC (5.13)

We now try to find anǫ-independent bound for theC in equation (5.13). By writing

the symmetric square matrices in vector forms, we definewv = a21v11 + a22v12 = ǫa22C,

and~b = (a21, a22, 0),

~v =






v11

v12

v22




 , ~q0 =






q1

0

0




 , ~q1 =






0

0

q2




 .

We can write

dwv
dt

= ~b
d~v

dt
= ~b

(

~a1~v +
1

ǫ
~a2~v + ~q0 +

1

ǫ
~q1 − ~F (~v)

)

for which ~F (~v) is the corresponding vectorized form of matrixvSv, and

~a1 =






2a11 2a12 0

0 a11 a12

0 0 0




 ,~a2 =






0 0 0

a21 a22 0

0 2a21 2a22




 .

We find that for the fast scale terms with orderO(1ǫ ),

~b~a2~v = (a21, a22, 0)






0 0 0

a21 a22 0

0 2a21 2a22











v11

v12

v22




 = a22wv

and

~b~q1 = (a21, a22, 0)






0

0

q2




 = 0
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Therefore, we can write the differential equation forwv as

dwv
dt

=
1

ǫ
a22wv +~b~q0 +~b~a1~v −~b~F (~v)

=
1

ǫ
a22

(

wv + ǫ ~G(v)
)

where~G(~v) = a−1
22

(

~b~q0 +~b~a1~v −~b ~F (~v)
)

.

Solving this nonhomogeneous first order linear equation, wefind the solution

wv(t) = ǫ

∫ t

0
e

a22
ǫ

(t−s) ~G(~v(s))ds .

Since the unconditional variance of the invariant measure of a multiscale OU system

of the form (3.1) is finite and independent of time andǫ, we havelimt→∞ E(x2(t)) ≤ c

andlimt→∞ E(y2(t)) ≤ c, for c some finite constant independent oft andǫ. Immediately,

we also know that the covarianceE(x(t)y(t)) ≤
√

E(x2(t))E(y2(t)) ≤ c. Hence we

know that the unconditional covariance matrix of the multiscale system is finite, and by the

solution to an OU SDE as described in (2.2) and the invariant variance as in (2.4), we can

immediately deduce that the invariant variance is the upperbound for the variance ofx(t)

andy(t). We know thatv(t) is the conditional covariance matrix of the coupled system

(x(t), y(t)) given {z(s)}0≤s≤t. We know the conditional variance is always less than or

equal to the unconditional variance, and since the unconditional variance is bounded above

by the invariant variance, we conclude thatv(t) ≤ C, for someC independent oft andǫ.

Since ~G(~v(t)) is a continuous quadratic function ofv(t), anda22 < 0, we can

obtain an upper bound for the following integral,

‖
∫ t

0
e

a22
ǫ

(t−s) ~G(~v(s))ds‖ ≤ sup
0≤s≤t

‖~G(~v(s))‖‖
∫ t

0
e

a22
ǫ

(t−s)ds‖ ≤ c

for which the‖·‖ is a vector norm, andc is anǫ-independent constant. Therefore, we proved

thatwv(t) is of orderO(ǫ), and consequently,

v21 = −a−1
22 a21v11 + ǫC

whereC is of orderO(1).
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According to (5.11), we have the equation for the top-left block as follows,

dv11
dt

= ((a11v11 + a12v21) + (v11a11 + v12a12))

+
1

ǫ
· 0

− ((v11S11 + v12S21)v11 + (v11S12 + v12S22)v21)

+ q1

By substituting the solution ofv21 from equation (5.13) into the above equation,

and consideringv21 = v12, and the definitions of̃h andã, we have

dv11
dt

= (a11v11 + a12v12) + (v11a11 + v12a12)

−
(
v11h1τ

−1h1 + v12h2τ
−1h1

)
v11 −

(
v11h1τ

−1h2 + v12h2τ
−1h2

)
v12

+ q1

=
(
a11 − a12a

−1
22 a21 + ǫC

)
v11 + v11

(
a11 − a21a

−1
22 a12 + ǫC

)

− (v11h1 + v12h2) τ
−1h1v11 − (v11h1 + v12h2) τ

−1h2v12

+ q1

=
(
a11 − a12a

−1
22 a21 + ǫC

)
v11 + v11

(
a11 − a12a

−1
22 a21 + ǫC

)

− v11
(
h1 − a21a

−1
22 h2 + ǫC

)
τ−1h1v11 − v11

(
h1 − a21a

−1
22 h2 + ǫC

)
τ−1h2v12

+ q1

=
(
a11 − a12a

−1
22 a21 + ǫC

)
v11 + v11

(
a11 − a12a

−1
22 a21 + ǫC

)

− v11
(
h1 − a21a

−1
22 h2 + ǫC

)
τ−1

(
h1 − h2a

−1
22 a21 + ǫC

)
v11

+ q1

= (ã+ ǫC)v11 + v11(ã+ ǫC)− v11(h̃+ ǫC)τ−1(h̃+ ǫC)v11 + q1

= ãv11 + v11ã− v11h̃τ
−1h̃v11 + q1 + ǫC .

As ǫ → 0, this equation converges to the equation forV in (5.9a). Sincev11 = vx and

noting that we are consideringv11 andV to be scalars, we can show that

d(vx − V )

dt
=

d(v11 − V )

dt

= 2ã(v11 − V )− h̃τ−1h̃(v211 − V 2) + ǫC

=
(

2ã− h̃τ−1h̃(v11 + V )
)

(v11 − V ) + ǫC
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The solution to the above equation bounded as

‖(vx − V )(t)‖ ≤ ‖
∫ t

0
sup
0≤s≤t

(

(e2ã−h̃τ
−1h̃(v11(s)+V (s))

)

ǫC(t)ds‖

≤ ǫC(t)‖
∫ t

0
e2ãds‖

≤ ǫC(t)

whereC(t) is a constant for everyt, which is independent ofǫ .

The proof for statement(i) of Theorem 5.1 is complete.

We then prove the convergence between the mean of the marginal distribution of

the filtered multiscale OU system and the filtered mean of the averaged distribution.

Proof. Proof of(ii) in Theorem 5.1.

We writem in the form of its scalar entries,

m =

(

m1

m2

)

Recall the definition for the filtered mean (5.4b)

dm = amdt+ (vh∗τ−1)(dz − h∗mdt) (5.14)

Rearranging the above equation, we have

a1m = ǫ

(
dm

dt
− a0m− (vh∗τ−1)(

dz

dt
− hm)

)

By rewriting the above equation in block representation, wehave a system of 2

equations, the equation for the lower block,

a21m1 + a22m2 = ǫ

(
dm2

dt
− (vh∗τ−1)(

dz

dt
− hm)

)

We have the solution ofm2 as a function ofm1

m2 = −a−1
22 a21m1 + ǫC (5.15)

We now try to find a bound forC in equation (5.15). We definewm = a21m1 +
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a22m2 = ǫa22C and~b = (a21, a22). We can write the differential equation forwm as

dwm
dt

= ~b
dm

dt
= ~b

(

a0m(t) +
1

ǫ
a1m(t) + (v(t)h∗τ−1)

(
dz

dt
− hm(t)

))

We find that for the fast scale term with orderO(1ǫ ),

~ba1m = (a21, a22)

(

0 0

a21 a22

)(

m1

m2

)

= a22wm

Therefore, we can write the differential equation forwm as

dwm
dt

=
1

ǫ
~ba1m(t) +~b

(

a0m(t) + (v(t)h∗τ−1)

(
dz

dt
− hm(t)

))

=
1

ǫ
a22

(

wm + ǫa−1
22
~b

(

a0m(t) + (v(t)h∗τ−1)

(
dz

dt
− hm(t)

)))

We substitute in the definition fordzdt from equation (5.3), we have

dwm
dt

=
1

ǫ
a22

(

wm + ǫa−1
22
~b

(

a0m(t) + (v(t)h∗τ−1)

(

hx(t) +
√
τ
dw

dt
− hm(t)

)))

wherew is a Brownian motion.

Solving this nonhomogeneous first order linear equation, wehave the solution,

wm(t) (5.16)

= ǫ

∫ t

0
e

a22
ǫ

(t−s)a−1
22
~b
(
a0m(s) + (v(s)h∗τ−1)(hx(s) − hm(s))

)
ds

+ ǫ

∫ t

0
e

a22
ǫ

(t−s)a−1
22
~b(v(s)h∗τ−1)

√
τdws

We have proved thatE sup0≤s≤t(‖x‖2+‖y‖2) is bounded in Lemma 3.5, soE(x2(s))

is bounded. Since the coupled system(x(s), y(s)) has invariant mean of zero, and finite

invariant variance, by Itô isometry, we see thatE(w2
m) is of orderO(ǫ2), consequently,C

in equation (5.15) has a bound inL2, ie. E(C2) = O(1).

We then substitute the solution form2 in equation (5.15) andv11 in equation (5.13)
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into the upper block of the rearranged equation (5.14)

dm1 = (a11m1 + a12m2)dt+ (vh∗τ−1)(dz − (h1m1 + h2m2)dt)

= (ãm1 + a−1
22 wm(t))dt+ (v11h̃τ

−1 + ǫC(t))(dz − (h̃m1 + h2a
−1
22 wm(t))dt)

= ãm1dt+ (v11h̃τ
−1)(dz − h̃m1dt)

+ a−1
22 wm(t)dt

+ ǫC(t)(dz − (h̃m1 + h2a
−1
22 wm(t))dt)

− (v11h̃τ
−1)h2a

−1
22 wm(t)dt

Noticem1 = mx, we can express the difference betweenmx(t, z(t)) andM(t, z(t)),

d(mx(t, z(t)) −M(t, z(t))) =
(

ã− v11h̃τ
−1h̃

)

(m1 −M)dt

+ a−1
22 wmdt

+ ǫC(t)(dz − (h̃m1 + h2a
−1
22 wm(s))ds)

− (v11(s)h̃τ
−1)h2a

−1
22 wm(s)ds

Hence we have the solution

(mx −M)(t, z(t)) =

∫ t

0
e(ã−v11(s)h̃

2τ−1)(t−s)a−1
22 wm(s)ds

+ ǫC(t)

∫ t

0
e(ã−v11(s)h̃

2τ−1)(t−s)hxdt

+ ǫC(t)

∫ t

0
e(ã−v11(s)h̃

2τ−1)(t−s)√τdw

− ǫC(t)

∫ t

0
e(ã−v11(s)h̃

2τ−1)(t−s)h̃wm(s)ds

− ǫC(t)

∫ t

0
e(ã−v11(s)h̃

2τ−1)(t−s)h2a
−1
22 wm(s)ds

−
∫ t

0
e(ã−v11(s)h̃

2τ−1)(t−s)v11(s)τ
−1h̃2a−1

22 wm(s)ds

Since we know thatE(w2
m) = O(ǫ2), using thatv11(t) ≥ 0 for all t, we have

eã−v11h̃
2τ−1 ≤ eã, andv11 has a finite upper bound since it is the conditional variance com-

pared to the invariant invariance ofx. Using these facts, and by Cauchy-Schwarz inequality,

we have

E(mx(t, z(t)) −M(t, z(t)))2 ≤ ǫ2C(t) + ǫ2C(t) + ǫ2C(t) + ǫ4C(t) + ǫ4C(t) + ǫ2C(t)

≤ ǫ2C(t)
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This completes the proof for statement(ii) of Theorem 5.1.

5.4 Numerical Example

We illustrate our idea in Theorem 5.1 through a simple numerical example. The system of

interest is

dx = axdt+
√
qdU , x0 ∼ N(0, I), (5.17)

dz = hxdt+
√
τdW , z(0) = 0 (5.18)

We observez(t), to model the conditional distribution ofx(t)|z(t). We know this

distribution is Gaussian, so we apply the Kalman filter to estimate the mean and variance

of the distribution. We plot the direct Kalman filter (5.4) applied to the system, and plot the

marginal mean and variance as described in (5.5). On the other hand, we model it through

the averaged system

dX = ãXdt+
√
q1dU , X0 ∼ N (0, I) (5.19)

We know the conditional distribution ofX(t)|z(t) is Gaussian, so we plot the mean

and variance of this conditional distribution from the averaged Kalman filter (5.9). In the

numerical example below, the simulation of the SDE is via euler method without subsam-

pling. We take following values for the parameters,

a =

(

−.5 1
1
ǫ −1

ǫ

)

, q =

(

1 0

0 2
ǫ

)

, h = (1, 1)

ã = 0.5, q1 = 1, τ = 0.1, ǫ = 2−10, δ = 2−12, n = 213.

In Figure 5.1, we see the actual path of slow process from the multiscale system

(blue line) and the path of the averaged process (red line) closely follow each other. This

illustrates the convergence of the paths for averaged process stated in Theorem 3.6. The two

standard deviation confidence intervals from the Kalman filters, both direct (cyan lines) and

averaged (green lines), almost lie directly on top of each other. They both provide a good

support for the actual path of the slow processx from the OU system.

In Figure 5.2, we plot the convergence of the Kalman filter variances. We see that

the variance of marginal distributionx|z (dashed cyan line) andX|z (dashed green line) are

almost the same. The speed of convergence of the variances are very fast and stable. The

variance ofy|z (dash-dotted cyan line) is also plotted for illustration.

In Figure 5.3, we plot the squared error(mx(t) −M(t))2, from which we see that

the error quickly converges to zero. The size of the error when settled is of scale10−6,
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Figure 5.1: Paths and 95% confidence intervals of the filtereddistributions

which is in line with our expectation of orderO(ǫ2), for ǫ = 2−10.

In Figure 5.4, we plot the distance‖vx(t)−V (t)‖, from which we see that the error

quickly converges to a constant. The size of the constant is of observed at an order ofO(ǫ),

which is in line with our expectations.

We conclude this is a good evidence to support Theorem 5.1. The advantage of this

application of Kalman filter on averaged process mainly liesin reduction of observations

and computational complexity when solving similar problems. There is no need to observe

the entire multiscale system, but just the corresponding marginal data, and hence reduces

computational time and requirement on computational resources.

5.5 Conclusion

In this chapter, we tried to integrate the multiscale methodof averaging and Kalman filter-

ing. We have proved that the slow part of the marginal filtereddistribution of the multiscale

system converges to the filter distribution of averaged process, given observations from the

multiscale system contaminated with Gaussian noise, andǫ is small. In summary,

• We take observations from the noisy observation (5.3);

• we use these observation to substitute into the mean and variance of the Kalman filter

derived from the averaged process (5.9);
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• we show that the Gaussian distributions characterized by (5.9) and (5.5) closely fol-

low each other.

In Theorem 5.1, we proved the convergence between the marginal distribution of

the Kalman filter applied on the whole coupled system and the distribution of that Kalman

filter applied on the averaged process, when the coupled system is made of two scalar OU

processes. However, we expect similar result to hold for anyfinite d1 andd2.
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Chapter 6

Homogenization and Kalman Filter

In this chapter, we will compare the behaviour of the Kalman filter applied to a multiscale

OU system with that applied to the homogenized process. We will look at the behaviour

of the Kalman filter for a system of multiscale OU processes, as well as the Kalman filter

for the homogenized process. Our goal is to show that the filtered marginal distribution

for the slow part of the multiscale OU system approximates the filtered distribution of the

homogenized process.

We derive the Kalman filter for the multiscale OU system in section 6.1, and then

introduce the Kalman filter for the homogenized process in section 6.2. Then we discuss the

convergence between the filtered marginal distribution forthe slow part of the multiscale

system and the filtered distribution for the homogenized process in section 6.3. A numerical

example is discussed in section 6.4.

6.1 Kalman Filter for the Multiscale System

Recall the multiscale system (4.1) satisfying Assumptions4.1,

dx

dt
=

1

ǫ
(a11x+ a12y) + (a13x+ a14y) +

√
q1
dU

dt
dy

dt
=

1

ǫ2
(a21x+ a22y) +

√
q2
ǫ2
dV

dt

with initial condition(x(0)∗, y(0)∗)∗ ∼ N (m0, v0).

We rewrite the above system as

dx

dt
= ax+

√
q
dW

dt
, x(0) ∼ N(m0, v0) (6.2)
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where

x =

(

x

y

)

,

a = a0 +
1

ǫ
a1 +

1

ǫ2
a2 =

(

a13 a14

0 0

)

+
1

ǫ

(

a11 a12

0 0

)

+
1

ǫ2

(

0 0

a21 a22

)

,

and

q = q0 +
1

ǫ2
q1 =

(

q1 0

0 0

)

+
1

ǫ2

(

0 0

0 q2

)

.

for which x ∈ X , y ∈ Y, x ∈ X ⊕ Y. We takeX = R
d1, andY = R

d2 . Suppose we

observez, a noise contaminated integral ofx, which follows the SDE

dz

dt
= hx+

√
τ
dw

dt
, z(0) = 0, (6.3)

whereh = (h1, h2), for whichh1 ∈ R
l×d1 , h2 ∈ R

l×d2; τ invertible. W , w are indepen-

dent standard Brownian motions of appropriate dimensions.Equation (6.3) shows that the

observation is a linear transformation of the hidden process x, contaminated by Gaussian

noise. Notice thatx is Gaussian from equation (6.2). Under this setup, the conditional dis-

tribution ofx|z is also Gaussian and is characterized by a meanm(t) and covariance matrix

v(t). These two quantities satisfy a pair of closed nonlinear ODEs,

dv

dt
= av + va∗ − vh∗τ−1hv + q (6.4a)

dm = amdt+ (vh∗τ−1)(dz − hmdt) . (6.4b)

Our interest is the conditional distribution of the slow part of the multiscale system

x given observationsz, which is the marginal of the Gaussian distributionN (m(t), v(t)).

We set

mx = Id1m (6.5a)

vx = Id1vI
∗
d1 (6.5b)

whereId1 is as in (5.6).
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6.2 Kalman Filter for the Homogenized Process

Now consider the homogenized equation for the slow process in (6.2). From Chapter 4, we

know that the “slow” processx of (6.2) can be homogenized to the following SDE

dX

dt
= ãX +

√

q̃
dU ′

dt
, X(0) = x(0) ∼ N (M0, V0), (6.6)

whereã = a13 − a14a
−1
22 a21, andq̃ = q1 + a12a

−1
22 q2

(
a−1
22

)∗
a∗12. The observations taken

from z should be close toZ from the SDE below, ifǫ is small,

dZ

dt
= h̃X +

√
τ
dw

dt
, Z(0) = 0, (6.7)

whereh̃ = h1 − h2a
−1
22 a21.

The conditional distribution ofX(t)|Z(t) is Gaussian and is characterized by a

meanM(t) and covariance matrixV (t). The corresponding Kalman filter can be derived

as the following ODEs,

dV

dt
= ãV + V ã∗ − V h̃∗τ−1h̃V + q̃ (6.8a)

dM = ãMdt+ (V h̃∗τ−1)(dZ − h̃Mdt) . (6.8b)

We will show in Section 6.3, that if we feed the observations from (6.3) to the

Kalman filter (6.8), with identical initial conditions, theGaussian distribution characterized

by (6.5) converges to (6.8), asǫ→ 0.

6.3 The Convergence of the Kalman Filters

We will prove in this section, asǫ gets small, the distribution of the Kalman filter described

in (6.5) converges to the filtered distribution of the homogenized process described in (6.8),

given that the we takeZ(t) = z(t) in equation (6.8b).

As in the averaging case, before going to the main result, we first define some linear

operators for an arbitrary symmetric matrixm:

L0m = a0m+ma
∗
0

L1m = a1m+ma
∗
1

L2m = a2m+ma
∗
2

Lǫm = am+ma
∗ = L0m+

1

ǫ
L1m+

1

ǫ2
L2m
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and for simplicity, denote

S = h∗τ−1h

which is positive definite symmetric.

Theorem 6.1. Consider the scale separated Ornstein-Uhlenbeck system(6.2), and let As-

sumptions 4.1 hold and only consider the scalar processes whend1 = d2 = 1. By feeding

noisy observations{z(s)}0≤s≤t from equation(6.3) to both the marginal filtered distri-

bution of the multiscale systemN (mx(s, z(s)), vx(s)) and the filtered distribution of the

homogenized equationN (M(s, z(s)), V (s)), then for every1 ≫ ǫ > 0,

(i) ‖vx(s)− V (s)‖ = O(ǫ2), for anys ∈ [0, t], given initial conditionvx(0) = V (0);

(ii) E (mx(s, z(s)) −M(s, z(s)))2 = O(ǫ2), for anys ∈ [0, t], given initial condition

mx(0, z(0)) =M(0, z(0)).

Before going to the main result of this chapter, we first definesome linear operators

for an arbitrary symmetric matrixm:

L0m = a0m+ma
∗
0

L1m = a1m+ma
∗
1

L2m = a2m+ma
∗
2

Lǫm = am+ma
∗ = L0m+

1

ǫ
L1m+

1

ǫ2
L2m

and for simplicity, denote

S = h∗τ−1h .

Proof. Proof of statement(i) in Theorem 6.1.

Recall the definition for the variance (6.4a) written in simplified notation defined

above

dv

dt
= av + va∗ − vh∗τ−1hv + q

= L0v +
1

ǫ
L1v +

1

ǫ2
L2 − vSv +

(

q0 +
1

ǫ
q1

)

(6.9)

By rearranging the equation above, we have

L2v = −q1 + ǫ2
(
dv

dt
−L0v + vSv − q0

)

− ǫL1v (6.10)
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By looking at the lower-right block of equation (6.10), we have

(a21v12 + a22v22) + (v21a21 + v22a22) = −q2
+ ǫ2

(
dv22
dt

− 0 + (vSv)22 − 0

)

− ǫ · 0

Thus we have the solution ofv22 as a function ofv12,

v22 = −a−1
22 a21v12 −

1

2
a−1
22 q2 +

ǫ2

2
a−1
22

(
dv22
dt

+ (vSv)22

)

(6.11)

By looking at the top-right block of equation (6.10), we have

v11a21 + v12a22 = ǫ2
(
dv12
dt

− (a13v21 + a14v22) + (vSv)12

)

(6.12)

− ǫ(a11v21 + a12v22)

By substituting the solution ofv22 into equation (6.12), and bya11−a12a−1
22 a21 = 0

in Remark 4.2 and note thatã = a13 − a14a
−1
22 a21, we have,

v12 = −a21
a22

v11

+ ǫ
a12
2a222

q2

+ ǫ2
(
dv12
dt

− (ãv12 −
a14q2
2a22

)

)

+ ǫ3
1

2a222

(
dv22
dt

+ (vSv)22

)

+ ǫ4
a14
2a222

(
dv22
dt

+ (vSv)22

)

.

Hence we have the solution forv12 as a function ofv11,

v12 = −a21
a22

v11 + ǫ
a12q2
2a222

+ ǫ2C . (6.13)

We now try to find anǫ-independent bound forC in the above equation. By writing the

symmetric square matrices in vector forms, we definewv = a21v11 + a22v12 − ǫ a122a22
q2 =

ǫ2a22C, and~b = (a21, a22, 0),

~v =






v11

v12

v22




, ~q0 =






q1

0

0




, ~q1 =






0

0

q2




.
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We can write

dwv
dt

= ~b
d~v

dt
= ~b

(

~a0~v +
1

ǫ
~a1~v +

1

ǫ2
~a2~v + ~q0 +

1

ǫ2
~q1 − ~F (~v)

)

for which ~F (~v) is the corresponding vectorized form of matrixvSv, and

~a0 =






2a13 2a14 0

0 a13 a14

0 0 0




 , ~a1 =






2a11 2a12 0

0 a11 a12

0 0 0




 , ~a2 =






0 0 0

a21 a22 0

0 2a21 2a22




 .

We find that for the fast scale terms with orderO( 1
ǫ2
),

~b~a2~v = (a21, a22, 0)






0 0 0

a21 a22 0

0 2a21 2a22











v11

v12

v22




 = a22wv + ǫ

a12
2a22

q2 ,

and

~b~q1 = (a21, a22, 0)






0

0

q2




 = 0 .

Therefore, we can write the differential equation forwv as

dwv
dt

=
a22
ǫ2

(

wv + ǫ
a12q2
2a222

+ ǫ2
~b

a22

(

~a0~v +
1

ǫ
~a1~v − ~F (~v) + ~q0

))

.

Solving this nonhomogeneous first order linear equation, wefind the solution

wv(t) = ǫ

∫ t

0
e

a22
ǫ2

(t−s)
(

a12q2
2a222

+
~b

a22
~a1~v(s)

)

ds

+ ǫ2
∫ t

0
e

a22
ǫ2

(t−s) ~b
a22

(

~a0v(s)− ~F (~v) + ~q0

)

ds .

Since the unconditional variance of the invariant measure of a multiscale OU system

in the form of (4.1) is finite and independent of time andǫ, we havelimt→∞ E(x2(t)) ≤ c

andlimt→∞ E(y2(t)) ≤ c, for c some finite constant independent oft andǫ. Immediately,

we also know that the covarianceE(x(t)y(t)) ≤
√

E(x2(t))E(y2(t)) ≤ c. Hence we

know that the unconditional covariance matrix of the multiscale system is finite, and by the

solution to an OU SDE as described in (2.2) and the invariant variance as in (2.4), we can

immediately deduce that the invariant variance is the upperbound for the variance ofx(t)

andy(t). We know thatv(t) is the conditional covariance matrix of the coupled system
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(x(t), y(t)) given {z(s)}0≤s≤t. We know the conditional variance is always less than or

equal to the unconditional variance, and since the unconditional variance is bounded above

by the invariant variance, we conclude thatv(t) ≤ C, for someC independent oft andǫ.

Since ~F (~v(t)) is a continuous quadratic function ofv(t), anda22 < 0, we can

obtain an upper bound for the following integrals,

‖
∫ t

0
e

a22
ǫ2

(t−s) ~b
a22

(

~a0v(s)− ~F ( ~v(s)) + ~q0

)

ds‖

≤
~b

a22
sup
0≤s≤t

‖~a0v(s)− ~F ( ~v(s)) + ~q0‖
∫ t

0
e

a22
ǫ2

(t−s)ds

≤ ǫ2C(t) .

‖
∫ t

0
e

a22
ǫ2

(t−s)
(

a12q2
2a222

+
~b

a22
~a1~v(s)

)

ds‖

≤ sup
0≤s≤t

‖a12q2
2a222

+
~b

a22
~a1~v(s)‖

∫ t

0
e

a22
ǫ2

(t−s)ds

≤ ǫ2C(t) .

for which the‖·‖ is a vector norm, andC(t) is a constant for everyt but ǫ-independent.

Therefore, we proved thatwv(t) is of orderO(ǫ), and consequently,

v12 = −a21
a22

v11 + ǫ
a12q2
2a222

+ ǫ3C(t) .

whereC(t) is of orderO(1ǫ ).

We finally look at the top-left block of equation (6.10),

dv11
dt

= (a13v11 + a14v21) + (v11a13 + v12a14)

+
1

ǫ
((a11v11 + a12v21) + (v11a11 + v12a12))

+
1

ǫ2
· 0

− (v11h1τ
−1h1 + v12h2τ

−1h1)v11 − (v11h1τ
−1h2 + v12h2τ

−1h2)v21

+ q1 .

Substituting in the solution ofv12 from (6.13), and considering the definitions ofã,
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h̃ and assumptiona11 − a12a
−1
22 a21 = 0 in Remark 4.2, we have

dv11
dt

= (ã+ ǫ3C(t))v11 + v11(ã+ ǫ3C(t))

+
a212
a222

q2 + ǫ3C(t)

+ 0

− v11(h̃+ ǫ3C(t))τ−1(h̃+ ǫ3C(t))v11

+ q1

= ãv11 + v11ã− v11h̃τ
−1h̃v11 + q̃ + ǫ3C(t) .

Sincev11 = vx whereC(t) in the above equation is of orderO(1ǫ ). This equation converges

to the equation forV in (6.8a). Noting that we are consideringv11 andV to be scalars, we

can show that

d(vx − V )

dt
=

d(v11 − V )

dt

= 2ã(v11 − V )− h̃τ−1h̃(v211 − V 2) + ǫ3C(t)

=
(

2ã− h̃τ−1h̃(v11 + V )
)

(v11 − V ) + ǫ3C(t) .

The solution to the above equation is bounded as

‖(vx − V )(t)‖ ≤ ‖C(t)ǫ3
∫ t

0
sup
0≤s≤t

(

(e2ã−h̃τ
−1h̃(v11(s)+V (s))

)

ds‖

≤ ǫ3C(t)‖
∫ t

0
e2ãds‖

≤ ǫ3C(t) .

NoticeC(t) is of orderO(1ǫ ) here, therefore,

‖(vx − V )(t)‖ = O(ǫ2) .

The proof for statement(i) of Theorem 6.1 is complete.

Proof. Proof of(ii) in Theorem 6.1.

We writem as a block matrix of its scalar entries,

m =

(

m1

m2

)

.
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Recall the definition for the filtered mean (6.4b)

dm = amdt+ (vh∗τ−1)(dz − h∗mdt) . (6.14)

Rearranging the above equation, we have

a2m = ǫ2
dm

dt
− ǫ2a0m− ǫa1m− ǫ2(vh∗τ−1)(

dz

dt
− hm) .

By rewriting the above equation in block representation, wehave a system of 2

equations, the equation for the lower block,

a21m1 + a22m2 = ǫ2
dm2

dt
− 0− 0− ǫ2(vh∗τ−1)(

dz

dt
− hm) .

We then have the solution ofm2 as a function ofm1

m2 = −a−1
22 a21m1 + ǫ2C . (6.15)

We now try to find a bound forC in equation (6.15). We definewm = a21m1 +

a22m2 = ǫ2C and~b = (a21, a22). We can write the differential equation forwm as

dwm
dt

= ~b
dm

dt
= ~b

(

a0m+
1

ǫ
a1m+

1

ǫ2
a2m+ (v(t)h∗τ−1)(

dz

dt
− hm)

)

.

We find that for the fast scale term with orderO( 1
ǫ2
),

~ba2m = (a21, a22)

(

0 0

a21 a22

)(

m1

m2

)

= a22wm .

Therefore, we can write the differential equation forwm as

dwm
dt

=
1

ǫ2
~ba2m+~b

(

a0m+
1

ǫ
a1m+ (v(t)h∗τ−1)(

dz

dt
− hm)

)

=
1

ǫ2
a22

(

wm + ǫ2a−1
22
~b(a0m+ a1m+ (vh∗τ−1)(

dz

dt
− hm))

)

.

We substitute in the definition fordzdt from equation (6.3), we have

dwm
dt

=
1

ǫ2
a22

(

wm + ǫ2a−1
22
~b(a0m+

1

ǫ
a1m+ (vh∗τ−1)(hx+

√
τ
dw

dt
− hm))

)

.

wherew is a Brownian motion.
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Solving this nonhomogeneous first order linear equation, wehave the solution,

wm(t) = ǫ2
∫ t

0
e

a22
ǫ2

(t−s)a−1
22
~b
(
a0m(s) + (v(s)h∗τ−1)(hx(s) − hm(s))

)
ds(6.16)

+ ǫ

∫ t

0
e

a22
ǫ2

(t−s)a−1
22
~ba1m(s)ds

+ ǫ2
∫ t

0
e

a22
ǫ2

(t−s)a−1
22
~b(v(s)h∗τ−1)

√
τdws .

Finding theL2 bounds term by term above, we have

E

(∫ t

0
e

a22
ǫ2

(t−s)a−1
22
~b
(
a0m(s) + (v(s)h∗τ−1)(hx(s) − hm(s))

)
ds

)2

≤ tE

(∫ t

0
e

2a22
ǫ2

(t−s) (C(a0 − v(s)h∗τ−1h)2m2(s) + Cv(s)h∗τ−1hx2(s)
)
ds

)

≤ tǫ2 .

We have proved thatE sup0≤s≤t(‖x‖2 + ‖y‖2) is bounded in Lemma 4.5, soE(x2(s))

is bounded. Since the coupled system(x(s), y(s)) has invariant mean of zero, and finite

invariant variance, we see thatEm2(s) is bounded. We have

E

(∫ t

0
e

a22
ǫ2

(t−s)a−1
22
~b
(
a0m(s) + (v(s)h∗τ−1)(hx(s) − hm(s))

)
ds

)2

≤ ǫ2C(t) ,

E

(∫ t

0
e

a22
ǫ2

(t−s)a−1
22
~ba1m(s)ds

)2

≤ ǫ2C(t) ,

and

E

(∫ t

0
e

a22
ǫ2

(t−s)a−1
22
~b(v(s)h∗τ−1)

√
τdws

)

≤ ǫ2C(t) .

Hence, for equation (6.16)

E(wm(t))
2 ≤ ǫ4C(t) . (6.17)

We then substitute the solution form2 from equation (6.15) andv11 into the upper
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block of the rearranged equation (6.14)

dm1 = (a13m1 + a14m2)dt

+
1

ǫ
(a11m1 + a12m2)dt

+ 0

+ (vhτ−1)(dz − (h1m1 + h2m2)dt)

= (ãm1 + a14a
−1
22 wm(t))dt

+
1

ǫ
(a12a

−1
22 wm(t))dt

+ ((v11 + ǫC(t))h̃τ−1)(dz − h̃m1(t)− h2a
−1
22 wm(t))dt)

= ãm1dt+ (v11h̃τ
−1)(dz − h̃m1dt)

+ a14a
−1
22 wm(t)dt

+
1

ǫ
(a12a

−1
22 wm(t))dt

+ ǫC(t)h̃τ−1(dz − (h̃m1(t)− h2a
−1
22 wm(t))dt)

− v11h̃τ
−1h2a

−1
22 wm(t)dt .

Noticem1 = mx, and by assumption, we have the same initial conditionsmx(0, z(0)) =

M(0, z(0)), we have the difference,

d(mx(t, z(t)) −M(t, z(t))) =
(

ã− v11h̃τ
−1h̃

)

(mx −M)dt

+ a14a
−1
22 wm(t)dt

+
1

ǫ
(a12a

−1
22 wm(t))dt

+ ǫC(t)h̃τ−1(dz − (h̃m1(t)− h2a
−1
22 wm(t))dt)

− v11h̃τ
−1h2a

−1
22 wm(t)dt .
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We have the solution,

(mx −M)(t, z(t)) = a14a
−1
22

∫ t

0
e(ã−v11(s)h̃τ

−1h̃)(t−s)wm(s)ds

+
1

ǫ
a12a

−1
22

∫ t

0
e(ã−v11(s)h̃τ

−1h̃)(t−s)wm(s)ds

+ ǫC(t)h̃τ−1

∫ t

0
e(ã−v11(s)h̃τ

−1h̃)(t−s)dz

− ǫC(t)h̃τ−1

∫ t

0
e(ã−v11(s)h̃τ

−1h̃)(t−s)(h̃m1(s)− h2a
−1
22 wm(s))ds)

− h̃τ−1h2a
−1
22

∫ t

0
e(ã−v11(s)h̃τ

−1h̃)(t−s)v11(s)wm(s)ds .

In order to use Cauchy-Schwarz inequality, we use the solution (6.17) to find the

magnitude of each term in the above equation.

E

(

a14a
−1
22

∫ t

0
e(ã−v11(s)h̃τ

−1h̃)(t−s)wm(s)ds

)2

≤ CE

(∫ t

0
e(ã−v11(s)h̃τ

−1h̃)(t−s)wm(s)ds

)2

≤ CE

(∫ t

0
eã(t−s)wm(s)ds

)2

≤ CtE

(∫ t

0
e2ã(t−s)w2

m(s)ds

)

≤ Ctǫ4 .

E

(
1

ǫ
a12a

−1
22

∫ t

0
e(ã−v11(s)h̃τ

−1h̃)(t−s)wm(s)ds

)2

≤ C

ǫ2
E

(∫ t

0
eã(t−s)wm(s)ds

)

≤ C

ǫ2
ǫ4

≤ Cǫ2 .
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E

(

ǫC(t)h̃τ−1

∫ t

0
e(ã−v11(s)h̃τ

−1h̃)(t−s)dz

)2

≤ ǫ2C(t)E

(∫ t

0
eã(t−s)dz

)2

≤ ǫ2C(t)E

(∫ t

0
eã(t−s)(hx(s)ds +

√
τdws)

)2

≤ ǫ2C(t) (C(t) + Ct)

≤ C(t)ǫ2 .

Similarly

E

(

ǫC(t)h̃τ−1

∫ t

0
eã−v11(s)h̃τ

−1h̃(h̃m1(s)− h2a
−1
22 wm(s))ds)

)2

≤ ǫ2C(t) ,

and

E

(

h̃τ−1h2a
−1
22

∫ t

0
eã−v11(s)h̃τ

−1h̃v11(s)wm(s)ds

)2

≤ ǫ4C(t) .

Hence, by Cauchy-Schwarz inequality,

E(mx(t, z(t)) −M(t, z(t)))2 ≤ Ctǫ4 + Cǫ2 + C(t)ǫ2 + C(t)ǫ2 + C(t)ǫ4

≤ C(t)ǫ2 .

where asǫ → 0, theL2 difference is small. This completes the proof for statement(ii) of

Theorem 6.1.

6.4 Numerical Example

We illustrate our idea in Theorem 6.1 through a simple numerical example. The system of

interest is

dx = axdt+
√
qdW , x0 ∼ N(0, I), (6.18)

dz = hxdt+
√
τdw , z(0) = 0 (6.19)

We observe{z(s)}0≤s≤t, to model the conditional distribution ofx(t). We know

this distribution is Gaussian, so we apply the Kalman filter to estimate the mean and vari-

ance of the distribution. We plot the marginal mean and variance of the filtered distribution
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as described in (6.5). On the other hand, we model it through the homogenized system

dX = ãXdt+
√

q̃dU ′ , X(0) ∼ (M0.V0) (6.20)

We know the conditional distribution ofX(t)|z(t) is Gaussian, so we plot the mean

and variance of this conditional distribution from the homogenized Kalman filter (6.8).

In the numerical example below, the simulation of the SDE is via euler method without

subsampling. We take the following values for the parameters,

a =

(

−1
ǫ − 1 −1

ǫ + 1

− 1
ǫ2

− 1
ǫ2

)

, q =

(

2 0

0 2
ǫ2

)

, h = (1, 12),

ã = −2, q̃ = 2, τ = 0.1, ǫ = 2−7, δ = 2−15, n = 215.

In Figure 6.1, we see the actual path of slow process from the multiscale system

(blue line) and the path of the homogenized process (red line) closely follow each other.

This illustrates the convergence of the paths for averaged process stated in Theorem 4.6.

The two standard deviation confidence intervals from the Kalman filters, both direct (cyan

lines) and homogenized (green lines), closely follow each other. They both provide a good

support for the actual path of the slow processx from the OU system.

In Figure 6.2, we plot the convergence of the Kalman filter variances. We see that

the variance of marginal distributionx|z (dashed cyan line) andX|z (dashed green line) are

almost the same. The speed of convergence of the variances are relatively slower compared

to those from the averaged system, but it is very much convincing that the convergence and

stability is well obtained. The variance ofy|z (dash-dotted cyan line) is also plotted for

illustration.

In Figure 6.3, we plot the squared error(mx(t) −M(t))2, from which we see that

the errors are controlled at below the order of10−4, and are still decreasing, which is in line

with our expectation of an orderO(ǫ2) = 2−14 ≈ 10−4.2.

In Figure 6.4, we plot the distance‖vx(t)−V (t)‖, from which we see that the error

is rough of order10−3, and our expectation is that it is of orderO(ǫ2) = 2−14 ≈ 10−4.2.

We conclude this is a good evidence to support Theorem 6.1. The advantage of

this application of Kalman filter on homogenized process is the same as those discussed in

Section 5.4.

6.5 Conclusion

In this chapter, we tried to integrate the multiscale methodof homogenization and Kalman

filtering. We have proved that the slow part of the marginal filtered distribution of the multi-

scale system converges to the filter distribution of homogenized process, given observations
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Figure 6.1: Paths and 95% confidence intervals of the filtereddistributions
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from the multiscale system contaminated with Gaussian noise, andǫ is small. Unlike the

parameter estimation for the homogenized OU system in Chapter 4, here we observe no

need for subsampling. In summary,

• We take observations from the noisy observation (6.3);

• we use these observation to substitute into the mean and variance of the Kalman filter

derived from the homogenized process (6.8);

• we show that the Gaussian distributions characterized by (6.8) and (6.5) closely fol-

low each other.

Similar to the result achieved in averaging, in Theorem 6.1,we proved the conver-

gence between the marginal distribution of the Kalman filterapplied on the whole coupled

system and the distribution of that Kalman filter applied on the homogenized process, when

the coupled system is made of two scalar OU processes. However, we expect similar result

to hold for any finited1 andd2.

88



Part III

EXTERNAL PROJECTS
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In this part of the thesis, we will study applications of two types of stochastic models

in real world. We will study how a standard vector autoregressive model is developed

to a heteroscedastic Bayesian autoregressive model when fitting into a time series data in

Chapter 7. Then we will study the Generalized Autoregressive Conditional Heteroscedastic

(GARCH) model, equipped with a constant and a time dependentcorrelation matrix, for a

portfolio of 8 asset classes in Chapter 8.

The recent financial crisis has significantly challenged theassumptions and appli-

cabilities of some of the empirically tested stochastic models. In particular, mean reverting

models such as vector autoregressive models were preferredby econometric researchers

and monetary policy makers. However, they no longer show convincing arguments in sim-

ulating future economic scenarios, since the volatile and swiftly changing economic en-

vironment do not adhere to models with constant parameters anymore. Bayesian vector

autoregressive models have come of more popularity due to its “self updating” ability and

its autoregressive based property. We will discuss about the application of Bayesian autore-

gressive models to the time series of interest rate factors in the Nelson-Siegel yield curve

model in Chapter 7. Along the development of the model from standard vector autoregres-

sive model to the hierarchical heteroscedastic regressionmodel, we will incorporate the

numerical method of Markov Chain Monte Carlo, Gibbs samplerin specific. Comparison

of the models will be based on mean forecasts based on each model specification. Since the

model is essentially targeted at forecasting, we fix the estimated parameters on their mean

values, while ignoring the uncertainty band for the estimated parameters.

Also due the unexpected and rapid change in the recent economic atmosphere, vul-

nerability to risks (volatility) has come to the core concern when making investment deci-

sions. Inter-governmental institutions, such as the International Monetary Fund, are espe-

cially sensitive to economic and market volatilities. The Generalized Autoregressive Condi-

tional Heteroscedastic (GARCH) Model has been a popular andessential tool in modelling

volatility, we study two types of multivariate GARCH model,the Constant Correlation and

Dynamic Conditional Correlation GARCH models, in Chapter 8. The Constant Correlation

GARCH assumes a constant correlation matrix among assets class, and the Dynamic Con-

ditional Correlation GARCH model assumes a time dependent correlation matrix. We will

compare the two setups of the GARCH model by fitting them into our data. Comparing to

our focus on mean estimates in Chapter 7, we concentrate on the distribution in 8. This is

due to the target of this modelling project is to analyze the portfolio risk structure, the aim

is to replicate the volatility and the cross asset correlation time series according to historical

data.

All models in this part are coded in MATLAB. We thank the publicly licenced

“Econometric Tool Box” developed by James LeSage, et al [55]for the great efficiency
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and convenience it provides to the implementation of our modelling process. I would also

like to thank the International Monetary Fund for providingthe opportunity and support for

these projects.
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Chapter 7

Bayesian Vector Autoregressive

Models

Vector Autoregressive (VAR) models are of particular interest to economic researchers and

policy makers. This is due to the mathematical simplicity and proven credibility of regres-

sion models. Autoregressive models, specifically with short memories, are usually mean

reverting, and trend deterministic under normal conditions. This is true, for an economic

statistic, across (usually very) long time horizon. However, the recent economic recession

presented a distorted picture for the economic scenario based on autoregressive models. For

this reason, we apply Bayesian Vector Autoregressive (BVAR) models and their derivatives

to our problem of simulating the Nelson-Siegel factors. Themethods of Bayesian Vector

Autoregressions are discussed in detail in [59, 88].

In section 7.1 we introduce the Nelson-Siegel yield curve model, from which the

time series of factors are taken. From section 7.2 to section7.5, we discuss how the time

series model for the Nelson-Siegel interest rate factors (ie. the long, medium and short

term interest rate parameters of Nelson-Siegel model) can be developed from the standard

VAR(1) to the Bayesian heteroscedastic regression model. In section 7.6, we discuss the

convergence tests for the MCMC samplers, which take important place in the Gibbs sam-

pling for Bayesian VAR model studied in section 7.4, and the Bayesian heteroscedastic

regression model studied in section 7.5. Finally, in section 7.7, we discuss the results from

each model in the development process, the reason a specific model is preferred, and the

convergence test results if the model is MCMC based. For the MCMC based models in

sections 7.4 and 7.5, though we will sample the entire the posterior space for the param-

eters of interest, we will focus on the mean estimates of the parameters since our aim is

to implement those estimated models to simulate data, therefore, we will not discuss the

uncertainty bands of the estimated parameters.
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7.1 The Nelson-Siegel Factors

The Nelson-Siegel model [23, 24, 67] is the most widely used model for yield curve mod-

elling of government bonds (ie. US Treasury bills) by central banks and monetary policy

researchers. It takes the form

Yield(t) = y0(t) + y1(t)
1− e−λτ

λτ
+ y2(t)

(
1− e−λτ

λτ
− e−λτ

)

(7.1)

whereλ is a decay factor, which is assumed to be a constant across thetime horizon due to

its low volatility; τ is the bond maturity parameter;y(t) = (y0(t), y1(t), y2(t)) is a three

dimensional time series which the following models are based on.

In economic terms,y0 is interpreted as the long run level of interest rates,y1 is the

short term component andy2 for the medium term. They are usually fitted via least-squares

or similar algorithms (see [23]).

In our problem, historical monthlyy(t) is supplied. It is the vector valued time

series we try to model and simulate. Since short memory models are preferred by the policy

makers, we restrict our models to have lag length of 1 (month). We also assume there is

no cross-dependence between components ofy(t) at the same time due to observational

restrictions, which means we can not forecastyi(t) given yj(t), i 6= j. The modelling

scheme takes four steps. We start from the standard VAR(1) insection 7.2, then introduce

the standard BVAR(1) in section 7.3, and its hierarchical Monte Carlo derivative in section

7.4. Finally, we modify the Monte Carlo BVAR(1) as a heteroscedastic linear regression

model to give our best forecasting result in section 7.5.

We have time series datay(t) on monthly frequency, ranging from August 1988 to

April 2010 (as in Figure 7.7), and givenλ and a range of different maturitiesτ . Our aim is

to forecasty(t) for 60 periods (ie. 5 years) from May 2010 using regression based models.

We assume a constantλ for the entire 5-year simulation period, which only takes part when

we are converting the simulatedy(t) to yield curve forecasts using equation (7.1). The

Nelson-Siegel model (7.1) is only used as a map to convert thefactorsy(t) to yields, and is

irrelevant to the model development process discussed below.

7.2 Model 1: The Vector AR(1) process

As a start, we regress the time series data{y(t)}0≤t≤N against itself with order one time

lag, using the standard Vector AR(1) model

Y = LY Φ+ η (7.2)
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where the dataY = {y(t)}1≤t≤N ∈ R
N×k, with L as the lag operator1; Φ ∈ R

k×k;

η ∈ R
N×k is the random Gaussian error. The variableN +1 takes the value 261, and is the

number of equidistantly observed historicaly(t), ranging from August 1988 to April 2010;

k = 3 is the number of variables. We want to estimate the parameterΦ.

By estimating the parameterΦ through ordinary least squares, we can make mean

forecasts using the model. The mean forecastedy(t) and selected yield curves are plotted

in Figure 7.8. The results will be discussed in Section 7.7.

For simplicity of notation in later steps, we decompose the above equation as

yi = LY φi + ǫi (7.3)

where i ∈ {0, 1, 2}. The vectoryi represents a column vector ofY = (y0, y1, y2) in

equation (7.2), andφi a corresponding column vector inΦ = (φ0, φ1, φ2), respectively.

ǫi is a Gaussian random vector with mean zero and covariance matrix Σi. For the sake of

simplicity, we omit the column indicesi of yi andφi. We write the regression model in

this form to avoid the unnecessary complication when describing the variance of a matrix

random variable, which is a three-dimensional tensor. Thissimplification only results a

change of notation, it does not affect the correlation amongφi’s, norǫi’s.

7.3 Model 2: The standard BVAR(1)

We now implement the standard Bayesian vector autoregressive model with lag 1 based

on the VAR(1) set up (7.3) by adding more randomness to the parameters. We assumeφ

(shorthand notation forφi’s in (7.3)) follow a distribution classified by the Bayesianframe-

work described below. For Bayesian models, the choice of appropriate priors is essential.

There are many choices of priors for BVAR estimation, they are studied extensively in

[59, 85, 88]. However, we choose the non-informative Litterman prior, or Minnesota prior,

for our standard BVAR(1) application.

The Litterman prior is the most classical and most widely used non-informative

prior in BVAR applications. When implementing a BVAR model with the absence of prior

knowledge of the time series, external information enters each equation marginally and de-

viates as time lags increase. The prior is not derived from any explicit economic theory but

purely on common belief [59, 60], which assumes that currentstate has higher dependence

with immediate past than the past further back in time. This property shows a very weak

assumption is required to implement this prior, and a wide scope of problems this prior is

able to adapt to. This advantage motivates our constructionof the BVAR model. In the Lit-

1For our problem, the lag operator is defined asLY = {y(t)}0≤t≤N−1
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terman prior, the parameters are assumed to be independent from each other. All parameters

are assumed to have mean of zero except the coefficient on the first lag of the dependent

variable, and with standard deviation decreasing as time lags increase.

The Littermanprior assumes a Gaussian distribution forφ

φ ∼ N (φ0, V0) (7.4)

where the prior meanφ0 = (0, . . . , 0, 1, 0, . . . , 0)∗, with the ith entry valued 1, and all

other entries valued zero2, which reflects the belief that theith variable has an expected

value equal to its immediate past, but not other variables.

The prior covariance takes the form:

V0 = V
1
2
0

(

V
1
2
0

)∗
(7.5)

(

V
1
2
0

)

ij

= θl−ψw(i, j)
σ̂i
σ̂j

whereθ ∈ (0, 1) is a parameter describing overall tightness of the variance. l−ψ is a lag

decay function at lagl with rateψ ∈ (0, 1). The function describes the shrinkage of the

standard deviation with increasing lag length. In our probleml = 1, which gives a constant

lag decay function.w(i, j) a weight function describes the tightness of the prior for variable

j in equationi of the system, relative to the tightness of its own lags of variablei in equation

i. w is a symmetric matrix, which is chosen as a common preference[55]

w =






1 0.5 0.5

0.5 1 0.5

0.5 0.5 1






The diagonal1s mean variablei has a larger weight in equationi, which takes a big-

ger role in describing itself, and other variables in this equation are equally less weighted.

σ̂i is the estimated standard error from a univariate autoregression for variablei. It is pre-

estimated usingyi = Lyiφ̃+ ǫ̃i, where the variance of̃ǫ is σ̂2. σ̂i/σ̂j acts as a scaling factor

adjusts for varying magnitude of the variables across equations i andj. The construction

of V0 through the factorization setup eases sampling ofφ since it is assumed to follow a

multivariate Gaussian distribution.
2For our problem,φ0 takes one of the following values:(1, 0, 0)∗, (0, 1, 0)∗ or (0, 0, 1)∗.
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We have thelikelihood function forφ from the model (7.3)

L(φ|Y ) ∝ det(Σ)
1
2 exp

(

−1

2
(y − (LY )φ)∗Σ−1(y − (LY )φ)

)

(7.6)

Hence we find theposterior by completing the square for the product of the prior

(7.4) and the likelihood (7.6),

p(φ|Y ) ∝ exp

(

−1

2
(φ− φ̂Bayesian)

∗V̂ −1
Bayesian(φ− φ̂Bayesian)

)

(7.7)

whereφ̂ andV̂ are the maximum likelihood estimators of the posterior meanand variance

for parameterφ. Thereforeφ is updated by the lag 1 dataLY according to

φ̂Bayesian =
(
V −1
0 + (LY )∗Σ−1(LY )

)−1 (
V −1
0 φ0 + (LY )∗Σ−1y

)

V̂Bayesian =
(
V −1
0 + (LY )∗Σ−1(LY )

)−1

In summary, for the BVAR(1) model, we have the following framework:

• We want to estimate the parameterφ in (7.3), by maximizing it’s posterior density;

• we use dataY = (y0(t), y1(t), y2(t))0≤t≤N as input, segment it to the dependent

variable{yi}1≤t≤N for each run of the model forφi, and the independent variables

LY = (y0(t), y1(t), y2(t))0≤t≤N−1;

• the prior density forφ as given by (7.4);

• the likelihoodL(φ|Y ) as given by (7.6);

• the posteriorp(φ|Y ) as given by (7.7).

We use the estimatedφ to make 60-period mean forecasts ofy(t) using equation (7.3). The

selected yield curves are shown in Figure 7.9. The results will be discussed in Section 7.7.

7.4 Model 3: BVAR(1) with Gibbs sampling

When the Litterman prior is chosen as a non-informative prior, the posterior distributions

can be obtained in a closed form, the necessary estimation can be analytically obtained.

However, in the case an informative prior is preferred and can be reasonably supplied, we

may opt for the Gibbs sampling for the BVAR model since analytical results in Model 2
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cannot be obtained here. Gelfand and Smith [29] proved that,if the functional form of the

joint density of the random observations is known, using Gibbs sampler to draw a sequence

of complete conditional distributions for all of its parameters, will converge in the limit to

the true joint posterior distribution of the parameter.

Recall the setup in (7.3),

y = LY φ+ ǫ (7.8)

wherey and(LY ) retain the same property, but assumeǫ ∼ N (0, σ2I) is a vector of inde-

pendently identically distributed Gaussian random errors. In the case we want to implement

the hierarchical Gibbs sampled BVAR(1) model to estimate parameters(φ, σ), we first need

some more assumptions.

Assumptions 7.1.

We assume, for the system(7.3):

(i) the prior densityπφ(φ) for parameterφ, and the prior densityπσ(σ) for parameter

σ are independent, ie. the joint prior densityπ(φ, σ) = πφ(φ)πσ(σ);

(ii) πφ(φ) is Gaussian, for which the mean and variance can be expressedas linear

combinations ofφ;

(iii ) we assume a non-informative diffuse prior forπσ(σ) ∝ 1
σ , which is a continuous

uniform distribution, withσ > 0.

For Assumption 7.1 (ii), we mean there existsR such that

πφ(φ) ∝ exp

(

−1

2
(Rφ− r)′ Γ−1 (Rφ− r)

)

(7.9)

from which it is possible thatR ∈ R
m×k with m ≤ k, andr andΓ are the prior mean and

covariance ofR, respectively. In the eventm ≤ k, the priorπφ(φ) in (7.11) is improper,

since there are fewer number of equations than the number of variables. However, we can

seek an alternative by factorisingΓ−1 = τ ′τ , andrτ = τr. This gives

πφ(φ) ∝ exp

(

−1

2
(τφ− rτ )

′ (τφ− rτ )

)

. (7.10)

Therefore, we have the jointprior density

π(φ, σ) = πσ(σ)πφ(φ), (7.11)
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and thelikelihood function

L(φ, σ|Y ) ∝ σ−(N−1) exp

(
1

2σ2
(y − (LY )φ)∗ (y − (LY )φ)

)

, (7.12)

to get theposterior

p(φ, σ) ∝ σ−N exp
((

φ− φ̂gibbs

)∗
V̂ −1
gibbs

(

φ− φ̂gibbs

))

, (7.13)

which gives the maximum likelihood estimators

φ̂gibbs =
(
(LY )∗(LY ) + σ2τ∗τ

)−1 (
(LY )∗y + σ2τ∗rτ

)
, (7.14)

and

V̂gibbs = σ2
(
(LY )∗(LY ) + σ2τ∗τ

)−1
. (7.15)

It is observed that the MLEŝφgibbs and V̂gibbs depend onσ, which prevents it to

have an analytical solution as in the standard BVAR model with Litterman prior. Theil

and Goldberger [90] proposed thatσ2 to be initially estimated by the least squares method

σ̂2 = (y − (LY )φ)∗ (y − (LY )φ)/N − k.

The Gibbs sampler samplesφ from the multivariate conditional Gaussian posterior

distribution (7.13), with conditional mean (7.14) and variance (7.15), and samplesσ from

the posterior density

p(σ|φ) ∝ −σ−N exp (− (y − (LY )φ)∗ (y − (LY )φ))

which is identical to

(y − (LY )φ)∗ (y − (LY )φ) /σ2|φ ∼ χ2(N − 1)

In summary, for the BVAR(1) model with Gibbs sampling, we have the following

framework:

• We want to estimate the coefficientφ, andσ, the standard deviation for the errorǫ in

(7.3), by maximizing their joint posterior density;

• we use dataY = (y0(t), y1(t), y2(t))0≤t≤N as input, segment it to the dependent

variable{yi}1≤t≤N for each run of the model forφi, and the independent variables

LY = (y0(t), y1(t), y2(t))0≤t≤N−1;

• the joint prior density for(φ, σ) is given by (7.11);

• the likelihood functionL(φ, σ|Y ) is given by (7.12);
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• and the joint posteriorp(φ, σ|Y ) is given by (7.13).

Convergence tests of the MCMC method is monitored using various methods, which

are discussed in Section 7.6. The 60-month mean forecasts ofy(t) made by the BVAR(1)

with Gibbs sampler and selected yield curves are shown in Figure 7.10. The results will be

discussed in Section 7.7.

7.5 Model 4: Bayesian heteroscedastic regression and Gibbssam-

pling

We now refer to the spatial autoregressive models from a Bayesian perspective. The method

is discussed extensively in [56, 57].

The model (7.3) is considered as a case of heteroscedastic linear regression model

with an informative prior.

y = LY φ+ ǫ

with

Assumptions 7.2.

We assume:

(i) ǫ follows a Gaussian distributionN (0, σ2V );

(ii) the variance of the error takes a diagonal formV = diag(v1, v2, . . . , vN );

(iii ) φ has a Gaussian priorN (φ̄, T );

(iv) σ has a flat diffuse prior(1/σ), which is a uniform distribution withσ > 0;

(v) eachvi has a priorr/vi follows independentχ2(r) prior distributions;

(vi) r follows a priorΓ(m,k).

In this model,y and LY are the same as defined in (7.3). In addition to the

previous model, we assume, thatǫ has a non-constant variance. The relative variance

(v1, v2, . . . , vN ) are assumed to be fixed at each discrete observational time, they are un-

known parameters need to be estimated. Bayesian methods avoid the constrains from a

degrees-of-freedom perspective when estimatingN parameters(v1, v2, . . . , vN ) of V , and

thek + 1 parameters ofφ andσ, usingN data observations, since we can rely on an infor-

mative prior for theV parameters. The priorr/vi takes the form ofχ2(r) distribution as

described in Assumption 7.2(v). This type of prior was first introduced by Lindley in [58]
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as cell variances in the analysis of variance with multiple observations per cell. It has been

discussed in [30] as well.

The prior assigned to eachvi can be understood as a distribution with unity mean

and variance2/r. As r becomes large, allvi will approach unity, giving an identity ma-

trix for V , believing that outliers and non-constant variances do notexist; whenV does

not equal identity, it makes the model more robust to outliers and observations with large

variances by assigning less weight to these observations.

Following the usual Bayesian methodology, we have the likelihood function,

L(φ, σ, V |Y ) ∝ σ−(N−1)

(
N∏

i=1

√

(vi)

)−1

exp

(
1

2σ2
(y − (LY )φ)∗V −1(y − (LY )φ)

)

.

(7.16)

we then compute the posterior using the priors and likelihood function analytically, how-

ever, the posterior density may not be tractable. We seek Gibbs sampling to derive the

posterior distribution.

We will use the following mutually conditional distributions forφ, σ andV to do

our sampling.

φ|(σ, V ) ∼ N
(
H
(
(LY )∗V −1y + σ2T−1c

)
, σ2H

)
(7.17)

H =
(
(LY )∗V −1(LY ) + T−1

)−1

[∑N
i=1(e

2
i /vi)

σ2

]

|(φ, V ) ∼ χ2(N) (7.18)

[
σ−2e2i + r

vi

]

|(φ, σ) ∼ χ2(r + 1) (7.19)

whereei = yi − (LY )∗iφ.

The Gibbs sampling takes the following steps repeatedly:

(i) Start with arbitrary choices of initial valuesφ0, σ0 andv0i ;

(ii) Sampleφ1 using (7.17) conditional onσ0 andv0i ;

(iii ) Sampleσ1 using (7.18) conditional onφ1 andv0i ;

(iv) Samplevi using (7.19) conditional onφ1 andσ1.

In summary, for the Bayesian heteroscedastic regression model with Gibbs sam-

pling, we have the following framework:

• We want to sample the parameters(φ, σ, V ), by doing Gibbs sampling iteratively;
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MCMC CONVERGENCE diagnostics
Based on sample size = 1000
Autocorrelations within each parameter chain
Variable Lag 1 Lag 5 Lag 10 Lag 50
phi 0 -0.023 0.000 0.035 0.003
phi 1 0.026 -0.003 0.039 -0.067
phi 2 -0.003 0.026 -0.023 -0.014

Figure 7.1: Autocorrelation Diagnostics for Model 3

• we use dataY = (y0(t), y1(t), y2(t))0≤t≤N as input, segment it to the dependent

variable{yi}1≤t≤N for each run of the model forφi, and the independent variables

LY = (y0(t), y1(t), y2(t))0≤t≤N−1;

• the priors for each parameter are specified through a set of distributions, which are

set out in Assumptions 7.2;

• the likelihood function is given in (7.16);

• the posteriors are specified iteratively in (7.17), the updating scheme follows the al-

gorithm in 7.5.

Convergence tests of the MCMC method is monitored using various methods, which

are discussed in Section 7.6. The 60-month mean forecasts ofy(t) from the heteroscedastic

regression model and Gibbs sampling and selected yield curves are shown in Figure 7.11.

The results will be discussed in Section 7.7.

7.6 Convergence Tests of the MCMC Samplers

For the Gibbs sampler models 3 and 4 discussed in Section 7.4 and 7.5, we assess the con-

vergence of the sampler to the posterior distributions. Forboth of the samplers in Section

7.4 and 7.5, we used 1100 draws for each step, and discarded the first 100 as burn-in. We

use the rest of the 1000 samples to be tested for convergence.Among various MCMC con-

vergence diagnostics, we focus on the following diagnostictests: autocorrelation, Raftery

& Lewis, and Geweke’s diagnostics. The diagnostic measuresare explained in [43].

Autocorrelation is the most common approach to measure dependency among Markov

Chain samples. Autocorrelation with lags 1, 5, 10 and 50 havebeen computed (see Figures

7.1 and 7.2), we find all of them being very small, which suggest the samples are well

mixed.

Raftery & Lewis [32, 82, 83] diagnostics provides a practical tool for finding the

minimum sample size required to reach a desired level of posterior distributional accuracy in

terms of percentiles. We take the quantile ofq = 0.025 to be our interest, with a precision
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MCMC CONVERGENCE diagnostics
Based on sample size = 1000
Autocorrelations within each parameter chain
Variable Lag 1 Lag 5 Lag 10 Lag 50
phi 0 0.049 -0.051 -0.038 0.002
phi 1 0.004 -0.034 0.011 -0.012
phi 2 -0.007 0.003 0.039 0.010

Figure 7.2: Autocorrelation Diagnostics for Model 4

Raftery-Lewis Diagnostics for each parameter chain
(q=0.0250, r=0.010000, s=0.950000)
Variable Thin Burn Total(N) (Nmin) I-stat
phi 0 1 2 969 937 1.034
phi 1 1 2 969 937 1.034
phi 2 1 2 969 937 1.034

Figure 7.3: Raftery & Lewis test for Model 3

level of r = 0.01 associated with a probabilitys = 95%. In Figures 7.3 and 7.4, the

resulting statistics suggest that a total number of 969 draws are required to achieve the

desired accuracy ofr = 0.01 on the proposed0.025 percentile estimation; and 937 draws

are required if the draws are from an iid chain. Our chain consists of 1000 effective draws,

which exceeds both of these requirements.

Geweke’s [31] diagnostics tests if the mean estimates converges. It compares the

means from the early and latter part of the Markov Chain. There are two groups of sum-

mary statistics been produced for the Geweke’s diagnostics. The first group of statistics

titled ”Geweke Diagnostics for each parameter chain” showsthe estimates of the numerical

standard error (NSE) and relative numerical efficiency (RNE). RNE provides an indication

of the number of draws that would be required to produce the same numerical accuracy if

the draws had been sampled independently from the posteriordistribution. The test pro-

duces estimates of iid chain and truncation of the periodgram window at 4%, 8% and 15%.

The NSE and RNE based on an iid process provides a sample aboutthe statistics. The 4%,

8% and 15% NSEs and RNEs do not base on iid assumption of the process. If they are

significantly different, then we tend to believe in the non-iid nature, however, in our case

Raftery-Lewis Diagnostics for each parameter chain
(q=0.0250, r=0.010000, s=0.950000)
Variable Thin Burn Total(N) (Nmin) I-stat
phi 0 1 2 969 937 1.034
phi 1 1 2 969 937 1.034
phi 2 1 2 969 937 1.034

Figure 7.4: Raftery & Lewis test for Model 4
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in Figures 7.5 and 7.6, corresponding statistics are close to each other, which suggests a

well-mix of our samples.

The second group of the statistics titled ”Geweke Chi-squared test for each param-

eter chain” shows if the sample draws have reached an equilibrium based on the means of

the first 20% and the last 50% of the sample. If the sample Markov Chain has reached an

equilibrium, the means of the two portions of the sample should be roughly equal. From

the results in Figures 7.5 and 7.6, we see that the means of theparameters are close enough

to indicate a good convergence.

Therefore, the conclusion arise as both of the MCMC samplers: the Bayesian

VAR(1) model with Gibbs sampler (Model 3) and the Heteroscedastic Regression Model

(Model 4) have reach equilibrium with our required accuracylevel given our sample size in

the simulation.

7.7 Discussion of the Results

Before we make our choices on the model, we outline the fundamental assumptions we

make on yield curve. We make two assumptions (or beliefs) on the behaviour of our tar-

geting yield curves: 1) the yield curves being simulated arenormal yield curves3. Normal

yield curves always have a positive derivative in time. It reflects a rational economic ex-

pectation that the economy will grow in the future, and the associated inflation will rise in

the future rather than fall. The positive derivative is alsoassociated with the risks posed to

the uncertainty of future inflation rate and the value of scheduled cash flows, which is com-

pensated by higher yields for longer maturity. 2) We believethe yield curves for different

forwards should not intersect significantly, and yield curves with shorter forward periods

should mostly be dominated by those with longer forwards. This assumption holds because

we believe that risks posed to the uncertainty in longer timeis greater, hence should be com-

pensated with higher yields. With these two expectations inmind, we discuss the results

from the four models.

In Figure 7.7, we see that the long run interest levely0 evolves at a rather sta-

ble level, while the shorty1 and mediumy2 term levels show relatively high correlation

and high volatility. In all of the four forecast plots corresponding to our four models re-

spectively, we show the 60-period mean forecast values ofy(t) in the upper plot, and the

forecasted mean yield curves with four typical forward periods (ie. today, 1-year, 3-year

and 5-year) in the lower plot.

The forecasted Nelson-Siegel factors, in Figure 7.8, usingthe VAR(1) model shows

3There are 3 types of yield curves: normal, inverted and flat. Most of the post-Great Depression yield curves
have been normal, and there is enough reason for us to believeit should be normal
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Geweke Diagnostics for each parameter chain
Variable Mean std dev NSE iid RNE iid
phi 0 0.013170 0.044212 0.001398 1.000000
phi 1 -0.012824 0.043320 0.001370 1.000000
phi 2 0.095037 0.337383 0.010669 1.000000

Variable NSE 4% RNE 4% NSE 8% RNE 8% NSE 15%
phi 0 0.001385 1.019037 0.001484 0.887651 0.001400
phi 1 0.001192 1.321504 0.001161 1.391757 0.001044
phi 2 0.010099 1.115972 0.009766 1.193568 0.009268

RNE 15%
0.997201
1.722246
1.325150

Geweke Chi-squared test for each parameter chain
First 20% versus Last 50% of the sample
Variable phi 0
NSE estimate Mean N.S.E. Chi-sq Prob
i.i.d. 0.012691 0.001710 0.620908
4% taper 0.012616 0.001583 0.581897
8% taper 0.012449 0.001668 0.587570
15% taper 0.012216 0.001725 0.602652

Variable phi 1
NSE estimate Mean N.S.E. Chi-sq Prob
i.i.d. -0.011670 0.001686 0.778119
4% taper -0.011679 0.001436 0.738817
8% taper -0.011693 0.001393 0.727647
15% taper -0.011748 0.001301 0.698195

Variable phi 2
NSE estimate Mean N.S.E. Chi-sq Prob
i.i.d. 0.105432 0.012862 0.799946
4% taper 0.105512 0.013101 0.801667
8% taper 0.105007 0.011099 0.783266
15% taper 0.104849 0.010969 0.787452

Figure 7.5: Geweke diagnostics for Model 3
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Geweke Diagnostics for each parameter chain
Variable Mean std dev NSE iid RNE iid
phi 0 0.998704 0.003682 0.000116 1.000000
phi 1 0.013190 0.010479 0.000331 1.000000
phi 2 -0.016624 0.009377 0.000297 1.000000

Variable NSE 4% RNE 4% NSE 8% RNE 8%
phi 0 0.000137 0.721950 0.000153 0.575885
phi 1 0.000343 0.932118 0.000358 0.855544
phi 2 0.000275 1.164783 0.000284 1.086397

NSE 15% RNE 15%
0.000163 0.512816
0.000347 0.912707
0.000242 1.506677

Geweke Chi-squared test for each parameter chain
First 20% versus Last 50% of the sample
Variable phi 0
NSE estimate Mean N.S.E. Chi-sq Prob
i.i.d. 0.998483 0.000142 0.029574
4% taper 0.998506 0.000137 0.029981
8% taper 0.998532 0.000137 0.039884
15% taper 0.998581 0.000122 0.049599

Variable phi 1
NSE estimate Mean N.S.E. Chi-sq Prob
i.i.d. 0.012646 0.000409 0.150961
4% taper 0.012773 0.000361 0.164952
8% taper 0.012805 0.000330 0.152876
15% taper 0.012885 0.000277 0.176683

Variable phi 2
NSE estimate Mean N.S.E. Chi-sq Prob
i.i.d. -0.016230 0.000363 0.306988
4% taper -0.016265 0.000292 0.229130
8% taper -0.016356 0.000224 0.220883
15% taper -0.016395 0.000203 0.272107

Figure 7.6: Geweke diagnostics for Model 4
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clear mean reverting feature of the model, while the three components stays relatively iso-

lated. The resulting yield curves converge quite quickly, which means for a bond with a

maturity of 10 years, there is little difference in yield if we buy it today, in 1-year, 3-year’s

or 5-year’s time. The results from VAR(1) does not directly violate the two beliefs we

assume for yield curves, however, the tiny differences in yields among the four forward

periods squeeze out the motivation to take such risks. This result is not encouraging, so we

look to the Bayesian modification of this regression model.

The forecast made by the standard BVAR(1) model is plotted inFigure 7.9. The

Bayesian structure with non-informative prior forecasteda converging medium and short

term interest levels. However, the yield curves violate thesecond belief we assumed at the

beginning of this chapter. The yield curves with longer forward periods should dominate

those with shorter forward periods. In our case, yield curves, from top to bottom, should be

in the order of 5-year, 3-year, 1-year and zero-year (today)forward periods. The Bayesian

VAR(1) with non-informative prior presented us with a wrong(ie. non normal) structure of

the yield curves. The reason for this problem lies behind thechoice of the non-informative

prior, we assumed a non-informative prior, with fixed mean and variance. The result shows

that this model lies heavily on correct specification of the prior, which is something we are

unable to supply except making a consensus choice. Therefore, we attempt an informative

prior with Monte Carlo methods to forecast the time series.

Then we look at the hierarchical Bayesian VAR(1) with an informative prior, in-

corporated with Gibbs sampler, the result is shown in Figure7.10. For each simulation

step, we make 1100 draws, and discard the first 100 as burn-in.Then compare to the yield

curves from the standard Bayesian VAR(1), we find yield curves follow a more reasonable

order, however, the yield curves still intersect at some maturity, which is not desirable ac-

cording to the second belief we have on yield curve behaviors. Though this modification

of the Bayesian VAR(1) model has shown some improvement, theresults still exhibit the

problem of intersecting (non normal) yield curves. This inspired us that the main struc-

ture of the model gives approximate correct order of the yield curves, but may have some

critically information in the error terms being missed out.This motivation turns us to the

heteroscedastic modifications of this Bayesian VAR(1) model.

For the last Bayesian heteroscedastic VAR(1), with a set of informative priors and

Gibbs sampler, the results are shown in Figure 7.11. The simulated Nelson-Siegel factors

have shown a much better replicate of the correlation as in Figure 7.7. The yield curves

have demonstrated a reasonable order for different forwardperiods.

The idea above is further illustrated by the time series on cross-correlations between

y0, y1 andy2. We observe the correlation time series on a 12-monthly (ie.1 year) inter-

vals. Figure 7.12 shows the historical correlation structure among the 3 factors. Figure
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7.13 shows the simulated correlations based on VAR(1), which looks more like switch-

ing between -1 and +1 correlation. This certainly does not look good in replicating the

historical correlations. Figure 7.14 shows the simulated correlations based on standard

BVAR(1). It is observed that the correlation betweeny1 andy2 still resembles a switching

phenomenon, while the correlation betweeny0 andy1 shows an evident periodicity, which

is non-existent in the historical correlation. Figure 7.15shows the simulated correlations

based on BVAR(1) with Gibbs sampler. It is observed that switching phenomenon between

-1 and +1 is not so evident under this model, the correlation betweeny0 andy1 has shown

most significant improvement, whilst the other two showing clear periodicity which is not

evident in history. Figure 7.16 shows the simulated correlations based on heteroscedastic

regression model with Gibbs sampler. This result best replicates the historical distribu-

tion of correlations, there are no obvious switching between extreme constant, nor periodic

behaviour.

7.8 Figures

7.9 Conclusion

In this chapter, we have developed from the standard VAR model, to the Bayesian VAR

model by assuming the distribution for the coefficientφ; further, we implemented a hier-

archical model by adding distributional assumption onto the error variance parameterσ,

and sampled through the Gibbs sampler to retrieve estimatesfor the parameters; finally,

by introducing more parameters to accurately specify the covariance matrix of the error,

namely, the variance matrixV , and the auxiliary parameterr, we developed a Bayesian

heteroscedastic regression model. For the last two models based on MCMC methods, we

examined the convergence of the Gibbs samplers.

By comparing the simulated results, we conclude that the Bayesian heteroscedastic

regression model best suits our purpose, which is to simulate yield curves. In summary, we

choose this model based on the following two reasons: 1) it best satisfies the normal yield

curve assumption and the non intersecting nature; 2) the simulated Nelson-Siegel interest

rate factors best replicates the historical time series, both in terms of the mean reverting

feature, volatility level and correlations.

107



Figure 7.7: Historical values of the Nelson-Siegel Parameters
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Figure 7.8: VAR(1) simulated Nelson-Siegel factors and Yield Curves
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Figure 7.9: Standard BVAR(1) simulated Nelson-Siegel factors and Yield Curves
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Figure 7.10: Simulated Nelson-Siegel factors and Yield Curves using Gibbs Sampled
BVAR(1)
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Figure 7.11: Simulated Nelson-Siegel factors and Yield Curves using Heteroscedastic Re-
gression model with Gibbs Sampler

112



Figure 7.12: Historical Correlations
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Figure 7.13: Simulated Correlations based on VAR(1)
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Figure 7.14: Simulated Correlations based on standard BVAR(1)
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Figure 7.15: Simulated Correlations based on BVAR(1) with Gibbs Sampler
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Figure 7.16: Simulated Correlations based on Heteroscedastic Regression Model with
Gibbs Sampler

117



Chapter 8

Dynamic Conditional Correlation

GARCH

The autoregressive models discussed in the previous chapter have shown inadequate capa-

bility in modelling time-varying volatility. We attemptedto overcome some of these short-

comings with the Bayesian heteroscedastic regression models; in this chapter, we delve

deeper into this modelling issue and investigate the Generalized Autoregressive Condi-

tional Heteroscedasticity (GARCH) model. This model has proved successful in predicting

volatility changes.

The phenomena of clustering of volatilities exist in a wide range of economic and

financial activities. The word “clustering of volatility”refers to observations that “large

changes tend to be followed by large changes, of either sign,and small changes tend to

be followed by small changes”[63, 64]. For example, if we aregiven a set of uncorre-

lated, drift (or mean) corrected, economic time series data{xt}t∈[0,T ], the magnitude of the

time series{|xt|}t∈[0,T ] displays a positive, significant and slowly decaying autocorrela-

tion function: corr(|xt|, |xt+δ |) > 0 for variousδ [64]. No real economic reason has been

proved to explain the clustering behaviour of volatilities, despite the empirical success of

the ARCH/GARCH models. This observation motivates us to apply these models to sim-

ulate economic risks. GARCH models require high frequency data, this is realisable for

financial data, but not easily feasible in terms of economic and monetary data. This is one

of the reasons we did not refer to this model in the previous chapter.

In section 8.1 we introduce the portfolio space, the data available and our objective.

In section 8.2, we make a brief review of the multivariate GARCH model setup. We discuss

the type of multivariate GARCH model with constant correlation matrix in section 8.3,

and dynamic conditional correlation matrices in section 8.4. In section 8.5, we examine

the goodness-of-fit of the proposed models using Kupiec Proportion-of-Failure test and
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Christoffersen’s Markov test. Finally, the simulated results are discussed in section 8.6.

8.1 The portfolio

The problem of interest here is a portfolio with a set of financial indices from very different

asset classes. The portfolio space reflects the potential investment space for the reserves of

the International Monetary Fund. The indices show the health of that specific asset class,

and as a proxy to monitor the health of that economy. The data source is Bloomberg. The

indices, discussed in this chapter are:

Index Asset class Weight1

Russell 3000 US Equity market index 30%

MSCI EAFA Morgan Stanley Capital International 30%

Europe, Australasia, Far East (International Equity index)

US MBS US Mortgage Backed Securities 11.5%

US Corp US Corporate Debt 11.5%

HY High Yield Bonds 12%

(non-investment grade bond)

Real Estate Real Estate Prices 5%

Commodity Global commodities (oil, gold, metal, etc) 0%

Cash USD Cash equivalent assets 0%

The normalized2 historical indices of the above assets are shown in Figure 8.3,

from the plot, we see trend is not so obvious for most of the assets, so we opt away from

autoregressive models, by referring to GARCH models on the (natural logged) returns of

the assets to explore the nature of the volatilities. We plotthe log returns in Figure 8.4 and

the autocorrelation functions in Figure 8.5.

The data is provided on a weekly frequency from 3 April, 1992 to 12 June, 2009.

Our objective is to find an appropriate volatility model to simulate returns for the indices.

Assessment of the suitability of the model is based on the simulated cross asset correlation

distribution and the empirical feasibility of the simulated returns. For this reason, we put

more emphasis on the distribution closeness which are estimated by least squares in 8.3

and maximum likelihood in 8.4 respectively, instead of a mean estimate from Bayesian

MCMC sampling as we did in the previous chapter. To measure the the closeness of the

distributions, we implement goodness-of-fit tests, namely, Kupiec Proportion-of-Failure test

and Christoffersen Markov test, which will be discussed in detail in section 8.5.

2Normalization here means all indices share the same starting value. eg. 1 or 100
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8.2 The multivariate GARCH model

It is widely accepted in the industry that understanding andpredicting the dependence in

the co-movements of asset returns is important. It is observed that financial volatilities

move together more or less closely over time across assets, geographical and industrial

markets. Therefore, multivariate models provide a better way to explore the cross sectional

(eg. asset classes, geographical distribution, markets, etc.) relevance than working with

separate univariate models [70]. The GARCH model has been discussed in extensive detail

in many literatures, such as [13, 14, 15], and multivariate GARCH model has also been

explored extensively, such as [70, 86, 87]. In this chapter,we follow the notation used in

[70].

The multivariate GARCH model is defined as

rt = µt + at, (8.1a)

at = H
1
2
t zt, (8.1b)

where,

(i) rt ∈ R
n is a vector of log returns at timet;

(ii) at ∈ R
n is a vector of mean-corrected returns at timet, ie.E(at) = 0,Cov(at) = Ht;

(iii ) µt ∈ R
n is a vector of expected value of the conditionalrt;

(iv) Ht ∈ R
n×n is the conditional covariance matrix ofat at timet;

(v) H
1
2
t the Cholesky factorization ofHt

3;

(vi) zt ∈ R
n is the vector of iid errors such thatE(zt) = 0 andE(ztzTt ) = I.

The idea of modelling conditional variance and correlationmotivates us to decom-

pose the covariance matrix as

Ht = DtRtDt

whereDt = diag

(

h
1
2
1t, h

1
2
2t, . . . , h

1
2
1n

)

is the conditional standard deviation, withhit the

(i, i)th element ofHt; Rt is the correlation matrix. We focus on two specifications of the

multivariate GARCH model: GARCH with constant correlationmatrix and GARCH with

time-varying correlation matrix.

3The idea of using Cholesky decomposition is that it helps capture the correlation between independent
random variables after we have obtained the covariance matrix. However, in Chapter 7, when specifying the
prior covariance (7.5), we construct the covarianceV0 from it’s factorized matrix, we did not restrict it to accord
with Cholesky decomposition for modelling convenience.

120



We will apply multivariate GARCH models to the time series data, with short mem-

ories as in the previous chapter. Empirically, it is often sufficient to assume a GARCH(1,1)

model than sophisticated volatility models with higher orders, since the marginal benefit

we achieve is overcome by the additional complication when implementing higher order

GARCH models, reason and examples are studied extensively in [37, 89]. In our modelling

project, short memory is also an assumption we take upon request. Therefore, we will

only look at the constant correlation and time-varying correlation multivariate GARCH(p,q)

models with lagsp = 1 andq = 1, wherep is the order of the Autoregressive (AR) terms

and q is the order of the autoregressive conditional heteroscedasticity (ARCH) terms.

8.3 Model 1: Constant Correlation Matrix

GARCH models with constant correlation matrix has a covariance matrix of the form

Ht = DtRDt (8.2)

where the correlation matrixR = [ρij ] is a constant positive definite matrix, and the di-

agonal standard deviation matrixDt is time dependent. Withρii = 1, i = 1, . . . , n, the

covariance matrix is given by

[Ht]ij = h
1
2
ith

1
2
jtρij ,

and each conditional variance is modelled as

hit = ci +

Qi∑

q=1

Ai,qa
(2)
i,t−q +

Pi∑

p=1

Bi,phi,t−p

wherec ∈ R
n is a vector,Aj , Bj ∈ R

n×n are diagonal matrices;a(2)t−j = at−j ⊙ at−j is the

element-wise product4. Ht is positive definite if elements ofc,Aj andBj are positive, since

R is positive definite. When implementing this model, we use the time series data of index

returns(rt){0≤t≤T} of 8 assets, and aim to estimate the values of the constant correlation

matrixR, and the time series of standard deviationsDt which are the components of the

covariance time seriesHt. In summary, for the Constant Correlation GARCH model, we

follow the framework below,

• We estimate the time dependent covariance matrixHt defined in (8.2), under the mul-

tivariate GARCH framework defined in (8.1), through the estimation of the constant

correlation matrixR and the time series of standard deviationsDt;

4Element-wise product is defined as(x⊙ y)ij = xij · yij .
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• we use the time series data of the 8 asset classes as data input, by first apply mean

correction, and then estimate covariance;

• the method used in the estimation is least squares.

The results are discussed later in Section 8.6.

8.4 Model 2: Dynamic Conditional Correlation GARCH

Now we look at the case when the correlation matrixR in (8.2) has time dependence,

denoted asRt in this section. This setup is defined as the Dynamic Conditional Correlation

GARCH model, it was introduced in [27], and the multivariatecase was discussed in [26].

According to the formulation in (8.1a), (8.1b) and (8.2), similar to the constant correlation

case, we express the conditional variances as

hit = αi,0 +

Qi∑

q=1

αi,qa
2
i,t−q +

Pi∑

p=1

βi,phi,t−p. (8.3)

The results are discussed below in Section 8.6. We define the standard errorsηt as

ηt = D−1
t at ∼ N (0, Rt).

To preserve the properties of positive definite symmetric properties of the covari-

ance matrixHt, we make the following assumptions,

Assumptions 8.1.

Assume:

(i) Rt positive definite, so as to ensureHt is positive definite;

(ii) all elements ofRt must be equal or less than 1 in magnitude, since it describes the

correlation;

(iii ) Rt is symmetric.

In order to ensure Assumptions 8.1,Rt is decomposed into the following structure

Rt = Q∗
t
−1QtQ

∗
t
−1 (8.4)

Qt = (1− a− b)Q̄+ aηt−1η
T
t−1 + bQt−1 (8.5)

whereQ̄ is the covariance matrix of the standard errorsηt, which can be estimated easily

as mean-squared-error.Q∗
t is a diagonal matrix which takes the square root of the diagonal
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elements ofQt. It rescales the elements inQt to ensure assumption 8.1 (ii).Qt, including

the initial valueQ0, must be positive definite to ensure assumption 8.1 (i).a and b are

scalars such thata, b ≥ 0 anda+ b < 1.

Maximum likelihood based estimation of the parameters of the DCC-GARCH model

requires us to make assumptions on the distribution of the errors zt. We assume stan-

dard Gaussian here. For ease of notation, we divide the parameters to two groups,φi =

(αi0, αi1, . . . , αiq, βi1, . . . , βip) for parameters of the univariate GARCH model for the as-

seti, andψ = (a, b) for the correlation structure. The likelihood function forat = H
1
2
t zt

is

L(φ,ψ) =

T∏

t=1

(2π)−
n
2 |H|− 1

2 exp

(

−1

2
aTt H

−1
t at

)

, (8.6)

replacingHt using (8.2) thelog-likelihood function becomes

l(φ,ψ) = −1

2

T∑

t=1

(
n log(2π) + 2 log(|Dt|) + log(|Rt|) + aTt D

−1
t R−1

t D−1
t at

)
. (8.7)

We then estimate the parameters in two steps forφ andψ iteratively. We first replace

Rt using the identity, which gives the likelihood function forφ,

l(φ) = −1

2

T∑

t=1

(

n log(2π) +
n∑

i=1

(

log(hit) +
a2it
hit

))

=

n∑

i=1

(

−1

2

T∑

t=1

(

log(hit) +
a2it
hit

+ C

))

(8.8)

whereC is a constant. Note that the second line of the above equationmeans that the log

likelihood is the sum of the log-likelihoods of the univariate GARCH equations ofn assets,

meaning that each parameter can be determined separately for each asset.

Once we have the MLÊφ by maximizing (8.8), we also knowhit for each asset, so

ηt andQ̄ can be estimated. We then estimateψ using the following conditional likelihood

l(ψ) = −1

2

T∑

t=1

(
n log(2π) + 2 log(|Dt|) + log(|Rt|) + ηTt R

−1
t ηt

)
,

for which it is equivalent to maximizing,

l∗(ψ) = −1

2

T∑

t=1

(
log(|Rt|) + ηTt R

−1
t ηt

)
. (8.9)

The maximum likelihood estimators under these pseudo likelihood yields consistent
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and asymptotically normal estimates [21]. In conclusion, we use the index return data

(rt)0≤t≤T , first apply mean correction (removeµ) and normalization (divide by standard

deviationD−1
t at) on the data, then estimate the correlation time series matrix Rt using the

DCC-GARCH(1,1) model. In summary, we estimate the Dynamic Conditional Correlation

GARCH model by following the framework below,

• We estimate the time dependent covariance matrixHt defined in (8.3), under the

multivariate GARCH framework defined in (8.1), through the estimation of the time

series of correlation matrixRt defined in (8.4) and the time series of standard devia-

tionsDt defined as in section 8.3, the parameter set of interest is(φ,ψ) in specific;

• we use the time series data of the 8 asset classes as data input, by first apply mean

correction, and then estimate covariance;

• the log-likelihood function of the parameters is given in (8.7);

• the estimation method is maximum likelihood, it is applied iteratively forφ by max-

imizing (8.8) for each parameter separately, and forψ by maximizing (8.9).

The results are discussed below in Section 8.6.

8.5 Goodness-of-Fit Tests

Since the purpose of this modelling project is to analyze therisks the portfolio is exposed to,

the goodness-of-fit of the models will not focus on the mean forecasts the model simulates,

but on the risks underlying the simulated scenario. We applytwo goodness-of-fit tests for

the GARCH models discussed in this chapter, the Kupiec Proportion-of-Failure (PoF) test

[12, 53] and the Christoffersen’s Markov test [18].

We apply the Kupiec PoF test on the simulated Value-at-Risk (VaR)5. The Kupiec

PoF test evaluates if the total number of exceptions (ie. thenumber of simulated returns falls

below the proposed VaR) agrees with the expected number of exceptions. The Christof-

fersen’s Markov test examines if the exceptions are independently distributed over time.

For each simulated data, it is either identified as an exception or not, so the number

of exceptions follows a binomial distribution

p(x) =

(

n

x

)

px(1− p)n−x

wheren is the total number of data,x is the number of exceptions observed, andp is the

probability of getting an exception, under an assumed distribution.
5Here we mean 95% VaR, which is defined as the 5% quantile withinthe space the VaR lies.
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The null hypothesisH0 is defined as the expected proportion of violations is equal

to α, whereα is the significance level of the test.

Under the null hypothesis, the test statistic is

Kupiec = 2 log









(

n

x

)

pxobs(1− pobs)
n−x

(

n

x

)

αx(1− α)n−x









= 2 log

((x

n

)x (

1− x

n

)n−x
)

− 2 log
(
αx(1− α)n−x

)

from which the test statistic followsχ2(1) distribution whenn is large.

If the estimated probability,pobs is above the significance level, we accept the

model, otherwise, we reject the model.

We then apply the Christoffersen’s Markov test [18] to checkif the exceptions are

independently distributed over time. The null hypothesisH0 is defined as the exceptions

are independently distributed over time.

The test statistic is defined as

Christoffersen = 2 log

(
(1− π01)

n00πn01
01 (1− π11)

n10πn11
11

αx(1− α)n−x

)

= 2 log ((1− π01)
n00πn01

01 (1− π11)
n10πn11

11 )− 2 log
(
αx(1− α)n−x

)

wherenij is the number of transitions from statei to j, for i, j ∈ {0, 1}, which corre-

sponds to non-exceptions and exceptions, the corresponding transition probabilities are

πij = nij/
∑

j nij. The distribution of the test statistic converges toχ2(1) distribution

whenn is large.

The Kupiec PoF test only quantifies the number of exceptions while ignores the tim-

ing and two-state switching process of the random variable.The Christoffersen’s Markov

test complements this weakness. Since both of these test statistics are likelihood ratios, and

follow a χ2(1) distribution, the sum of the two test statistics forms a moreexplanatory and

powerful test statistic. However, the weakness of assumingthe random variable follows a

Markov process remains.

8.6 Discussion of Results

We first take a look at the normalised historical indices, Figure 8.3 gives us an overview

of the normalized historical indices, and Figure 8.4 presents an overview of the historical
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1.0000 0.7057 0.0499 0.0714 -0.0077 0.6223 0.1634 0.0780
0.7057 1.0000 0.0498 0.0677 -0.0285 0.4652 0.2690 0.0794
0.0499 0.0498 1.0000 0.7763 -0.0358 -0.0107 0.0007 0.0381
0.0714 0.0677 0.7763 1.0000 -0.0284 0.0449 0.0314 0.0172

-0.0077 -0.0285 -0.0358 -0.0284 1.0000 -0.0064 0.0359 -0.0421
0.6223 0.4652 -0.0107 0.0449 -0.0064 1.0000 0.1108 0.0640
0.1634 0.2690 0.0007 0.0314 0.0359 0.1108 1.0000 0.0406
0.0780 0.0794 0.0381 0.0172 -0.0421 0.0640 0.0406 1.0000

Figure 8.1: Historical correlation matrix of returns

log returns. We compare the two models from three aspects: the volatilities, correlation

structure and the goodness-of-fit test statistics. For bothmodels, we generated N=1000

paths, took the means to be our estimates. All the plots have been normalized to the same

scale for the convenience of visual comparison.

From Figure 8.4, we observe that 4 assets presented significantly higher historical

volatilities than others, they are “Russell 3000”, “MSCI EAFE”, “Real Estate” and “Com-

modities”. In addition, we observed significant recent volatility increase in “Russell 3000”,

“MSCI EAFE”, “Real Estate”, “High Yield” and “Commodities”, we define them to be

“highly volatile assets”. The degrees of volatility for “USMBS” and “US Corp” are rela-

tively small and stable across time, we define them to be “stable assets”. The volatility for

“Cash” is almost negligible.

The simulated indices using the Constant Correlation GARCH(1,1) is plotted in

Figure 8.6 , and the simulated mean returns in Figure 8.7. Comparing Figures 8.4 and 8.7,

it is easy to see that the volatilities of those highly volatile assets have been significantly

underestimated, even the volatilities for the stable assets are underestimated. The only

exception is “Real Estate”, of which the simulated returns retain a seemingly similar level

of volatility.

Since we are assuming the constant correlation GARCH(1,1) model, we compare

the correlation matrix across the entire time horizon. Figure 8.1 shows the historical cor-

relation matrix, and Figure 8.2 shows the correlation matrix of the simulated returns using

constant correlation GARCH(1,1) model. Both matrices are computed based on discrete ob-

servations provided. We see the discrepancies are significant, the two matrices are nowhere

close to each other in terms of elementwise values. From the differences in correlation ma-

trices, we believe the constant correlation matrix multivariate GARCH(1,1) model is not an

appropriate choice for our data.

For the hypothesis testings, we take significance level of 95%, and compare the

testing statistic with theχ2(1) distribution’s critical value. We implement the hypothesis

testing on the portfolio level of our model, which means, we aggregate the simulated as-

set returns to portfolio returns, and assess the null hypothesis on the mean returns of the
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1.0000 0.4089 -0.0117 0.0030 -0.0336 0.2458 0.0316 -0.0133
0.4089 1.0000 -0.0452 -0.0212 -0.0340 0.2800 0.0603 -0.0110

-0.0117 -0.0452 1.0000 0.7936 -0.0605 0.0141 -0.0401 -0.0435
0.0030 -0.0212 0.7936 1.0000 -0.0300 0.0353 0.0054 -0.0507

-0.0336 -0.0340 -0.0605 -0.0300 1.0000 -0.0412 0.0711 -0.0494
0.2458 0.2800 0.0141 0.0353 -0.0412 1.0000 -0.0662 0.0019
0.0316 0.0603 -0.0401 0.0054 0.0711 -0.0662 1.0000 0.0654

-0.0133 -0.0110 -0.0435 -0.0507 -0.0494 0.0019 0.0654 1.0000

Figure 8.2: Simulated correlation matrix using CC-GARCH(1,1)

portfolio, since we are more interested on the risk of the given portfolio. For the constant

correlation GARCH(1,1) model, the Kupiec PoF test statistic is 0.04, assuming Gaussian

distribution for the simulated portfolio returns, which suggests the expected proportion of

exceptions equals to the observed; and the Christoffersen’s Markov test statistic is 0.3613,

which suggests the exceptions are independently distributed over time. One specific weak-

ness of these hypothesis tests on this problem is that we are evaluating the risks on the

portfolio level, since the given portfolio has zero weightson some assets, it means that

the test statistics have no representation for the simulated results of those zero weighted

assets. However, we conclude that the constant correlationGARCH(1,1) model does not

adequately present the data from the three above discussed aspects.

Now we refer to the dynamic conditional correlation GARCH(1,1) model. Figure

8.8 presents one sample path taken as means of N=1000 generations, and Figure 8.9 shows

the simulated mean returns. From Figure 8.9, we observe thatthe volatilities of all assets are

more normalized at a similar level, instead of the historically differently scaled volatilities

as in Figure 8.4. This is expected, since most of the assets presented a significant increase

in volatilities in recent period, which is observable in Figure 8.4.

The progressive correlations base on 12-week (3-month) periods for the entire time

horizon is plotted in Figure 8.10. It shows cross correlations for all 8 asset indices. The

red line indicates where the simulated results starts to be taken into account. We see that

the correlations present a good autoregressive structure,both historically and in simulation.

The simulated correlations shows the change in correlationstructure across time, this is

particularly obvious for the correlation between “Russell3000” and “MSCI EAFE”.

On the portfolio level, the Kupiec PoF test statistic is 0.0519, under the assumption

that the simulated portfolio returns follow a Gaussian distribution. The Christoffersen’s

Markov test statistic is 2.7437. The critical value ofχ2(1) at 95% confidence, is 3.84, so

the null hypothesis is accepted. Thus, we conclude that the dynamic conditional correlation

GARCH(1,1) model outperforms the constant correlation GARCH(1,1) model in modelling

the volatilities and correlations of our given portfolio.
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8.7 Figures

8.8 Conclusion

In this chapter, we have compared the characteristics of themultivariate GARCH model

with two types of correlation matrix. We studied the GARCH model with a constant cor-

relation matrix for the mean corrected returns in 8.3, and the GARCH model with a time

dependent correlation matrix in 8.4. We examined the goodness-of-fit of both of the models

through the Kupiec PoF and Christoffersen Markov tests.

By comparing the simulated results, we conclude that the dynamic conditional cor-

relation GARCH model better suits our purpose, which is to replicate the volatility and

cross-asset correlation structure of the portfolio. Our conclusion is supported by the simu-

lated results, which are plotted in the figures in the next section.
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Chapter 9

Appendix

9.1 Itô Formula

Lemma 6.5 in [78].

Consider the Itô SDE

dz

dt
= h(z) + γ(z)

dW

dt
, Z(0) = z0.

whereW (t) is a standardm-dimensional Brownian motion,h : Z → R
d is a smooth

vector-valued function, andγ : Z → R
m×d a smooth matrix-valued function. LetZ beTd,

R
d orRl ⊕ T

d−l.

Define the generator of the SDE above as

Lv = h · ▽v + 1

2
Γ : ▽▽ γ

whereΓ(z) = γ(z)γ(z)T .

Lemma 9.1 (Itô Formula). Assume that bothh(·) and γ(·) are globally Lipschitz onZ
and thatz0 is a random variable independent of the Brownian motionW (t), and satifying

E|z0|2 < ∞. Let z(t) solve the above Itô SDE, and letV ∈ C2(Z,R). Then the process

V (z(t)) satisfies

V (z(t)) = V (z(0)) +

∫ t

0
LV (z(s))ds +

∫ t

0
〈▽V (z(s)), γ(z(s))dW (s)〉.

9.2 Burkholder-Davis-Gundy Inequality

Theorem 3.22 in [78].
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Consider the Itô stochastic integral

I(t) =

∫ t

0
f(s)dW (s),

whereW (t) is ad-dimensional Brownian motion andf(s) ∈ R
m×d. We assume

thatf(t) is a random process, adapted to the filtrationFt generated by the processW (t),

and such that

E

(∫ T

0
f(s)2ds

)

<∞,

and define the quadratic variation process

〈I〉t =
∫ t

0
(f(s)⊗ f(s))ds.

Theorem 9.2(Burkholder-Davis-Gundy Inequality). Consider the above Itô stochastic in-

tegral, a martingale with quadratic variation process〈I〉t. For everyp > 0 there are

positive constantsC± such that

C−
E|〈I〉t|

p

2 ≤ E

(

sup
0≤s≤t

|I(s)|p
)

≤ C+
E|〈I〉t|

p

2 .

9.3 The Gronwall Inequality

Lemma 4.4 in [78] .

Lemma 9.3. • (Differential form) Letη(t) ∈ C1([0, T ];R+) satisfy the differential

inequality
dη(t)

dt
≤ aη(t) + ψ(t) , η(0) = η,

wherea ∈ R andψ ∈ L1([0, T ]);R+. Then

η(t) ≤ exp(at)

(

η +

∫ t

0
exp(−as)ψ(s)ds

)

for t ∈ [0, T ].

• (Integral form) Assume thatξ(t) ∈ C([0, T ];R+) satisfies the integral inequality

ξ ≤ a

∫ t

0
ξ(s)ds + b,

138



for some positive constantsa andb. Then

ξ(t) ≤ b exp(at) t ∈ [0, T ].

9.4 Central Limit Theorems

This section quotes central limit theorems for random variables, martingales, and function-

als of erogodic Markov chains.

Theorem 9.4(Central Limit Theorem). [78] Let {ξn}∞n=1 be a sequence of i.i.d. random

variables with mean zero and variance 1. Define

Sn =
n∑

k=1

ξk

Then the sequence

Xn =
1√
n
Sn

converges in distribution to a standard normal random variable.

Theorem 9.5 (Martingale Central Limit Theorem). [78] Let {M(t) : R+ → Rd} be a

continuous square integrable martingale on a probability space(Ω,F , µ) with respect to a

filtration {Ft : t ≥ 0}; let 〈M〉t denote its quadratic variation process. Assume that:

(i) M(0) = 0;

(ii) the processM(t) has continuous sample paths and stationary increments;

(iii ) the scaled quadratic variation ofM(t) converges inL1(µ) to some symmetric positive-

definite matrixΣ:

lim
t→∞

E

(

| 〈M〉t
t

− Σ|
)

= 0

Then the process1/
√
tMt converges in distribution to anN (0,Σ) random variable.

Furthermore, the rescaled martingale

M ǫ(t) = ǫM

(
t

ǫ2

)

converges weakly inCRd to
√
ΣW (t), whereW (t) is a standardd-dimensional

Brownian motion and
√
Σ denotes the square root of the matrixΣ.
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Below we cite the Central Limit Theorem for functionals of ergodic Markov chains.

The first theorem is part of Theorem 2.3 in [16], which characterizes the limiting distri-

bution for an erogdic Markov chain; the second theorem is Theorem 3.1 in [16], which

identifies the limiting variance of the limiting Gaussian distribution.

We first define{Xn}n≥0 is an ergodic Markov chain with invariant distributionπ

andξ : E → R is a measurable function, whereE is a general state space. Write

Sn =
n−1∑

k=0

ξ(Xk) n = 1, 2, . . . .

Theorem 9.6(Central Limit Theorem for functionals of ergodic Markov chains). [16] Let

{Xn}n≥0 be an ergodic Markov chain with and assume that

∫

ξ2π(dx) < +∞ .

ThenSn/
√
n→ N (0, σ2) in distribution for someσ2 ≥ 0.

Theorem 9.7. Let{Xn}n≥0 be an ergodic Markov chain with and assume that

(i)
∫
ξ2(x)π(dx) < +∞ ;

(ii)
∑∞

n=1

∫
ξ(x)Pnξ(x)π(dx) converges.

Then,

Sn/
√
n→ N (0, σ2) in distribution

holds for someσ2 ≥ 0. Further,

σ2 =

∫

ξ2(x)π(dx) + 2

∫ ∞∑

n=1

ξ(x)Pnξ(x)π(dx)

if (i) holds and (ii) is strengthened into

(ii ′)
∞∑

n=1

ξ(·)Pnξ(·) converges in L1(π) .

9.5 The Blockwise Matrix Inversion Formula

[19]

(

A B

C D

)−1

=

(

A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
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9.6 Hölder’s inequality

[38]

Let x ∈ C
n, define, forp ≥ 1

‖x‖p =
(

n∑

i=1

|xi|p
)1/p

Forx, y ∈ C
n,

n∑

i=1

|xi||yi| ≤
(

n∑

i=1

|xi|p
)1/p( n∑

i=1

|yi|p
′

)1/p′

.

9.7 The Continuous-time Ergodic Theorem

Lemma 9.8. [46] Fix a measurable spaceS, let (Tt) be a measurable flow onS with invari-

antσ-field I, and letξ be a(Tt)- stationary random element inS. Consider a measurable

functionf : S → R with f(ξ) ∈ Lp for somep ≥ 1. Then ast→ ∞,

t−1

∫ t

0
f(Ttξ)ds→ E[f(ξ)|ξ−1I]a.s.andinLp

An immediate result from the above ergodic theorem would be:Let

I =
1√
T

∫ T

0
ψ(z(t))dW (t),

Then there exists a constantC > 0 : E|I|2 ≤ C for all T > 0.

Proof. Use the Itô isometry and invoke the Lipschitz continuity ofψ.

9.8 Some Quoted Properties of Linear Operator

Some linear operator properties from [80]. The existence and uniqueness of the solution of

initial value problem regarding a bounded linear operator.

Theorem 9.9. [80][p104] If A is the infinitesimal generator of a differentiable semigroup

then for everyx ∈ X the initial value problem of theX valued functionu(t)

du(t)

dt
= Au(t) , u(0) = x t > 0

has a unique solution.
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Since an operator on a finite-dimensional normed space is a bounded linear operator

if and only if it is a continuous linear operator [93]. OurL0, L1 andL2 in Chapters 3 and

4 are clearly continuous, hence bounded linear operators. The boundedness of the solution

regarding a linear operator.

Theorem 9.10. [80][p118] Let A be the infinitesimal generator of an analytic semigroup

eAt. If

σ = sup{Reλ : λ ∈ σ(A)} < 0

then there are constantsM ≥ 1 andµ > 0 such that‖eAt‖ ≤Me−µt.

whereσ here stands for the spectrum of the linear operatorA.

9.9 Eigenvalues of A Simple Matrix

Lemma 9.11. For a matrixM of the following structure:

M =

(

0 0

m1 m2

)

with m2 negative definite, top-left zero sub-matrix andm2 squares matrices, andm2 in-

vertible. Then the zero eigenvalues from the top-left zero submatrix are simple (ie. with

algebraic multiplicity 1), and all other eigenvalues negative.

Proof. We first prove that all the zero eigenvalues from the top-leftsubmatrix are simple.

Since the top-left zero matrix is a square matrix, we assume the dimension isk. We con-

struct the following vector of sizek,

el =

















0
...

0

1

0
...

0

















with 1 as thelth entry l ∈ {1, . . . , k}.

Then we can construct an eigenvectorvl through eachel,

vl =

(

el

−m−1
2 m1el

)
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It is easy to check by the definition of eigenvectors thatvl’s are proper eigenvectors

for eigenvalue zero,

Mvl = 0 = 0vl

It is also easy to see that all the eigenvectorsvl andvl′ are orthogonal ifl 6= l′,

〈vl; vl′〉 = 0 (l 6= l′).

Therefore, each zero eigenvalue has independent eigenvector, so the zero eigenval-

ues are simple. The second statement is straightforward, sincem2 is negative definite, all

it’s eigenvalues are negative.

9.10 An Inequality of Matrix Norm

Definition 9.12. [40] Let ‖•‖ be a vector norm onCn. Define‖•‖ onCn×n by

‖A‖ = sup
x
‖Ax‖

wherex ∈ C
n.

Theorem 9.13. [40] The matrix norm defined in Definition 9.12 satisfies

‖Ax‖ ≤ ‖A‖‖x‖

and

‖I‖ = 1.

If L is a linear operator applied on a square matrixA, and the following holds

‖eLtA‖ ≤ C‖A‖

then we say

‖eLtA‖ ≤ C

wheret denotes time,C is a constant changes from occurrence to occurrence.

9.11 Order Preservation on the Diagonal of a Matrix

In the first case, we leta andq be as defined in (3.5), witha decomposed as

a = PDP−1 ,
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whereD is a diagonal matrix of eigenvalues ofa,

D =

(

D1 0

0 1
ǫD2

)

,

andU is the corresponding matrix of eigenvectors; and the diagonal diffusion matrix can

be written as

q =

(

q1 0

0 1
ǫ q2

)

.

hence,

q
−1 =

(

q−1
1 0

0 ǫq−1
2

)

.

and consequently,

Dq
−1 =

(

D1q
−1
1 0

0 D2q
−1
2

)

= O(1) .

In the second case, we leta andq be as defined in (4.6), witha decomposed as

a = PDP−1 ,

whereD is a diagonal matrix of eigenvalues ofa,

D =

(

D1 0

0 1
ǫ2
D2

)

,

andP is the corresponding matrix of eigenvectors; and the diagonal diffusion matrix can

be written as

q =

(

q1 0

0 1
ǫ2 q2

)

.

hence,

q
−1 =

(

q−1
1 0

0 ǫ2q−1
2

)

.

and consequently,

Dq
−1 = qD−1 =

(

D1q
−1
1 0

0 D2q
−1
2

)

= O(1) .

Therefore, for both averaging and homogenization problems, we haveDq
−1 =

O(1), whereD is diagonal matrix of eigenvalues of the drift matrixa, andq the diffusion

matrix.
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Lemma 9.14. We let(a,q) be as defined in(3.5) or in (4.6), let Σ = U−1
q(U−1)T , then

the elements on the diagonal of matrix(DΣ−1)ii = O(1), and thusDii/Σii = O(1).

Proof. By the definition ofΣ, we know

Σ = P−1
q(P−1)T ;

We know immediately thatΣ is a real symmetric matrix, hence it can be decomposed using

Singular Value Decomposition,

Σ = V SV −1

whereV is unitary, andS is a diagonal matrix of singular values. Due to symmetry ofΣ,

the singular valuesSii = |Λii|, for whichΛii are the eigenvalues ofΣ, and are of same

orders asq, which is east to prove. Hence,

DΣ−1 = DV S−1V −1 = V DS−1V −1 .

It follows with our first result

(DΣ−1)ii = O(1) (9.1)

Then we writeΣ as

Σ =

(

Σ11 Σ12

ΣT12 Σ22

)

.

for whichΣ11 ∈ R
d1×d1 , Σ22 ∈ R

d2×d2 andΣ12 ∈ R
d1×d2 .

Using block matrix inversion formula in Appendix 9.5, we have the diagonal blocks

of Σ−1,

(Σ−1)11 = (Σ11 − Σ12Σ22Σ
T
12)

−1

(Σ−1)22 = Σ−1
22 +Σ−1

22 Σ12(Σ11 − Σ12Σ22Σ
T
12)

−1Σ12Σ
−1
22

By equation (9.1), we have

(Σ11 − Σ12Σ22Σ
T
12)

−1 = D1Σ
−1
11 = O(1)

from which we can conclude

Σ11 = O(1) , Σ12Σ22Σ
T
12 = O(1) .
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Again by equation (9.1),

O
(
Σ−1
22 +Σ−1

22 Σ12(Σ11 − Σ12Σ22Σ
T
12)

−1Σ12Σ
−1
22

)

= O
(
Σ−1
22 +Σ−1

22 Σ12CΣ12Σ
−1
22

)

whereC is an orderO(1) matrix, and this block matrix is of orderO(ǫ) for averaging and

O(ǫ2) for homogenization. By previous equation

Σ12Σ22Σ
T
12 = O(1)

we have

Σ12CΣ12Σ
−1
22 = O(1) .

therefore in averaging,

Σ−1
22 = O(ǫ) so Σ22 = O(

1

ǫ
)

and in homogenization

Σ−1
22 = O(ǫ2) so Σ22 = O(

1

ǫ2
)

Consequently, we have

Dii/Σii = O(1) .
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